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Abstract

We analyze competitive financial economies in which firms make risky in-
vestments. Unlike the classic Arrow–Debreu framing, firms and agents cannot
contract upon the exogenous states of nature underlying production risks. The
only available securities are equities and all possible derivatives written on the
endogenous aggregate output. It is well-known that this financial structure
is rich enough to promote efficient risk sharing across consumers. However,
markets are incomplete from the production perspective, and the absence of
market prices for each primitive state of nature raises issues on the objective of
firms. By exploring an additional layer of rationality on firms’ and agents’ ex-
pectations, we show that asset prices convey sufficient information to compute
a competitive shareholder value that leads to efficient investment by firms.
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1 Introduction

Following the work by Léon Walras in the 19th century, the general equilib-

rium literature focused on understanding how anonymous markets coordinate the

production and consumption of goods in competitive economies. In this setting,

firms’ productive decisions and agents’ consumption choices are taken independently,

and market prices are the only instruments available to coordinate different wishes.

Hayek (1945) supported the view that competitive prices have the capacity of aggre-

gating the necessary social knowledge to induce efficiency of self-interested decisions.

This idea was rigorously formulated and independently proven by Kenneth J. Arrow,

Gerard Debreu, and Lionel W. McKenzie during the 1950’s. They listed conditions

for existence of a competitive equilibrium and proved that, in the absence of exter-

nalities and other market frictions, competitive markets lead profit-maximizing firms

and utility-maximizing agents to achieve a Pareto optimal allocation of resources.

The information embedded in market prices is sufficient to promote efficient social

coordination across decision makers.

Arrow (1953) and Debreu (1959) extended the general equilibrium analysis to

economies in which random states of nature affect production. They showed that the

classic results carry over to environments with uncertainty whenever decision makers

are able to trade a complete set of contingent claims—each of them promising to

deliver goods in the future contingent to the verification of a given state of nature.

However, the description and verification of primitive states are not simple matters,

and most securities traded in modern financial markets are contingent on observed

outcomes instead of primitive states of nature.

We analyze competitive financial economies in which firms make risky invest-

ments and consumers trade firms’ equities and securities written on firms’ endoge-

nous production. Since our goal is to analyze efficiency of firms’ investment decisions,

we assume that financial markets allow consumers to insure each other against id-

iosyncratic risks and make consumption plans contingent on aggregate output. It

is well-known that this market structure is sufficient to implement Pareto optimal

allocations in exchange economies. We analyze the conditions under which this also

holds for production economies.

This topic was introduced by Magill and Quinzii (2009, 2010). These papers de-

velop a concept for computing the shareholder value of large corporations and show

that Pareto efficiency does not always follow from shareholder value maximization.
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We argue that profit maximization can still be socially justified as a decision criterion

if firms are assumed to behave as perfect competitors. Although output-contingent

prices do not a priori convey all the requisite information to coordinate consumption

and investment decisions, we show that this issue can be overcome if we impose an

additional layer of rationality on how firms and agents anticipate out-of-equilibrium

scenarios. In the standard Arrow–Debreu approach, all relevant information for

an efficient investment decision is embedded in the state-contingent prices. In the

output-contingent framing, however, financial markets do not necessarily distinguish

across states of nature that lead to the same equilibrium aggregate output. This

distinction is still relevant for firms’ decisions. We accommodate the competitive

price-taking paradigm by assuming that firms and agents combine market prices

with competitive beliefs about how alternative investment plans would affect the

conditional expectation of each firm’s output given the economy’s aggregate pro-

duction.1

We start by stressing our main insights in the CAPM setting. Next, in Sections 3

and 4, we describe a general model and define the competitive financial equilibrium.

Agents in this economy can only trade securities written on endogenous produc-

tion levels. This financial structure is incomplete with respect to the underlying

primitive states of nature but allows consumers to sell their endowment risks and

make consumption plans that are contingent on the equilibrium aggregate output.

In Section 5, we introduce our view on how firms should compute the net present

value of out-of-equilibrium investment plans. We argue that the financial equilib-

rium in which firms maximize our definition of market value is the counterpart of

the Arrow–Debreu concept. In particular, we show that the associated consump-

tion and investment allocation is Pareto optimal. In Section 6, we compare our

competitive notion of shareholder value to the alternative concepts in which firms

exert market power by internalizing parts of the impact of their investment deci-

sions. We use Section 7 to discuss existence of a competitive equilibrium in different

1This competitiveness assumption on firms is consistent with the literature on the objective of
corporations under incomplete markets—see for instance Drèze (1974), Ekern and Wilson (1974),
Leland (1974), Ekern (1975), Hart (1979), Grossman and Hart (1979), Makowski (1983), and Bisin,
Gottardi, and Ruta (2014). Our markets are also incomplete with respect to exogenous uncertainty,
and the spanning condition of Ekern and Wilson (1974) does not hold here (in the sense that invest-
ments do affect the individual ability to transfer wealth across primitive states of nature). However,
differently from the aforementioned literature, agents share the same marginal rates of substitution
for each given equilibrium aggregate output. Our contribution is to show that if managers inter-
nalize this equilibrium feature when forming their conjectures on firms’ out-of-equilibrium market
values, then efficiency is restored.
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contexts.2 Concluding remarks appear in Section 8. Appendix A is reserved for

technical arguments.

2 Main insights in the CAPM framework

We adapt the CAPM environment described in Magill and Quinzii (1996), Chap-

ter 3. There are two periods t ∈ {0, 1}, one good, and finitely many firms and

investors. Uncertainty is represented by an objective probability P on a finite set Ω

of primitive states of nature. We consider the simple case where only firm 1 has an

exposure-to-risk decision. In the initial period, this firm chooses an investment level

a ∈ [0, 1] that determines its output next period, according to a bounded random

function f1(a). The production of all other firms is random and not related with the

investment a. We use σf(a) to represent the sum of all productions.3 The variance

var(σf(a)) of the aggregate output is strictly positive, for every a.

Investors hold positive initial endowments and own shares of each firm. The

current earning of investor i is given by a real number ξi0 and the future random

earnings are represented by a bounded random variable ξi1. These earnings are

ranked by

υ0

(
ξi0
)

+ E
[
υ1

(
ξi1
)]
,

where the functions υ0 and υ1 are strictly increasing (on the relevant part of the

domain), continuously differentiable, strictly concave, and such that E
[
υ1

(
ξi1
)]

has

a mean-variance representation.4

The only traded assets are a riskless bond in zero net supply and firms’ equities

in positive net supply. Markets are incomplete as there are only three assets and

possibly more than three states in Ω. Nonetheless, thanks to the mean-variance

preference, for any arbitrary investment ā, the competitive equilibrium in the bond-

2We have also produced a supplementary material to analyze the existence problem when the
output follows a particular non-convex technology that is usual in the contract theory literature.
Under this technology, there is a continuum of possible investment levels which affect the probability
of success and failure (i.e., high and low output levels). We suggest an alternative approach to model
this problem by assuming there is a continuum of firms whose productive shocks are perfectly
correlated. We derive a general existence result for this alternative model and explicitly compute
an equilibrium in which, in spite of the continuum of firms, the (average) aggregate output displays
stochastic variability.

3 Formally, if we have K firms, then σf(a) := f1(a) + f2 + . . . + fK , where fk is a bounded
random variable, for any k 6= 1.

4That is, there exists a function φ : R × R+ → R such that E
[
υ1
(
ξi1
)]

= φ
(
E
[
ξi1
]
, var

[
ξi1
])

,
where φ is increasing in the first variable and decreasing in the second.
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equity markets ensures a Pareto optimal distribution (ξ̄i)i∈I of the available re-

sources among investors. Moreover, there is also a discount factor χ̄ that is an affine

function of aggregate output. Formally, there exist two strictly positive constants γ̄

and λ̄ such that, for every investor i,

υ′1
(
ξ̄i1
)

υ′0
(
ξ̄i0
) = χ̄(σf(ā)),

where

χ̄(z) = γ̄ − λ̄z,

for any possible equilibrium aggregate output z. The market value Ē of firm 1 is

then given by the CAPM asset pricing equation

Ē =
E
[
f1(ā)

]
1 + r̄

− λ̄ cov
(
f1(ā), σf(ā)

)
, (2.1)

where r̄ is the equilibrium risk-free rate and λ̄ is interpreted as the market price per

unit of risk.5

In this context, we ask how firm 1 should make its investment decision. Will the

objective of this firm lead to Pareto efficiency in the production side? If markets

were complete, then firms and investors could use the information contained in asset

prices to infer the equilibrium Arrow price p̄(ω), for each exogenous state ω. In this

case, any investment that maximizes the Arrow–Debreu present value of firm 1, i.e.,

a 7→ Π(a) :=
∑
ω∈Ω

p̄(ω)f1(ω, a)− a,

is Pareto efficient and unanimously supported by the stockholders. But how to

compute a 7→ Π(a) when Arrow prices are not available? Since the bond-equity

markets are incomplete, there are infinitely many stochastic discount factors leading

to the same equilibrium prices but to different evaluations about out-of-equilibrium

investment plans a 6= ā.

We propose to build on the CAPM asset pricing Equation (2.1) to define con-

jectures about how the market would value the firm’s equity under an alternative

investment level a 6= ā. When making out-of-equilibrium price conjectures, we

assume that the manager acts competitively in the following sense: he takes the

5These results follow from Magill and Quinzii (1996), Theorem 17.3.
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risk-free interest rate r̄ and the premium for aggregate risk λ̄ as given, and he does

not internalize the impact of his investment decision on the equilibrium aggregate

production σf(ā). These behavioral assumptions lead to the following definition of

“competitive” price conjecture: for each a ∈ [0, 1],

Ẽ(a) :=
E[f1(a)]

1 + r̄
− λ̄ cov

(
f1(a), σf(ā)

)
. (2.2)

If the firm 1 maximizes the associated “competitive” market value function a 7→
V (a) := Ẽ(a) − a, then the corresponding solution ā is Pareto optimal. To see

this, recall from the Second Welfare Theorem that, after appropriate transfers, the

efficient allocation of consumption (ξ̄0, ξ̄1) can be implemented as the equilibrium

of a pure exchange economy with a complete set of Arrow securities contingent on

primitive states ω. If we let m̄ : Ω→ R+ be the Arrow–Debreu stochastic discount

factor (i.e., m(ω)P (ω) = p(ω), for all ω), then we have

υ′1
(
ξ̄i1
)

υ′0
(
ξ̄i0
) = m̄,

for every investor i. This implies the following relation between the stochastic

discount factor χ̄ from the bond-equity economy and the Arrow-Debreu factor m̄:

χ̄(σf(ā)) = m̄.

As a consequence, we obtain

Ẽ(a) :=
E[f1(a)]

1 + r̄
− λ̄ cov(f1(a), σf(ā))

= E[f1(a)]E[χ̄(σf(ā))]− cov(f1(a), χ̄(σf(ā)))

= E[f1(a)]E[m̄]− cov(f1(a), m̄)

= E[m̄f1(a)]

= Π(a) + a.

Therefore, an investment ā maximizes V (a) = Ẽ(a) − a if, and only if, it maxi-

mizes Π(a). From the First Welfare Theorem for Arrow–Debreu economies, such an

investment level is a Pareto efficient productive decision.
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Alternative view There is an alternative way to interpret our competitive price

conjectures. Since the consumption allocation in the exchange economy is efficient,

the investors’ earnings are constant across primitive states ω associated with the

same aggregate output z. This implies that the investors’ valuation of an arbi-

trary random payoff f1(a) coincides with the valuation of its conditional expecta-

tion E[f1(a)|σf(ā)] given the aggregate output. In other words, the investors are

risk-neutral conditional on the aggregate output.

Our price conjectures reflect this equilibrium property. We notice that Eq. (2.2)

can be rewritten as

Ẽ(a) =
Ez(ỹ

1(a|z))
1 + r̄

+ λ̄ covz(ỹ
1(a|z), z), (2.3)

where

ỹ1(a|z) := E[f1(a)|σf(ā) = z]

and Ez and covz represent the expectation and covariance operators with respect

to the distribution of the equilibrium aggregate output. Among the (infinitely)

many discount factors that generate the equilibrium prices, our price conjectures

are defined by selecting the one that reflects the investors’ marginal valuation. As

a consequence, the value of an out-of-equilibrium output f1(a) equals the value of

its conditional expectation given the aggregate output.

3 General model

We extend the main ideas presented in our initial illustration to a general envi-

ronment. Consider an economy with two periods t ∈ {0, 1}, a single good, a finite

set K of firms and a finite set I of consumers. At the initial date (t = 0), each firm k

selects an investment level ak from a set Ak ⊂ R+. Making no investment is always

a possibility—i.e., 0 ∈ Ak, for every k. At date 1, they are exposed to exogenous

shocks ω drawn from a probability space (Ω,F , P ). Events B ∈ F represent prim-

itive causes which odds are represented by the exogenous probability P (B). This

probability is independent of consumers’ and firms’ actions.

Technology The initial investment ak and the exogenous shock ω determine

firm k’s production yk = fk(ω, ak) at date 1 from a set Y k ⊂ R+. The produc-

tion possibilities of the economy are represented by the family f := (fk)k∈K of
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non-decreasing random production functions

fk(ω, ·) : Ak 7−→ Y k.

We assume that, for each investment ak, the function ω 7→ fk(ω, ak) is measurable

and essentially bounded on (Ω,F , P ).6

From this standard production-function framework, we derive the following al-

ternative representation of the productive sector. Define the sets A :=
∏

k∈K Ak

and Y :=
∏

k∈K Y k, their respective elements a := (ak)k∈K and y := (yk)k∈K , and

the transition probability a 7→ Q(a) given by

Q(B, a) := P ({f(a) ∈ B}),

for every Borelian set B of Y .7 The investment profile a ∈ A undertaken at date 0

determines the joint probability Q(a) of firms’ random outcomes at date 1.

To represent aggregate production, we define the σ-operator to be

σy :=
∑
k∈K

yk, for all y ∈ Y .

The random aggregate production is then represented by the function ω 7→ σf(ω, a).

We let Z :=
∑

k∈K Y k denote the set of all possible aggregate outputs and derive

the transition probability a 7→ µ(a) by posing

µ(B, a) := P ({σf(a) ∈ B}),

for every Borelian set B of Z. We assume that date-1 output is bounded away from

zero, in the sense that there exists ε > 0 such that µ ([ε,∞), a) = 1, for every a ∈ A.

Agents Each agent i has initial resources consisting of an endowment ei0 > 0 at

date 0 and the ownership shares δik ∈ [0, 1] of each firm k, where
∑

i∈I δ
i
k = 1.

Agents have no initial endowment at date 1, so that all consumption in that period

6To fix ideas, we can take Ω to be the product space
∏

k∈K(Y k)A
k

and F to be the prod-

uct ⊗k∈KBk of each Borelian σ-algebra Bk defined by the product topology of the space (Y k)A
k

.
The support of the probability P is then assumed to be a subset of

∏
k∈K N(Ak, Y k),

where N(Ak, Y k) is the set of non-decreasing functions from Ak to Y k.
7The set {f(a) ∈ B} stands for {ω ∈ Ω : f(ω, a) ∈ B}. Similar notation omitting ω is used

throughout the paper.
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comes from the firms’ output. Preferences are represented by a utility function

that is separable across time and has the expected utility form for future risky

consumption. Let xi0 > 0 denote agent i’s consumption at date 0 and γi be a

probability measure on R+ that represents random consumption at date 1. Agent

i’s expected utility function is given by

u0(xi0) +

∫
R+

u1(xi1)γi(dxi1),

where u0 and u1 are strictly increasing, continuously differentiable, and strictly

concave functions which map R+ into [−∞,∞) and satisfy the Inada condition at

zero.

Remark 3.1. The time separability of the expected utility and the cross-agent homo-

geneity of the Bernoulli utility functions are only assumed to simplify the notation.

It is straightforward to extend all results in this paper to the case with heterogeneous

Bernoulli utilities (xi0, x
i
1) 7→ νi(xi0, x

i
1).

4 Competitive equilibrium for a given investment

For sake of expositional clarity, we first define a competitive equilibrium for our

output-contingent environment by taking the investment level of each firm as given.

After understanding how agents insure each other, we analyze the problem of how

firms choose their investments.

Different from the traditional Arrow–Debreu model, we do not consider contracts

contingent on the realization of the primitive states of nature ω. We assume that the

probabilities and the economic consequences of the events in F are well-understood

by firms and agents, but the costs of describing ex-ante each primitive state of

nature and enforcing ex-post state-contingent contracts are too large. The only

traded contracts are those based on firm’s output. We consider two types of assets:

the equity of each firm k ∈ K traded in positive net supply; and securities in zero

net supply representing bonds and all possible output-contingent derivatives.

Uncertainty only derives from production risks. Hence, an efficient allocation of

risks among consumers (for a given vector of firms’ investments) only requires that

agents trade firms’ equities and claims contingent on date-1 aggregate output. At

date 0, for a given investment profile a, each agent i chooses current consumption

xi0 ∈ R+, new equity holdings ηi ∈ RK and a (Borel-measurable) contract θi : Z → R

9



contingent on aggregate output such that

xi0 +

∫
Z
θi(z)ρ(dz) + E · ηi 6 ei0 + (E − a) · δi, (4.1)

where E stands for the vector of equity prices, and ρ is a positive measure on the

Borelian sets of Z such that ρ([0, z]) represents the date-0 price of the contract

delivering one unit of consumption good contingent on the aggregate output being

lower than or equal to z. At date 1, contingent on output profile y, agent i consumes

xi1(y) := θi(σy) + y · ηi > 0. (4.2)

Each agent i maximizes the expected utility

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a)

among all individual plans (xi0, x
i
1, η

i, θi) satisfying the budget constraints (4.1)

and (4.2), for Q(a)-almost every y.

A financial equilibrium associated with ā is a list (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)), where

(x̄0, x̄1, η̄, θ̄) := (x̄i0, x̄
i
1, η̄

i, θ̄i)i∈I is a consumption-portfolio allocation such that:

(i) for every i ∈ I, the plan (x̄i0, x̄
i
1, η̄

i, θ̄i) solves agent i’s optimization problem

given (Ē, ρ̄, ā);

(ii) the consumption markets clear, i.e.,∑
i∈I

(ei0 − x̄i0) =
∑
k∈K

āk (4.3)

and ∑
i∈I

x̄i1(y) = σy, for Q(ā)-almost every y; (4.4)

(iii) the financial markets clear, i.e.,∑
i∈I

η̄i = 1 and
∑
i∈I

θ̄i(z) = 0, for µ(ā)-almost every z.8 (4.5)

An allocation ((x̄0, x̄1), ā) is said to be feasible if the consumption markets clear.

8The term 1 represents the K-dimensional vector of ones.
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An allocation ((x0, x1), a) is said to Pareto dominate the allocation ((x̄0, x̄1), ā)

whenever

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a) > u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā),

for every agent i, with strict inequality for at least one agent i. An allocation

((x̄0, x̄1), ā) is Pareto optimal if ((x̄0, x̄1), ā) is feasible and there is no other fea-

sible allocation ((x0, x1), a) that Pareto dominates ((x̄0, x̄1), ā). A consumption

allocation (x̄0, x̄1) is Pareto optimal for a given investment ā if ((x̄0, x̄1), ā)

is feasible and there is no other feasible allocation ((x0, x1), ā) with the same in-

vestment profile that Pareto dominates ((x̄0, x̄1), ā). The next result shows that

our market structure implements a Pareto optimal distribution of resources among

consumers for any given investment profile.9

Proposition 4.1. Fix a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with an

arbitrary investment vector ā. The corresponding consumption allocation (x̄0, x̄1)

is Pareto optimal given ā.

The equilibrium measure ρ̄(dz) is absolutely continuous with respect to µ(dz, ā).

This is to say that there is a Borel-measurable function χ̄ : Z → R+ (called the

stochastic discount factor) such that:

ρ̄(dz) = χ̄(z)µ(dz, ā). (4.6)

Pareto optimality of the consumption allocation (x̄0, x̄1) given ā implies the individ-

ual consumption x̄i1(y) to be constant across output vectors y generating the same

aggregate output σy. Therefore, there exist Borel-measurable functions c̄i1 : Z → R+

such that x̄i1(y) = c̄i1(σy) for all y and i. Since date-1 aggregate production is boun-

ded away from zero, our assumptions on the Bernoulli utilities imply that the ratio

of marginal utilities equals the stochastic discount factor

u′1(x̄i1(y))

u′0(x̄i0)
=
u′1(c̄i1(σy))

u′0(x̄i0)
= χ̄(σy), (4.7)

for every i and y. As a consequence, the market is risk neutral conditional on the

9The proof follows from standard arguments and the details are postponed to Appendix A.1.
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aggregate output, and the equilibrium equity prices can be written as

Ē =

∫
Y
χ̄(σy)yQ(dy, ā). (4.8)

5 The market value of each firm

We now analyze how investment levels are chosen by firms in equilibrium. Each

firm is assumed to be small relative to the aggregate economy and does not seek to

manipulate prices. Under these competitive conditions, a natural objective function

for a firm to maximize is its market value. When markets are complete with respect

to primitive states (like in the standard Arrow–Debreu framework), the Arrow prices

p̄(B) associated with any (F-measurable) primitive event B ⊂ Ω are quoted in the

market. Firm k’s manager can take these prices as given and use them to compute

the following conjectured equity value

Ek(ak) :=

∫
Ω
fk(ω, ak)p̄(dω)

associated with any out-of-equilibrium investment ak. In that case, maximizing the

standard competitive market value

Πk(ak) := Ek(ak)− ak =

∫
Ω
fk(ω, ak)p̄(dω)− ak (5.1)

leads to Pareto optimality.

In the absence of securities whose payoffs are contingent on exogenous events,

a deep issue arises: how firms should assess their equity value for production plans

different from the equilibrium ones? Or equivalently, how can we define the conjec-

ture Ek(ak) when the prices p̄(dω) are not available?

5.1 Competitive conjectures conditional on aggregate production

The equilibrium prices ρ̄(dz) allow us to price by non-arbitrage any (bounded)

contingent claim written on the aggregate output. The non-arbitrage price of a

claim represented by a bounded function h : Z → R is∫
Z
h(z)ρ̄(dz).

12



However, we are also interested in pricing random variables that are not measurable

with respect to the equilibrium aggregate output.10 The question at issue is then

how to extend this pricing formula to the space of bounded random variables.

We recall that markets are incomplete and, then, there are infinitely many

stochastic discount factors on Ω that are consistent with the equilibrium prices

ρ̄. These discount factors, however, do not generate the same value for random

variables that are not σf(ā)-measurable.

We propose to assume that firms and agents rationally anticipate the equilibrium

property that the market is risk neutral conditional on aggregate output—as follows

from Proposition 4.1 and Eq. (4.7). Combining this additional layer of rationality

together with standard non-arbitrage valuation leads to the following definition of

conditional risk-neutral valuation S̃: for any bounded random variable g : Ω → R
on (Ω,F , P ),

S̃(g) :=

∫
Z
h(z)ρ̄(dz),

where h(z) := E[g|σf(ā) = z].11 In other words, among the many possible stochastic

discount factors, we take the one that is constant across states ω that are associated

(at equilibrium) with the same aggregate output z.

Under this conditional risk-neutral valuation, firms and agents hold the following

conjecture for the value of the out-of-equilibrium claim fk(ak):

Ẽk(ak) := S̃(fk(ak)) =

∫
Z
ỹk(ak|z)ρ̄(dz), (5.2)

where

ỹk(ak|z) := E[fk(ak)|σf(ā) = z] (5.3)

is the conditional expected output associated with the out-of-equilibrium invest-

ment ak given the equilibrium aggregate output z. The value of the firm consistent

with this pricing rule is given by

V k(ak) := Ẽk(ak)− ak =

∫
Z
ỹk(ak|z)ρ̄(dz)− ak. (5.4)

The key behavioral assumption behind Eqs. (5.2), 5.3), and (5.4) is that firms

10 For instance, since the spanning property of Ekern and Wilson (1974) is not necessarily satisfied,
the out-of-equilibrium production claim fk(ak), may not be σf(ā)-measurable, when ak 6= āk.

11 By this we mean that h : Z → R is a Borel function such that E[g|σf(ā)] = h(σf(ā)), almost
everywhere.

13



and agents take prices as given and form competitive beliefs about the conditional

expected production under different out-of-equilibrium investment levels. They un-

derstand that firm k’s output becomes the random variable ω 7→ fk(ω, ak) whenever

it invests ak. However, they also believe that firm k’s decisions do not affect the likeli-

hood of aggregate production and, therefore, compute expected production ỹk(ak|z)
conditional on the event {σf(ā) = z}. The conditioning event is evaluated at the

equilibrium investment vector, which includes the investment choice of firm k. One

could metaphorically think about this as if there was a continuum of firms so that

the term ỹk(ak|z) represented the conditional expected output when a firm invested

ak while all other infinite firms invested the equilibrium level.

Remark 5.1 (Correctness at equilibrium). Our competitive price conjectures coincide

with the equilibrium prices. Formally, we have

Ẽk(āk) =

∫
Z
ỹk(āk|z)χ̄(z)µ(dz, ā)

=

∫
Y
χ̄(σy)ỹk(āk|σy)Q(dy, ā)

=

∫
Y
χ̄(σy)ykQ(dy, ā)

= Ēk,

where these equalities follow from Eqs. (4.8), (5.2), and (5.3).

5.2 Efficiency

We turn now to show the Pareto optimality of any allocation ((x̄0, x̄1), ā) derived

from a financial equilibrium in which each investment āk maximizes the competitive

market value V k. We have argued before that the impossibility to trade assets

contingent on primitive states is an essential incompleteness of markets from the

perspective of firms. Although consumers do not need to trade securities contingent

on primitive states to perfectly share idiosyncratic risks, firms need the information

embedded in the state-contingent prices p̄ in order to compute the competitive

present value Πk(ak) associated with out-of-equilibrium investment plans ak 6= āk,

as defined in Eq. (5.1). We show that this incompleteness can be overcome if firms

believe the market is risk neutral conditional on aggregate output, or equivalently,

if they hold the competitive price conjectures Ẽk(ak). To prove this, we first show

that our definition of competitive conjectures provides a connection between the
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standard Arrow–Debreu concept of competitive equilibrium and our definition of

financial equilibrium.

We recall that an Arrow–Debreu equilibrium is a list (p̄, (ξ̄0, ξ̄1), ā) composed

of: (i) a positive measure p̄ on (Ω,F) representing state-contingent prices; (ii) a

consumption plan (ξ̄0, ξ̄1) :=
(
ξ̄i0, ξ̄

i
1

)
i∈I , where ξ̄i0 > 0 and ξ̄i1 : Ω→ R+ is a random

variable; and (iii) an investment vector ā := (āk)k∈K such that:

(a) the allocation ((ξ̄0, ξ̄1), ā) is feasible, in the sense that∑
i∈I

ei0 − ξ̄i0 =
∑
k∈K

āk (5.5)

and ∑
i∈I

ξ̄i1(ω) =
∑
k∈K

fk(ω, āk), for P -almost every ω ∈ Ω; (5.6)

(b) for each firm k, the investment āk maximizes the present-value function

Πk(ak) :=

∫
Ω
fk(ω, ak)p̄(dω)− ak;

(c) for each agent i, the consumption plan (ξ̄i0, ξ̄
i
1) maximizes the expected utility

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω)

subject to the present-value budget constraint

ξi0 +

∫
Ω
ξi1(ω)p̄(dω) 6 ei0 + Π(ā) · δi, (5.7)

where Π(ā) := (Π(āk))k∈K .

Proposition 5.1. There exists an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) if, and

only if, there exists a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with the

investment vector ā such that, for each k, āk maximizes the competitive conjec-

ture V k.

The proof of this proposition is given in Appendix A.2. We sketch the argument

here. It consists in constructing the elements of a given equilibrium concept from the

elements describing the alternative equilibrium. If (p̄, (ξ̄0, ξ̄1), ā) is an Arrow–Debreu
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equilibrium, it follows from standard arguments that the consumption allocation at

t = 1 only depends on aggregate resources, i.e., there are Borel-measurable functions

c̄i1 : Z → R+ such that ξ̄i1(ω) = c̄i1(σf(ω, ā)), for all ω and i. We define (x̄0, x̄1) by

posing x̄i0 := ξ̄i0 and x̄i1(y) := c̄i1(σy) for each y and i. Since ξ̄i1 is σf(ā)-measurable,

the contingent consumption x̄i1 can be implemented by some portfolio (θ̄i, η̄i). Asset

prices are defined using the standard present value pricing rule:

ρ̄(dz) := χ̄(z)µ(dz, ā) and Ē :=

∫
Ω
f(ω, ā)p̄(dω),

where χ̄(z) = u′1(c̄i1(z))/u′0(ξ̄i0) is the equilibrium stochastic discount factor. Fi-

nally, by the law of iterated expectations, we get that the Arrow–Debreu present

value Πk(ak) of the out-of-equilibrium equity coincides with our definition V k(ak)

of competitive conjecture:

Πk(ak) :=

∫
Ω
fk(ak)p̄(dω)− ak

=

∫
Ω
E[fk(ak)|σf(ā)]p̄(dω)− ak

=

∫
Z
ỹk(ak|z)ρ̄(dz)− ak

=: V k(ak). (5.8)

Conversely, let (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) be a financial equilibrium associated with the in-

vestment vector ā such that, for each k, āk maximizes the competitive conjecture V k.

Recall from Proposition 4.1 that there are Borel-measurable functions c̄i1 : Z → R+

such that x̄i1(y) = c̄i1(σy), for all y and i. We then define the state-contingent con-

sumption allocation (ξ̄0, ξ̄1) by posing ξ̄i0 := x̄i0 and ξ̄i1 := c̄i1(σf(ā)). The novelty of

our approach is to use conditional risk-neutral valuation in order to define the state

prices p̄ by posing
dp̄

dP
(ω) :=

dρ̄

dµ(ā)
(σf(ω, ā)),

or, equivalently, p̄(dω) = χ̄(σf(ω, ā))P (dω), where χ̄(·) is the equilibrium stochastic

discount factor defined by the equation ρ̄(dz) = χ̄(z)µ(dz, ā). This definition of p̄

allows us to go from the bottom to the top in Eq. (5.8).

The First Welfare Theorem holds true in the Arrow–Debreu framework, given

the baseline assumptions of our model. It then follows from Proposition 5.1 that the

allocation composed of an investment vector that maximizes each firm’s competitive
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conjecture for out-of-equilibrium market value and the consumption profile from the

corresponding financial equilibrium is Pareto optimal. This is proven in our next

result.

Theorem 5.1. Let (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) be a financial equilibrium associated with an

investment vector ā. If āk maximizes V k, for all k, then the allocation ((x̄0, x̄1), ā)

is Pareto optimal.

Proof. Take the financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with ā. Con-

sider the corresponding Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) defined by Propos-

tion 5.1. Assume then, by way of contradiction, that there is an alternative output-

contingent feasible allocation ((x0, x1), a) which Pareto dominates ((x̄0, x̄1), ā). For

each i, define the state-contingent consumption plan (ξi0, ξ
i
1) by posing ξi0 := xi0

and ξi1(ω) := xi1(σf(ω, a)), for every ω. The state-contingent allocation ((ξ0, ξ1), a)

satisfies the feasibility constraints (5.5) and (5.6). Moreover, we have

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω) = u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a)

> u0(x̄i0) +

∫
Z
u1(x̄i1(y))Q(dy, ā)

= u0(ξ̄i0) +

∫
Ω
u1(ξ̄i1(ω))P (dω),

where the inequality is strict for at least one agent i. This means that the alloca-

tion ((ξ0, ξ1), a) Pareto dominates ((ξ̄0, ξ̄1), ā), which contradicts the First Welfare

Theorem applied to the Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā).

6 Strategic conjectures

When analyzing the decision of non-marginal firms, Magill and Quinzii (2009,

2010) define the following “competitive” conjecture for the value of a firm:

Mk(ak) :=

∫
Y
χ̄(σy)ykQ(dy, (ak, ā−k))− ak, (6.1)

where (ak, ā−k) represents a vector in which the k-th entry of ā is replaced by ak.

Each firm k takes as given the equilibrium stochastic discount factor χ̄(z) conditional

on each aggregate output z and the investment vector ā−k of all other firms. We have

that V k(āk) = Mk(āk) at any given financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) asso-
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ciated with ā. However, Mk(ak) typically differs from our definition of competitive

market value V k(ak) for out-of-equilibrium investments ak 6= āk.

The equilibrium in which each firm k sets an investment ak to maximize Mk(ak)

is not necessarily Pareto optimal. Given that there is no technological externality,

one is leaded to think that this inefficiency result is related to a sort of pecuniary

externality due to the specific output-contingent market structure under consider-

ation. We proved that maximization of the competitive conjecture V k on firm k’s

market value restores efficiency and, therefore, no pecuniary externality results from

the restriction imposed on the financial market.

By analyzing Eq. (6.1), one realizes that firm k anticipates the impact of the

investment ak over the probability distribution Q, which turns out to affect the

value of all other firms through the probability Q(dy, (ak, ā−k)). To assess this issue

from a different perspective, we use the exogenous shocks to write

Mk(ak) =

∫
Ω
fk(ω, ak)p̃k(dω, ak)− ak, (6.2)

where

p̃k(dω, ak) := χ̄(σf(ω, (ak, ā−k)))P (dω).

Recall that if state-contingent claims were introduced in the market, all consumers

would just be indifferent to buying or selling them if prices satisfied p̄(dω) =

χ̄(σf(ω, ā))P (dω). Therefore, we can interpret p̄(dω) as the competitive market

shadow price for event dω ⊂ Ω. By replacing p̄(dω) with p̃k(dω, ak), firm k’s man-

ager implicitly anticipates the impact of her investment decisions over the aggre-

gate output distribution and manipulates the underlying state prices that affect the

market values of all firms. The inefficiencies associated to the conjecture Mk are

therefore due to the strategic behavior of the firm and are not related to market

incompletness. Actually, even if all state-contingent claims were available for trade,

inefficiency would still arise if firms exerted the same market power through its in-

vestment decisions—using the price measure p̃k(dω, ak) instead of the equilibrium

price p̄(dω) to compute price conjectures.

Relation with the CAPM In the CAPM model described in Section 2, the

only assets traded in the market are firms’ equities and a risk-free bond. This is a

particular case of our environment where investors cannot trade contracts contingent

on primitive states. Although firms’ equities and the risk-free bond do not (ex-ante)
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complete markets with respect to the endogenous uncertainty, the mean-variance

assumption on agents’ preferences ensures that the results of Proposition 4.1 remain

valid. Moreover, the stochastic discount factor is an affine function of aggregate

output: χ̄(z) = γ̄− λ̄z, for positive numbers γ̄ and λ̄. We can then rewrite Eq. (5.2)

as follows:

Ẽk(ak) =

∫
Z
ỹk(ak|z)ρ̄(dz)

=

∫
Y
χ̄(σy)ỹk(ak|σy)Q(dy, ā)

= E
[
χ̄(σf(ā))fk(ak)

]
=

E
[
fk(ak)

]
1 + r̄

− λ̄ cov
[
fk(ak), σf(ā)

]
,

where [1 + r̄]−1 := E [χ̄(σf(ā))] is the equilibrium risk-free discount factor. This is

the CAPM version of our concept of competitive price conjectures. When making

out-of-equilibrium price conjectures, firms and agents take the risk-free discount

factor r̄ and the premium λ̄ for aggregate risks as given and do not internalize the

impact of the investment decision on aggregate output.

A similar decomposition for the market-value concept proposed by Magill and

Quinzii (2009, 2010) leads to:

M(ak)− ak :=

∫
Y
χ̄(σy)ykQ(dy, (ak, ā−k))

= E
[
χ̄
(
σf(ak, a−k)

)
fk(ak)

]
=

E
[
fk(ak)

]
1 + r(ak, ā−k)

− λ̄ cov

fk(ak), fk(ak) +
∑
k′ 6=k

fk
′
(āk

′
)


where [1 + r(ak, ā−k)]−1 := E

[
χ̄(σf(ak, ā−k)

]
is a modified risk-free discount factor,

and fk(ak) +
∑

k′ 6=k f
k′(āk

′
) is the out-of-equilibrium aggregate output. In this

approach, firm k is aware of its impact over the aggregate output and makes a

conjecture about how its investment decision ak would affect the risk-free discount

factor and the market risk premium.

Alternative strategic concepts for market value have been analyzed in the cor-

porate finance literature. Important references in this literature includes Stiglitz

(1972), Jensen and Long (1972), Fama (1972), Leland (1974), Merton and Sub-
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rahmanyam (1974), Greenberg, Marshall, and Yawitz (1978), Baron (1979), James

(1981), Greenberg, Marshall, and Yawitz (1981), among others. These papers use

the CAPM framing. They assume that firms take as given the equilibrium risk-free

discount but incorporate (in different ways) the impact of alternative investments

over the aggregate output.

7 About existence

The objective of this paper is to investigate whether the maximization of a

suitably defined conjecture of competitive market value leads to efficient investment

decisions by firms, even if investors can only write contracts on observable output

(which distribution of risk is endogenous). An important related issue is existence

of a competitive equilibrium where firms maximize the corresponding competitive

market value.

Given an arbitrary investment profile a, existence of a competitive financial

equilibrium is assured by our assumptions on preferences and positiveness of date-0

endowments and of date-1 production outcomes. In addition to that, if the sets

Ak were convex and the production functions ak 7→ fk(ω, ak) were continuous and

concave on Ak (for every ω), then we could assure existence of a competitive finan-

cial equilibrium associated with an investment profile ā that maximizes each firm’s

competitive market value V k. This follows from Proposition 5.1 coupled with classic

theorems on existence of Arrow–Debreu equilibrium—see Bewley (1972).

Remark 7.1 (Finitely many states). When the support of the probability P is finite,

the investment sets Ak are convex, and the production functions fk are concave,

then our assumption that securities’ markets are complete with respect to aggre-

gate output may (generically) yield complete markets with respect to the primitive

states.12 This feature is not generic when Ak is finite and also does not appear

when we have a continuum of primitive states of nature. We refer the reader to

Appendix A.3 for a simple technology for which, given any output profile y and

investment vector a, there is a continuum of states ω satisfying f(ω, a) = y.

12Indeed, concavity of the production function leads to a continuum of possible outcomes. Com-
pleteness with respect to aggregate output then requires (infinitely) many more securities than
primitive states. We thank Martine Quinzii and Michael Magill for pointing this out.

20



Continuum of firms Among the many technologies that do not satisfy the gen-

eral assumptions for existence of an Arrow–Debreu equilibrium, there is one that

deserves particular attention. The benchmark production model in contract the-

ory is such that each firm either succeeds or fails to produce a certain amount of

output, and the probability of success increases with the firm’s investment. This

success-or-failure technology is represented by a non-convex production function and

non-existence problems may arise.

A traditional approach to overcome this issue considers a continuum of ex-ante

identical firms with i.i.d. production draws. In this case, all variation in output

that underlies this particular technology is eliminated and the objective of the firm

ceases to be an issue. In a supplementary material, we present a model with a

continuum of identical firms and perfectly correlated success-or-failure shocks.13

We explicitly compute an equilibrium under specific assumptions and also derive a

general existence result. This illustrates an interesting way to keep variability in the

(average) aggregate output while smoothing non-convexities through a continuum

of firms. Notice also that modelling the productive sector with many small firms is

consistent with the behavioral assumptions used along the paper.

8 Conclusion

There are two alternative traditions in economics to represent the outcome of

risky enterprises. On one hand, the reference model in macroeconomics, finance,

and general equilibrium uses the state-of-nature approach, which relies on random

production functions that map investments and random primitive states of nature

(with fixed objective probabilities) into realized outputs. On the other hand, the

literature on contract theory relies on the probability approach in which produc-

tion is modeled through transition functions mapping investments into probability

measures over the set of possible outcomes.

As far as the description of production possibilities is concerned, the two ap-

proaches are equivalent. However, the two approaches differ on the financial con-

tracts that are used to share risks and direct investments. By keeping states of

nature hidden, the probability approach reminds us that writing contracts on the

primitive states of nature is not realistic. It is sometimes difficult to describe these

states in a contract or to verify them ex-post for execution. This is why most fi-

13For reference, see Braido and Martins-da-Rocha (2015).

21



nancial contracts available in practice are usually written on observed production

outcomes or profits (e.g., stocks and options). It is then natural to ask whether this

market incompleteness—generated by the lack of state-contingent claims—matters

for efficiency.

It is well-known that the ability to contract upon primitive states of nature is not

essential for an efficient allocation of resources in exchange economies with produc-

tion risks only. If agents can sell their endowed stocks and trade claims written on

the aggregate output, then the equilibrium consumption is efficient and only varies

with aggregate risks. The interesting question concerns the ability of financial mar-

kets to efficiently direct firms’ investments. We show that the difficulty raised by

the lack of state prices can be overcome by imposing an additional layer of ratio-

nality on how managers anticipate out-of-equilibrium scenarios. The corresponding

market value conjecture is then consistent with an appropriate notion of competitive

beliefs out of the equilibrium. It describes the way each firm assesses the impact

of alternative out-of-equilibrium investments without anticipating the effect of this

decision over the distribution of aggregate variables. As a result, we obtain the

classic recipe that shareholder value maximization leads to Pareto efficiency even

for the more realistic financial structure in which all contracts are written on firms’

outcomes.

A Appendix

A.1 Proof of Proposition 4.1

Assume by way of contradiction that there is a feasible allocation ((x0, x1), ā)

that Pareto dominates ((x̄0, x̄1), ā). Since the consumption market clearing condi-

tion (4.4) only involves aggregate output and agents are risk-averse, the allocation

((x0, x̃1), ā) also Pareto dominates ((x̄0, x̄1), ā), where

x̃i1(y) := ci1(σy) with ci1(z) :=

∫
Y
xi1(y)Q(dy, ā|z)

and Q(B, ā|z) := P ({f(ā) ∈ B}|σf(ā) = z) is the probability that firms’ production

profile belongs to B ⊂ Y under the investment vector ā and conditional on the

aggregate production being z. Since the function x̃i1 only varies with the aggregate

output σy, this consumption level is implemented by the portfolio (θi, ηi) := (ci1, 0),

in the sense that (x̃i1, θ
i, ηi) satisfies Eq. (4.2). Since the plan (x̄i0, x̄

i
1, η̄

i, θ̄i) solves
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agent i’s optimization problem given (Ē, ρ̄, ā), we must have

xi0 +

∫
Z
ci1(z)ρ̄(dz) + Ē · 0 > ei0 + (Ē − ā) · δi, (A.1)

for every agent i, with a strict inequality for at least one i. By non-arbitrage, we

know that ∫
Z
zρ̄(dz) = Ē · 1.

Therefore, by adding inequality (A.1) over i, we find∑
i∈I

(xi0 − ei0) + ā · 1 > 0,

which contradicts the date-0 consumption market clearing condition (4.3).

A.2 Proof of Proposition 5.1

From AD to FE Let us take an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) and

construct a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with the investment

vector ā. We define the equity and output-contingent prices as

Ē :=

∫
Ω
f(ω, ā)p̄(dω) and ρ̄(B) :=

∫
Ω

1B(σf(ω, ā))p̄(dω),

for any Borelian set B ⊂ Z. It follows from strict concavity of u1 that ξ̄1(ω)

is constant across states ω associated with the same equilibrium aggregate out-

put σf(ω, ā). This is to say that, for each agent i, there exists a Borel-measurable

function c̄i1 : Z → R+ satisfying c̄i1(z) = ξ̄i1(ω), for every ω such that σf(ω, ā) = z.

We pose

(x̄0, x̄1(y)) := (ξ̄0, c̄1(σy)), for every y.

The individual consumption plan (ξ̄i0, ξ̄
i
1) must satisfy the Arrow–Debreu budget

constraint

ξ̄i0 +

∫
Ω
ξ̄i1(ω)p̄(dω) 6 ei0 + Π(ā) · δi.

Given the equity prices defined before, we have

Πk(āk) = Ēk − āk, for every k. (A.2)

23



This allows us to rewrite the previous inequality as

x̄i0 +

∫
Z
c̄i1(z)ρ̄(dz) 6 ei0 + (Ē − ā) · δi.

Therefore, by taking η̄i := (1/I)1 and θ̄i(z) := c̄i1(z)−z/I, we have that (x̄i0, x̄
i
1, η̄

i, θ̄i)

satisfies the budget constraints (4.1) and (4.2) at the equilibrium financial prices (Ē, ρ̄).

The consumption plans (x̄i0, x̄
i
1) are optimal among all plans that can be financed

by equity holdings and output-contingent contracts. To see this, let (xi0, x
i
1, η

i, θi)

be an alternative plan satisfying the budget constraints (4.1) and (4.2) at the equi-

librium prices (Ē, ρ̄). We construct the state-contingent plan ξi0 := xi0 and ξi1(ω) :=

xi1(f(ω, ā)) and notice from Eq. (4.2) that∫
Ω
xi1(f(ω, ā))p̄(dω) =

∫
Ω
θi(σf(ω, ā))p̄(dω) + ηi ·

∫
Ω
f(ω, ā)p̄(dω)

=

∫
Z
θi(z)ρ̄(dz) + ηi · Ē.

By replacing this relation into Eq. (4.1) and using Eq. (A.2), we deduce that the con-

sumption plan (ξi0, ξ
i
1) satisfies the present-value budget constraint (5.7). Therefore,

by optimality of (ξ̄i0, ξ̄
i
1), we have

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, ā) = u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω)

6 u0(ξ̄i0) +

∫
Ω
u1(ξ̄i1(ω))P (dω)

= u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā).

Feasibility of the allocation ((ξ̄0, ξ̄1), ā) as defined by Eq. (5.5) and (5.6) implies

feasibility of the allocation ((x̄0, x̄1), ā) as defined by Eq. (4.3) and (4.4). Since the

portfolio allocation (η̄, θ̄) satisfies the market clearing condition (4.5), we can then

deduce that (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) is a financial equilibrium associated with ā.

To conclude, we recall that āk maximizes Πk and show that the objective func-

tion V k is identical to Πk given the equilibrium prices derived before. Indeed, stan-

dard first-order conditions applied to each agent’s problem in the Arrow–Debreu

equilibrium imply that p̄(dω) = χ̄(σf(ω, ā))P (dω), where χ̄(z) := u′1(c̄i1(z))/u′0(c̄i0)
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for every z. We have ρ̄(dz) = χ̄(z)µ(dz, ā), by construction, and then

V k(ak) =

∫
Z
ỹk(a|z)ρ̄(dz)− ak

=

∫
Z
χ̄(z)ỹk(a|z)µ(dz, ā)− ak

=

∫
Z
χ̄(z)

[∫
Y k

ykQ(dyk, ak|z)
]
µ(dz, ā)− ak

=

∫
Z
χ̄(z)

[∫
Ω
fk(ω, ak)P (dω|σf(ā) = z)

]
µ(dz, ā)− ak

=

∫
Ω
χ̄(σf(ω, ā))fk(ω, ak)P (dω)− ak

= Πk(ak).

From FE to AD We now take a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associ-

ated with investments ā such that āk that maximizes V k, for every k, and construct

an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā). Recall from the proof of Proposition 4.1

that there is a Borel-measurable function χ̄ : Z → R+ representing the stochastic

discount factor in the sense that χ̄(σy) = u′1(x̄i1(y))/u′0(x̄i0) for every y and i. We

then pose

p̄(dω) := χ̄(σf(ω, ā))P (dω), ξ̄i0 := x̄i0, and ξ̄i1(ω) := x̄i1(f(ω, ā)).

The allocation ((ξ̄0, ξ̄1), ā) satisfies the market clearing conditions (5.5) and (5.6).

As for budget feasibility, we notice that, for each i, there is a Borel-measurable func-

tion c̄i1 : Z → R+ satisfying c̄i1(z) = x̄i1(σy), for all y.14 The budget constraints (4.1)

and (4.2) can be consolidated as

x̄i0 +

∫
Z
c̄i1(z)χ̄(z)µ(dz, ā) 6 ei0 + (Ē − ā) · δi.

The definitions of Ē and ρ̄ imply

ξ̄i0 +

∫
Ω
ξ̄i1(ω)p̄(dω) 6 ei0 + Π(ā) · δi

and, then, the plan (ξ̄i0, ξ̄
i
1) satisfies the present-value budget constraint (5.7).

To prove that (ξ̄i0, ξ̄
i
1) is individually optimal, we fix an arbitrary consumption

14See the proof of Proposition 4.1.
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plan (ξi0, ξ
i
1) satisfying the present-value budget constraint

ξi0 +

∫
Ω
ξi1(ω)p̄(dω) 6 ei0 + Π(ā) · δi. (A.3)

By posing

ci1(z) :=

∫
Ω
ξi1(ω)P (dω|σf(ā) = z),

we get from the definitions of Ē and ρ̄ that (A.3) writes as follows

ξi0 +

∫
Z
ci1(z)ρ̄(dz) 6 ei0 + (Ē − ā) · δi.

By fixing θi(z) := ci(z) and ηi := 0, we have that the plan (xi0, x
i
1, θ

i, ηi) must satisfy

the budget restrictions (4.1) and (4.2). The optimality of (x̄i0, x̄
i
1, θ̄

i, η̄i) then implies

that

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω) = u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, ā)

6 u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā)

= u0(ξ̄i0) +

∫
Ω
ui1(ξ̄i1(ω))P (dω).

Finally, since āk maximizes V k and V k = Πk, the Arrow–Debreu profit maxi-

mization condition is also satisfied.

A.3 Technology example

We consider the following technology to illustrate that completeness with respect

to aggregate output does not yield (even generically) complete markets with respect

to the states of nature. There is a single firm, and the primitive states ω = (ω1, ω2)

lie in Ω := [1,∞) × [0, 1). The production function maps investment a ∈ [0, 1] to

output f(ω, a) ∈ [0, 1] and displays piece-wise constant returns to scale as follows:

f(ω, a) :=

ω1a if a ∈ [0, aω]

ω2a+ (ω1 − ω2)aω if a ∈ [aω, 1]

where the threshold is defined by aω := (1 − ω2)/(ω1 − ω2). In words, our firm

earns a high marginal productivity ω1 ∈ [1,∞) for low investment levels and a low

26



marginal return ω2 ∈ [0, 1] for high investment levels.

investment0 1

output

1 f(ω, ·)

aω

a 7→ ω1a

1− ω2

For each given equilibrium investment ā ∈ [0, 1] and production z > ā, there

are infinitely many possible shocks ω ∈ Ω that generate f(ω, ā) = z. To see this,

take z > ā, ω̄1 := z/ā, and ω̄2 := (1 − z)/(1 − ā). We obtain f(ω, ā) = z for

any ω such that: (a) ω1 = ω̄1 and ω2 6 ω̄2, or (b) ω1 > ω̄1 and ω2 = ω̄2. The

following figures illustrate these cases. We conclude that observing the output z is

not sufficient to pin down exactly the underlying productive shock.

(a) ω1 = ω̄1 and ω2 6 ω̄2

investment0 1

output

1 f(ω̄, ·)

ā

z

a 7→ ω̄1a

1− ω̄2

1− ω2

(b) ω1 > ω̄1 and ω2 = ω̄2

investment0 1

output

1 f(ω̄, ·)

ā

z

a 7→ ω̄1a
a 7→ ω1a

1− ω̄2
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