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Output contingent securities and efficient investment by firms1

Luis H.B. Braidoa and V. Filipe Martins-da-Rochab

We analyze competitive financial economies in which firms make risky investments.

Unlike the classic Arrow–Debreu framing, firms and agents cannot contract upon the

exogenous states of nature underlying production risks. The only available securities are

equities and all possible derivatives written on the endogenous aggregate output. It is

well-known that this financial structure is rich enough to promote efficient risk sharing

across consumers. However, markets are incomplete from the production perspective,

and the absence of market prices for each primitive state of nature raises issues on the

objective of firms. We show that asset prices combined with competitive beliefs convey

sufficient information to compute a competitive shareholder value that leads to efficient

investment by firms.

1. Introduction

Following the work by Léon Walras in the 19th century, the general equilibrium liter-

ature focused on understanding how anonymous markets coordinate the production and

consumption of goods in competitive economies. In this setting, firms’ productive deci-

sions and agents’ consumption choices are taken independently, and market prices are

the only instruments available to coordinate different wishes. Hayek (1945) supported the

view that competitive prices have the capacity of aggregating the necessary social knowl-

edge to induce efficiency of self-interested decisions. This idea was rigorously formulated

and independently proven by Kenneth J. Arrow, Gerard Debreu, and Lionel W. McKen-

zie during the 1950’s. They listed conditions for existence of a competitive equilibrium

and proved that, in the absence of externalities and other market frictions, competitive

markets lead profit-maximizing firms and utility-maximizing agents to achieve a Pareto

optimal allocation of resources. The information embedded in market prices is sufficient

to promote efficient social coordination across decision makers.

Arrow (1953) and Debreu (1959) extended the general equilibrium analysis to economies

in which random states of nature affect production. They showed that the classic results

carry over to environments with uncertainty whenever decision makers are able to trade

a complete set of contingent claims—each of them promising to deliver goods in the

future contingent to the verification of a given state of nature. However, the description
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Balasko, Alessandro Citanna, Jan Eeckhout, John Geanakoplos, Christian Ghiglino, Zhiguo He, Felix

Kubler, Karl Shell, Stephen Spear, Jan Werner, and seminar participants at the Cowles Foundation,
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and verification of primitive states are not simple matters, and most securities traded in

modern financial markets are contingent on observed output instead of primitive states

of nature.

We analyze competitive financial economies in which firms make risky investments and

consumers trade firms’ equities and securities written on firms’ endogenous production.

Since our goal is to analyze efficiency of firms’ investment decisions, we assume that

financial markets allow consumers to insure each other against idiosyncratic risks and

make consumption plans contingent on aggregate output. It is well-known that this mar-

ket structure is sufficient to implement Pareto optimal allocations in exchange economies.

We analyze the conditions under which this also holds for production economies.

This topic was introduced by Magill and Quinzii (2009, 2010). These papers develop a

concept for computing the shareholder value of large corporations and show that Pareto

efficiency does not always follow from shareholder value maximization. This reasoning

is applied in Magill, Quinzii, and Rochet (2013) to criticize the conventional view that

firms should maximize shareholder value and to support the alternative idea that they

must consider the impact of their actions over all stakeholders, including employees and

other members of the society.

We argue that profit maximization can still be socially justified as a decision criterion

if firms are assumed to behave as perfect competitors. Although output-contingent prices

do not a priori convey all the requisite information to coordinate consumption and in-

vestment decisions, we show that this issue can be overcome by a proper anticipation of

out-of-equilibrium scenarios. In the standard Arrow–Debreu approach, all relevant infor-

mation for an efficient investment decision is embedded in the state-contingent prices. In

the output-contingent framing, however, financial markets do not necessarily distinguish

across states of nature that lead to the same equilibrium aggregate output. This distinc-

tion is still relevant for firms’ decisions. We accommodate the competitive price-taking

paradigm by assuming that firms and agents combine market prices with competitive

beliefs about how alternative investment plans would affect the conditional expectation

of each firm’s output given the economy’s aggregate production.1

We start by stressing our main insights through a simple example in which a single firm

makes a binary investment decision that affects its probability of success (high output) or

failure (low output). Next, in Sections 3 and 4, we describe the primitives of our economy

and define the competitive financial equilibrium. Agents in this economy can only trade

1This competitiveness assumption on firms is consistent with the literature on the objective of cor-

porations under incomplete markets—see for instance Drèze (1974), Ekern and Wilson (1974), Leland

(1974), Ekern (1975), Hart (1979), Grossman and Hart (1979), Makowski (1983), and Bisin, Gottardi, and

Ruta (2014). Our markets are also incomplete with respect to exogenous uncertainty, and the spanning

condition does not hold here (in the sense that investments do affect the individual ability to transfer

wealth across primitive states of nature). However, differently from the aforementioned literature, agents

share the same marginal rates of substitution for each given equilibrium aggregate output. The main task

faced by our firms and agents is to correctly anticipate the conditional expected output associated with

different out-of-equilibrium investment plans.
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securities written on endogenous production levels. This financial structure is incomplete

with respect to the underlying primitive states of nature, but allows consumers to sell

their endowment risks and make consumption plans that are contingent on the equilib-

rium aggregate output. In Section 5, we introduce our view on how firms should compute

the net present value of out-of-equilibrium investment plans. We argue that the financial

equilibrium in which firms maximize our definition of market value is the counterpart

of the Arrow–Debreu concept. In particular, we show that the associated consumption

and investment allocation is Pareto optimal. We also compare our competitive notion of

shareholder value to the alternative concept, introduced by Magill and Quinzii (2009),

where firms implicitly exert a specific form of market power. We use Section 6 to discuss

existence of a competitive equilibrium in different contexts.2 Concluding remarks appear

in Section 7. Appendix A is reserved for technical arguments.

2. Preliminary illustration

We borrow from Magill and Quinzii (2009) the following simple example with two

periods t ∈ {0, 1}, one good, one firm, and one agent.3 At date 0, the firm undertakes

one of two possible investment levels a ∈ {0, 1}. This determines the probability over

two possible date-1 output levels, namely, yl > 0 or yh > yl. The transition a 7→ Qh(a)

represents the probability of producing yh (success) under investment a. Investment is

productive in the sense that Qh(1) > Qh(0).

This technology has an alternative representation with three exogenous states of

nature ωh, ωm and ωl. Production is high (resp. low) when the exogenous state is

ωh (resp. ωl), regardless of the investment level. When the primitive state is ωm, the

firm’s production is high if, and only if, it has invested a = 1. State probabilities are

then P (ωh) = Qh(0), P (ωh) + P (ωm) = Qh(1) and, hence, P (ωl) = 1−Qh(1).

At date 0, the agent owns the firm and receives an initial endowment e0 > 1. Prefer-

ences are represented by the expected utility

u0(x0) + E (u1(x1)) ,

where the Bernoulli utility functions u0 and u1 are strictly increasing, continuously dif-

ferentiable, strictly concave and satisfy the Inada condition at zero.4 We also assume

2Among other topics, this section analyzes an economy with a success-or-failure technology and a

continuum of investment levels for which an Arrow–Debreu equilibrium does not exist, as discussed

in Magill, Quinzii, and Rochet (2013). We suggest an alternative approach to deal with the non-existence

problem in that context, by assuming there is a continuum of firms whose productive shocks are perfectly

correlated. We derive a general existence result for this alternative model and explicitly compute an

equilibrium in which, in spite of the continuum of firms, the (average) aggregate output displays stochastic

variability.
3We may also interpret this example as an economy with many identical firms and many identical

agents, where we restrict attention to symmetric competitive equilibria.
4By that we mean limxt→0 u

′
t(xt) =∞, for t = 0, 1.
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that

(1) u0(e0)− u0(e0 − 1) < (u1(yh)− u1(yl)) [Qh(1)−Qh(0)]

as for investing to be Pareto optimal.

The financial markets are complete with respect to aggregate uncertainty. In this

simple environment (with two possible output levels), this only requires that markets

transact the firm’s equity and a non-contingent bond.5 The entire production is consumed

by the single agent at equilibrium. Since there is only one firm, the aggregate output is

either zh = yh or zl = yl. For each given investment ā, the agent’s equilibrium marginal

rate of substitution is constant across states of nature associated with the same aggregate

output. The equilibrium stochastic discount factor is

χ̄(zs) =
u′1(ys)

u′0 (e0 − ā)
, for each s ∈ {l,h}.

The equilibrium equity value is

Ē = yhχ̄(zh)Qh(ā) + ylχ̄(zl)(1−Qh(ā)).

The value of a large corporation

Recent works by Magill and Quinzii (2009, 2010) consider the case where the firm

takes the stochastic discount factor as given but is aware that its investment decision

affects the distribution of aggregated variables. In this case, the firm maximizes

(2) M(a) ≡ yhχ̄(zh)Qh(a) + ylχ̄(zl)(1−Qh(a))− a.

They show that the Pareto efficient level ā = 1 does not necessarily maximize M .6 In our

example, this result follows from the fact that the Pareto efficiency condition (1) may

hold simultaneously with M(0) > M(1), or equivalently,7

(3) u′0(e0 − 1) >
[
yhu

′
1(yh)− ylu

′
1(yl)

]
[Qh(1)−Qh(0)] .

The competitive market value

Defining a competitive concept of market value for an economy with output-contingent

financial markets is not straightforward. Securities written on the aggregate output do

5Our markets are not complete with respect to exogenous uncertainty, as we have three states of

nature but only two assets. Moreover, investment plans affect the individual ability to transfer wealth

across primitive states.
6A recent work by Magill, Quinzii, and Rochet (2013) develops a similar result in an environment

with multiple goods and quasi-linear utilities.
7Indeed, since u0 satisfies the Inada condition at zero, we can always take e0 close enough to 1 to

guarantee the validity of condition (3). However, if u0 and u1 were linear functions, then condition (1)

would be equivalent to M(1) > M(0).
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not necessarily distinguish across primitive states of nature. In our illustration, the equi-

librium market prices ρ̄(z) for the security contingent on the realization of the output z

satisfy the standard equations

ρ̄(zh) = χ̄(zh)Qh(ā) and ρ̄(zl) = χ̄(zl) (1−Qh(ā)) .

Agents are aware that the equilibrium prices ρ̄(z) and the theoretical state prices p̄(ω)

are related to each other. However, market prices alone do not convey sufficient informa-

tion for splitting ρ̄(zh) and ρ̄(zl) into p̄(ωh), p̄(ωm), and p̄(ωl). To overcome this issue,

we impose an additional layer of rationality and ask firms and agents to rationally antic-

ipate some important equilibrium features when analyzing investment plans out of the

equilibrium.

Consider the case in which the equilibrium investment is ā = 1. When analyzing the

net present value associated with the out-of-equilibrium investment decision a = 0, the

agent and the firm are required to take the output-contingent prices ρ̄ as given and

make the following considerations regarding the firm’s production. In equilibrium, date-

1 aggregate output is low if, and only if, the primitive state ωl has occurred. Therefore,

under zero investment, a competitive firm shall expect to produce ỹ(0|zl) ≡ yl in events

with low aggregate output zl. On the other hand, at equilibrium, there are two possible

primitive states consistent with a high date-1 aggregate output, namely, ωh and ωm.

Under zero investment, the firm should expect to produce yh if the primitive state is ωh

and to produce yl if the primitive state is ωm. Formally, if the firm invested zero, its

conditional expected output given a high equilibrium aggregate output zh is

ỹ(0|zh) ≡ yh
P (ωh)

P (ωh) + P (ωm)
+ yl

P (ωm)

P (ωh) + P (ωm)
.

The competitive market value for this firm should then be

V (0) ≡ ỹ(0|zh)ρ̄(zh) + ỹ(0|zl)ρ̄(zl)− 0.

By an analogous argument, we can define the conditional expected output under the

investment ā = 1 as being ỹ(1|zh) ≡ yh and ỹ(1|zl) ≡ yl. The competitive market value

associated with ā = 1 is

V (1) ≡ ỹ(1|zh)ρ̄(zh) + ỹ(1|zl)ρ̄(zl)− 1

and coincides with the firm’s equilibrium market value Ē − 1. It is then simple to verify

that the Pareto optimal investment level ā = 1 does in fact maximize the function a 7→
V (a). We must just notice that

V (1)− V (0) =
u′1(yh)

u′0 (e0 − 1)
(yh − yl)P (ωm)− 1 > 0,

where the last inequality follows from assumption (1) and the fact that P (ωm) = Qh(1)−
Qh(0).
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Relating conjectures to Arrow prices

The competitive conditional expectation ỹ(a|z) connects the output-contingent prices ρ̄(z)

and the implicit (or shadow) Arrow prices p̄(ω). To see that, fix the equilibrium invest-

ment level ā = 1. If state-contingent claims were allowed, then the Arrow prices would

be

p̄(ωh) = ρ̄(zh)
P (ωh)

P (ωh) + P (ωm)
,

p̄(ωm) = ρ̄(zh)
P (ωm)

P (ωh) + P (ωm)
,

and

p̄(ωl) = ρ̄(zl).

This implies

V (0) = yhp̄(ωh) + ylp̄(ωm) + ylp̄(ωl)− 0

and

V (1) = yhp̄(ωh) + yhp̄(ωm) + ylp̄(ωl)− 1.

We can then regard our definition of competitive market value as the counterpart (for

an environment with output-contingent prices) of the standard Arrow–Debreu market

value.

In a similar fashion, we point out that the value of a large corporation defined in

Eq. (2) implies the following conjectures:

M(0) = yhχ̄(yh)P (ωh) + ylχ̄(yl)P (ωm) + ylχ̄(yl)P (ωl)− 0

and

M(1) = yhχ̄(yh)P (ωh) + yhχ̄(yh)P (ωm) + ylχ̄(yl)P (ωl)− 1.

Under these conjectures, the firm anticipates the effect of its investment over the stochas-

tic discount factor in the state ωm.

Remark 2.1 (Competitive conjectures and non-arbitrage pricing) The competitive

market value V is mathematically equivalent to the Arrow-Debreu profit function de-

fined for an environment with Arrow prices. It is however important to stress that V

is a rational conjecture and cannot be unambiguously derived from non-arbitrage con-

ditions. Markets are incomplete as we have three primitive states of nature (ωh, ωm, ωl)

and two assets, namely, the firm’s equity and a risk-free bond. Under the equilibrium

December 19, 2014
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investment ā = 1, the equity payoff vector is (yh, yh, yl), while the bond payoff vec-

tor is (1, 1, 1). The production vector (yh, yl, yl) associated with the out-of-equilibrium

investment a = 0 does not belong to the marketed space, in the sense it cannot be

generated by the assets payoff vectors (yh, yh, yl) and (1, 1, 1). Therefore, there are in-

finitely many arbitrage-free state prices, and we cannot rely on non-arbitrage pricing to

unambiguously obtain the out-of-equilibrium equity value. Instead, among all possible

arbitrage-free valuations, our competitive market value V (0) corresponds to that where

market is risk-neutral conditional on the aggregate output. Since the ratio of marginal

utilities is the same across states of nature associated with the same aggregate output,

this risk-neutral pricing conditional on the aggregate output is natural.

3. General model

We extend the main ideas presented in our initial illustration to a general environment.

Consider an economy with two periods t ∈ {0, 1}, a single good, a finite set K of firms and

a finite set I of consumers. At the initial date (t = 0), each firm k selects an investment

level ak from a set Ak ⊂ R+. Making no investment is always a possibility—i.e., 0 ∈ Ak,
for every k. At date 1, they are exposed to exogenous shocks ω drawn from a probability

space (Ω,F , P ). Events B ∈ F represent primitive causes which odds are represented

by the exogenous probability P (B). This probability is independent of consumers’ and

firms’ actions.

Technology

The initial investment ak and the exogenous shock ω determine firm k’s production

yk = fk(ω, ak) at date 1 from a set Y k ⊂ R+. The production possibilities of the

economy are represented by the family f ≡ (fk)k∈K of non-decreasing random production

functions

fk(ω, ·) : Ak 7−→ Y k.

We assume that, for each investment ak, the function ω 7→ fk(ω, ak) is measurable and

essentially bounded on (Ω,F , P ).8

From this standard production-function framework, we derive the following alternative

representation of the productive sector. Define the sets A ≡
∏
k∈K A

k and Y ≡
∏
k∈K Y

k,

their respective elements a ≡ (ak)k∈K and y ≡ (yk)k∈K , and the transition probabil-

ity a 7→ Q(a) given by

Q(B, a) ≡ P ({f(a) ∈ B}),
8To fix ideas, we can take Ω to be the product space

∏
k∈K(Y k)A

k

and F to be the product ⊗k∈KBk

of each Borelian σ-algebra Bk defined by the product topology of the space (Y k)A
k

. The support of

the probability P is then assumed to be a subset of
∏
k∈K N(Ak, Y k), where N(Ak, Y k) is the set of

non-decreasing functions from Ak to Y k.

December 19, 2014
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for every Borelian set B of Y .9 The investment profile a ∈ A undertaken at date 0

determines the joint probability Q(a) of firms’ random outcomes at date 1.

To represent aggregate production, we define the σ-operator to be

σy ≡
∑
k∈K

yk, for all y ∈ Y .

The random aggregate production is then represented by the function ω 7→ σf(ω, a).

We let Z ≡
∑

k∈K Y
k denote the set of all possible aggregate outputs and derive the

transition probability a 7→ µ(a) by posing

µ(B, a) ≡ P ({σf(a) ∈ B}),

for every Borelian set B of Z. We assume that date-1 output is bounded away from zero,

in the sense that there exists ε > 0 such that µ ([ε,∞), a) = 1, for every a ∈ A.

Agents

Each agent i has initial resources consisting of an endowment ei0 > 0 at date 0 and

the ownership shares δik ∈ [0, 1] of each firm k, where
∑

i∈I δ
i
k = 1. Agents have no initial

endowment at date 1, so that all consumption in that period comes from the firms’

output. Preferences are represented by a utility function that is separable across time

and has the expected utility form for future risky consumption. Let xi0 > 0 denote agent

i’s consumption at date 0 and γi be a probability measure on R+ that represents random

consumption at date 1. Agent i’s expected utility function is given by

u0(xi0) +

∫
R+

u1(xi1)γi(dxi1),

where u0 and u1 are strictly increasing, continuously differentiable and strictly concave

functions which map R+ into [−∞,∞) and satisfy the Inada condition at zero.

Remark 3.1 The time separability of the expected utility and the cross-agent homo-

geneity of the Bernoulli utility functions are only assumed to simplify the notation. It

is straightforward to extend all results in this paper to the case with heterogeneous

Bernoulli utilities (xi0, x
i
1) 7→ vi(xi0, x

i
1).

4. Competitive equilibrium for a given investment

For sake of expositional clarity, we first define a competitive equilibrium for our output-

contingent environment by taking the investment level of each firm as given. After un-

derstanding how agents insure each other, we analyze the problem of how firms choose

their investments.
9The set {f(a) ∈ B} stands for {ω ∈ Ω : f(ω, a) ∈ B}. Similar notation omitting ω is used throughout

the paper.
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Different from the traditional Arrow–Debreu model, we do not consider contracts

contingent on the realization of the primitive states of nature ω. We assume that the

probabilities and the economic consequences of the events in F are well-understood by

firms and agents, but the costs of describing ex-ante each primitive state of nature and

enforcing ex-post state-contingent contracts are too large. The only traded contracts are

those based on firm’s output. We consider two types of assets: the equity of each firm

k ∈ K traded in positive net supply; and securities in zero net supply representing bonds

and all possible output-contingent derivatives.

Uncertainty only derives from production risks. Hence, an efficient allocation of risks

among consumers (for a given vector of firms’ investments) only requires that agents

trade firms’ equities and claims contingent on date-1 aggregate output. At date 0, for

a given investment profile a, each agent i chooses consumption xi0 ∈ R+, new equity

holdings ηi ∈ RK and a (measurable) contract θi : Z → R contingent on aggregate

output such that

(4) xi0 +

∫
Z
θi(z)ρ(dz) + E · ηi 6 ei0 + (E − a) · δi,

where E stands for the vector of equity prices, and ρ is a positive measure on the Borelian

sets of Z such that ρ([0, z]) represents the date-0 price of the contract delivering one unit

of consumption good contingent on the aggregate output being lower than or equal to z.

At date 1, contingent on output profile y, agent i consumes

(5) xi1(y) ≡ θi(σy) + y · ηi > 0.

Each agent i maximizes the expected utility

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a)

among all individual plans (xi0, x
i
1, η

i, θi) satisfying the budget constraints (4) and (5),

for Q(a)-almost every y.

A financial equilibrium associated with ā is a list (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)), where (x̄0, x̄1, η̄, θ̄) ≡
(x̄i0, x̄

i
1, η̄

i, θ̄i)i∈I is a consumption-portfolio allocation such that:

(i) for every i ∈ I, the plan (x̄i0, x̄
i
1, η̄

i, θ̄i) solves agent i’s optimization problem

given (Ē, ρ̄, ā);

(ii) the consumption markets clear, i.e.,

(6)
∑
i∈I

(ei0 − x̄i0) =
∑
k∈K

āk

and

(7)
∑
i∈I

x̄i1(y) = σy, for Q(ā)-almost every y;

December 19, 2014
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(iii) the financial markets clear, i.e.,

(8)
∑
i∈I

η̄i = 1 and
∑
i∈I

θ̄i(z) = 0, for µ(ā)-almost every z.10

An allocation ((x̄0, x̄1), ā) is said to be feasible if the consumption markets clear. An

allocation ((x0, x1), a) is said to Pareto dominate the allocation ((x̄0, x̄1), ā) whenever

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a) > u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā),

for every agent i, with strict inequality for at least one agent i. An allocation ((x̄0, x̄1), ā)

is Pareto optimal if ((x̄0, x̄1), ā) is feasible and there is no other feasible allocation

((x0, x1), a) that Pareto dominates ((x̄0, x̄1), ā). A consumption allocation (x̄0, x̄1) is

Pareto optimal for a given investment ā if ((x̄0, x̄1), ā) is feasible and there is no

other feasible allocation ((x0, x1), ā) that Pareto dominates ((x̄0, x̄1), ā). The next result

shows that our market structure implements a Pareto optimal distribution of resources

among consumers for any given investment profile.

Proposition 4.1 Fix a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with an ar-

bitrary investment vector ā. The corresponding consumption allocation (x̄0, x̄1) is Pareto

optimal given ā.

Proof: Assume by way of contradiction that there is a feasible allocation ((x0, x1), ā)

that Pareto dominates ((x̄0, x̄1), ā). Since the consumption market clearing condition (7)

only involves aggregate output and agents are risk-averse, the allocation ((x0, x̃1), ā) also

Pareto dominates ((x̄0, x̄1), ā), where

x̃i1(y) ≡ ci1(σy) with ci1(z) ≡
∫
Y
xi1(y)Q(dy, ā|z)

where Q(B, ā|z) ≡ P ({f(ā) ∈ B|σf(ā) = z) is the probability that firms’ production

profile belongs to B ⊂ Y under the investment vector ā and conditional on the aggregate

production being z. Since the function x̃i1 only varies with the aggregated output σy,

this consumption level is implemented by the portfolio (θi, ηi) ≡ (ci1, 0), in the sense that

(x̃i1, θ
i, ηi) satisfies Eq. (5). Since the plan (x̄i0, x̄

i
1, η̄

i, θ̄i) solves agent i’s optimization

problem given (Ē, ρ̄, ā), we must have

(9) xi0 +

∫
Z
ci1(z)ρ̄(dz) + Ē · 0 > ei0 + (Ē − ā) · δi,

for every agent i, with a strict inequality for at least one i. By non-arbitrage, we know

that ∫
Z
zρ̄(dz) = Ē · 1.
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Therefore, by adding inequality (9) over i, we find∑
i∈I

(xi0 − ei0) + ā · 1 > 0,

which contradicts the date-0 consumption market clearing condition (6). Q.E.D.

The equilibrium measure ρ̄(dz) is absolutely continuous with respect to µ(dz, ā). This

is to say that there is a measurable function χ̄ : Z → R+ (called the stochastic discount

factor) such that:

(10) ρ̄(dz) = χ̄(z)µ(dz, ā).

Pareto optimality of the consumption allocation (x̄0, x̄1) given ā implies the individual

consumption x̄i1(y) to be constant across output vectors y generating the same aggre-

gate output σy. Since date-1 aggregate production is bounded away from zero, our as-

sumptions on the Bernoulli utilities imply that the ratio of marginal utilities equals the

stochastic discount factor

u′1(x̄i1(y))

u′0(x̄i0)
= χ̄(σy),

for every i and y. As a consequence, the equilibrium equity prices can be written as

(11) Ē =

∫
Y
χ̄(σy)yQ(dy, ā).

5. The market value of each firm

We now analyze how investment levels are chosen by firms in equilibrium. Each firm is

assumed to be small relative to the aggregate economy and does not seek to manipulate

prices. Under these competitive conditions, a natural objective function for a firm to

maximize is its market value. When markets are complete with respect to primitive

states (like in the standard Arrow–Debreu framework), the Arrow prices p̄(B) associated

with any primitive event B ⊂ Ω are quoted in the market. Firm k’s manager can then

take these prices as given and use them to compute the following conjectured equity

value

Ẽk(ak) ≡
∫

Ω
fk(ω, ak)p̄(dω)

associated with any out-of-equilibrium investment ak. In that case, maximizing the stan-

dard competitive market value

(12) Πk(ak) ≡ Ẽk(ak)− ak =

∫
Ω
fk(ω, ak)p̄(dω)− ak

leads to Pareto optimality.

In the absence of securities whose payoffs are contingent on exogenous events, a deep

issue arises: how firms should assess their equity value for production plans different from

the equilibrium ones? Or equivalently, how can we define the conjecture Ẽk(ak) when

the prices p̄(dω) are not available?
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5.1. Competitive conjectures conditional on aggregate production

Prices ρ̄(dz) contingent on endogenous events (aggregate production) do not have

the same informational content as the state prices p̄(dω) do in the Arrow–Debreu envi-

ronment. Our firms face the same prices for states of nature associated with the same

equilibrium aggregate output. When firm k invests ak, its average production across

states ω associated with equilibrium aggregate output z = σf(ω, ā) is

(13) ỹk(ak|z) ≡
∫
Y k
ykQ(dyk, ak|z),

where

Q(B, ak|z) ≡ P ({fk(ak) ∈ B}|σf(ā) = z)

is the probability that firm k’s production belongs to B ⊂ Y k under the investment ak

and conditional on the equilibrium aggregate production being z.11 We then propose the

following definition to represent the competitive market value for the output-contingent

economy:

(14) V k(ak) ≡
∫
Z
ỹk(ak|z)ρ̄(dz)− ak.

The key behavioral assumption behind Eqs. (13) and (14) is that firms and agents take

prices as given and form competitive beliefs about the conditional expected production

under different out-of-equilibrium investment levels. They understand that firm k’s out-

put becomes the random variable ω 7→ fk(ω, ak) whenever it invests ak. However, they

also believe that firm k’s decisions do not affect the likelihood of aggregate production

and, therefore, compute expected production ỹk(ak|z) conditional on the event {σf(ā) =

z}. The conditioning event is evaluated at the equilibrium investment vector, which in-

cludes the investment choice of firm k. One could metaphorically think about this as if

there was a continuum of firms so that the term ỹk(ak|z) represented the conditional

expected output when a firm invested ak while all other infinite firms invested the equi-

librium level.

Remark 5.1 (Conditional risk-neutral valuation) We know from Proposition 4.1 that

the equilibrium consumption plans and stochastic discount factor are constant across

states of nature ω that are associated with the same aggregated output z = σf(ω, ā). At

equilibrium, firms and agents become risk neutral conditional on the aggregate produc-

tion z. This is behind the way we introduced the conditional expected production ỹk(ak|z)
in the competitive market value defined in Eq. (14).

11For any event B ∈ F and any arbitrary random variable g : Ω→ Z, we let P (B|g) be the conditional

expectation E[1B |g], where 1B is the indicator function of the set B. Since the random function P (B|g)

is g-measurable, there exists a measurable function Φ : Z → R such that P (B|g) = Φ(g). The number

Φ(z) is denoted by P (B|g = z).
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Remark 5.2 (Correctness at equilibrium) At equilibrium, our competitive definition of

market value equals the equilibrium equity price minus investments. Indeed, we have

V k(āk) =

∫
Z
ỹk(āk|z)χ̄(z)µ(dz, ā)− āk

=

∫
z∈Z

χ̄(z)

[∫
Y k
ykQ(dyk, āk|z)

]
µ(dz, ā)− āk

=

∫
Y
χ̄(σy)ykQ(dy, ā)− āk

= Ēk − āk,
where these equalities follow from Eqs. (10), (11), (13), and (14).

5.2. Efficiency

We turn now to show the Pareto optimality of any allocation ((x̄0, x̄1), ā) derived from

a financial equilibrium in which investments maximize the competitive market value V k.

We have argued before that the impossibility to trade assets contingent on primitive

states is an essential incompleteness of markets from the perspective of firms. Although

consumers do not need to trade securities contingent on primitive states to perfectly

share idiosyncratic risks, firms do need the information embedded in the state-contingent

prices p̄ in order to compute the competitive present value Πk(ak) associated with out-of-

equilibrium investment plans ak 6= āk, as defined in Eq. (12). Our next proposition shows

that this incompleteness can be overcome if firms hold the competitive beliefs ỹk(ak|z). To

prove this, we show below the connection between the standard Arrow–Debreu concept

of competitive equilibrium and our definition of financial equilibrium.

We recall that an Arrow–Debreu equilibrium is a list (p̄, (ξ̄0, ξ̄1), ā) composed of:

(i) a positive measure p̄ on (Ω,F) representing state-contingent prices; (ii) a consumption

plan (ξ̄0, ξ̄1) ≡
(
ξ̄i0, ξ̄

i
1

)
i∈I , where ξ̄i0 > 0 and ξ̄i1 : Ω→ R+ is a random variable; and (iii)

an investment vector ā ≡
(
ak
)
k∈K such that:

(a) the allocation ((ξ̄0, ξ̄1), ā) is feasible, in the sense that

(15)
∑
i∈I

ei0 − ξ̄i0 =
∑
k∈K

āk

and

(16)
∑
i∈I

ξ̄i1(ω) =
∑
k∈K

fk(ω, āk), for P -almost every ω ∈ Ω;

(b) for each firm k, the investment āk maximizes the present-value function

Πk(ak) ≡
∫

Ω
fk(ω, ak)p̄(dω)− ak;

(c) for each agent i, the consumption plan (ξ̄i0, ξ̄
i
1) maximizes the expected utility

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω)
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subject to the present-value budget constraint

(17) ξi0 +

∫
Ω
ξi1(ω)p̄(dω) 6 ei0 + Π(ā) · δi.

where Π(ā) ≡ (Π(āk))k∈K .

Proposition 5.1 There exists an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) if, and only

if, there exists a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with the investment

vector ā such that, for each k, āk maximizes the competitive market value V k.

This proposition is proven in Appendix A.1. The proof consists in constructing the

elements of a given equilibrium concept from the elements describing the alternative

equilibrium. We notice that, in addition to investments ā, the equilibrium consumption

plans coincide. This is to say that, for each i, we have x̄i0 = ξ̄i0 and there is a Borel-

measurable function c̄i : Z → R+ such that

x̄i1(y) = c̄i1(σy) and c̄i1(σf(ω, ā)) = ξ̄i1(ω).

Moreover, the state-contingent prices in the Arrow–Debreu equilibrium are

p̄(dω) = χ̄(σf(ω, ā))P (dω),

while the prices in the financial equilibrium are

ρ̄(dz) = χ̄(z)µ(dz, ā) and Ē =

∫
Ω
f(ω, ā)p̄(dω).

The First Welfare Theorem holds true in the Arrow–Debreu framework, given the

baseline assumptions of our model. It then follows from Proposition 5.1 that the allocation

composed of an investment vector that maximizes each firm’s competitive value and the

consumption profile from the corresponding financial equilibrium is Pareto optimal. This

is proven in our next result.

Theorem 5.1 Let (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) be a financial equilibrium associated with an in-

vestment vector ā such that, for each k, āk maximizes V k. Then, the allocation ((x̄0, x̄1), ā)

is Pareto optimal.

Proof: Take the financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with ā. Consider

the corresponding Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) defined by Propostion 5.1.

Assume then, by way of contradiction, that there is an alternative output-contingent

feasible allocation ((x0, x1), a) which Pareto dominates ((x̄0, x̄1), ā). For each i, define the

state-contingent consumption plan (ξi0, ξ
i
1) by posing ξi0 ≡ xi0 and ξi1(ω) ≡ xi1(σf(ω, a)),

December 19, 2014



15

for every ω. The state-contingent allocation ((ξ0, ξ1), a) satisfies the feasibility constraints (15)

and (16). Moreover, we have

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω) = u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, a)

> u0(x̄i0) +

∫
Z
u1(x̄i1(y))Q(dy, ā)

= u0(ξ̄i0) +

∫
Ω
u1(ξ̄i1(ω))P (dω),

where the inequality is strict for at least one agent i. This means that the allocation

((ξ0, ξ1), a) Pareto dominates ((ξ̄0, ξ̄1), ā), which contradicts the First Welfare Theorem

applied to the Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā). Q.E.D.

5.3. Strategic conjectures

When analyzing the decision of non-marginal firms, Magill and Quinzii (2009) define

(18) Mk(ak) ≡
∫
Y
χ̄(σy)ykQ(dy, (ak, ā−k))− ak

as the objective function for firms.12 Each firm k takes as given the equilibrium stochastic

discount factor χ̄ and the investment vector ā−k of all other firms. If we take a financial

equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with ā, we will have V k(āk) = Mk(āk). How-

ever, Mk(ak) typically differs from our definition of competitive market value V k(ak) for

out-of-equilibrium investments ak 6= āk.

Magill and Quinzii (2009) proved that the equilibrium in which each firm k sets an

investment ak to maximize Mk(ak) is not necessarily Pareto optimal. Given that there is

no technological externality, one is leaded to think that this inefficiency result is related

to a sort of pecuniary externality due to the specific output-contingent market structure

under consideration. We proved that maximization of the competitive market value V k

restores efficiency and, therefore, no pecuniary externality results from the restriction

imposed on the financial market.

By analyzing Eq. (18), one realizes that firm k implicitly anticipates the impact of the

investment ak over the probability distribution Q, which turns out to affect the value

of all other firms through the probability Q(dy, (ak, ā−k)). To assess this issue from a

different perspective, we use the exogenous shocks to write

Mk(ak) =

∫
Ω
fk(ω, ak)p̃k(dω, ak)− ak,

where

p̃k(dω, ak) ≡ χ̄(σf(ω, (ak, ā−k)))P (dω).

12The term (ak, ā−k) represents a vector in which the k-th entry of ā is replaced by ak.
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Recall that if state-contingent claims were introduced in the market, all consumers would

just be indifferent to buying or selling them if prices satisfied p̄(dω) = χ̄(σf(ω, ā))P (dω).

Therefore, we can interpret p̄(dω) as the competitive market shadow price for event dω ⊂
Ω. By replacing p̄ with p̃k(ak), firm k’s manager implicitly anticipates the impact of in-

vestment decisions over the aggregate output distribution and manipulates the underly-

ing state prices that affect the market values of all firms. The inefficiencies associated to

the conjecture Mk are therefore due to the strategic behavior of the firm and are not re-

lated to market incompletness. Actually, even if all state-contingent claims were available

for trade, inefficiency would still arise if firms exerted the same market power through

its investment decisions—using the price measure p̃k(dω, ak) instead of the equilibrium

price p̄(dω) to compute price conjectures.

A similar issue appears in economies in which the stochastic discount factor is con-

stant but there are multiple goods whose equilibrium prices are affected by investments.

Magill, Quinzii, and Rochet (2013) explore this issue in details and show that large firms

exerting market power through investments should be stakeholder oriented and maxi-

mize a weighted sum of their shareholder value and their contributions to consumer and

employee welfares.

6. About existence

The objective of this paper is to investigate whether the maximization of a suitably

defined competitive market value leads to efficient investment decisions by firms, even if

investors can only write contracts on observable output. An important related issue is ex-

istence of a competitive equilibrium where firms maximize the corresponding competitive

market value.

Given an arbitrary investment profile a, existence of a competitive financial equilibrium

is assured by our assumptions on preferences and positiveness of date-0 endowments

and of date-1 production outcomes. If, in addition to that, the sets Ak were convex,

and the production functions fk(ω, ·) were continuous and concave on Ak, for each ω,

we could then assure existence of a competitive financial equilibrium associated with

an investment profile ā that maximizes each firm’s competitive market value V k. This

follows from Proposition 5.1 coupled with classic theorems on existence of Arrow–Debreu

equilibrium—see Bewley (1972).

Remark 6.1 (Finitely many states) When the support of the probability P is finite,

the investment sets Ak are convex, and the production functions fk are concave, then our

assumption that securities’ markets are complete with respect to aggregate output may

(generically) yield complete markets with respect to the primitive states.13 This feature

13Indeed, concavity of the production function leads to a continuum of possible outcomes. Complete-

ness with respect to aggregate output then requires (infinitely) many more securities than primitive

states. We thank Martine Quinzii and Michael Magill for pointing this out.
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is not generic when Ak is finite, as illustrated in Section 2. It also does not appear when

we have a continuum of primitive states of nature. We refer the reader to Appendix A.2

for a simple technology for which, given any output profile y and investment vector a,

there is a continuum of states ω satisfying f(ω, a) = y.

Continuum of firms

Among the many technologies that do not satisfy the general assumptions for existence

of an Arrow–Debreu equilibrium, there is one that deserves particular attention. The

benchmark production model in contract theory is such that each firm either succeeds or

fails to produce a certain amount of output, and the probability of success increases with

the firm’s investment. This success-or-failure technology is represented by a non-convex

production function and non-existence problems may arise. In Section 2, we constructed

an equilibrium for an economy with this technology in which firms chose between two

possible investment levels. However, as recently shown by Magill, Quinzii, and Rochet

(2013), an Arrow–Debreu equilibrium may not exist when there is a continuum of possible

investments but only finitely many possible outputs.

A traditional approach to overcome this issue considers a continuum of ex-ante identi-

cal firms with i.i.d. production draws. In this case, all variation in output that underlies

this particular technology is eliminated and the objective of the firm ceases to be an

issue. We use Appendix A.3 to discuss a model with a continuum of identical firms and

perfectly correlated success-or-failure shocks.14 We explicitly compute an equilibrium

under specific assumptions and also derive a general existence result. This illustrates an

interesting way to keep variability in the (average) aggregate output while smoothing

non-convexities through a continuum of firms. Notice also that modelling the productive

sector with many small firms is consistent with the behavioral assumptions used along

the paper.

7. Conclusion

There are two alternative traditions in economics to represent the outcome of risky

enterprises. On one hand, the reference model in macroeconomics and general equilibrium

uses the state-of-nature approach, which relies on random production functions that map

investments and random primitive states of nature (with fixed objective probabilities)

into realized outputs. On the other hand, the literature on contract theory relies on

the probability approach in which production is modeled through transition functions

mapping investments into probability measures over the set of possible outcomes.

As far as the description of production possibilities is concerned, the two approaches

are equivalent. However, the two approaches differ on the financial contracts that are

14To simplify the presentation, we assume that all firms are identically affected by exogenous shocks.

The more general case can be handled in a similar manner.
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used to share risks and direct investments. By keeping states of nature hidden, the

probability approach reminds us that writing contracts on the primitive states of nature

is not realistic. It is sometimes difficult to describe these states in a contract or to verify

them ex-post for execution. This is why most financial contracts available in practice are

usually written on observed production outcomes or profits (e.g., stocks and options).

It is then natural to ask whether this market incompleteness—generated by the lack of

state-contingent claims—matters for efficiency.

It is well-known that the ability to contract upon primitive states of nature is not

essential for an efficient allocation of resources in exchange economies with production

risks only. If agents can sell their endowed stocks and trade claims written on the aggre-

gate output, then the equilibrium consumption is efficient and only varies with aggregate

risks. The interesting question concerns the ability of financial markets to efficiently di-

rect firms’ investments. We show that the difficulty raised by the lack of state prices can

be overcome by considering an appropriate notion of competitive beliefs out of the equi-

librium. This new concept describes the way each firm assesses the impact of alternative

out-of-equilibrium investments without anticipating the effect of this decision over the

distribution of aggregate variables. As a result, we obtain the classic recipe that share-

holder value maximization leads to Pareto efficiency even for the more realistic financial

structure in which all contracts are written on firms’ outcomes.

Appendix A: Appendix

A.1. Proof of Proposition 5.1

From AD to FE

Let us take an Arrow–Debreu equilibrium (p̄, (ξ̄0, ξ̄1), ā) and construct a financial equi-

librium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with the investment vector ā. We define the equity

and output-contingent prices as

Ē ≡
∫

Ω
f(ω, ā)p̄(dω) and ρ̄(B) ≡

∫
Ω

1B(σf(ω, ā))p̄(dω),

for any Borelian set B ⊂ Z. It follows from strict concavity of u1 that ξ̄1(ω) is con-

stant across states ω associated with the same equilibrium aggregate output σf(ω, ā).

This is to say that, for each agent i, there exists a measurable function c̄i1 : Z → R+

satisfying c̄i1(z) = ξ̄i1(ω), for every ω such that σf(ω, ā) = z. We pose

(x̄0, x̄1(y)) ≡ (ξ̄0, c̄1(σy)), for every y.

The individual consumption plan (ξ̄i0, ξ̄
i
1) must satisfy the Arrow–Debreu budget con-

straint

ξ̄i0 +

∫
Ω
ξ̄i1(ω)p̄(dω) 6 ei0 + Π(ā) · δi.
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Given the equity prices defined before, we have

(19) Πk(āk) = Ēk − āk, for every k.

This allows us to rewrite the previous inequality as

x̄i0 +

∫
Z
c̄i1(z)ρ̄(dz) 6 ei0 + (Ē − ā) · δi.

Therefore, by taking η̄i ≡ (1/I)1 and θ̄i(z) ≡ c̄i1(z) − z/I, we have that (x̄i0, x̄
i
1, η̄

i, θ̄i)

satisfies the budget constraints (4) and (5) at the equilibrium financial prices (Ē, ρ̄).

The consumption plans (x̄i0, x̄
i
1) are optimal among all plans that can be financed by

equity holdings and output-contingent contracts. To see this, let (xi0, x
i
1, η

i, θi) be an alter-

native plan satisfying the budget constraints (4) and (5) at the equilibrium prices (Ē, ρ̄).

We construct the state-contingent plan ξi0 ≡ xi0 and ξi1(ω) ≡ xi1(f(ω, ā)) and notice from

Eq. (5) that∫
Ω
xi1(f(ω, ā))p̄(dω) =

∫
Ω
θi(σf(ω, ā))p̄(dω) + ηi ·

∫
Ω
f(ω, ā)p̄(dω)

=

∫
Z
θi(z)ρ̄(dz) + ηi · Ē.

By replacing this relation into Eq. (4) and using Eq. (19), we deduce that the consumption

plan (ξi0, ξ
i
1) satisfies the present-value budget constraint (17). Therefore, by optimality

of (ξ̄i0, ξ̄
i
1), we have

u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, ā) = u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω)

6 u0(ξ̄i0) +

∫
Ω
u1(ξ̄i1(ω))P (dω)

= u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā).

Feasibility of the allocation ((ξ̄0, ξ̄1), ā) as defined by Eq. (15) and (16) implies fea-

sibility of the allocation ((x̄0, x̄1), ā) as defined by Eq. (6) and (7). Since the portfolio

allocation (η̄, θ̄) satisfies the market clearing condition (8), we can then deduce that

(Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) is a financial equilibrium associated with ā.

To conclude, we recall that āk maximizes Πk and show that the objective function V k

is identical to Πk given the equilibrium prices derived before. Indeed, standard first-

order conditions applied to agent’s problem in the Arrow–Debreu equilibrium imply

that p̄(dω) = χ̄(σf(ω, ā))P (dω), where χ̄(z) ≡ u′1(c̄i1(z))/u′0(c̄i0) for every z. We have
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ρ̄(dz) = χ̄(z)µ(dz, ā), by construction, and then

V k(ak) =

∫
Z
ỹk(a|z)ρ̄(dz)− ak

=

∫
Z
χ̄(z)ỹk(a|z)µ(dz, ā)− ak

=

∫
Z
χ̄(z)

[∫
Y k
ykQ(dyk, ak|z)

]
µ(dz, ā)− ak

=

∫
Z
χ̄(z)

[∫
Ω
fk(ω, ak)P (dω|σf(ā) = z)

]
µ(dz, ā)− ak

=

∫
Ω
χ̄(σf(ω, ā))fk(ω, ak)P (dω)− ak

= Πk(ak).

From FE to AD

We now take a financial equilibrium (Ē, ρ̄, (x̄0, x̄1, η̄, θ̄)) associated with investments ā

such that āk that maximizes V k, for every k, and construct an Arrow–Debreu equi-

librium (p̄, (ξ̄0, ξ̄1), ā). Recall from the proof of Proposition 4.1 that there is a measur-

able function χ̄ : Z → R+ representing the stochastic discount factor in the sense that

χ̄(σy) = u′1(x̄i1(y))/u′0(x̄i0) for every y and i. We then pose

p̄(dω) ≡ χ̄(σf(ω, ā))P (dω), ξ̄i0 ≡ x̄i0, and ξ̄i1(ω) ≡ x̄i1(f(ω, ā)).

The allocation ((ξ̄0, ξ̄1), ā) satisfies the market clearing conditions (15) and (16). As for

budget feasibility, we notice that, for each i, there is a measurable function c̄i1 : Z → R+

satisfying c̄i1(z) = x̄i1(σy).15 The budget constraints (4) and (5) can be consolidated as

x̄i0 +

∫
Z
c̄i1(z)χ̄(z)µ(dz, ā) 6 ei0 + (Ē − ā) · δi.

The definitions of Ē and ρ̄ imply

ξ̄i0 +

∫
Ω
ξ̄i1(ω)p̄(dω) 6 ei0 + Π(ā) · δi

and, then, the plan (ξ̄i0, ξ̄
i
1) satisfies the present-value budget constraint (17).

To prove that (ξ̄i0, ξ̄
i
1) is individually optimal, we fix an arbitrary consumption plan (ξi0, ξ

i
1)

satisfying the present-value budget constraint

(20) ξi0 +

∫
Ω
ξi1(ω)p̄(dω) 6 ei0 + Π(ā) · δi.

By posing

ci1(z) ≡
∫

Ω
ξi1(ω)P (dω|σf(ā) = z),

15See the proof of Proposition 4.1.
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we get from the definitions of Ē and ρ̄ that (20) writes as follows

ξi0 +

∫
Z
ci1(z)ρ̄(dz) 6 ei0 + (Ē − ā) · δi.

By fixing θi(z) ≡ ci(z) and ηi ≡ 0, we have that the plan (xi0, x
i
1, θ

i, ηi) must satisfy the

budget restrictions (4) and (5). The optimality of (x̄i0, x̄
i
1, θ̄

i, η̄i) then implies that

u0(ξi0) +

∫
Ω
u1(ξi1(ω))P (dω) = u0(xi0) +

∫
Y
u1(xi1(y))Q(dy, ā)

6 u0(x̄i0) +

∫
Y
u1(x̄i1(y))Q(dy, ā)

= u0(ξ̄i0) +

∫
Ω
ui1(ξ̄i1(ω))P (dω).

Finally, since āk maximizes V k and V k = Πk, the Arrow–Debreu profit maximization

condition is also satisfied.

A.2. Technology example

We consider the following technology to illustrate that completeness with respect to

aggregate output does not yield (even generically) complete markets with respect to

the states of nature. There is a single firm, and the primitive states ω = (ω1, ω2) lie

in Ω ≡ [1,∞) × [0, 1). The production function maps investment a ∈ [0, 1] to output

f(ω, a) ∈ [0, 1] and displays piece-wise constant returns to scale as follows:

f(ω, a) ≡

{
ω1a if a ∈ [0, aω]

ω2a+ (ω1 − ω2)aω if a ∈ [aω, 1]

where the threshold is defined by aω ≡ (1−ω2)/(ω1−ω2). In words, our firm earns a high

marginal productivity ω1 ∈ [1,∞) for low investment levels and a low marginal return

ω2 ∈ [0, 1] for high investment levels.

investment0 1

output

1 f(ω, ·)

aω

a 7→ ω1a

1− ω2

For each given equilibrium investment ā ∈ [0, 1] and production z > ā, there are

infinitely many possible shocks ω ∈ Ω that generate f(ω, ā) = z. To see this, take z >
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ā, ω̄1 ≡ z/ā, and ω̄2 ≡ (1 − z)/(1 − ā). We obtain f(ω, ā) = z for any ω such that:

(a) ω1 = ω̄1 and ω2 6 ω̄2, or (b) ω1 > ω̄1 and ω2 = ω̄2. The next figures illustrate these

cases. We conclude that observing the output z is not sufficient to pin down exactly the

underlying productive shock.

(a) ω1 = ω̄1 and ω2 6 ω̄2

investment0 1

output

1 f(ω̄, ·)

ā

z

a 7→ ω̄1a

1− ω̄2

1− ω2

(b) ω1 > ω̄1 and ω2 = ω̄2

investment0 1

output

1 f(ω̄, ·)

ā

z

a 7→ ω̄1a
a 7→ ω1a

1− ω̄2

A.3. Success-or-failure technology: continuum of firms

Consider an economy with a single firm which chooses an investment in the set A ≡
[0, 1] and faces a success-or-failure production function. Two production levels are pos-

sible, yl > 0 and yh > yl. The transition Q(y, a) stands the probability of producing y

when the firm invests a. Since there are only two possible output levels, we can simplify

the notation by setting Qh(a) ≡ Q(yh, a). We make the assumption that higher efforts

increase the likelihood of success, i.e., a 7→ Qh(a) is strictly increasing.

There is a canonical state-of-nature representation of this technology. We take the

set Ω to be the interval [0, 1] and the probability P to be the uniform measure. For every

investment level a, we define ω(a) ≡ 1−Qh(a) and pose

(21) f(ω, a) =

{
yl if ω 6 ω(a)

yh if ω > ω(a).

Since a 7→ ω(a) is strictly decreasing, we denote by ω 7→ a(ω) its inverse mapping from

[ω(1), ω(0)] to [0, 1]. For each state of nature ω ∈ [ω(1), ω(0)], the firm obtains the output

(22) f(ω, a) =

{
yl if a 6 a(ω)

yh if a > a(ω).

For states ω < ω(1) and ω > ω(0), the realized outputs are respectively yl and yh
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regardless of the initial investment a.16

Notice that the production function a 7→ f(ω, a) is not concave. We can then follow

Magill, Quinzii, and Rochet (2013) and show that, for some specifications of the produc-

tion technology, there does not exist a financial equilibrium in which the firm maximizes

the competitive market value.17 To overcome the non-convexity of the success-or-failure

technology, we propose to model perfect competition of the productive sector by consid-

ering the extreme case with a continuum K ≡ [0, 1] of identical firms facing success-or-

failure shocks that are perfectly correlated. This assumption is imposed to simplify the

presentation.18

We pose a few remarks before proceding. We first notice that the presence of a contin-

uum of firms is consistent with our behavioral assumption that agents are convinced that

a change in the investment of each firm does not affect the probability over the aggre-

gate output. We also stress that shocks are not independent across firms. Independence

would reduce the model to the case without aggregate uncertainty, where the choice of

the firms’ objective is not anymore an issue. The assumption that shocks are perfectly

correlated allows us to keep output variability at equilibrium, which resembles the case

with a single firm. Finally, shocks are not necessarily observable and contractible even

when they affect all firms identically.19

We abuse notation and do not index firm-specific variables with the firm’s name k ∈
[0, 1]. Since the production function of each firm is non-convex, we may have multiple

solutions to the “representative” firm’s maximization problem. In particular, ex-ante

identical firms having different names may choose different investment levels. Therefore,

we opt to represent firms’ investment decisions using a probability measure α on the

Borel σ-algebra of the set of investment levels A ≡ [0, 1]. The interpretation is that α(B)

is the fraction of firms choosing investment in a Borelian set B of A. The corresponding

(average) aggregate production contingent on the exogenous state of nature ω is denoted

16In that respect, the events [0, ω(1)) and (ω(0), 1] correspond to the states ωl and ωh in the economy

analyzed in Section 2.
17Formally, if the production technology is such that a 7→ Qh(a) is decreasing, continuously differen-

tiable and satisfies Q′h(0) =∞ and Q′h(1) = 0, then there does not exist a financial equilibrium in which

the firm maximizes the competitive market value.
18At the cost of notational complexity, we could have considered a slightly more general model allowing

for different firms with imperfectly correlated production levels. For existence of an equilibrium, what

matters to deal with non-convex production technologies is that we have a non-atomic measure space of

firms.
19Examples of aggregate shocks include changes in a government’s macroeconomic policy such as

taxes and social security contributions on labor. Another possible aggregate shock is a general increase

in labor productivity because of an easily accessible improvement in technological knowledge. Political

instabilities in the Middle East that lead to changes in oil production or technological innovations in solar

energy production are also examples of shocks affecting all firms. We hardly see contracts contingent on

events like these.
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by Eα[f(ω)]. It follows from the production function represented in Eq. (22) that

(23) Eα[f(ω)] =

∫
A
f(ω, a)α(da) = ylα([0, a(ω)]) + yh(1− α([0, a(ω)])).

Since we have infinitely many possible primitive states of nature ω, the set Z of aggregate

production levels is now described by the interval [yl, yh].20

Given a distribution α of investment, we can define the distribution µα over the (av-

erage) aggregate production as follows

µα(B) ≡ P ({ω ∈ Ω : Eα[f(ω)] ∈ B}),

for every Borelian set B ⊂ [yl, yh]. Having infinitely many firms, we need to consider

infinitely many consumers. We assume that there is also a continuum I ≡ [0, 1] of identical

consumers, each one having the full ownership of a single firm. We also skip using names i

to index consumer-specific variables.

Fix some equilibrium investment distribution ᾱ. Identical firms must have the same

equilibrium initial value V̄ . We can assume without loss of generality that agents pool

their asset holdings and make consumption plans x0 ∈ R+ and c1 : Z → R+ in order to

satisfy the following reduced-form budget constraint

(24) x0 +

∫
Z
c1(z)ρ̄(dz) 6 e0 + V̄ ,

where ρ̄ is the equilibrium measure representing output-contingent prices. Agents’ prob-

lem have a unique optimal solution (x̄0, c̄1) in which c̄1(z) = z and x̄0 = e0 − ā.

In order to simplify the exposition, we assume hereafter that u0 is a linear function

with u′0 = 1. The equilibrium stochastic discount factor becomes χ̄(z) = u′1(z). Firms

maximize the same competitive market value function

Vᾱ(a) ≡
∫
Z
ỹᾱ(a|z)ρ̄(dz)− a,

where

ỹᾱ(a|z) ≡
∫

Ω
fk(ω, a)P (dω|Eᾱ[f ] = z)

is the conditional expected production under the investment distribution ᾱ given an

(average) aggregate output z. In equilibrium, firms may choose different investment levels,

but they will all have the same market value V̄ . Formally, if we denote by supp(ᾱ) the

support of the equilibrium investment distribution ᾱ, then we have V (a) = V̄ , for every

20This illustrates that, when firms’ outputs are not independent, considering a continuum of firms

does not remove aggregate uncertainty. In fact, here, it potentially increases the set of possible aggregate

outcomes.
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investment a ∈ supp(ᾱ) and V (a) 6 V̄ , for a /∈ supp(ᾱ). We can then write firms’

competitive market value as follows:

Vᾱ(a) =

∫
Z
χ̄(z)

∫
Ω
fk(ω, a)P (dω|Eᾱ[f ] = z)µᾱ(dz)− a

=

∫
Ω
χ̄ (Eᾱ[f(ω)]) f(ω, a)P (dω)− a.

Given the production function represented in Eq. (21), we obtain

(25) Vᾱ(a) = yl

∫ ω(a)

0
χ̄ (Eᾱ[f(ω)])P (dω) + yh

∫ 1

ω(a)
χ̄ (Eᾱ[f(ω)])P (dω)− a.

Smooth probabilities

Let us now compute an equilibrium distribution ᾱ for the production technology in

which a 7→ Qh(a) is decreasing, continuously differentiable and satisfies Q′h(0) =∞ and

Q′h(1) = 0.21 Recall that ω(a) ≡ 1−Qh(a) and notice that, for any a ∈ (0, 1), we have

V ′ᾱ(a) = Q′h(a)χ̄ (Eᾱ[f(ω(a))]) ∆y − 1,

where ∆y ≡ yh − yl.

Since Q′h is continuous, there are limits b and b with 0 < b < b < 1 such that

(26) Q′h(b)χ̄(yh)∆y = 1 and Q′h(b)χ̄(yl)∆y = 1.

Moreover, since χ̄(z) = u′1(z) is continuously decreasing, there is a continuously decreas-

ing function a 7→ ϕ(a) such that

∀a ∈ [b, b], Q′h(a)χ̄(ϕ(a))∆y = 1.

Naturally, we have ϕ(b) = yh and ϕ(b) = yl.

Let us define the distribution ᾱ to be such that

ϕ(a) = ylᾱ([0, a]) + yh(1− ᾱ([0, a])).

Since the function ϕ is continuous, the distribution ᾱ is non-atomic. Indeed, for every

a ∈ [b, b], we have

ᾱ[0, a] = (yh − ϕ(a))/∆y,

where ϕ(a) = χ̄−1
(

−1
Q′h(a)∆y

)
. No firm chooses investment levels lower than b or higher

than b. It is easy to see that the distribution ᾱ has been constructed in order to set

V ′ᾱ(a) = 0, for all a ∈ [b, b]. Notice also that V ′ᾱ(a) > 0, for a < b and V ′ᾱ(a) < 0,

for a > b. This concludes our argument and proves that ᾱ is a competitive equilibrium

investment profile for this economy.

21This corresponds to the production technology for which we do not have existence with a single

firm.
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Remark A.1 Notice from Eq. (26) that the smaller the distance between χ̄(yh) and χ̄(yl),

the narrower the interval [b, b]. In particular, as u1 approaches a linear function, we find b

converging to b and ᾱ converging to a Dirac measure (symmetric equilibrium). Aggregate

uncertainty in this situation closely approximates the case with a single firm—in which

the (average) aggregate output is either yl or yh.

General existence theorem

We can relax the assumptions on the transition probability Qh and still obtain the ex-

istence result for economies with a continuum of firms facing perfectly correlated shocks.

The reasoning is somewhat more technical.

Let M(A) be the vector space of signed Borel measures on A = [0, 1]. An investment

decision is a distribution α inM1
+(A) the set of all positive measures with total mass 1.

We make explicit the relation between α and each firm’s competitive market value Vα(a)

by defining

Vα(a) ≡
∫

Ω
m̄α(ω)f(ω, a)P (dω)− a,

where m̄α(ω) ≡ χ̄(Eα[f(ω)]) . We also denote by G(α) the set of optimal investment

levels

G(α) ≡ argmax{Vα(a) : a ∈ A}.

A distribution of investment ᾱ corresponds to an equilibrium in which firms maximize

the competitive market value when it only puts mass on optimal investment levels, i.e.,

when ᾱ(G(ᾱ)) = 1.

Theorem A.1 There exists a competitive equilibrium distribution of investments.

Proof: Let F :M1
+(A)→M1

+(A) be the correspondence defined by

F (α) ≡ {α̂ ∈M1
+(A) : α̂(G(α)) = 1}.

A competitive equilibrium is a distribution ᾱ of investment levels that is a fixed point of

F , i.e., ᾱ ∈ F (ᾱ).

We propose to apply Kakutani’s fixed-point theorem. The convex set M1
+(A) is en-

dowed with the weak-star topology of the duality 〈M1
+(A), C(A)〉, where C(A) is the space

of continuous real-valued functions defined on A. Since C(A) endowed with the sup-norm

is separable and since M(A) is the topological dual of C(A), we get that M1
+(A) is a

compact metrizable space.

Lemma A.1 The correspondence G : M1
+(A) → A is upper semi-continuous for the

weak-star topology.
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Proof of Lemma A.1: Following Berge’s Maximum Theorem, it is sufficient to show

that (a, α) 7→ Vα(a) is continuous. Let (an, αn)n∈N be a sequence in A ×M1
+(A) con-

verging to (a, α) ∈ A ×M1
+(A). We first show that limn→∞ Eαn [f(ω)] = Eα[f(ω)], for

P -almost every state ω. Notice that

Eαn [f(ω)] = αn(ω)yl + (1− αn(ω))yh = yl + [yh − yl](1− αn(ω)),

where αn(ω) = αn([0, a(ω)]) is the measure of the interval [0, a(ω)]. Since (αn)n∈N con-

verges for the weak-star topology to α, we have

lim
n→∞

αn([0, a]) = α([0, a]),

for every a ∈ A that is not an atom of α, i.e., for every a such that α({a}) = 0.

Since there are at most countably many atoms of α and since ω 7→ a(ω) is strictly

increasing, we obtain limn→∞ αn(ω) = α(ω), for P -almost every ω. This implies that

limn→∞ Eαn [f(ω)] = Eα[f(ω)]. By continuity of u′1, we find

lim
n→∞

mαn(ω) = mα(ω),

for P -almost every state ω.

We now show that limn→∞ Vαn(an) = Vα(a). Recall that

Vαn(an) = −an +

∫
Ω
mαn(ω)f(ω, an)P (dω).

Since limn→∞ f(ω, an) = f(ω, a), for P -almost every ω, we can apply the Lebesgue

Dominated Convergence Theorem to obtain the desired result.22 Q.E.D.

Lemma A.2 The correspondence F is upper semi-continuous for the weak-star topology.

Proof of Lemma A.2: Since M1
+(A) is compact, it is sufficient to show that F has

a closed graph. Let (α′n, αn)n∈N be a sequence converging to (α′, α) and satisfying α′n ∈
F (αn) for each n. Since G(α) is compact, there exists an open set K and compact set K̄

such that

G(α) ⊂ K ⊂ K̄.

Since G is upper semi-continuous, there exists N large enough such that for each n > N ,

we have G(αn) ⊂ K. In particular, α′n(K̄) = 1. Since (α′n)n∈N converges for the weak-

star topology to α′ we get that α′(K̄) > lim supn α
′
n(K̄) = 1. We have thus proven that

α′(K̄) = 1. Actually, we can construct a decreasing sequence (Kn, K̄n)n∈N where Kn

is open, K̄n is compact, G(α) ⊂ Kn ⊂ K̄n and ∩n∈NK̄n = G(α). It then follows that

α′(G(α)) = 1. Q.E.D.

22Notice that, for each n, we have f(ω, an) 6 yh and mαn(ω) 6 u′1(yl).
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The correspondence F has non-empty values. Indeed, since the function a 7→ Vα(a)

is continuous and A is compact, the demand set G(α) is always non-empty. If â is an

element of G(α), then the Dirac measure on â belongs to F (α). Since by construction

the correspondence F has convex values, we can apply Kakutani’s Fixed-point Theorem

to the correspondence F . Q.E.D.
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