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LAGRANGIAN SOLUTIONS TO THE VLASOV-POISSON
SYSTEM WITH L! DENSITY

ANNA BOHUN, FRANCOIS BOUCHUT, AND GIANLUCA CRIPPA

ABSTRACT. The recently developed theory of Lagrangian flows for trans-
port equations with low regularity coefficients enables to consider non
BV vector fields. We apply this theory to prove existence and stability of
global Lagrangian solutions to the repulsive Vlasov-Poisson system with
only integrable initial distribution function with finite energy. These so-
lutions have a well-defined Lagrangian flow. An a priori estimate on the
smallness of the superlevels of the flow in three dimensions is established
in order to control the characteristics.

1. INTRODUCTION

We consider the Cauchy problem for the classical Vlasov-Poisson system

Orf +v-Vof + E-V,f =0, (1.1)
F(0,2,0) = f(a,v). (1.2)
where f(t,x,v) > 0 is the distribution function, t > 0, z,v € RV, and
E(t,z) = =V, U(t,x) (1.3)
is the force field. The potential U satisfies the Poisson equation
—ALU = w(plt,z) - py(a)), (1.4)
with w = +1 for the electrostatic (repulsive) case, w = —1 for the grav-

itational (attractive) case, and where the density p of particles is defined
through
p(t,x) = ft,z,v)dv, (1.5)
RN
and p, = 0, pp € L'(RY) is an autonomous background density. Since we
are in the whole space, the relation (1.3) together with the Poisson equation
(1.4) yield the equivalent relation

E(t,z) = ﬁﬁ # (p(t, 2) — py(x)), (1.6)

where the convolution is in the space variable.

The Vlasov-Poisson system has been studied for long. Existence of local
in time smooth solutions in dimension N = 3 has been obtained in [21]
after the results of [8]. Global smooth solutions have been proved to exist in
[9, 32, 24|, with improvements on the growth in time in [33, 37, 19, 34, 28, 30].
Related results are [35, 27, 15]. These solutions need a sufficiently smooth

Key words and phrases. Vlasov-Poisson system, Lagrangian flows, non BV vector fields,
superlevels, weakly convergent initial data.
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initial datum f°. In particular, the following theorem is a classical result
due to Pfaffelmoser [32].

Theorem 1.1. If N = 3, let fO be a non-negative C* function of compact
support defined on RS. Then there are a non-negative f € C*(R") and
U e C*(RY), which tends to zero at infinity for every fized t, satisfying
equations (1.1)-(1.5) with p, = 0. For each fized t, the function f(t,z,v)
has compact support. The solution is determined uniquely by the initial
datum fY.

In a different spirit, global weak solutions were proved to exist in [6, 16,
18], with only f° € LY(RY), fOlog™ 0 € L, [v|?f° e L', EY € L? (and
pp =0, w = +1). Related results with weak initial data have been obtained
in [31, 22, 38, 29].

In this paper we would like mainly to extend the existence result of [16] to
initial data in L' with finite energy (in the repulsive case w = +1), avoiding
the Llog™ L assumption. Our existence result is Theorem 8.4. It involves
a well-defined flow. Even weaker solutions were considered in [39, 25, 26],
where the distribution function is a measure. However, these solutions do
not have well-defined characteristics.

Our approach uses the theory of Lagrangian flows for transport equations
with vector fields having weak regularity, developed in [17, 1, 4, 14, 5], and
recently in [13, 2, 10]. It enables to consider force fields that are not in
I/Vli’cl, nor in BVj,.. In this context we prove stability results with strongly
or weakly convergent initial distribution function. The flow is proved to
converge strongly anyway. Our main results were announced in [12]. Related
results can be found in [3].

Acknowledgment. This research has been partially supported by the SNSF
grants 140232 and 156112.

2. CONSERVATION OF MASS AND ENERGY

We would like here to recall some basic identities related to the VP system.
They hold for smooth solutions, and a priori not for weak solutions, for which
only the associated a priori bounds remain valid.

Integrating (1.1) with respect to v and noting that the last term is in
v-divergence form we obtain the local conservation of mass

op(t,x) + div, (J(t,z)) =0, (2.1)
where the current J is defined by
J(t,x) = f vf(t,z,v)dv. (2.2)
RN

Integrating again with respect to x, we obtain the global conservation of
mass

% U F(t, 2, v)dzdv = % Jp(t,x)dac —0. (2.3)
X

RN xRN
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2
Multiplying (1.1) by %, integrating in z and v, we get after integration by
parts in v

£ H @f(t,x,v)dm— H E-ofdedo =0.  (2.4)

RN xRN RN xRN
Using (1.6) and (2.1), one has
N0 w x
o FE — | x| =0 2.5
4 3 (g ) =0 =

or in other words

O F = wV (—A,) tdiv,J, (2.6)
which means that 6;F is the the gradient component of —wJ (Helmholtz
projection). We deduce that

E-oEdr = —w E-Jdx. (2.7)
RN RN

Using (2.2) in (2.4), we obtain the conservation of energy

2
a4 H P ¢t v)dwdo + & f \E(t,z)dz | =0.  (2.8)
dt 2 2
RN xRN RN

The total conserved energy is the sum of the kinetic energy and of the
potential energy multiplied by the factor w = +1. In particular, in the
electrostatic case w = +1 we deduce from (2.8) a uniform bound in time
on both the kinetic and the potential energy, assuming that they are finite
initially. In the gravitational case w = —1 it is not possible to exclude that
the individual terms of the kinetic and potential energy become unbounded
in finite time, while the sum remains constant. Indeed it is known that it
does not happen in three dimensions as soon as f* is sufficiently integrable,
but we cannot exclude this a priori for only L' solutions.

Note that the assumption E? € L? is satisfied in 3 dimensions as soon as
p° — pp € L%5. However, in one or two dimensions, for E° to be in L? it is
necessary that S(,oo — pp)dz = 0, as is easily seen in Fourier variable. It is
also necessary that p° — p, has enough decay at infinity. Thus in one or two
dimensions, in order to have finite energy, p, cannot be zero identically.

3. REGULARITY OF THE FORCE FIELD FOR L' DENSITIES

3.1. Singular integrals. We recall here the basic properties of singular
integral operators, that can be found in [36] for example.

Definition 3.1. A function K is a singular kernel of fundamental type in
RY if the following properties hold:
(1) Klgn oy € CHRN\{0}).
(2) There exists a constant Cp = 0 such that
K(2)] < %%, zeRM\{0}. (3.1)

||
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(3) There exists a constant C7 > 0 such that
IVE ()] < ger, 2 e RY\{0). (3.2)

(4) There exists a constant As > 0 such that

J K(z)dx
R1<|:B‘<R2

for every 0 < Ry < Ry < 00.

< A, (3.3)

Theorem 3.2 (Calderén-Zygmund [36]). A singular kernel of fundamental
type K has an extension as a distribution on RN (still denoted by K ), unique
up to a constant times Dirac delta at the origin, such that K € L®(RM).
Define

Su=Kxu, forueL*RY), (3.4)
in the sense of multiplication in the Fourier variable. Then we have the
estimates for 1 < p < oo

1St pory < Cnp(Co + Ci + [|K|[Lo)[ull oy, we LP A L2(RY).
(3.5)

If K is a singular kernel of fundamental type, we call the associated oper-
ator S a singular integral operator on RY. We define then the Fréchet space
ZRY) = Apmen, 1<p<oW™P(RY) and its dual Z'(RY) < .7/(RY), where
Z'(RN) is the space of tempered distributions on RY. Since all singular
integral operators are bounded on Z(R%), by duality we can define the op-
erator S also Z'(RY) — %'(RY). In particular it enables to define Su for
ue LY(RY) or for u a measure. The result Su is in Z/(RY) < .7/ (RV).

3.2. The split vector field. Let p(t,z) € L®((0,T); L' (RY)). We denote
by

b(t7 €, U) = (b17 bz)(t, Z, U) = (U7 E(t7 .%')) = (Ua _wvx(_Ax)_l (p(ta x)—pb(x)))

(3.6)
the associated vector field on (0,7) x RV x RV, Then the Vlasov equation
can be written in the form of the transport equation 0y f +b-V, ,f = 0. In
the following subsections we establish bounds on the vector field b.

3.3. Local integrability. For L' densities, using the weak Hardy-Littlewood-
Sobolev inequality (see Lemma 4.5.7 in [20]) we have that

IV (=2)" (o(t,2) = po(@)[] )

(RN)
1 _
< ||rgw=ret = o) = | (3.7
|SN=1 MN=T (RN)
< enllp(t, z) — po(@)|| 1y,
where
[ulll are(rey = sglgv-i”N({w e RN s.t. |u(x)| > v}, (3.8)
gl
and .Z" denotes the Lebesgue measure in RY. It follows that
|||E|||LZ‘((O,T);M%(RN)) < enllp = pollLe o)L vy (3.9)
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and using the inclusion M %(RN ) = LY (RM) for 1 < p < &~ we con-
clude that b € L®((0,7); LY (RY x RY)) for any 1 < p < 2, since
ve Ll (RY x RY) for any p.

3.4. Spatial regularity. Since b; = v is smooth, the only non-trivial gra-
dient is the one of by = F, indeed the differential matrix of the vector field

is given by
_(Dzby Dyby ([ 0 Id
o= (g 2) = (poe ) (3.10)
We have by (3.6)
(D2E)ij = 00, B = —w0s . (A2) '(p = pp)) for 1 <i,j < N. (3.11)

It is well-known that the operator 63%], (—A,) !is a singular integral oper-
ator. Its kernel is

1 0 ZT;
zj
it is given outside of the origin by
1 T4 5@
Kij(z) = ey (N|x|N12 — |CE|]N> , for 2z e RM\{0}. (3.13)

The kernel satisfies the conditions of Subsection 3.1, and K;;(€) = —&:&;/¢]%
Thus (each component of) D, E is a singular integral of an L*((0,T); L' (R"Y))
function.

3.5. Time regularity. According to (2.6), 0,F is a singular integral of the
current J defined by (2.2). Using the bounds available for solutions with
finite mass and energy

17Ny ey [| [Pt 0)dedo < C. (3.14)
and since |v| < 1 + |v]?, we get that J € L®((0,T); L*(RY)). Hence 6;F is
a singular integral of an L®((0,T); L*(RY)) function. In particular,

0:F e L*((0,T);.7"(RY)). (3.15)
4. LAGRANGIAN FLOWS

Suppose that f is a smooth solution to (1.1)-(1.5) with f(0,z,v) = f°.
Then f is constant along the characteristics (X (s, ¢, z,v), V (s, t,x,v)), which
solve the system of equations

dX

. (s,t,z,v) = V(s,t,z,v),
(4.1)
av
d—(s,t,x,v) = E(s, X (s,t,z,v),V (s, t,x,v)),
s

with initial data X (¢, ¢, x,v) = x and V(¢,t,z,v) = v. Thus the solution can
be expressed as f(t,z,v) = fO(X(0,t,z,v),V(0,t,z,v)).

In order to extend this notion of characteristics to non-smooth solutions,
we define regular Lagrangian flows, which are defined in an almost every-
where sense.
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Definition 4.1. Let b € LL _([0,7] x R*¥;R?Y), and ¢ € [0,T). A map
Z : [t,T] x R?N — R2VN is a regular Lagrangian flow starting at time ¢ for
the vector field b if

(1) for a.e. 2z € R?N the map s > Z(s,z) is an absolutely continuous
integral solution of 3(s) = b(s, 3(s)) for s € [t,T] with G(t) = z.
(2) There exists a constant L independent of s such that
L (Z(s,)7H(A) < LL¥(4)
for every Borel set A c RN,
The constant L is called the compressibility constant of Z.

Definition 4.2. Define the sublevel of the flow as the set
Gy = {ze R*™ : |Z(s,2)| < \ for almost all s € [t,T]}. (4.2)

5. STABILITY ESTIMATE FOR LAGRANGIAN FLOWS

We summarize the main result from [13] in the following regularity setting
of the vector field in arbitrary dimension. We say that a vector field b satisfies
(R1) if b can be decomposed as

b(t, 2)
1+ |z

where b € L'((0,T); L' (R?N)), by € L*((0,T); L®(R?N)).
We assume also that b satisfies (R2): for every j =1,...,2N,

0.,b = Z Sikgik (5.2)
1

= i (t, 2) + ba(t, 2) (5.1)

where Sj, are singular integrals of fundamental type on R2Y and gjk €
LY((0,7); L* (R*)). Moreover, we assume condition (R3), that is

be LP ([0,T] x R*Y), for some p > 1. (5.3)

loc

We recall the following stability theorem from [13], where we denote by B,
the ball with center 0 and radius 7 in R?V.

Theorem 5.1. Let b, b be two vector fields satisfying (R1), b satisfying
also (R2), (R3). Fizt € [0,T) and let Z and Z be reqular Lagrangian
flows starting at time t associated to b and b respectively, with compression
constants L and L. Then the following holds.

For every v >0, r > 0 and n > 0 there exist A > 0 and C, ., > 0 such that

LN (By n{|Z(s,) = Z(s,)| > }) < Crpmllb = bllrigor)xBy) + 1
for all s € [t,T]. The constants X\ and C., ., also depend on
The equi-integrability in L*((0,T); LY (R*N)) of gj. coming from (R2),
The norms of the singular integral operators Sji, from (R2),
The norm |[b||Le((0,1)x By) corresponding to (R3),
The LY(L') and L'(L®) norms of the decompositions of b and b in
(R1),

The compression constants L and L.
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We would like now to state a variant of this theorem, where (R1) and
(R2) are replaced by (R1a) and (R2a).

We consider the following weakened assumption (R1a): for all regular
Lagrangian flows Z : [t,T] x R?Y — R2V relative to b starting at time ¢
with compression constant L, and for all , A > 0,

L*N(B\Gy) < g(r,)), with g(r,)) > 0as A — o at fixed r,  (5.4)
where G denotes the sublevel of the flow Z, defined in (4.2).

We next consider a splitting of the variables, R2Y = RY x RY  and
we denote Z(t,z,v) = (X,V)(t,z,v). Noticing the special form (3.6), we
assume the condition that b satisfies (R2a):

b(t,x,v) = (b1,be)(t,x,v) = (by(v),ba(t, x)), (5.5)
with
by € Lip(R})), (5.6)
and where by involves singular kernels only in the first set of variables =z,
that is for every j =1,..., N,

b2 = . Sikgjk: (5.7)
k=1

where S, are singular integrals of fundamental type on RY and 9k €

LY((0,7); LY(RY)).

Theorem 5.2. Let b, b be two vector fields satisfying (R1a), b satisfying
also (R2a), (R3). Fizt € [0,T) and let Z and Z be regular Lagrangian
flows starting at time t associated to b and b respectively, with compression
constants L and L, and sublevels G and Gy. Then the following holds.

For every v >0, r > 0 and n > 0, there exist A > 0 and C, ., > 0 such that

LN (Br 0 {|Z(5,7) = Z(5,)] > 7)) < Corllb = bllLi(0.myxy) + 71
for all s € [t,T]. The constants X\ and C., ., also depend on
The equi-integrability in L' ((0,T); LY(R™)) of g;. coming from (R2a),
The norms of the singular integral operators Sjj, from (R2a),

The Lipschitz constant of by from (R2a),
The norm ||bl|re(0,r)xBy) corresponding to (R3),

The rate of decay of £L*N(B,\G») and £* (B,\G)) from (Rla),

e The compression constants L and L.

Proof. We summarize the modifications of the proof of Theorem 5.1 from
[13]. The main added difficulty is the singular integral operators on R
instead of R*V. More general situations with singular integrals of measures
instead of L! functions are considered in [10]. Let z = (z,v) € RN x RV,
We estimate the quantity

O5(s) = J log (1 4 1262) ; Z(S’Z)|> dz . (5.8)

BrnGAnGa
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Differentiating with respect to time, we get
|b(87 Z(S, Z)) B 5(37 Z(Sa Z))|

Pl(s) < _
(%) f 61 |Z(s,2) — Z(s,2)]
BTF\G)\NG)\

<2115, ) = Bls, Mlza
[ 1ol 20, D] +[bls, Z(5,2)
o

B,nGxnGy ’
|b1(5’Z(S’Z)) - b_l(S’Z(S’Z)” + |b2(5’Z(S’Z)) - b_Q(S’Z(S’Z)” }dz
|Z(s,2) — Z(s, z)] |Z(s,2) — Z(s, z)] '

Using the special form of b from (R2a), we obtain

@(5) < l1bs,) = 55, Msce
[ Ibls, Z(s, 2] + oG5, Z(5, )
+ J 7 mln{ 5 ,
BrnG NGy
V(52D =T Bl Xu0) =l X ),
) |[V(s,z) —V(s,2)| | X (s,2) — X(s,2)]
<ZIIB(s, ) — Bls, Mz sy + Lin(b) 22V (B,)
[ Ibls, Z(s, 2] + oG5, Z(5, )
+ J mln{ 5 ,

BrnGAnGa

e X 2) = (e X0 ),
X(s,2) — X(5,2)] |
(5.9)
Using assumption (R2a), we can use the estimate of [13] on the difference
quotients of by,

[ba(s, X (5,2)) — ba(s, X (5, 2))] )
|X(s,2) — X(s,2)] S U(s,X(s,2)) +%(s,X(s,2)), (5.10)

where % (s,.) € M'(RY) for fixed s is indeed given by

N m
U(s,) = Y > M;(Sirgjn(s, ), (5.11)

j=1k=1
with M; a smooth maximal operator on RY. Next, we can define the func-

tion

Z(s,z,0) = U (s,2) (3 p)ei, - (5.12)
and we notice that since the above integrals are over G\ N G\, we can
replace the right-hand side of (5.10) by % (s, Z(s, z)) + Z (s, Z(s, z)). Then,
for given £ > 0, we can decompose g, = g]lk +g]2~k, with Hg}kHL%(QT)XRN) <e
and \|gj2.k||L2((07T)XRN) < Cy, gJQ.k having support in a set A. of finite measure.
This gives rise to two type of terms 2! and 2°2. Since all the 2 terms have
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compact support in v, this allows to perform the same estimates as in [13].
We finally get

LN (B, n{|Z(1,7) = Z(1,7)| > +})

1 a i
Stog( +7/8) L Of(s) ds + 2N (B\Gy) + L2 (B\G)).

By choosing A large first, then ¢ small, and finally § small, we conclude the
proof as in [13]. O

(5.13)

6. CONTROL OF SUPERLEVELS

In order to apply Theorem 5.2, we need to satisfy (R1la). Therefore, we
seek an upper bound on the size of B,\G).

6.1. The case of low space dimension. We first recall the following
lemma from [13].

Lemma 6.1. Let b : (0,7) x R?N — R2N be a vector field satisfying
(R1). Then b satisfies (R1a), where the function g(r,\) depends only on
L [1b1]] Lo,y r2vyys 1021 o,y (r2v )y -

This lemma allows us to control the superlevels of b in 1 or 2 dimensions.

Proposition 6.2. Let b be the vector field in (3.6), with E € L*((0,T); L*(RY)).
For N =2 or N =1, b satisfies (R1), hence also (R1a).

Proof. 1t is clear that

v
——— e LP(LY 6.1
1+|.%'|—|—|1)| t( x,v)’ ( )

and
E(t,z) E(t,x) 1 N E(t,x)
L+ [z + o] 1+ + o] PSECIT T2+ ol

Ljoj> B(t.a) = E1 + Ea.

(6.2)
Clearly Es € L (Ly,), and if N = 2, Ey e L*((0,7); L} ,) since

|E@2)|
1 dad
H 1+|x|+| | sIB)

CoVar —on [
J|Et:c< f |v|d>d 2R[|E(t )2d

wI<|E(t)|
In the case N = 1, we have directly that E(t,2)/(1+ Jv|) € L*((0,T); L3 ,).
O

6.2. The case of three space dimensions. The condition (R1) being
not satisfied in 3 dimensions (the above computation would require E €
L}(L2)), we need an estimate on |Z| in order to control the superlevels. For
getting this we integrate in space a function growing slower at infinity than
log(1 + |Z|) (this corresponding to the case (R1)).
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Proposition 6.3. Let b be as in (3.6) with N = 3, E € L®((0,T); L*>(RY)),
satisfying (2.6) with J € L®((0,T); L*(RN)). Furthermore, assume that
w=+1, p =0, and p, € L' n LP(R3) for some p > 3/2. Then (R1a)
holds, where the function g depends only on L, T, ||E||p2(r2y, [|J|lL2(r1),

[(=A) tppllr=, and one has g(r,\) — 0 as A — o at fized r.

Proof. Step 1.) Let Z : [t,T] x R? x R? — R3 x R? be a regular Lagrangian
flow relative to b starting at time ¢, with compression constant L and sublevel
Gy. Denoting Z = (X, V), we have the ODEs

X(87 x? U) = V(87 x? U)?
V(s,z,v) = E(s, X (s, 2,0)).
Recalling that £ = —V,U, one has

2
5SM =V(s,z,v) 05V (s,x,v) = E(s, X(s,2,v)) - 0sX (s, x,v)

= —0s[U(s, X(s,x,v))] + ,U(s, X(s,z,v)). (6.5)

This computation is indeed related to the form of the Hamiltonian for (1.1),
H = |?/2+ Ult,z).
We are going to bound the superlevels of V (s, z,v). We claim that

JJ sup 1 + log<1 + |V(s,x,v)|2/2))a dxdv < A, (6.6)

s€[t,T]

(6.4)

where 0 < a < 1/3, and for some constant A depending on L, T, r, a,
and on the norms ||E||zx(z2), |[/]|z2(L1), [(=A) Lpp|lp=. Assume for the
moment that this holds. From the lower bound

ff sup 1 + log(l + |V(s,x,v)|2/2))admdv
s€t,T]

(6.7)
ZLO(BAGY (1 +1og(1 + A?/2))°,
with G » the sublevel of V', we get that
Z9(B\G)) < A (6.8)

(1 4+ log(1 + A2/2))

Next, we remark that by the first equation in (6.4), whenever (z,v) € Gy
one has | X (s, z,v)| < |z| + |s — t|\, and |Z(s,z,v)| < |z| + (1 + T)\. Thus
for A > r, one has B,\G) c Br\é( A—r)/(1+T)>, Which enables to conclude the
proposition (for A < r we can just bound .Z%(B,\G,) by .Z%(B,)).

Step 2.) By Step 1, it is enough to prove that we have a decomposition

)2 @
(1 +log (1 + w)) < fi+fr € LRI xRY) +LP (R} xRY), (6.9)
for (z,v) € By, where fi, fo are independent of s € [¢,T]. Let
B(y) = (1 +log (1 +y))*, fory=0. (6.10)
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Then
a(l +log(1 +g))>t

1+y
(1 +log(1 4+ y))>*

(1+y)?

B'(y) =
0<—3"(y) <

Using (6.5), we compute

(g
Vs, z, v)IQ)

=(—83[U(5,X(s,x,v))] + U (s, X (s,,0)) ) & ( .
) [U(S,X(s,m,v))ﬁ' (M)] (6.12)

)

(6.11)

V(s,2,0)[”
2

+oU (s, X(s,2,v)) (M) .

Thus, integrating between ¢ and s,

<1 +log <1 + M))a

al(s, X(s,x,v))
(1+M) <1+log <1+M))1w

aU(t,x)

" (1+4) (141081 +%))1_a : <1 rlos <1 ’ |2|2>)

. L {U(T,X(r,w,v))v(ﬂx’”) E(r, X (7, 2,0))8" (M)

O, U (7, X (1, 2,0)) 8’ (M) } dr.

+ U(s, X(s,2,v))3" < ) V(s,z,v) - E(s, X (s,z,v))

(6.13)

Step 3.) Since E(t,-) € L*(R?), we have by the Sobolev embedding that
U(t,-) € L5(R?). Thus clearly

Ul(t,z)

1+

e LS(R3 xR3) c L'(R2 x R3) + L®(R3 x R3). (6.14)

Next, sincew = +1and p = 0, one has U = U, -U,,, with U, 4ﬂ|x‘ xp = 0.
Thus U > —|U,,||r=. Thus the first three terms in the expansion (6.13) are
upper bounded in LY(R3 x R3) + L®(R3 x R3). It remains to estimate the
integral. We can bound it by ®; + ®,, with

T
¢1Z=J
t

U(r, X(1,2,v))V(1,2,v) - E(T, X (1, 2,v))3" (

T
(132:=f
t

2
V(r2,0) )\ o

(6.15)

dr. (6.16)

IV(T;,?})IQ)

oU(r, X(1,2,v))3 (
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Note that ®1, @ are independent of s. We estimate ®; in L¥?(R3 x R3)
LY(R3 x R3) + L®(R3 x R3). Passing the L¥? norm under the integral and
changing (X (7, z,v),V (7, x,v)) to (x,v), this gives (up to a factor L)

3/2
f f |U Ulnajy - B, x)vP T—a dxdv
B3 RS 1—|— 1—|—10g< +T))
3/4
<JthWth@mf 2 dv

. 9/4 . 3(1—a)/2
o (1) (1108 (14 1))
3/2
< el (ot (T, ) [y
Thus ®; € L¥2(R3 x R?).
Step 4.) For ®9, we notice that E satisfies (2.6) and £ = —V,U, thus
U = —w(—=Ay) " divyJ. (6.17)

Since J(7,-) € L'(R3), we deduce by the Hardy Littlewood Sobolev inequal-
ity that

10U (7, ) arsra(msy < el J (7 )| pr(ra)- (6.18)
Therefore, we estimate

U (1, X (1,2,0))
(1 + M) (1 + log (1 + M))lﬂl

M3/2(RY xR)
o o.U (7, x)

h (1+ ) (14108 (14 4 ))lia M32(RE xR3)
o oU (7, x)

h (1 n @) (1 +log (1 + %))lia L3/2(R3;M3/2(R3))

2/3

dv
< LB (r, ) | agoreqas) f

R3 (1 + @)3/2 (1 + log ( + |U‘2))3(1_a)/2

(6.19)

where the last integral is convergent since 3(1—«)/2 > 1. From the inclusion
M32(R3 x R3) « LY(R3 x R?) + L*®(R3 x R?), and integrating (6.16) over
B,., we get (6.9) as desired. O

< C||J(Ta ')||L1(R3)’

7. RENORMALIZED SOLUTIONS AND LAGRANGIAN SOLUTIONS

We recall the different notions of weak solutions for the Vlasov-Poisson
system. We shall always assume that 1 < N < 3, and we consider an initial
datum f0 e LY(RY xRY), O > 0. We introduce first renormalized solutions,
following [16, 18].
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Definition 7.1. We say that f € L®((0,T); L*(RY x RY)), f > 0, is a
solution to the Vlasov equation (1.1) in the renormalized sense if for all test
functions 3 € C'*([0, 0)) with 3 bounded, we have that

OB(f) + v VaB(F) +diva (B 2)5()) =0, (7.1)
in 2'((0,T) x RY x RY).
We next introduce the notion of Lagrangian solutions.

Definition 7.2. Let be given a vector field b(t, z,v) = (v, E(t,x)) as in (3.6)
for some p € L®((0,T); LY(RY)), p = 0, and p, € L*(RY). We assume that
E e L*((0,T); L2(RY)), and that (2.6) holds with J € L®((0,T); L'(RY)).
We assume furthermore that either N = 1 or 2, or N = 3 and w = +1,
pp € LP(R3) for some p > 3/2. We consider regular Lagrangian flows Z as
in Definition 4.1, except that now s € [0,7] instead of s € [¢,T] (forward-
backward flow), and with compression constant L independent of ¢ € [0, 7.
Then according to Subsections 3.3, 3.4, Proposition 6.2, Proposition 6.3, the
vector field b satisfies assumptions (R1a), (R2a), (R3). Therefore, The-
orem 5.2 yields the uniqueness of the forward-backward regular Lagrangian
flow Z = (X,V). The whole theory of [13] then applies indeed, with very
little modifications in the proofs. In particular there is existence and unique-
ness of the forward-backward regular Lagrangian flow, with compression
constant 1, and stability. We can thus define in accordance with [13] a
Lagrangian solution f to the Vlasov equation (1.1) by

flt,z,v) = fO<X(s =0,t,z,v),V(s = O,t,x,v)), for all t € [0,T7],
(7.2)
for arbitrary f0 e L'(RY xRY). It verifies in particular f € C([0, T]; L' (R x
R™Y)), and it is indeed also a renormalized solution.

Definition 7.3. We define a Lagrangian solution to the Vlasov-Poisson
system as a couple (f, F) such that
(1) feC([0,T]: L'(RY xRY)), £ > 0, [of € L2((0,T); L' (BY xRY)),
(2) E(t,z) is given by the convolution (1.6) with p(t,z) = § f(t,z,v)dv,
pp € LY(RY), pp, = 0 (and if N = 3, w = +1, p, € LP(R3) for some
p>3/2),
(3) Ee L((0,T); I*(RY)),
(4) The relation (2.6) holds with J(t,z) = §vf (¢, z,v)dv,
(5) f is a Lagrangian solution to the Vlasov equation, in the sense of

(7.2).
8. EXISTENCE OF LAGRANGIAN SOLUTIONS

8.1. Compactness. In this subsection we prove two compactness results,
Theorems 8.2 and 8.3, for families of Lagrangian solutions to the Vlasov-
Poisson system, with strongly or weakly convergent initial data.

Lemma 8.1. Let g(x) = ﬁ for x € RN, and denote by m,g(x) = g(z + h).
Then for any 1 < p < %,
IThg(x) — 9(@)l| oy < c|h]®, (8.1)
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with « =1 — N + N/p > 0, and where ¢ depends on N, p.

Proof. Fix h € RN, h # 0. For |z| > 2|h|, we have for all 0 < 6 < 1,
|z 4+ 0h| = |x| — 0|h| > |z|/2, thus we have
[Thg(x) — g(x)| < |h| sup [Vg(z + 0h)|
<0<
e || (8.2)
< |h| sup ———— <cecyv—=-
M 258, T o = Tl

Then we estimate
o0

h|P 2|h|)N-Np
f |o|c|z|v;adx = en|hf? f PNANTdr = oot ]|V]l)— N = el
|=[>2|h| 2|
Next, for |x| < 2|h|, we write
1 1
— < , 8.3
|Thg(x) g(.%')| |1_ + h|N_1 + |1'|N_1 ( )

and clearly

1 1
J (|m FR[O=0r |x|<N—1>p> d”c

|z|<2|h|
3|h| (8.4)
dy N-N
_ —Np+p—1 _ N—Np+p
<2 MR =cy | 7 dr = cnplh| ,
ly[<3|h]
since the last integral is convergent for p < % O

Theorem 8.2. Let (f,, Eyn) be a sequence of Lagrangian solutions to the
Vlasov-Poisson system satisfying

fa = 0 in LNRY < RY), (8.5)
and

f |02 f(t, z,v)dzdv + J |E,(t,2)|dx < C, for allte[0,T]. (8.6)

Then, up to a subsequence f, converges strongly in C([0,T]; L*(RY xRN)) to
f, Ey, converges in C([0,T]; L} .(RN)) to E, and (f, E) is a Lagrangian solu-
tion to the Viasov-Poisson system with initial datum f°. Moreover, the reg-
ular forward-backward Lagrangian flow Z,(s,t,x,v) converges to Z(s,t,x,v)

locally in measure in RN x RN uniformly in s,t € [0,T].
Proof. Step 1.) (Equi-integrability)
Because of (7.2) and (8.5) we have
| (s )L my <y = ||f2||L1(1RNxRN) < M. (8.7)

Then because of the bounds (8.7), (8.6), and applying Propositions 6.2, 6.3,
one has for any r > 0

L?N{(x,v) € By : sup |Zn(s,t,z,v)] >~} — 0, as v — oo, uniformly in ¢, n.
0<s<T
(8.8)
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Since the sequence f9 is uniformly equi-integrable, and since Z,, is measure-
preserving, we have by (7.2) and (8.8) that f,(¢,-) is equi-integrable, uni-
formly in ¢, n. Consequently, p,(t,-) is also equi-integrable, uniformly in ¢, n.
Using the bound (8.6), vf,(¢,-) is also equi-integrable, and therefore .J,, (¢, -)
is also equi-integrable, uniformly in ¢, n.
Step 2.) (Compactness of the field)
In order to prove that E,(t,2) — E(t,z) in L _((0,T) x RY), we first look
at the compactness in z. Denote by 7, E,(t,z) = E,(t,x + h). Then using
(1.6),
||ThEn(t7 ) - En(t7 ')||LP(RN)
x x 8.9

< R Ly I =y O

Thus according to Lemma 8.1, we get for any 1 < p < % that

[|En(t, @ + h) — En(t,2)|| o@yy — 0, as h — 0, uniformly in ¢, n.
(8.10)

Then, because of (2.6), we have that 0;F, is bounded in L*((0, T);.7"(RY)).
Applying the Aubin-Lions-Kruzkov lemma A.1, we conclude that FE, is
compact in L%OC([O,T] x RY). Thus after extraction of a subsequence,
E,(t,z) — E(t,z) strongly in L'((0,T); LL .(RY)).

Step 3.) (Convergence of the flow)
Because of the bound (8.6), one has £ € L®((0,T),L?(R"Y)). Also, using
the uniform bounds on p,,, J, in L®((0,T); L*(RY)) and the uniform equi-
integrability obtained in Step 1, one has up to a subsequence p, — p,
Jn, — J in the sense of distributions, with p, J € L®((0,T); L}(RY)). We
can pass to the limit in (1.6) and (2.6). Therefore, b = (v, E) satisfies the
assumptions (R1la), (R2a), (R3) and Definition 7.2 applies. According to
[13, Lemma 6.3], since (8.8) holds, and p,, are equi-integrable, we deduce
the convergence of Z, to Z locally in measure in RY x RY uniformly with
respect to s,t € [0,T], where Z is the regular forward-backward Lagrangian
flow associated to b.

Step 4.) (Convergence of f)
Using the convergence (8.5), we can apply [13, Proposition 7.3], and we
conclude that f, — f in C([0,T]; L' (RY x RY)), where f is the Lagrangian
solution to the Vlasov equation with coefficient b and initial datum f°. It
follows that p, — p = { fdv in C([0,T]; L'(RL')). By lower semi-continuity,
we get from (8.6) that

f | f(t, z,v)dzdv + J |E(t, z)|?dz < C, forall t e [0,T]. (8.11)

The bound (8.6) gives also that J, — J = {vfdv in C([0,T]; L' (RY)).
Therefore, (f, F) is a Lagrangian solution to the Vlasov-Poisson system.
Using (1.6), we get that £, — E in C([0,T]; L} (RY)), which concludes

loc

the proof. O

Theorem 8.3. Let (f,, En) be a sequence of Lagrangian solutions to the
Vlasov-Poisson system satisfying

19— O weakly in LY(RY x RY), (8.12)
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and the bound (8.6). Then, up to a subsequence f, converges in C ([0, T]; weak—
LYRY xRYY) to f, B, converges in C([0,T]; L}, .(RY)) to E, and (f, E) is
a Lagrangian solution to the Vlasov-Poisson system with initial datum f°.
Moreover, the regular forward-backward Lagrangian flow Z,(s,t,x,v) con-
verges to Z(s,t,z,v) locally in measure in RN xRN | uniformly in s, t € [0,T].

Proof. 1t is the same as that of Theorem 8.2, except the last step 4. Instead
we apply [13, Proposition 7.7] and conclude that f,, — f in C([0,T]; weak —
LY(RY x RY)), where f is the Lagrangian solution to the Vlasov equation
with coefficient b and initial datum fO. It follows that p, — p = { fdv
in C([0,T]; weak — L'(RY)). By lower semi-continuity, we get again from
(8.6) the energy bound (8.11). The bound (8.6) also enables to conclude
that J, — J = {vfdv in C([0,T]; weak — LY(RY)). Therefore, (f,E) is
a Lagrangian solution to the Vlasov-Poisson system. Using (1.6) and the
compactness estimate (8.10), we get that E,, — E in C([0,T]; LL .(RY)),
which concludes the proof. O

8.2. Existence. We conclude this section by the existence of Lagrangian
solutions to the Vlasov-Poisson system for initial datum in L' with finite
energy, in the repulsive case.

Theorem 8.4. Let N = 1,2 or 3, and let f° € LYRY x RY), f°
Define p° and E° by

WV
o

w X

- [ Pei. B = sy (@~ mla). (53

with w = +1 (repulsive case), p, € L'(RY), py = 0, and in the case N = 3
oy € LP(R3) for some p > 3/2. Assume that the initial energy is finite,

f W f (2, v)dwdv + f|E0(m)|2dx < w. (8.14)

Then there exists a Lagrangian solution (f, E) to the Vlasov-Poisson system
defined for all time, having f° as initial datum, and satisfying for all t >0

H|v|2f(t,m,v)dxdv +J|E(t,x)|2dx < ”|v|2f0(x,v)dxdv +J|E0(x)|2dm.
(8.15)

Proof. We use the classical way of getting global weak solutions to the
Vlasov-Poisson system, i.e. we approximate the initial datum f° by a se-
quence of smooth data f0 > 0 with compact support. We approximate
also pp by smooth p > 0 with compact support (with §(p2 — pl')dz = 0 if
N =1,2). It is possible to do that with the upper bounds

limsup Jf|v| fO(z,v)drdy < ff|v| fO(z,v)dzdo,

n—0o0

(8.16)
limsupf|E0( 2dz < J|E0 2dz.

n—0o0
Then, for each n, there exists a smooth classical solution (f,, F;,) with initial
datum £, to the Vlasov-Poisson system, defined for all time ¢ > 0. Note
that we can alternatively consider a regularized Vlasov-Poisson system with
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energy identity, as in [11]. Since w = +1, the conservation of energy (2.8)
gives for all ¢ > 0,

ff|v|2fn(t,m,v)dxdv+f|En(t,x)|2d9c :f |v|2fg(m,v)dxdv+f|E2(m)|2dx.
(8.17)

The couple (fn, Ey) is in particular a Lagrangian solution to the Vlasov-
Poisson system, for all intervals [0,7]. We can therefore apply Theorem
8.2. Extracting a diagonal subsequence, we get the convergence of (f,,, Ey)
to (f, F) as stated in Theorem 8.2, where (f, F) is a Lagrangian solution
to the Vlasov-Poisson system defined for all time, with f° as initial datum.
The bound (8.11), together with (8.16), gives (8.15). O

Let us end with a remark on measure densities. When considering a
sequence of solutions to the Vlasov-Poisson system, the vector fields b, =
(v, E,,) have a gradient in (x,v) of the form

_ (Dybl Dabl\ 0 Id

Db, = (lei Dng) - (S(pn . 0), (8.18)
where the index 1 stands for z, 2 for v, and where S is a singular integral
operator. If we require only that D;b2 converges in the sense of distributions
to D1b> = S(p — pp), for some measure p € . (RY), then we are in the
setting of [10]. If p,, is uniformly bounded in L'((0,T);.# (RY)), and b,, — b
strongly in L'((0,T); L (RY x RY)) with b satisfying (8.18), we conclude
that Z,, — Z strongly, where Z is the regular Lagrangian flow associated to
b. However, we are not able to define the push forward (7.2) of a measure
f°. This prevents from applying the context of [10] to the Vlasov-Poisson
system with measure data.

APPENDIX: THE WEAK AUBIN-LIONS-KRUZKOV LEMMA

In this appendix we recall a classical weak form of the Aubin-Lions com-
pactness lemma [7], in the spirit of Kruzkov [23, Lemma 5.

Lemma A.1. Let Q be an open subset of RV and T > 0, 1 < p < o0.
Assume that S is a bounded subset of LP((0,T) x ), such that
(i) S is locally LP-precompact in space, i.e. for any compact subset K < €,

T
f J lu(t, z+h)—u(t,z)|P dedt — 0 as h — 0, uniformly for ue S. (A.1)
0 JK

(i) For u € S, dyu is bounded in L*((0,T); 2'(Q)). This means that for
any ¢ € CP(Q) and any u € S, the map t — {dyu,p) belongs to
L*((0,T)) and

| (Opu, )| < Cyp, for a.e. te (0,T) and all w e S, (A.2)

where Cy, = 0 depends on the support of ¢ and a finite number of L™
norms of derivatives of ¢ (but not on u).

Then S is precompact in LY ((0,T) x ).

loc
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Proof. According to the Riesz-Fréchet-Kolmogorov criterion of precompact-
ness in LP and taking into account (i), we have to prove that for any compact
sets L < (0,7) and K < Q,

f J |u(t +7,x) —u(t,z)|P dedt — 0 as 7 — 0, uniformly for ue S. (A.3)
LIJK

For ¢ > 0, define u. = p. *, u, where p. is a mollifier sequence in space.
Then because of (i), us —u can be made arbitrary small in LP((0,7) x K)

for e small enough, uniformly for © € S. But for fixed e, because of (ii),
Orue is bounded in L*((0,7) x K), uniformly for v € S. It follows that
|ue(. +7,.) — ue|Lr(Lx k) < Ce|T|. Decomposing

u(c+7,)—u=(u(.+7,.)—u(.+7,.)) + (ue (. +7,.) —us) + (ue —u), (A4)

we conclude that u(. + 7,.) —u — 0 in LP(L x K) as 7 — 0, uniformly for
u€ S, i.e. (A.3) holds, and this concludes the proof of the lemma. O
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