
HAL Id: hal-01097345
https://hal.science/hal-01097345v1

Submitted on 7 Jan 2015 (v1), last revised 16 Jan 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Based Testing of an Interactive Music System
Clément Poncelet, Florent Jacquemard

To cite this version:
Clément Poncelet, Florent Jacquemard. Model Based Testing of an Interactive Music System. ACM
SAC, Apr 2015, Salamanca, Spain. �10.1145/2695664.2695804�. �hal-01097345v1�

https://hal.science/hal-01097345v1
https://hal.archives-ouvertes.fr

Model Based Testing of an Interactive Music System ∗

Clément Poncelet
DGA/INRIA and Ircam (umr smts -

cnrs/upmc)
clement.poncelet@ircam.fr

Florent Jacquemard
INRIA and Ircam (umr smts - cnrs/upmc)

florent.jacquemard@inria.fr

December 2014

Abstract

The role of an interactive music system (IMS) is to ac-
company musicians during live performances, like a real
musician. It reacts in realtime to audio signals from mu-
sicians, according to a timed specification called mixed
score, written in a domain specific language. Such goals
imply strong requirements of temporal reliability and
robustness to unforeseen errors in input, yet not so
much studied in the computer music community.

We present the application of model-based testing
techniques and tools to a state-of-the-art IMS, including
the following tasks: generation of relevant input data
for testing (including timing values) following cover-
age criteria, computation of the corresponding expected
output, according to the semantics of a given mixed
score, black-box execution of the test data and verdict.
Our method is based on formal models compiled di-
rectly from mixed scores, and passed, after conversion
to timed automata, to the model-checker Uppaal. This
fully automatic approach has been applied to real mixed
scores used in concerts and the results obtained have
permitted to identify bugs in the target IMS.

1 Introduction

Score based interactive music systems (IMS) [13] are
involved in live music performances and aim at act-
ing as an electronic musician playing with other human
musicians. Such a system requires a mixed score de-
scribing the parts of human musicians (input) together
with electronic parts (output). During a performance,
it aligns in real-time the performance of the human mu-
sicians to the score, handling possible errors, detects the
current tempo, and plays the electronic part. Playing
is done by passing messages to an external audio envi-
ronment such as MAX [12]. A popular example of this
scenario is automatic accompaniment [4].

An IMS is therefore a reactive system, interacting
with the outside environment (the musicians), under
strong timing constraints: the output messages must
indeed be emitted at the right moment, not too late

∗This work has been partly supported by a DGA-MRIS schol-
arship and the project Inedit (ANR-12-CORD-009).

but also not too early. It is important to be able to
assess the behavior of an IMS on a given score before
its real use in a concert. A traditional approach is to re-
hearse with musicians, trying to detect potential prob-
lems manually, i.e. by audition. This tedious method
offers no real guaranty since it is not precise, not com-
plete (it covers only one or a few particular musician’s
performances), and error prone (it relies on a subjec-
tive view of the expected behavior instead of a formal
specification).

mixed score

Model (M) Input traces

Expected output traces

Real output traces

comparison

Verdict

compilation

generation execution

Figure 1: Score-based IMS testing workflow

In this paper, we present the application of model
based testing (MBT) techniques to a score based IMS
called Antescofo, used frequently in world class concerts
in the contemporary repertoire. Roughly, our method
proceeds with the following steps depicted in Figure 1.
First, a given mixed score is compiled into an interme-
diate representation (IR). This formalism can be pre-
sented as a table of finite state machines extended with
delays and asynchronous communications with the envi-
ronment (using input and output symbols) and between
machines. It is viewed as the modelM of the Antescofo
reactions according to the score. The IR is then trans-
formed into a timed automata (TA) network [1], as-
suming some restrictions. TA’s are processed by tools
from the Uppaal suite [8] to generate covering suites of
test cases: input timed traces together with the cor-
responding expected output; the input traces are then
sent to the IMS (as a virtual musician’s performance of
the score) and the real outcome of the IMS is analyzed,
resulting in a test verdict.

Several works like [6] and [8] implement differ-
ent MBT techniques using Uppaal model checker fea-
tures. The test problems are reduced into reacha-
bility or safety constraints delegated to Uppaal. Our
case study presents important originalities compared to

1

clement.poncelet@ircam.fr
florent.jacquemard@inria.fr

mixed score
musicians audio

software
Listening
Machine

Reactive
Engine

audio or
MIDI
stream tempo

pos.
messages

Figure 2: Architecture of Antescofo

other MBT applications to realtime systems. On the
one hand, the time model supports several time units,
including the wall clock time, measured in seconds, and
the time of music scores, measured in number of beats
relatively to a tempo. This situation raised several new
problems for the generation of test suites and their ex-
ecution. On the other hand, mixed scores specify com-
pletely the expected timed behavior (of the IMS), based
on the DSL semantics implemented in the compiler de-
scribed in Section 3.2. Hence, the formal specification of
this behavior is produced automatically from the score
(instead of being written manually). This enables a
fully automatic test scenario fitting well in a music au-
thoring workflow where scores in preparation are con-
stantly evolving.

2 Preliminaries

We first introduce the IMS Antescofo, its domain spe-
cific language (DSL) for mixed scores and our MBT
framework.

2.1 The score-based IMS Antescofo

Figure 2 describes roughly the architecture of An-
tescofo, which is made of two main modules. A lis-
tening machine (LM) decodes an audio or midi stream
incoming from a musician and infers in realtime: (i)
the musician’s position in the given mixed score, (ii)
the musician’s instantaneous pace (tempo, in beats per
minute) [3]. These values are sent to a reactive en-
gine (RE) which schedules the electronic actions to be
played, as specified in the mixed score. The actions
are messages emitted on time to an audio environment.
Therefore, the information exchanged between LM and
RE as well as between RE and the output environment
of the system is made of discrete events.

The mixed scores of Antescofo are written in a textual
reactive synchronous language enabling the description
of the electronic accompaniment in reaction to the de-
tected instrumental events. We give here a simplified
abstract syntax corresponding to a fragment of this lan-
guage, in order to illustrate our test framework (see [7]
for more complete descriptions). Let O be a set of out-
put messages (also called action symbols and denoted
a) which can be emitted by the system and let I be
a set of event symbols (denoted e) to be detected by
the LM (i.e. positions in score). An action is a term

BPM 144
evt(e1, 1, s1);
evt(e2, 1, []);
evt(e3, 1, []) where

s1 = act(0, [a0], []);
act(0, s2, [loose; global])

s2 = act(0, [a1], []);
act(1/2, [a2], []);
act(1/2, [a3], []);
act(1/2, [a4], []);
act(1/2, [a5], []);
act(1/3, [a6], []);
act(1/3, [a7], [])

Figure 3: A mixed score in abstract syntax.

act(d, s, al) where d is the delay before starting the ac-
tion, s is either an atom in O or a finite sequence of
actions (such a sequence is called a group), and al is a
list of attributes. A mixed score is a finite sequence of
input events of the form evt(e, d, s) where e ∈ I, d is
a duration and s is the top-level group triggered by e.
Sequences are denoted with square brackets [,] and the
empty sequence is [].

We consider here two time units for expressing delays
and durations d: (i) the number of beats (default unit):
a logical time unit traditionally used in music scores
that we call relative time, and (ii) milliseconds (ms),
referred to as physical time. The reconciliation of the
relative and physical times is done through the detected
tempo values.

Example 1 Figure 3 displays a small extract of a
mixed score, in abstract syntax and traditional musical
notation. The top stave is the musician part, it con-
tains three quarter notes (whose duration is one beat):
D4, B3[and E4. The bottom field is the electronic part
with output messages a0, . . . , a7. Note that actions are
triggered only by the first event which fires the top group
s1 when detected. s1 fires concurrently and simultane-
ously (0 delay) the atomic action a0 and the loose global
group s2. A delay of 1

2 (action a2) corresponds to an
eighth note i.e. half of a beat.

The high-level attributes attached to an action
act(d, s, al) are indications regarding musical expres-
siveness [4]. We consider here four attributes for il-
lustration purpose (their interpretation will be defined
formally in Section 3.2): two attributes are used to ex-
press the synchronization of the group s to the musi-
cian’s part: loose (synchronization on tempo) and tight
(synchronization on events) and two attributes describe
strategies for handling errors in input: local (skip ac-
tions) and global (play actions immediately at the de-
tection of an error). An error is in particular an event
of the score missing during performance, either because
the musician did not play it or because it was not de-
tected by the LM.

Example 2 The possible interpretations of the actions
in our running example according to 4 combinations of
strategies for err and sync is depicted in Figure 4.

2

Figure 4: Interpretation of the running example when
the first note is missed, for various attributes.

2.2 Model-Based Testing

We consider a black-box testing conformance approach
for Antescofo, based on timed traces comparisons. We
assume a given mixed score M with a default tempo
value.

A timed trace is a sequence of pairs 〈a, t〉 made of a
symbol a ∈ I ∪ O, and a timestamp t ∈ R+, either in
physical or relative time. A trace containing symbols
exclusively in I (resp. O) is called an input trace (resp.
an output trace). We denote below Tin (resp. Tout) the
set of input (resp. output) traces with relative times-
tamps. The ideal trace is the input trace consisting in
the projection of all events in M with their duration.

Example 3 The ideal trace for the score in Figure 3 is
the following: 〈e1, 1〉 · 〈e2, 2〉 · 〈e3, 3〉.

By definition of music performance, traces of real ex-
ecutions can be arbitrarily far from ideal traces: the
tempo and delays can diverge from the written values
(the musician adding her/his own expressiveness val-
ues), and moreover their can be errors during a perfor-
mance (missing notes).

We shall, in Section 3, associate to the model M
two formal models: a specification E of the possible
behaviors of the environment (i.e. the events of the
musician playing M, as detected by the LM) and a
specification S of the behavior of the system on M. In
our case, E can be seen as a subset of Tin and S as a
function from Tin into Tout. This disymmetry between
E and S reflects our case study, with on one side the
musician and the LM and on the other side the RE (see
Figure 2).

A test case is a pair 〈tin, tout〉 ∈ Tin×Tout where tin ∈ E
and tout = S(tin). Two complementary approaches for
the offline generation of tin are presented in Section 4.

The execution of a test case 〈tin, tout〉 consists in sev-
eral tasks summarized in the following definition of con-
formance. First, we pass the events of tin to the imple-
mentation under test (IUT), i.e. the IMS Antescofo, re-
specting the timestamps. Second, we monitor the out-
come of the IUT in an output trace t′out = IUT(tin).
Finally, we compare t′out to tout = S(tin). We define

the conformance of the IUT to S wrt E as: ∀tin ∈
E , IUT(tin) = S(tin). This is a particular case of the
relation rtioco considered in [6, 8].

This definition makes sense only if the timestamps
of tin, tout and t′out are in the same time unit. We will
show how this important issue is addressed in practice
in Section 4, with several options for the conversion of
all traces into physical time (thanks to the addition of
tempo values).

3 Models

We present a procedure for compiling a mixed score into
an intermediate representation (IR) used as a model for
test case generation in our MBT framework.

3.1 Intermediate Representation

The IR has the form of an executable code modeling
the expected behavior of Antescofo on a given score.
We present here a simplified version of Antescofo’s IR
suitable for our presentation, leaving features such as
thread creation, conditional branching, and variable
handling outside of the scope of this paper.
Syntax. An IR is a finite sequence (called network)
of FSMs of the form A = 〈Σ, Q, `0,∆0,∆1〉 where Σ
is an alphabet partitioned into Σ = Σin] Σout] Σsig

(respectively the sets of input, output symbols and in-
ternal signals), Q is a finite set of locations, parti-
tioned into Q = Q0] Q1, `0 ∈ Q is the initial lo-
cation, ∆0 ⊆ Q0 × (Σout] Σsig) × Q is a finite set

of synchronous transitions (denoted ` −−→σ! `′), and
∆1 ⊂ Q1×((Σin]Σsig]R+)×Q)+ is a finite set of asyn-

chronous transitions. We write ` −−−−−−−→τ1?|...|τp? `1| . . . |`p,
for 〈`, 〈τ1, `1〉, . . . , 〈τp, `p〉〉 ∈ ∆1 where p ≥ 1, ` ∈ Q1,
`1, . . . , `p ∈ Q, and τ1, . . . , τp ∈ Σin ∪ Σsig ∪ R+. More-
over, there must be at most one delay d ∈ R+, and
at most one input event in Σin amongst τ1, . . . , τp. In-

formally, every synchronous transition ` −−→σ! `′ in ∆0

describes the emission, while in source location `, of the
output message or signal σ, followed by the change of lo-
cation to the target location `′, and every asynchronous

transition ` −−−−−−−→τ1?|...|τp? `1| . . . |`p in ∆1 describes the
concurrent wait, in source location `, of τ1, . . . , τp. The
first event τi occurring provokes a change of location
to the target `i. Moreover, every location can be the
source of at most one transition in ∆0 ∪∆1.
Semantics. In the above partition of Σ, Σin and Σout are
sets of symbols used for communication with the envi-
ronment, and Σsig is an auxiliary set of internal signals
used for communication between FSMs of a network.

We consider a model of superdense time [10, 11] with
timestamps in (t, n) ∈ R+×N, where t is a date in rela-
tive time called logical instant. The logical time can flow
only when in locations of Q1 (sources of asynchronous
transitions). In locations of Q0, t is fixed and the execu-
tion of synchronous transitions will increase the second

3

component n ∈ N.
Let Ā = A1 ‖ . . . ‖ Ak be a network of k FSMs

composed in parallel with Ai = 〈Σ, Qi, `i0,∆i
0,∆

i
1〉 for

all 1 ≤ i ≤ k. A state of Ā is a tuple of the
form 〈t, n, [`1, . . . , `k],Θ, ω〉 where (t, n) is a timestamp,
[`1, . . . , `k] ∈ Q1 × . . . × Qk the array of current lo-
cations, Θ ⊂ Σsig is a finite set of internal signals or
messages and ω ∈ Σout] {⊥}. The initial state of Ā is
s0 = 〈0, 0, [`10, . . . , `k0], ∅,⊥〉. An external event τ can be
the arrival of an input in Σin or the expiration of a delay
d ∈ R+ (we assume external timers are in charge of no-
tifying the expiration with the necessary (re)-conversion
of delays in physical time using (updated) tempo values,
see [7]). We assume that a given input trace tin ∈ Tin
specifies the arrivals of inputs in Σin.

The moves of Ā (between states) are defined as fol-
lows.

〈t, n, [`1, . . . , `k],Θ, ω〉 → 〈t, n+1, [`′1, . . . , `
′
k],Θ∪{σ},⊥〉

(es)
〈t, n, [`1, . . . , `k],Θ, ω〉 → 〈t, n+ 1, [`′1, . . . , `

′
k],Θ, σ〉

(em)
where the locations `′1, . . . , `

′
k are defined as follows. Let

i be the smallest index (in the array of current locations)

such that `i ∈ Q0, and there exists `i −−→σ! `′′i ∈ ∆i
0,

with σ ∈ Σsig for (es), and σ ∈ Σout for (em). Then,
`′i = `′′i and `′j = `j for all j 6= i. Here, a synchronous
transition is executed and the signal (es) (resp. message
(em)) emitted is added to Θ (resp. ω).

〈t, n, [`1, . . . , `k],Θ, ω〉 → 〈t, n+ 1, [`′1, . . . , `
′
k], ∅,⊥〉

(rs)
where `1, . . . , `k ∈ Q1, and for all i, 1 ≤ i ≤ k, there

exists `i −−−−−−−−−→τi,1?|...|τi,pi? `i,1| . . . |`i,pi ∈ ∆1. Moreover, let
j′ be the smallest j such that 1 ≤ j ≤ pi and τi,j ∈
Θ ∩ Σsig. If j′ exists, then `′i = `i,j′ , and otherwise
`′i = `i. Here, the signals expected and present in Θ are
all received at once, and Θ and ω are flushed.

〈t, n, [`1, . . . , `k],Θ, ω〉 → 〈t′, 0, [`′1, . . . , `′k], ∅,⊥〉 (rx)

where `1, . . . , `k ∈ Q1, and for all i, 1 ≤ i ≤ k, there ex-

ists `i −−−−−−−−−→τi,1?|...|τi,pi? `i,1| . . . |`i,pi ∈ ∆i
1, and moreover,

letting T i = {τ1,1, . . . , τk,pk}, it holds that T i ∩ Θ = ∅
(i.e. (rs) cannot be fired). Then t′ ≥ t is the first date
(after t) of occurrence of an external event τ ∈ T i, with
a priority for delays (R+) over inputs (Σin). For all
1 ≤ i ≤ k, if τi,j = τ for some 1 ≤ j ≤ pi, then `′i = `i,j ,
otherwise `′i = `i.
Here, t′ is the date of the first event τ after t in tin or
the expiration of a delay d ∈ R+ and in the latter case,
t′ = t+ d.

Note that with the above definitions, the moves are
mutually exclusive and performed in the given priority
order. In particular, the steps (es) and (em) are re-
peated as long as there exists executable synchronous
transitions (i.e. locations of Q0 in the state). Note also

`0 `1 `2 `3
e1! e2! e3!

e2! e3 !

Figure 5: The FSM for environment E (score of Fig. 3).

that the steps (es) and (rs) may loop in the same logical
instant.

A run ρ is a sequence of states s0, s1, . . . such that
for all i ≥ 0, there is a move between si and si+1.
We associate to ρ the output trace tout defined as the
projection of ρ on its first and last components different
from ⊥. The above definitions ensure determinism of
IRs, in the sense that there exists exactly one run ρ
(hence one output trace tout) for a given input trace
tin ∈ Tin. This implies that S is functional when it is
defined as an IR. By abuse of notations we shall keep
writing tin ∈ E and S(tin) when E and S are IRs.

The synchronous aspect and the set of instant logic
signals of the IR model are inspired by the programming
language Esterel for reactive systems [2].

3.2 Compiling mixed scores into IR

An IR is constructed directly from a given mixed score
sc, during the parsing of the latter.

For the sake of conciseness, we do not give the in-
ferences defining recursive constructions, but instead,
a graphical representation of the IR obtained for our
running example. The environment IR (E) is built with
a single pass through score events. There are several
options for constructing E , regarding missed notes (see
Section 4). In Figure 5, the musician modeled by E ,
when in `0, can miss the first note e1 (upper edge to
location `2) or e1 and e2 (`3). In `1, he can miss e2
(going to `3).

The proxy IR (P) in Figure 6 provides a definition of
errors. We assume one internal signal ei ∈ Σsig for each
input event in ei ∈ I. The proxy P emits this signal
when ei is detected as missing, because an event ej
with j > i was received. The proxy IR will simplify the
complex task of specifying error management in other
IRs.

Figure 7 and 8 show the IR obtained from the run-
ning example, for two different synchronization strate-
gies (resp. loose and tight). Those models of the IUT
behavior are constructed by iteratively traversing the
sequence of actions in a group. The parts build at each
step are framed and annotated as Tg, for starting the

`0 `1 `2 `3

`1

`2 `3

e1? e2? e3?

e2?
e1!

e3
?

e1!

e
2 !

e 3
?

Figure 6: The FSM for proxy P (score of Fig. 3).

4

`0

`1

`1

`2

`2

`3 `4

`4

`5

`5

`6

`6

g1
?

g
1 ?

a1!

a1!

1
2 a2!

a2!

1
2

e 2
?

e2?

a3!

a3!

Tg1
Ga1

Ga2
Ga3 F

Figure 7: The group s2 FSM with al = [loose; global]

group, Ga, for handling one atomic action a, or F , for
ending the IR.
In Figure 7 (attributes loose, global), the top part of
the IR (locations `1, ..., `6) corresponds to a mode for a
normal behavior (in absence of errors), which consists
in sending successively the actions with their respective
delays. The bottom part of the IR (locations `1, ..., `6)
corresponds the behavior in case of error: send instan-
taneously all actions (without delay) until the next de-
tected event (location `4).
In Figure 8 (attributes tight, global), the top and bot-
tom parts also correspond to normal and error modes.
There is a possible switch (location `4) from the normal
to the error mode if a missed event is detected. Also, in
location `2, if the event e2 is earlier than expected, ei-
ther as detected (edge e2?) or as missing (edge e2?) then
there is a switch to an intermediate mode (respective
locations `e2 and `e2).

4 Implementation and Results

Let us now present the implementation and results of
our MBT approach, applied to the score-based IMS An-
tescofo.

Compiling mixed score into IR

Compiling mixed scores into IR has been implemented
as a command line tool, written in C++ on the top of
the original Antescofo’s parser. The parsing produces
an abstract syntax tree which is traversed using a visitor
pattern in order to build the IR following the approach
presented in Section 3.2. Several options are offered for
the production of the IR corresponding to the environ-
ment E , in particular regarding the number of possible
successive errors (missed notes). The most general case

`0

`1

`1

`2

`2

`3

`e2

`e2

`4

`4

`5

`5

g1
?

g
1 ?

a1!

a1!

1
2

e
2 ?

e
2 ?

a2!

a2!

a2!

a2!

e2?

e
2 ?

e 2
?

e2?

a3!

a3!

Tg1
Ga1

Ga2

Ga3

Figure 8: The group s2 FSM with al = [tight; global]

(any note can be missed) results in a model E with a
quadratic (in score’s size) number of transitions and an
exponential number of input traces. The explosion can
be controlled by choosing appropriate hypotheses on the
environment E .

Translation of IR into Timed Automata

The IR is then translated into a network of timed au-
tomata (TA), in a format that can be handled by tools
of the Uppaal suite for MBT. Some graphical coordi-
nates are computed during compiling, and used for a
nice display of the score models under Uppaal, provid-
ing composers with useful visual feedbacks of the low
level control-flow in their mixed score.

The translation of IR, in the simplified version pre-
sented in Section 3.1, into equivalent TA is possible
whenever all the delays are expressed in relative time.
Indeed, in TA, all the clock values are expressed in a
unique abstract model time unit (mtu). For the TA
associated to the environment IR model E , several op-
tions are offered for adding lower and upper bounds on
the duration of each event, in order to limit the state
exploration for the generation of tin.

Some care has to be taken for the simulation of the
move rule (rs) in the semantics of IR. In fact, in the
states of IR runs, signals are stored in an unordered set
at each logical instant, and hence can be received in an
arbitrary order. This is not the case with TA models. In
order to sort the the interleaving between signals and
external input events, an auxiliary step is performed,
possibly modifying the IR structure (e.g. with urgent
state in proxy, and early signals for group’s triggers).

We have chosen to use an IR instead of directly trans-
lating mixed scores into TA [7] because there is a clear
correspondence between this ad’hoc model and the se-
mantics of Antescofo’s DSL, and the general IR format
is used for other purposes and includes features not sup-
ported by TA (such as variables and dynamic thread
creation).

Model-based generation of covering suites of test
cases

We use the Uppaal extension called CoVer [8] to generate
automatically suites of test cases, under a certain E ,
that cover the possible behavior of the specification S
according to some coverage criteria. These criteria are
defined by a finite state automaton Obs called observer
monitoring the parallel execution of AE and AS , the TA
associated to the IR E and S. Every transition of Obs
is labeled by a predicate checking whether a transition
of AE‖AS is fired. The model checker Uppaal is used
by CoVer to generate the set of input traces tin ∈ Tin
resulting from an execution of the Cartesian product of
AE‖AS with Obs reaching a final state of Obs.

For loop-free IR S and E , with an observer checking
that all transitions of AE and AS are fired, CoVer will
return a test suite T complete for non-conformance: if

5

there exists an input trace tin ∈ E such that IUT(tin)
and S(tin) differ, then T will contain such an input
trace. Note that the IR produced by the fragment of the
DSL of Section 2.1, using the procedure of Section 3.2,
are loop-free. However this is not true for the general
DSL which allows e.g. jump to label instructions.

In practice, we avoid state explosion with appropriate
restrictions on E (number of missed events, see above)
and the associated TA AE (bounds on event’s dura-
tions).

Test cases generation by fuzzing ideal trace

An alternative method for the generation of relevant
test cases is to start with the ideal trace associated
to a mixed score and add deformations of several
kinds. Time-warps [5] and variants like Time-Maps
(Jaffe 1985), Time-deformations (Anderson and Kuiv-
ila 1990), are continuous and monotonically increasing
functions used to define either variations of tempo or
variations of the duration of individual notes wrt the
written score events (time-shift). Some models of per-
formance [9, 5] are defined by combination of these two
transformations, defined independently. We consider a
discrete version of such models, with extended input
traces tin made of triples 〈a, t, p〉, where a, t are like in
Section 2.2 and p is a tempo value in beats per minute
(BPM). The time-shifts are applied to the timestamps
t (they are expressed in relative time), and the tempi b
are values on a tempo curve. An important difference
with [9, 5] is the possibility to include missed notes in
input traces.

Tests execution and verdicts

We have developed several scenarios for the execution
of a test case 〈tin, tout〉, corresponding to several bound-
aries for the black box tested inside the whole system –
see Figure 2.

In a first scenario, tin contains triples like in the above
paragraph. The tempo values are either values in a
curve, in the case of traces generated by fuzzing, or
a fixed value in the case of trace generated by CoVer.
This scenario is performed on a standalone version of
Antescofo equipped with an internal test adapter mod-
ule. The adapter iteratively reads one element 〈e, d, p〉
of a file containing tin, converts d into a physical time
value d′ (remember that delays are expressed in rela-
tive time in tin), and waits d′ seconds before sending e
and p to the RE. More precisely, it does not physically
wait, but instead notifies a virtual clock in the RE that
the time has flown of d′ seconds. This way the test
needs not to be executed in realtime but can be done
in fast-forward mode. This is very important for batch
execution of huge suites of test cases. The timestamps
in the expected trace tout are converted from relative
to physical time using the tempo values in tin, in order
to be compared to the monitored trace t′out. Here, the
blackbox is the RE (the LM is idle).

In a second scenario, the tempo values are not read
in tin but detected by the LM. The rest of the scenario
follows the first case. Here, the blackbox is the RE plus
the part of the LM in charge of tempo inference.

A third scenario is executed in a version of Antescofo
embedded into MAX (as a MAX patch). In this case,
the blackbox is the whole IMS Antescofo, and instead
of seeing discrete events to the IUT (like in scenarios
1 and 2), we generate an audio stream with a MIDI
synthesizer (in MAX), using the events in tin as MIDI
events.

The verdicts are produced offline by a tool comparing
the expected and monitored traces tout and t′out with an
acceptable latency (about 0.1 ms). The comparison is
not totally obvious since we have no clue a priori about
missed or added actions/events in the traces and about
the order of items.

Experiments

Two case studies will be reported: B, a benchmark
made of hundreds of little mixed scores, covering many
features of the IUT’s DSL and EIN , a real mixed score
of the piece of Einspielung by Emmanuel Nunes 1. The
first benchmark can be useful for the development (de-
bugging and non regression tests) of further versions
of the system Antescofo. It aims at covering the IUT’s
DSL functionality and checking the reactions of the sys-
tem. The second is a long real test case, for evaluating
the scalability of our test method. It is composed of two
extracts: the first 4 bars (22 events and 112 actions) and
14 bars (72 events and 389 messages).

Each case study is processed three times, with dif-
ferent numbers of possible consecutive missing events
(0, 3 and 6 events) and a bound of 5% for the varia-
tion of the duration in the interpretation on each event.
A script creates the IR and TA models, generates test
suites (using CoVer), executes them according to the
first scenario presented above and compares the out-
come to test cases. Table 1 summarizes the results for
the Benchmark B, reporting the number of traces gen-
erated by CoVer and the time taken by the whole test.
Note that the increase of the number of traces with

1http://brahms.ircam.fr/works/work/32409/

case c. miss nb score nb trace time (s)
0 582 1843 140

B 3 582 5718 334
6 582 6387 405

case c. miss locations nb trace time (s)
0 400/1394 7/35 1/24

EIN 3 518/1812 36/50 3/198
6 771/2815 67/NA 97/400

Table 1: Results of experiments

6

http://brahms.ircam.fr/works/work/32409/

missing events (the length of the tested scores is gen-
erally between 3 to 6 events).The second table summa-
rizes the results for Einspielung, with the number of IR
locations, traces and testing time for each extract. Co-
Ver did not succeed to generate the input traces for the
14 bars extract in the case of 6 possible missed events.

Despite CoVer scalability (that can be bypassed with
other scenarios), generated suites of traces are relevant
and test the IUT for an exhaustive set of possible per-
formances.

A problem encountered with CoVer is that it gen-
erates only time optimal test suites, i.e. input trace
with minimum time-delay satisfying a given reachabil-
ity property. This is not well suited to our case study.
Indeed, since the trace tin is stamped in relative time,
a time optimal tin will result in a geometric progression
of the tempo.

5 Conclusion and further work

Thanks to an ad’hoc intermediate representation for
mixed scores, and conversion into timed automata, we
have developed a fully automatic offline model-based
testing procedure dedicated to an interactive music sys-
tem. An advantage of this case study for MBT is the
possibility to generate the formal specifications (as IR)
automatically from the given scores. A drawback is the
necessity to deal with different time units, in particular
relative time. This latter problem prevented us from
using the online testing tool Tron [8] (roughly, Tron can
deal with several clocks but they must all be defined as
a factor of the wall clock).

Our method is designed to test the behaviour of the
IMS on one given score, by generation of a covering
set of input traces describing a range of musical per-
formance of the score. This approach is advantageous
both for IMS debugging, thanks to coverage criteria,
and for user assistance to authors of mixed scores, us-
ing fuzzing based on models of musical performance. A
more general perspective could be to test the behavior
of the IMS on any score. This would require a complete
specification of the IMS (written manually) as e.g. an
hybrid system, and the automatic generation, as test in-
put, of a covering set of ”extreme” scores and covering
sets of performance traces for these scores.

Acknowledgments

The authors wish to thank the members of the teams
developing Uppaal and Antescofo for their help.

References

[1] R. Alur and D. L. Dill. A theory of timed au-
tomata. Theor. Comput. Sci., 126:183–235, 1994.

[2] G. Berry and G. Gonthier. The Esterel Syn-
chronous Programming Language: Design, Seman-

tics, Implementation. Science of Computer Pro-
gramming, 19(2):87-152, 1992.

[3] A. Cont. A coupled duration-focused architec-
ture for realtime music to score alignment. IEEE
TPAMI, 32(6):974–987, 2010.

[4] A. Cont, J. Echeveste, J.-L. Giavitto, and
F. Jacquemard. Correct Automatic Accompani-
ment Despite Machine Listening or Human Errors
in Antescofo. In proceedings of ICMC, 2012.

[5] R. B. Dannenberg. Abstract time warping of com-
pound events and signals. Computer Music Jour-
nal, 21(3):61–70, 1997.

[6] A. David, K. G. Larsen, S. Li, M. Mikucionis, and
B. Nielsen. Testing real-time systems under uncer-
tainty. In proceedings of FMCO, Springer LNCS
6957:352–371, 2010.

[7] J. Echeveste and all. Operational semantics of a
domain specific language for real time musician–
computer interaction. JDEDS, 23(4):343–383,
2011.

[8] A. Hessel and all. Testing real-time systems using
Uppaal. In Formal methods and testing 77–117,
Springer, 2008.

[9] H. Honing. Structure and interpretation of rhythm
and timing. Dutch Journal of Music Theory,
7(3):227–232, 2002.

[10] Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer, 1992.

[11] C. Ptolemaeus, editor. System Design, Modeling,
and Simulation using Ptolemy II. Ptolemy.org,
2014.

[12] M. Puckette. Combining event and signal process-
ing in the max graphical programming environ-
ment. Computer Music Journal, 15:68–77, 1991.

[13] R. Rowe. Interactive Music Systems: Machine Lis-
tening and Composing. AAAI Press, 1993.

7

	Introduction
	Preliminaries
	The score-based IMS Antescofo
	Model-Based Testing

	Models
	Intermediate Representation
	Compiling mixed scores into IR

	Implementation and Results
	Conclusion and further work

