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Abstract
We study low-order reconstruction operators on polyhedral meshes, providing a unified framework for

degrees of freedom attached to vertices, edges, faces, and cells. We present two equivalent sets of design
properties and draw links with the literature. In particular, the two-level construction based on a P0-
consistent and a stabilization part provides a systematic way of designing these operators. We present a
simple example of piecewise constant reconstruction in each mesh cell, relying on geometric identities to
fulfill the design properties on polyhedral meshes. Finally, we use these reconstruction operators to define
a Hodge inner product and build Compatible Discrete Operator schemes, and we test the influence of
the reconstruction operators in terms of accuracy and computational efficiency on an anisotropic diffusion
problem.

1 Introduction
Reconstruction (or lifting) operators map degrees of freedom (DoFs) to functions living in a finite-dimensional
space. DoFs are generally attached to some geometric entities of an underlying three-dimensional mesh, e.g.,
vertices, edges, faces, and cells. Reconstruction operators provide a right inverse of the de Rham (or reduction)
operators which classically map fields (referred to as potentials, circulations, fluxes, and densities – or k-forms
with k ∈ {0, 1, 2, 3} in the language of differential geometry) to DoFs attached to vertices, edges, faces, and
cells, respectively. A reconstruction operator composed with the corresponding de Rham operator yields an
interpolation operator. The reconstruction operator is said to be of low-order when this interpolation operator
leaves cell-wise constant fields invariant.

Reconstruction operators are found in many applications. Our main focus here is the construction of discrete
Hodge operators in the context of the numerical approximation of partial differential equations (PDEs). The
discrete Hodge operator is the cornerstone of many compatible discretization schemes aiming at preserving
properties of the PDE at the discrete level; see, e.g., Auchmann & Kurz (2006); Bochev & Hyman (2005);
Bonelle (2014); Bonelle & Ern (2014a); Bossavit (1988); Desbrun et al. (2005); Gerritsma (2012); Gillette
& Bajaj (2011); Hiptmair (2001); Tarhasaari et al. (1999); Teixeira (2001) and references therein. Many
of these discretizations draw links between vector calculus, differential geometry, and algebraic topology.
Reconstruction operators also constitute a powerful tool to analyze numerical schemes and to derive improved
error estimates in different norms; see for instance Brezzi et al. (2005); Bonelle & Ern (2014a); Di Pietro &
Lemaire (2015). One recent example is provided by the Compatible Discrete Operator (CDO) schemes for
diffusive PDEs and the Stokes equations (Bonelle, 2014; Bonelle & Ern, 2014a,b). To some extent, CDO
schemes can be seen as an extension to polyhedral meshes of Discrete Exterior Calculus (DEC) schemes
of Desbrun et al. (2005); Hirani (2003).

Reconstruction operators have been devised in the Finite Element (FE) literature for specific shapes of
mesh cells (tetrahedron, hexahedron, pyramid. . . ). The most famous examples are Whitney reconstruction
functions in simplices (see Whitney, 1957). These reconstruction functions are built using the Courant hat
functions for potentials, the (lowest-order) Nédélec shape functions for circulations, and the (lowest-order)
Raviart–Thomas–Nédélec shape functions for fluxes. A typical way to extend the reconstruction of potentials
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to polyhedral meshes is to use the concept of generalized barycentric coordinates; see Floater et al. (2005);
Gillette & Bajaj (2011); Gillette et al. (2012); Hormann & Sukumar (2008); Wachspress (1975); Warren et al.
(2007) and references therein.

A generic way of building reconstruction operators for any type of DoFs on polyhedral meshes has been
proposed by Brezzi et al. (2014); Christiansen (2008); Gillette et al. (2014). In both cases, the reconstruction
operators are built locally in each mesh cell in such a way that suitable matching conditions are satisfied at mesh
interfaces. Specifically, reconstructed potentials are continuous across interfaces, the tangential component of
circulations is continuous, and so is the normal component of fluxes. Such matching conditions ensure the
conformity of the reconstruction, in the sense that the operator maps to the appropriate Sobolev space such as
H1(Ω), H(curl; Ω), or H(div; Ω), where Ω is the computational domain discretized by the three-dimensional
polyhedral mesh. The conformity of the reconstruction then plays a central role in the analysis of the numerical
scheme.

An alternative viewpoint, not aiming at conformity, has been developed in the context of other discretization
methods such as, e.g., the Hybrid Finite Volume (HFV) scheme by Eymard et al. (2010), the Discrete Geometric
Approach (DGA) by Codecasa et al. (2010), and, more recently, the CDO schemes by Bonelle (2014); Bonelle &
Ern (2014a,b), the generalized Crouzeix–Raviart method by Di Pietro & Lemaire (2015), and the Hybrid High-
Order (HHO) methods by Di Pietro & Ern (2015); Di Pietro et al. (2014) (which also include the possibility to
increase the approximation order). For the low-order schemes, the reconstruction operators typically map onto
piecewise constant functions on a submesh (thereby discarding local conformity), while their composition with
the de Rham operator remains single-valued. In this context, the analysis of the numerical schemes generally
hinges on a novel property of the reconstruction, to which we refer as dual consistency.

In this paper, we devise low-order reconstruciton operators on polyhedral meshes within a unified framework
for DoFs attached to vertices, edges, faces, and cells. A salient contribution is that we identify the design
principles that reconstruction operators have to verify so that the resulting discrete Hodge operator satisfies P0-
consistency and stability properties, which in turn ensure the convergence of the numerical scheme. Specifically,
we establish the equivalence between a one-level design strategy of the reconstruction operator as considered
in Codecasa et al. (2010); Bonelle & Ern (2014a) and a two-level design strategy as considered in Brezzi
et al. (2007); Di Pietro & Ern (2013); Eymard et al. (2010). This second strategy, which decomposes the
reconstruction operator into the sum of a consistent part and a stabilization part, provides a systematic
construction principle where the only user-dependent design parameter is the weighting of the least-squares
penalty underlying the stabilization part, while the consistent part is fixed. As an illustration, we present
piecewise constant reconstruction operators in each mesh cell for all types of DoFs and study the impact in
terms of accuracy and computational cost when varying the stabilization part of the reconstruction operators
in the context of the numerical approximation of anisotropic diffusion problems on polyhedral meshes.

This paper is organized as follows. In Section 2, we introduce the different geometric entities. In Section 3,
we briefly present the CDO framework. in Section 4, we state the design properties of reconstruction operators
on polyhedral cells, and show that the one- and two-level design principles are equivalent. In Section 5, we
design a family of reconstruction operators which are piecewise constant on each mesh cell and which fulfill
the design properties stated in Section 4. Finally, in Section 6, we present an application to CDO schemes for
the approximation of anisotropic diffusion problems on polyhedral meshes.

2 Geometric objects
2.1 Mesh and geometric entities
The starting point is a discretization of the geometric domain Ω ⊂ R3 by a (primal) mesh M := {V,E,F,C}
where V collects vertices (or 0-cells), E edges (or 1-cells), F faces (or 2-cells), and C cells (or 3-cells). A generic
element of V (resp. E, F, C) is a vertex denoted by v (resp. an edge e, a face f, a cell c); see Figure 1. The
mesh M has the structure of a cellular complex, in the sense that the boundary of a k-cell in M, 1 ≤ k ≤ 3,
can be decomposed into (k − 1)-cells belonging to M (see Christiansen (2008)).
Let A be any set among V,E,F, or C. If x is a geometric entity of M of dimension larger than that of the
elements of A, we denote by Ax the subset defined by

Ax := {a ∈ A | a ⊂ ∂x}, (1)
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Figure 1: Example of primal mesh M highlighting a vertex v ∈ V, an edge e ∈ E, a face f ∈ F, and a cell
c ∈ C.

otherwise,
Ax := {a ∈ A | x ⊂ ∂a}. (2)

For instance, Ec := {e ∈ E | e ⊂ ∂c} collects the edges of c and Ce := {c ∈ C | e ⊂ ∂c} collects the cells of
which e is an edge. In what follows, design properties are stated on each cell c ∈ C. Therefore, the sets Vc,
Ec, Fc, and Cc play a key role (note that Cc = {c}).

We often denote by X any set such as V, E, F, or C and by x any geometric entity such as v, e, f, or c.
The cardinality of the set X is denoted by #X.

Definition 1 (measure). |x| represents the measure of the entity x. For a vertex v ∈ V, |v| = 1 by convention,
|e| is the length of the edge e, |f| is the area of the face f, and |c| is the volume of the cell c.

Definition 2 (barycenter). The barycenters of an edge e ∈ E and of a face f ∈ F are defined, respectively, as
follows:

xe := 1
|e|

∫
e
x and xf := 1

|f|

∫
f
x. (3)

To each edge e ∈ E, we arbitrarily assign a unit tangent vector τ e and to each face f a unit normal vector νf .
Moreover, we define for all edges e ∈ E and all faces f ∈ F, respectively, the vectors

e :=
∫

e
τ e, f :=

∫
f
νf . (4)

Mesh assumption. We assume that all primal faces are planar and that each face f ∈ F is star-shaped with
respect to its barycenter. Moreover, we assume that each cell c ∈ C is star-shaped with respect to a point
xc ∈ c (not necessarily the barycenter of c). In what follows, we denote by (MB) this set of assumptions.

2.2 Geometric maps
For the remaining part of the paper, we consider an arbitrary cell c ∈ C and state definitions and properties
for this cell.

Definition 3 (Primal geometric map). We introduce a primal geometric map gXc : Xc → EX, where EX corre-
sponds to R if X ∈ {V,C} and to R3 if X ∈ {E,F}, so that

gVc(v) := 1, ∀v ∈ Vc, (5a)
gEc(e) := e, ∀e ∈ Ec, (5b)
gFc(f) := f, ∀f ∈ Fc, (5c)
gCc(c) := |c|. (5d)
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Figure 2: Example of a prismatic cell. Top left: the elementary tetrahedron s(v, e, f, c) is highlighted; Top
right: the elementary triangle s(e, f, c) is highlighted; Bottom: the elementary segment s(f, c) is highlighted.

Definition 4 (simplex). For all 1 ≤ k ≤ 3, given (k+1) points {x0, . . . , xk}, s(0, . . . , k) denotes the convex hull
of these points (yielding, up to degenerate cases, a segment for k = 1, a triangle for k = 2, and a tetrahedron
for k = 3); see Figure 2.

Definition 5 (Dual geometric map). We introduce a dual geometric map g̃Xc : Xc → EX defined as follows:

g̃Vc(v) :=
∑

e∈Ev∩Ec

∑
f∈Fe∩Fc

|s(v, e, f, c)|, ∀v ∈ Vc, (6a)

g̃Ec(e) :=
∑

f∈Fe∩Fc

|s(e, f, c)|νs(e,f,c), ∀e ∈ Ec, (6b)

g̃Fc(f) := |s(f, c)|τ s(f,c), ∀f ∈ Fc, (6c)
g̃Cc(c) := 1, (6d)

where νs(e,f,c) is the unit normal vector to the triangle s(e, f, c) oriented according to τ e for all faces f ∈ Fe
and τ s(f,c) is the unit tangent vector to the segment s(f, c) oriented according to νf ; see Figures 2 and 3.

1 Sketches
1.1 Simplices
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Figure 3: Example on a prismatic cell of the dual geometric map attached to a vertex v (left) and to an edge
e (right).

Remark 6 (Dual mesh). The quantities specified in Definition 5 naturally appear when one considers a barycen-
tric dual mesh. Namely, g̃Vc(v) is the volume of the dual cell associated with the vertex v ∈ Vc, g̃Ec(e) is the
vector area of the dual face associated with the edge e ∈ Ec, and g̃Fc(f) is the vector length of the dual edge
associated with the face f ∈ Fc.
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Proposition 7 (magic formula). Assume (MB). Then, the following identity holds:∑
x∈Xc

g̃Xc(x)⊗ gXc(x) = |c|IdX. (7)

If X ∈ {V,C}, IdX is equal to 1 and ⊗ is simply a multiplication. If X ∈ {E,F}, IdX is the 3 × 3 identity
tensor and ⊗ is the tensor product.

Proof. The case X ∈ {V,C} is straightforward. The proof for the case X ∈ {E,F} is given in (Bonelle, 2014,
Proposition 5.24); see also Codecasa & Trevisan (2007).

The exact representation of constant fields by the reconstruction operators devised in this paper hinges on
the identity (7).

3 Overview of the CDO framework
A detailed presentation of the CDO framework can be found in Bonelle (2014). In what follows, we only
present the main ideas.

3.1 Degrees of freedom
Following the seminal ideas of Tonti (1975) and Bossavit (2000), DoFs are defined using de Rham maps, and
their localization results from the physical nature of the fields. For a cell c ∈ C, the (local) finite dimensional
space of DoFs related to discrete potentials is denoted by Vc and collects the values of scalar fields at vertices,

RVc(p)|v := p(xv), ∀v ∈ Vc, (8a)

that related to discrete circulations is denoted by Ec and collects the integrals of the tangential component of
vector fields along edges,

REc(g)|e :=
∫

e
g · τ e, ∀e ∈ Ec, (8b)

that related to discrete fluxes is denoted by Fc and collects the integrals of the normal component of vector
fields across faces,

RFc(φ)|f :=
∫

f
φ · νf , ∀f ∈ Fc, (8c)

and that related to discrete densities is denoted by Cc and collects the integral of scalar fields over the cell,

RCc(s)|c :=
∫

c
s. (8d)

Let Xc ∈ {Vc, Ec,Fc, Cc}. De Rham maps RXc : SX (c) → Xc act on sufficiently smooth fields so that DoFs
are single valued. The domain of the de Rham maps can be taken to be, for instance, SV(c) = H

3
2 +δ(c),

SE(c) = H1+δ(c), SF (c) = H
1
2 +δ(c), and SC(c) = L2(c) with δ > 0. Moreover, a ∈ Xc can be viewed as an

array of size #Xc since Xc is isomorphic to R#Xc . The value of the DoF attached to the entity x ∈ Xc is
denoted by ax ∈ R.

Remark 8 (Link with algebraic topology). Elements of Vc (resp. Ec, Fc, Cc) are 0-cochains (resp. 1-, 2-,
3-cochains).

3.2 Reconstruction operators
Definition 9 (Local reconstruction operator). Let c ∈ C. The local reconstruction operator LXc : Xc → PX (c)
is defined in terms of a family of #Xc linearly independent reconstruction functions {`x,c}x∈Xc spanning the
finite-dimensional space PX (c), called the approximation space, so that the reconstructed field LXc(a) is defined
by

LXc(a)(x) :=
∑

x∈Xc

ax`x,c(x), ∀a ∈ Xc, ∀x ∈ c.
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The reconstruction functions `x,c take values in EX (scalar-valued for potential and density reconstructions,
vector-valued for circulation and flux reconstrucitons). Wenever needed, we underline vector-valued functions
and the corresponding reconstruction operators. The finite-dimensional space PX (c) is for instance spanned
by piecewise EX-valued polynomials. We assume that the functions in PX (c) are in the domain of the local de
Rham map RXc , i.e. PX (c) ⊂ SX (c).

3.3 Discrete Hodge operators
The name “Hodge operator” stems from a concept of differential geometry called the Hodge-star operator
(see Frankel, 1997, Chapter 14, for instance). The Hodge operator embeds a metric (usually induced by
a phenomenological parameter) and connects spaces in duality (k-forms and (d − k)-forms where d is the
space dimension and k an integer such that 0 ≤ k ≤ d). So, there are four distinct Hodge operators in a
three-dimensional space. As its continuous analogue, a discrete Hodge operator is a metric operator since
its definition relies on geometric quantities (lengths, areas, volumes. . . ) and on the evaluation of a material
property.

Hodge inner product. A discrete Hodge operator can be classically associated with a bilinear form which
we call Hodge inner product in what follows.

Definition 10 (local Hodge inner product). Let Xc ∈ {Vc, Ec,Fc, Cc}. Let α denote a material property assumed
to be cellwise constant, taking values in EX⊗EX (scalar-valued for potentials and densities and tensor-valued for
circulations and fluxes), and symmetric positive definite. A local reconstruction operator LXc or, equivalently,
a set of local reconstruction functions {`x,c}x∈Xc defines a local Hodge inner product as follows:

HXc
α (a1, a2) :=

∫
c

LXc(a1) · α · LXc(a2), ∀a1,a2 ∈ Xc. (9)

As previously noticed by Bossavit (2000) with the concept of Galerkin Hodge based on Whitney recon-
struction functions, the algebraic realization of the Hodge inner product defined by (9) is the mass matrix
of the local reconstruction functions weighted by the material property α. Thus, the link between the CDO
approach and the FE approach appears naturally since FE shape functions can be used to build reconstruction
operators.

Design strategies. Discrete Hodge operators are the cornerstone of the CDO approach. Well-posedness,
convergence and error estimates hinge on the properties satisfied by this operator (see Bonelle & Ern, 2014a,b,
for elliptic and Stokes problems respectively). In the CDO framework, the crucial point is thus the design of
the discrete Hodge operator or, equivalently, the Hodge inner product. Each definition leads to a different
scheme.

In the specific case of Cartesian or Delaunay–Voronöı meshes and an isotropic material property, a diagonal
discrete Hodge operator can be build as noticed in the DEC schemes by Desbrun et al. (2006) or in the covolume
schemes by Nicolaides (1992). In more general situations, it is possible to design a discrete Hodge operator
whose algebraic realization is a sparse and symmetric positive definite (SPD) matrix. There are two main
design strategies. Either one directly sets the entries of the matrix as in DEC or Mimetic Finite Difference
(MFD) schemes (see Brezzi et al., 2005, 2009) or one relies on Definition 10 using reconstruction functions. In
this paper, we focus on this second strategy.

Local design properties. Since a (global) Hodge inner product results from a cellwise assembly process,
the design properties are stated locally, i.e. in each mesh cell. The design of the (local) Hodge inner product
hinges on the two following properties:
(H1) Stability. There is a real number ηα > 0 possibly depending on α but uniform w.r.t. c such that for all
a ∈ Xc

ηα|||a|||2Xc ≤ HXc
α (a, a) ≤ η−1

α |||a|||2Xc , (10)

where |||a|||2Xc
:=
∑

x∈Xc
|px,c|

(
|ax|
|x|

)2
and px,c is a subvolume related to a partition of the cell (cf. Section 5.1

and Figure 4). For analysis purposes, |px,c| may be replaced by any equivalent volume (e.g. |c|). The only
consequence is a modification of the value of ηα.
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(H2) P0-consistency. For any constant field K ∈ EX, the following identity holds for all a ∈ Xc:

HXc
α (RXc(K), a) = K · α ·

(∑
x∈Xc

axg̃Xc(x)
)
. (11)

4 Design properties of recontruction operators
The design of reconstruction operators aims at recovering the two local design properties (H1) and (H2) of the
Hodge inner product. There are two equivalent approaches, hereafter called one-level and two-level approach.
The one-level approach directly requires properties on the reconstruction operators (or functions), while the
two-level approach considered a decomposition of the reconstruction operators (or functions) into a consistent
and a stabilization part.

4.1 One-level approach
This approach is considered by Codecasa et al. (2010) (except for (R1), see Bonelle & Ern (2014a)). We
require that:
(R1) Stability. There exists a real number ηX > 0 uniform w.r.t. c such that for all a ∈ Xc,

ηX |||a|||2Xc ≤ ||LXc(a)||2L2(c) ≤ η−1
X |||a|||2Xc .

(R2) Partition of unity. For any constant field K ∈ EX, the following identity holds:

LXcRXc(K) = K.

(R3) Dual consistency. The mean-value of LXc satisfies the following identity:∫
c

LXc(a) =
∑

x∈Xc

axg̃Xc(x), ∀a ∈ Xc.

(R4) Unisolvence. LXc is a right inverse of RXc , i.e.

RXcLXc(a) = a, ∀a ∈ Xc.

Proposition 11. If the Hodge inner product is built using (10), then the properties (R1)–(R3) imply (H1)–
(H2).

Proof. The stability property (H1) results from (R1) and (10) together with the positive-definiteness of α.
Let K ∈ EX. Recall that α is constant in c. For all a ∈ Xc, (H2) results from

HXc
α (RXc (K), a) =

∫
c

LXc RXc (K) · α · LXc (a) by (9),

=
∫

c
K · α · LXc (a) by (R2),

= K · α ·
∑
x∈Xc

axg̃Xc (x) by (R3).

Therefore, every discrete Hodge operator built from (9) with a reconstruction operator verifying the three
properties (R1)–(R3) inherits the properties (H1) and (H2), so that the theoretical results derived in (Bonelle,
2014, Chapter 6) and Bonelle & Ern (2014a) hold.

Remark 12 (Unisolvence). Observe that the unisolvence property (R4) is not needed to satisfy (H1) and (H2).
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Local design properties on reconstruction functions. We now rewrite the properties (R2)–(R4) in
terms of reconstruction functions for each type of DoFs. We only state the results since the proofs are
straightforward.

Proposition 13 (Potential reconstruction functions).

(R2) ⇔
∑

v∈Vc

`v,c(x) = 1, ∀x ∈ c, (12a)

(R3) ⇔
∫

c
`v,c = g̃Vc(v), ∀v ∈ Vc, (12b)

(R4) ⇔ `v,c(xv′) = δv,v′ , ∀v, v′ ∈ Vc, (12c)

where δ•,• is the Kronecker symbol.

Proposition 14 (Circulation reconstruction functions).

(R2) ⇔
∑
e∈Ec

`e,c(x)⊗ e = Id, ∀x ∈ c, (13a)

(R3) ⇔
∫

c
`e,c = g̃Ec(e), ∀e ∈ Ec, (13b)

(R4) ⇔
∫

e′
`e,c · τ e′ = δe,e′ , ∀e, e′ ∈ Ec. (13c)

Proposition 15 (Flux reconstruction functions).

(R2) ⇔
∑
f∈Fc

`f,c(x)⊗ f = Id, ∀x ∈ c, (14a)

(R3) ⇔
∫

c
`f,c = g̃Fc(f), ∀f ∈ Fc, (14b)

(R4) ⇔
∫

f′
`f,c · νf′ = δf,f′ , ∀f, f ′ ∈ Fc. (14c)

Remark 16 (Density reconstruction). LCc is derived from a single reconstruction function `c since #Cc = 1.
From property (R2), we infer that

`c(x) = 1
|c| , ∀x ∈ c. (15)

We easily verify that this definition is in agreement with (R3) (since
∫

c LCc(a) = ac
∫

c `c = ac) and (R4) (since∫
c `c = 1).

In the remaining part of this paper, we focus on the case X ∈ {V, E ,F}, the case X = C being straightfor-
ward.

Remark 17 (Physical dimension). Observe that the reconstruction functions `v,c are dimensionless, `e,c scale
as the reciprocal of a length, `f,c scale as the reciprocal of a surface, and `c as the reciprocal of a volume.

Remark 18 (P1-consistency). Whenever the linear completeness property∑
v∈Vc

xv`v,c(x) = x, ∀x ∈ c, (16)

holds along with (R2), this induces a P1-consistency property. Indeed, any affine field A in c verifies LVcRVc(A) =
A. The field A can be written as A(x) := A(xc) + G · (x − xc) with G constant in c, so that LVcRVc(A(x)) =∑

v∈Vc
A(xv)`v,c(x) = A(xc) +G · (x− xc) = A(x).
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4.2 Two-level approach
The second approach operates a decomposition of the reconstruction operator LXc into a consistent part CXc

and a stabilization part SXc , so that
LXc := CXc + SXc , (17)

with consistent part CXc taking a constant value in EX defined as follows:

CXc(a) := 1
|c|
∑

x∈Xc

axg̃Xc(x), ∀a ∈ Xc, (18)

and a stabilization part SXc : Xc → PX (c) which is the only user-dependent part in the reconstruction operators.
Observe that definition (18) implies

CXcRXc(K) = K, ∀K ∈ EX, (19)

owing to (7). Similar decompositions to (17) have been considered in the context of MFD schemes (see Brezzi
et al., 2005, 2007), for the reconstruction of gradients in the context of HFV schemes (see Eymard et al. (2010)
and also (Agélas et al., 2010, Section 3.3)) and of the generalized Crouzeix–Raviart method (see Di Pietro
& Lemaire, 2015), and for the reconstruction of gradients and fluxes in the context of HHO schemes (see
Di Pietro & Ern, 2013; Di Pietro et al., 2014; Di Pietro & Ern, 2015).

Local design properties. Since the consistent part of the reconstruction operator is defined by (18), the
design properties are stated on SXc for all c ∈ C. In addition to (R1) and (R4), we require that:
(R2∗) For any constant field K ∈ EX,

SXcRXc(K) = 0. (20)

(R3∗) For all a ∈ Xc, ∫
c

SXc(a) = 0. (21)

In terms of reconstruction functions, the translation of (17) is

`x,c(x) := `Co
x,c(x) + `St

x,c(x), ∀x ∈ Xc, ∀x ∈ c, (22)

where `Co
x,c and `St

x,c are respectively the consistent and stabilization part of the reconstruction function. We
infer from (18) that

`Co
x,c(x) := g̃Xc(x)

|c| , ∀x ∈ Xc, ∀x ∈ c. (23)

Moreover, (R2∗) and (R3∗) are equivalent to

(R2∗) ⇔
∑

x∈Xc

gXc(x) · `St
x,c(x) = 0, (24a)

(R3∗) ⇔
∫

c
`St
x,c = 0, ∀x ∈ Xc. (24b)

Proposition 19 (Link between the two sets of properties). Let LXc = CXc + SXc with CXc defined by (18). Then,
(R2∗) is equivalent to (R2) and (R3∗) to (R3).

Proof. (R2) readily results from (R2∗) and (19). Moreover, (R3∗) yields∫
c

LXc(a) =
∫

c
CXc(a) =

∑
x∈Xc

axg̃Xc(x), (25)

so that (R3) holds. The converse statement is proven with similar arguments.

A straightforward consequence of Proposition 19 is that every Hodge inner product built using reconstruc-
tion operators such that (R1) holds, the consistent part is defined by (18), and the stabilization part satisfies
properties (R2∗) and (R3∗) inherits the properties (H1) and (H2).
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Proposition 20 (Orthogonal decomposition). A reconstruction operator built using (17) yields a Hodge inner
product verifying for all a1,a2 ∈ Xc,

HXc
α (a1, a2) :=

∫
c

CXc(a1) · α · CXc(a2) +
∫

c
SXc(a1) · α · SXc(a2).

Proof. This is a consequence of (R3∗) and the fact that CXc maps onto constant fields in EX.

The consistent part of the Hodge inner product is identical for all choices of the reconstruction operator
and is equal, for all a1,a2 ∈ Xc, to

HXc
α (a1, a2) := 1

|c|
∑

x∈Xc

∑
x′∈Xc

a1,xa2,x′ g̃Xc(x) · α · g̃Xc(x′).

5 Piecewise constant reconstruction operators
The goal of this section is to give an example of reconstruction operators on polyhedral meshes. We recon-
struct potential (resp. circulation, flux) fields from DoFs attached to vertices (resp. edges, faces) using a
piecewise constant approximation in each mesh cell. LV , LE , and LF are nonconforming reconstruction opera-
tors which embrace as particular cases, the DGA reconstruction operators of Codecasa et al. (2010) and HFV
reconstruction operators of Eymard et al. (2010). This class of reconstruction operators is attractive from an
implementation viewpoint since reconstruction operators are explicitly defined, i.e. they are not the numerical
solutions of local problems.

5.1 Cell partitions
We first define three partitions of a cell based on the simplicial subdivision introduced in Section 2.
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Figure 4: Examples of an element of Pf,c (left), Pe,c (middle), and Pv,c (right) in a hexahedral cell.

Definition 21 (Partitions of a cell). We set:

pv,c :=
⋃

e∈Ev∩Ec

⋃
f∈Fe∩Fc

s(v, e, f, c), ∀v ∈ Vc, (26a)

pe,c :=
⋃

f∈Fe∩Fc

⋃
v∈Ve

s(v, e, f, c), ∀e ∈ Ec, (26b)

pf,c :=
⋃

e∈Ef

⋃
v∈Vf

s(v, e, f, c), ∀f ∈ Fc. (26c)

The vertex-based partition is denoted by Pv,c := {pv,c}v∈Vc , the edge-based partition by Pe,c := {pe,c}e∈Ec , and
the face-based partition by Pf,c := {pf,c}f∈Fc ; see Figure 4.

Remark 22 (Case X = C). Applying the same rationale as in Definition 21 leads to pc,c := c.

Remark 23 (link between pv,c and g̃Vc(v)). By definition, |pv,c| = g̃Vc(v) for each vertex v ∈ Vc.
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We readily verify that
∑

x∈Xc
|px,c| = |c| for each cell c ∈ C. Observe also that the followings identities

hold:

|pv,c| = g̃Vc(v), ∀v ∈ Vc, (27a)

|pe,c| =
1
d
gEc(e) · g̃Ec(e), ∀e ∈ Ec, (27b)

|pf,c| =
1
d
gFc(f) · g̃Fc(f), ∀f ∈ Fc. (27c)

5.2 Generic definition
Definition 24 (Piecewise constant reconstructions). We set LXc = CXc + SXc with CXc defined by (18) and
SXc : Xc → P0(PX,c) (the space spanned by EX-valued constant fields in each px,c) defined for all a ∈ Xc as
follows:

SXc(a) := ŜXc (a − RXcCXc(a)) , (28)

where for all b ∈ Xc,
ŜXc(b)|px,c := β

g̃Xc(x)
|px,c|

bx, ∀x ∈ Xc. (29)

β > 0 is a free-parameter related to the stabilization.

In terms of reconstruction functions, the stabilization part corresponding to Definition 24 is defined as
follows:

`St
x,c|px′,c

:= β
g̃Xc(x)
|px′,c|

(
δx,x′ − g̃Xc(x′)⊗ gXc(x′)

|c|

)
(30)

The circulation and flux reconstruction operators proposed in DGA schemes correspond to the choice β = 1
d ,

while the circulation reconstruction operator proposed in HFV schemes corresponds to the choice β = 1√
d
.

Proposition 25. Assume (MB). Then, SXc specified in Definition 24 verifies properties (R2∗) and (R3∗).

Proof. (R2∗) is a straightforward consequence of (19) and (28). Let us now verify (R3∗). Starting from (30),
we infer that

∫
c `

St
x,c =

∑
x′∈Xc

∫
px′,c

`x,c|px′,c = βg̃Xc(x)−β g̃Xc (x)
|c|

∑
x′∈Xc

g̃Xc(x′)⊗ gXc(x′) = 0, owing to (7) for
the last identity.

5.3 Specific definitions
Potential reconstruction operators. LVc : Vc → P0(Pv,c) is defined for all p ∈ Vc from the two following
contributions:

CVc(p) := 1
|c|
∑

v∈Vc

g̃Vc(v)pv, (31a)

and, for all v′ ∈ Vc,

SVc(p)|pv′,c = β

|c|
∑

v∈Vc

g̃Vc(v) (pv′ − pv) . (31b)

In terms of reconstruction functions, (31) yields

`Co
v,c := g̃Vc(v)

|c| , ∀v ∈ Vc, (32a)

`St
v,c|pv′,c = β

g̃Vc(v)
|c| (δv,v′ − 1), ∀v, v′ ∈ Vc. (32b)

We observe that the value of these functions is not necessarily continuous across the faces of the partition
(induced by Pv,c) lying inside c, so that, in general, LVc does not map into H1(c).
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Circulation reconstruction operator. LEc : Ec → [P0(Pe,c)]3 is defined for all u ∈ Ec from the two
following contributions:

CEc(u) := 1
|c|
∑
e∈Ec

ueg̃Ec(e), (33a)

and, for all e′ ∈ Ec,

SEc(u)|pe′,c
:= β

g̃Ec(e′)
|pe′,c|

(
ue′ − gEc(e′) · CEc(u)

)
. (33b)

In terms of reconstruction functions, (33) yields

`Co
e,c := g̃Ec(e)

|c| , ∀e ∈ Ec (34a)

and, for all e, e′ ∈ Ec,

`St
e,c|pe′,c = β

(
δe,e′ − g̃Ec(e′)⊗ gEc(e′)

|c|

)
g̃Ec(e)
|pe′,c|

. (34b)

We observe that the tangential component of these functions is not necessarily continuous on the edges of the
submesh (induced by Pe,c) lying inside c, so that, in general, LEc does not map into H(curl; c).

Flux reconstruction operator. LFc : Fc → [P0(Pf,c)]3 is defined for all φ ∈ Fc from the two following
contributions:

CFc(φ) := 1
|c|
∑
f∈Fc

φf g̃Fc(f), (35a)

and, for all f ′ ∈ Fc,

SFc(φ)|pf′,c
:= β

g̃Fc(f ′)
|pf′,c|

(
φf′ − gFc(f ′) · CFc(φ)

)
. (35b)

In terms of reconstruction functions, (35) yields

`Co
f,c := g̃Fc(f)

|c| , ∀f ∈ Fc, (36a)

and, for all f, f ′ ∈ Fc,

`St
f,c|pf′,c = β

(
δf,f′ − g̃Fc(f ′)⊗ gFc(f ′)

|c|

)
g̃Fc(f)
|pf′,c|

. (36b)

We observe that the normal component of these functions is not necessarily continuous accross the faces of
the submesh (induced by Pf,c) lying inside c, so that, in general, LFc does not map into H(div; c).
Proposition 26 (Unisolvence). LXc defined from Definition 24 verifies (R4) if and only if

β = 1 if Xc = Vc and β = 1
d

if Xc ∈ {Ec,Fc}.

Proof. The case Vc is readily verified starting from (32). The case Ec stems from (27b). For all edges e ∈ Ec,
the following identity holds∫

e
`e,c · τ e = g̃Ec(e) · g̃Ec(e)

(
1
|c| + β

|pe,c|
− βg̃Ec(e) · g̃Ec(e)

|pe,c||c|

)
= 1 + (βd− 1)(1− d|pe,c|

|c| ),

and the right-hand side equals 1 if and only if β = 1
d . The proof for the case Fc follows the same lines.

Remark 27. The choice β = 1√
d

adopted in HFV schemes has the practical advantage to yield a diagonal dis-
crete Hodge operator when the material property is isotropic and the mesh is superadmissible (see Eymard et al.,
2010, Lemma 2.1). On the other hand, adapting the arguments of (Di Pietro & Lemaire, 2015, Lemma 8),
the choice β = 1

d allows one to devise a piecewise affine potential reconstruction on the pyramidal submesh⋃
c∈C Pf,c with continuous mean values at interfaces of the submesh.
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6 Application
6.1 CDO schemes for diffusion problems
In this section, we focus on CDO vertex-based schemes for elliptic problems as introduced in Bonelle & Ern
(2014a). The model problem is

− div(κ grad(p)) = s in Ω, (37)

where p is termed the potential, κ the conductivity tensor (assumed to be symmetric with eigenvalues uniformly
bounded from above and from below away from zero), and s the source term. We consider Dirichlet boundary
conditions. The discrete system is: Find p ∈ V such that, for all q ∈ V,

HEκ(GRAD(p), GRAD(q)) =
∫

Ω
sL0
V(q). (38)

L0
V is defined as the piecewise constant reconstruction detailed in (31) with the choice β = 1. The global Hodge

inner product is simply defined by collecting the local contributions HEκ(u, v) :=
∑

c∈C HEc
κ (uc, vc) where uc

and vc are the restriction of the global DoFs to the cell c ∈ C, i.e. uc,vc ∈ Ec. The discrete gradient operator
GRAD : V → E is defined as follows:

GRAD(p)|e =
∑

v∈Ve

ιv,epv, ∀e ∈ E, (39)

with the incidence number is such that ιv,e = 1 if τ e points towards v, ιv,e = −1 otherwise.

6.2 Numerical results
We consider the first test case of the FVCA benchmark Eymard et al. (2011). The domain Ω is the unit cube
[0, 1]3, and the exact potential and the conductivity are

p(x, y, z) := 1 + sin(πx) sin
(
π
(
y + 1

2
))

sin
(
π
(
z + 1

3
))
,

κ :=

 1 0.5 0
0.5 1 0.5
0 0.5 1

 . (40)

The source term and the Dirichlet boundary conditions are set according to (40). Since the global linear
system is SPD by construction, it can be efficiently solved using a preconditioned Conjugate Gradient method.
Two sequences of three-dimensional polyhedral meshes are tested, each family consisting of successive uniform
refinements of an initial mesh. The first mesh sequence, hereafter denoted by PrG, contains prismatic cells
with polygonal basis, and the second one, hereafter denoted by CB, checkerboard cells with hanging nodes; see
Figure 5. The finest mesh of the PrG sequence contains approximately 150,000 vertices and 350,000 edges and
that of the CB sequence 250,000 vertices and 700,000 edges.

Figure 5: Two examples of polyhedral meshes. Left: prismatic mesh with a polygonal basis; Right: checker-
board mesh with hanging nodes.
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Accuracy. We perform a comparative study of the reconstruction operators by computing a discrete error
on the potential ErV(p) and a discrete energy error on the gradient ErE(g) defined as follows:

ErV(p) := |||RV(p)− p|||V
|||RV(p)|||V

, (41)

ErE(g) :=

√
HEκ(RE(g)− g, RE(g)− g)

HEκ(RE(g), RE(g)) , (42)

where g := grad(p) and g := GRAD(p).
We plot the error ErV(p) and the error ErE(g) in Figure 6. Four values of the stabilization parameter β
are considered: an under-penalized value ( 1

d3 ) the one used in DGA ( 1
d ), the one used in HFV ( 1√

d
), and an

over-penalized value (d). Labels associated with each case are collected in Table 1.

β 1
d3

1
d

1√
d

d

PrG
CB

Table 1: Labels associated with each case (β, mesh sequence).

We observe that the over-penalized scheme produces a larger error. We also notice a super-convergence in
the energy norm for PrG meshes, as already observed by Bonelle & Ern (2014a). In Figure 7, we plot the error
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Figure 6: Left: Discrete error on the potential for different values of β and the two mesh sequences. Right:
Discrete error on the gradient for different values of β and the two mesh sequences. Dash-dotted lines indicating
first- and second-order convergence rates are included.

ErE(g) for a large set of values of β and for the PrG and CB mesh sequences. Values of β around 1
d yield the

most accurate results for the current test cases.

Cost. In order to compare the efficiency to solve the linear systems produced by the different reconstruction
operators, we define the computational cost χ := nnz×nite, where nnz is the number of nonzero entries of the
matrix to invert and nite is the number of iterations performed by the iterative solver to reduce the Euclidean
norm of the residual below a tolerance set at 10−12. χ provides a reasonable estimate of the computational cost
to solve the linear system since the most costly operation in an iterative solver such as the Conjugate Gradient
is the matrix-vector product. In Figure 8, we plot the computational cost χ for a large set of values of β and
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Figure 7: Error ErE(g) as a function of β for each mesh of the PrG sequence (right) and of the CB sequence
(right).
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Figure 8: Computational cost χ as a function of β for each mesh of the PrG sequence (left) and the CB sequence
(right).

for the PrG and CB mesh sequences. The computational cost is higher for the schemes with an over-penalized
value of β, and it is also slightly higher for an under-penalized value.

Preservation of bounds. Finally, we investigate numerically the discrete minimum/maximum principle
(DMP). Setting pmin := minv∈V pv and pmax := maxv∈V pv, we consider that the discrete minimum (resp.
maximum) principle is numerically satisfied if pmin ≥ minx∈Ω p(x) (resp. pmax ≤ maxx∈Ω p(x)). Results are
collected in Table 2. Y indicates that the DMP is satisfied (minimum or maximum) for all the meshes of the
sequence and N indicates that at least one mesh in the sequence does not respect the criterion. Using an
under-penalized value of β negatively impacts the DMP.

7 Conclusion
In this work, we have studied low-order reconstruction operators for polyhedral meshes in a unified framework
for degrees of freedom attached to vertices, edges, faces, and cells. These reconstruction operators provide
a systematic way of building a Hodge inner product which is a key concept for the compatible numerical
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Mesh β 1
d4

1
d3

1
d

1√
d

d d2

PrG min N N Y Y Y Y
max N N Y Y Y Y

CB min N Y Y Y Y Y
max N N Y Y Y Y

Table 2: Synthesis of results related to the discrete min./max. principle.

approximation of PDEs. We have presented two equivalent sets of design properties. A simple example of
piecewise constant reconstruction operators depending on a single stabilization parameter has been detailed,
and the influence of this parameter on accuracy and computational costs has been investigated numerically
on an anisotropic diffusion problem using CDO vertex-based schemes. Under- and over-penalized values of
the stabilization parameter have a negative impact, on the preservation of bounds and on accuracy and costs,
respectively. For the problem considered, appropriate choices are the values proposed in DGA and HFV
schemes, with the value β = 1

d appearing as more favorable. These conclusions are to be confirmed by further
numerical tests.

References
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