
HAL Id: hal-01097293
https://hal.science/hal-01097293v2

Submitted on 13 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic behaviour of codes in rank metric over finite
fields

P Loidreau

To cite this version:
P Loidreau. Asymptotic behaviour of codes in rank metric over finite fields. Designs, Codes and
Cryptography, 2014, 71 (1), pp.105-118. �10.1007/s10623-012-9716-0�. �hal-01097293v2�

https://hal.science/hal-01097293v2
https://hal.archives-ouvertes.fr


Asymptotic behaviour of codes in rank metric over finite fields

P. Loidreau∗

DGA MI et Université de Rennes 1

Abstract

In this paper, we first recall some basic facts about rank metric. We then derive
an asymptotic equivalent of the minimum rank distance of codes that reach the rank
metric Gilbert–Varshamov bound. We then derive an asymptotic equivalent of the average
minimum rank distance of random codes. We show that random codes reach GV bound.
Finally, we show that optimal codes in rank metric have a packing density which is
bounded by functions depending only on the base field and the minimum distance and
show the potential interest in cryptographic applications.

1 Introduction

1.1 Goal of the paper

Rank metric in the field of combinatorial coding theory appeared in the 70’s in an article by
P. Delsarte [8], and in the field of algebraic coding in papers by E. M. Gabidulin available in
Russian, later summarized in English in [11].

In this seminal paper, E. M. Gabidulin designed a family of optimal codes (reaching the
Singleton bound for rank metric), as well as a polynomial-time algorithm decoding up to
their error-correcting capability. Later, R. M. Roth showed in an article that these so-called
Gabidulin codes were also optimal, as generalizations of the Patel-Hong codes, [4] in the field
of criss-cross errors or erasures correction. In this model, errors or erasures occurred along
lines or columns of arrays. This model was suitable for modelizing the storage of information
on magnetic tapes or on chipsets, [31].

Since then, rank metric codes and especially codes derived from Gabidulin codes have
found numerous applications in the field of coding theory: they form the heart of the design
of almost optimal codes with efficient decoding algorithms in the field of random network
coding, [20, 32], as well as in the design of space-time codes with optimal rate/diversity trade-
off [23, 19].

The research domain where properties of rank metric have to be investigated at length is
without doubt the field of cryptology. The idea of using rank metric in the design of code-
based public key cryptosystems was first introduced by E. M. Gabidulin, A. V. Paramonov
and O. V. Tretjakov in 1991 [13]. Its efficiency was based on the fact that the state of the art
decoding algorithm for random codes have a much higher complexity in rank metric than in
Hamming metric for the same sets of parameters, [25, 5, 6, 27]. Therefore, since the strength
of the system relies on the complexity of the decoding in the public code without any further
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information, it enables to design cryptosystems with a much smaller public-key size. Hence
one of the major drawbacks of McEliece type systems vanishes [25].

Whereas very little improvement has been made concerning the decoding of random codes
in rank metric, many successful attacks were operated on the structure of the public code itself
which was not sufficiently masked, [17, 18, 28]. Many modifications of the cryptosystems were
made to prevent these attacks, but they all require a significant increase of the public-key size
to prevent the most powerful attacks, as well as the construction of a new non-optimal rank
metric codes, [12, 26, 21].

Since, in rank metric there are already at hand optimal codes for Singleton equality, one
can wonder what is the interest in considering other possible families of codes, and in studying
the behaviour of random codes in rank metric. We can find good reasons both from a coding
theory point of view as well as from a cryptographic point of view:

• From a coding theory point of view, one might wish to use not necessarily optimal codes
in rank metric. Namely, it might happen that what effectively counts is the complexity
of decoding. We cannot exclude to find a family of non-optimal codes with a better
complexity decoder as the family of Gabidulin codes, even find codes with efficient
iterative decoding algorithms. Moreover, in the field of space-time coding, maximizing
the rank is only one criterium to evaluate the performance of such codes [33]. Therefore,
considering also non-optimal codes in the design of space-time codes might also be of
interest, for an efficiency trade-off between the two criteria.

• From a cryptographic point of view it is clear that no optimal code can be used in the
design of public-key primitives. These code have to be distorted, that is modified so
that they look like random, [26, 30, 21].

Then there is a natural question that arises when one construct new families of code. Are
they good ? One tool of measurement is to compare their behaviour to the behaviour of
random codes.

The goal of the paper is dual. In the second and third section, we gather some already
known results about rank metric which are scattered in the different papers cited in the
references. We recall the upper and lower bounds on the sizes of spheres and balls in rank
metric which can be found in many papers, as well as some classical bound in coding theory
(Hamming bound, GV-like bound). We also provide a simple alternate proof to Babu’s result
that no perfect codes exist in rank metric, [1].

The main goal of this paper is to study the asymptotic behaviour of random codes, and
to show that they

In the second and third section we establish some basic facts concerning rank metric and
codes in rank metric. We reestablish upper and lower bounds on the sizes of spheres and balls,
and define the main bounds. Then, we give a simple alternate proof that no perfect codes
exist in rank metric. The original proof can be found in [1].

In the fourth section, we are interested by an asymptotic equivalent of the relative minimum
rank distance of constant rate codes, which are closest to GV-bound. Note that in [14], the
authors gave an asymptotic equivalent on the lower bound on the rate of codes having a
given relative minimum rank distance. Although both results have similarities, they cannot
be derived directly from one another since we are dealing with asymptotics. Therefore the
purpose of the section is to properly establish the proof of the result.
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The fifth section is dedicated to establish the behaviour of so-called random codes. We
establish for random constant rate codes and random constant rate additive codes an asymtotic
equivalent of the minimum rank distance.

One could argue that it suffices to directly use the results in [3] paper about Hamming
metric. This is partly true but their paper provides only a lower bound for the minimum rank
distance. Therefore, we also have to establish an upper bound. For Hamming metric, this
was done by Pierce for linear codes in [29], although the proofs suppose in some sense that
the choice of codewords is independent, which is not the case in Pierce’s sampling space. For
the definition of the sampling space we prefer to refer to Richardson and Urbanke’s [?]

Our results show similar results to the case of Hamming metric.
additive codes have a much better minimum rank distance than random codes. Compar-

atively to Barg and Forney’s paper, our results are more accurrate, since the result that they
obtaine is . We prefered to follow the approach of Pierce’s paper [29], by correcting the

This theorem shows that random constant rate GF (q)-ary codes reach asymptotically
GV-bound.

Some of the proofs which are very technical are given in appendix
The fourth section is dedicated to establishing the asymptotic behaviour of constant rate

codes reaching GV-bound. The fifth section establishes the proof of theorem 2. This theorem
shows that random constant rate GF (q)-ary codes reach asymptotically GV-bound. In the
sixth section, we study the packing density of optimal codes in rank metric and show they
could be interesting in the design of rank-metric based signature schemes.

2 Background in rank metric

In the rest of the paper the code alphabet is the finite field GF (qm) with qm elements where
q is the power of some prime. Let b = (β1, . . . , βm) be a basis of GF (qm) over GF (q). The
integer n is as usual the length of the code. Thus vectors of the ambient space GF (qm)n are
indifferently considered as vectors with components in GF (qm) or as m × n q-ary matrices
obtained by projecting the elements of GF (qm) on GF (q) with respect to the basis b.

The rank norm of a vector x in GF (qm)n is defined by

Definition 1 ([11])
Let x = (x1, . . . , xn) ∈ GF (qm)n. The rank of x on GF (q), is the rank of matrix

X =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 ,

where xj =
∑n

i=1 xijβi. It is denoted by Rk(x|GF (q)), or by Rk(x) when there is no ambiguity
on the base field.

Rank metric is the metric over GF (qm)n induced by the rank norm. Given a vector x ∈
GF (qm)n spheres and balls in rank metric have the following expression:

• Sphere of radius t ≥ 0 centered on x: S(x, t) def
= {y ∈ GF (qm)n | Rk(y − x) = t}.

• Ball of radius t ≥ 0 centered on x: B(x, t) def
= ∪t

i=0S(x, i).
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Since rank metric is invariant by translation of vectors, the volumes of spheres and balls do
not depend on the chosen center. Therefore to simplify notations, we define:

• St
def
= volume of sphere of radius t in GF (qm). It is equal to the number of m× n q-ary

matrices of rank = t. If t = 0 then S0 = 1 and for t = 1, . . . ,min(n,m) it is equal (see
for example [2]) to

St =

t−1∏
j=0

(qn − qj)(qm − qj)

qt − qj
. (2.1)

• Bt
def
= volume of ball of radius t in GF (qm). It is equal to the number of m×n matrices

of rank ≤ t in GF (q). Therefore

∀t = 0, . . . ,min(n,m), Bt =

t∑
i=0

Si. (2.2)

A code C of length n and of size M over GF (qm) is a set of M vectors of length n over
GF (qm). Its minimum rank distance is defined by

Definition 2
Let C be a code over GF (qm), then d

def
= minc1 ̸=c2∈C(Rk(c1 − c2)) is called minimum rank

distance of C.

If the code is GF (q)-linear (it is most often the case when considered as a matricial code)
or even linear and since rank metric is invariant by translation, the minimum rank distance
of the code is

d = min
c ̸=0∈C

(Rk(c)). (2.3)

If d is the minimum rank distance of C we will say that C is a (n,M, d)r-code. Moreover if the
code is linear of dimension k we will say that it is a [n, k, d]r-code. The value R = logqm(M)/n
is as usual the rate of the code, and corresponds to k/n in the linear case.

The quantities (2.1) and (2.2) are not very easy to handle in computation. We derive
bounds sufficiently accurate enough for our needs.

Proposition 1
For all t = 0, . . . ,min(n,m), we have{

q(m+n−1)t−t2 ≤ St ≤ q(m+n)t−t2+σ(q),

q(m+n)t−t2 ≤ Bt ≤ q(m+n)t−t2+σ(q),
(2.4)

where σ(q) = − 1
ln(q)

∑∞
i=1 ln(1− q−i).

Proof.
The proof for the upper bound on Bt can be found in in [15], Lemma 9. It gives also the

upper bound for St. The proof for the lower bound on Bt can be found in [16], Lemma 5. It
remains to proove the lower bound on St. Formula (2.1) can be rewritten under the form

St = q(m+n)t−t2
t−1∏
j=0

(1− qj−n)(1− qj−m)

1− qj−t
.
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Since t ≤ m, then for all j = 0, . . . , t − 1 we have 1 − qj−m ≥ 1 − qj−t. Therefore (1 −
qj−m)/(1−qj−t) ≥ 1, and since 1−qj−n is a decreasing function of j and positive if j−n ≥ 1,
which is the case by hypothesis, we have 1 − qj−n ≥ 1 − 1/q = (q − 1)/q. Since q ≥ 2 we
deduce that 1− qj−n ≥ q−1. Therefore, for all j = 0, . . . , t− 1

(1− qj−n)(1− qj−m)

1− qj−t
≥ q−1.

Thus
t−1∏
j=0

(1− qj−n)(1− qj−m)

1− qj−t
≥ q−t.

This gives the lower bound on St.

■

3 Upper bounds and perfect codes

In this section, we make a summary of known results on bounds for codes in rank metric,
like Singleton-like bound and Hamming-like bound. Moreover a straightforward corollary of
previous section is a new very simple proof of a known result given in [1]: there are no perfect
codes in rank metric.

Theorem 1
Let C be a (n,M, d)r code over GF (qm). We have

• Singleton-like bound: M ≤ qmin (m(n−d+1),n(m−d+1)).

• Hamming-like bound: If t = ⌊(d− 1)/2⌋, then

MBt ≤ qmn. (3.5)

For the proof of Singleton-like bound, see for instance [11, 26]. The proof of the Hamming-
like bound comes from the fact that, for rank metric, two balls of radius t = ⌊(d−1)/2⌋ centered
on codewords do not intersect. Thus, the full packing has size less than the whole space, see
[14].

The so-called perfect codes are codes reaching the Hamming-liked bound. It is well known
that in Hamming metric the only perfect linear codes are repetition codes, Hamming codes
over any finite fields and the binary and ternary Golay codes [24], page 179-180. What then of
the existence of perfect codes in rank metric ? The following proposition answers the question

Proposition 2 ([1]) There are no perfect codes in rank metric.

Proof. Suppose on the contrary that a perfect code does exist with parameters (n,M, d)r
over GF (qm), that is suppose that

MBt = qmn.

Without loss of generality we can assume that n ≤ m (Else consider the transposed code).
The right part of the inequality (2.4) on the volume of balls implies that

Mq(m+n+1)t−t2+1 ≥ qmn.
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Moreover, from Singleton bound we have M ≤ qm(n−d+1). Since t = ⌊(d− 1)/2⌋ this implies
that M ≤ qm(n−2t). Therefore

q(m+n+1)t−t2+m(n−2t)+1 ≥ qmn.

By taking the base q logarithm of the inequality and by reordering the terms, we obtain

(n−m)t ≥ t2 − t+ 1.

By hypothesis n−m ≤ 0 and t > 0. Therefore we must have t2 − t− 1 ≤ 0. Since t is integer
the only possibility is t = 1 and accordingly n = m. In that case however the formula that
parameters have to satisfy is M × B1 = qn

2 . Hence

qn(n−2)︸ ︷︷ ︸
Singleton

q2n − 2qn + q

q − 1
≥ M

q2n − 2qn + 1

q − 1
+ 1︸ ︷︷ ︸

B1

= qn
2
,

which implies

1− 2

qn
+

1

q2n−1
≥ q − 1. (3.6)

This inequality cannot be satisfied for q ≥ 2.
■

4 A Varshamov–Gilbert like bound

Until now we have obtained bounds and results on the non-existence of codes in rank metric
with given parameters. What then of the existence of codes ? In Hamming metric there is the
so-called Varshamov-Gilbert (GV) bound which gives information on the existence of codes
with parameters (n,M, d). In rank metric we have the exact equivalent.

Proposition 3 ([14])
Let m,n,M, d be positive integers. If

M × Bd−1 < qmn, (4.7)

then there exists a (n,M + 1, d)r-code over GF (qm).

In Hamming metric, an asymptotic version of GV bound provides a lower bound on the
maximum rate of codes with relative minimum Hamming distance δ, [24, 22]. This lower
bound is given by

1−Hq(δ),

for 0 ≤ δ ≤ (q − 1)/q.
An analogous of this bound asymptotic version for rank metric was given in [14]. The

authors showed a lower bound
(1− δ)(1− α), (4.8)

provided α
def
= m/n is constant.

However for cryptographic motivation and benchmarking, we are more interested in the
inverse function, that is the behaviour of the relative minimum distance as a function of the
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rate of the code. This enables to show that randomly chosen codes are with high probability
on GV-bound in the same manner as it was proven in J. Pierce’s paper [29] for randomly
chosen codes in Hamming metric.

Before doing some asymptotic, we need to define what does it mean for a code to reach
GV-bound given a minimum rank distance d. Roughly speaking, it is a code optimal in the
sense that you cannot pack the space with balls of radius d− 1 around the codewords if you
remove only one codeword.

Definition 3
A (n,M, d)r-code reaches GV-bound if

(M − 1)× Bd−1 < qmn ≤ M × Bd−1. (4.9)

Now we are interested in the following problem : suppose that we have an infinite family of
codes of parameters (n,Mn, dn) over GF (qmn) reaching GV-bound. The following proposition
gives relations between the fundamental parameters of the codes for the so-called constant rate
codes over a field extension GF (qmn=αn) :

Proposition 4
Let F be a family of (n,Mn = qαn

2R, dn)r over qαn reaching GV-bound. Then we have:

lim
n→∞

dn/n =
α+ 1

2
−
√

(α− 1)2/4 + αR. (4.10)

In particular, if α = 1, then the limit of the ratio is 1−
√
R which is similar to the Johnson

bound for Gabidulin codes, which gives the maximum radius for which a ball centered on some
vector of the ambient space contains on average a number of codewords that is polynomial in
the length of the code, see [10].
Proof.

By taking the base q logarithm of (4.9) and by using the inequalities (2.4), for any (n,Mn =
qαn

2R, dn)-code over qαn reaching GV-bound, we have:{
αn2 ≤ (α+ 1)n(dn − 1)− (dn − 1)2 + σ(q) + logq Mn,

logq(Mn − 1) + ((α+ 1)n)(dn − 1)− (dn − 1)2 < αn2.

Since Mn ≥ 2 we have further that logq(Mn − 1) ≥ logq Mn − logq(2) ≥ logq Mn − 1. Hence
by replacing logq Mn by αn2R we have{

0 ≤ −d2n + ((α+ 1)n+ 2)dn + αn2R− αn2 − ((α+ 1)n− σ(q)− 1),
0 ≥ −d2n + ((α+ 1)n+ 2)dn + αn2R− αn2 − ((αn + 1)n+ 1).

Both inequations imply that dn lies in two
In particular by the basic properties of second order inequalities, dn has to be greater than

the smallest root of the first polynomial in dn and smaller than the smallest root of the second
polynomial in dn. This formally leads to

α+ 1

2
−

√
∆1

2n
+

1

n
≤ dn

n
≤ α+ 1

2
−

√
∆2

2n
+

1

n
, (4.11)

where the discriminants ∆1 and ∆2 satisfy:

∆1 = (α− 1)2n2 + 4αn2R+O(n),
∆2 = (α− 1)2n2 + 4αn2R+O(n).
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By considering the square root of the discriminants and by dividing by 2n, we obtain:
√
∆1
2n =

√
(α− 1)2/4 + αR+O(1/n) =

√
(α− 1)2/4 + αR+O(1/n),√

∆2
2n =

√
(α− 1)2/4 + αR+O(1/n) =

√
(α− 1)2/4 + αR+O(1/n).

By replacing the value of the discriminants in (4.11), and since we obtain

α+ 1

2
−
√

(α− 1)2/4 + αR+O(1/n) ≤ dn
n

≤ α+ 1

2
−
√
(α− 1)2/4 + αR+O(1/n).

Therefore
dn
n

=
α+ 1

2
−
√
(α− 1)2/4 + αR+O(1/n),

which gives the result (4.10).
■

Definition 4 A family of constant rate codes satisfying proposition 4 is said to reach GV-
bound.

5 Random codes

In cryptography, random codes provide benchmarks for cryptosystems. Namely, in McEliece
type cryptosystems, security proofs imply that the family of codes that is used is indistin-
guishable of random codes [7]. In rank metric based cryptography, the fact that many variant
using Gabidulin codes are weak could be interpreted in the sense that all these families can
be easily distinguished from random codes. Therefore investigating the behaviour of random
codes could provide arguments to evaluate the security of rank-metric based cryptosystem.

In Hamming metric the paper [29] shows that random codes in Hamming metric reach
GV-bound. In this section we proove an analoguous proposition for rank metric.

Definition 5

• A random GF (q)-linear code over GF (qm) of length n and of size M = qK is a uniformly
chosen K-dimensional GF (q)-vector space of GF (qm)n.

We first establish the probability distribution of the minimum rank distance of random
GF (q)-linear codes. After upper bounding this distribution, we show that the probability that
the minimum rank distance of the code lies apart of some interval decreases exponentially when
the length of the codes increases. We want to proove the following theorem:

Theorem 2
Let F be a family of (n, qαn2R, dn)r random GF (q)-linear codes over GF (qαn). Let

∆GV
def
=

α+ 1

2
−

√
(α− 1)2

4
+ αR. (5.12)

Then the expectation E(dn) and the variance V ar(dn) satisfy for n → ∞{
E(dn)

n = ∆GV +O(1/n),
V ar(dn)

n2 = O(1/n).
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Before stating some additional lemmas necessary to proove the theorem, we deduce an
important consequence of the theorem. Namely

∀ n, ϵ > 0, Pr

(∣∣∣∣dnn −∆GV

∣∣∣∣ > 2ϵ

)
≤ Pr

(∣∣∣∣dnn − E(dn)

n

∣∣∣∣+ ∣∣∣∣E(dn)

n
−∆GV

∣∣∣∣ > 2ϵ

)
,

where the probability is taken over GF (q)-linear code over GF (qαn) of length n and of size
M = qαn

2R.
From theorem 2, we have |E(dn)/n −∆GV | = O(1/n). Therefore there exists an integer

n0 such that

∀ n ≥ n0,

∣∣∣∣E(dn)

n
−∆GV

∣∣∣∣ ≤ ϵ.

Hence
∀ϵ > 0, ∀ n ≥ n0, Pr

(∣∣∣∣dnn −∆GV

∣∣∣∣ > 2ϵ

)
≤ Pr

(∣∣∣∣dnn − E(dn)

n

∣∣∣∣ > ϵ

)
.

Now if we apply Chebyshef’s inequality, that is Pr(|X −E(X)| > ϵ) ≤ V ar(X)/ϵ2, and since
V ar(dn/n) = O(1/n), we obtain

∀ϵ > 0, ∀ n ≥ n0, Pr

(∣∣∣∣dnn −∆GV

∣∣∣∣ > 2ϵ

)
≤ O(1/nϵ2).

We proved the following corollary

Corollary 1
Let F be a family of (n, qαn2R, dn)r randomly chosen constant rate GF (q)-linear codes over

GF (qαn), and let ∆GV
def
= α+1

2 −
√

(α−1)2

4 + αR. Then

∀ϵ > 0, Pr (|dn/n−∆GV | > ϵ)
n→∞−→ 0.

This corollary shows that asymptotically, random GF (q)-linear codes reach GV-bound, as is
the case in Hamming metric.

5.1 A bound on the minimum rank distance distribution

Before prooving the theorem, we first need to have an expression for the probability distribu-
tion of the minimum distance for a random GF (q)-linear code C of length n with cardinality
M over GF (qm). Let us define

∀i = 1, . . . , n,

{
Ai = |{c ∈ C | Rk(c) = i}| ,
Di = | ∪i

t=1 Ai| = | {c ∈ C \ {0}, | Rk(c) ≤ i} |.

If d is the minimum rank distance of C we have

∀i = 1, . . . , n, pi
def
= Pr(d = i) = Pr(Di−1 = 0, Di ≥ 1).

Since
Di =

∑
c∈C\{0}

1Rk(c)≤i,

9



and C is a uniformly chosen vector-space over GF (q), we have

Pr(Rk(c) = i | c ∈ C) = Pr(Rk(c) = i) = Bi/q
mn.

Therefore

Pr(Di−1 = 0) = Pr(∀c ∈ C \ {0},Rk(c) ≥ i) =

(
1− Bi−1

qmn

)M−1

, (5.13)

and

Pr(Di ≥ 1 | Di−1 = 0) = 1−
(
1− Si

qmn − Bi−1

)M−1

. (5.14)

From the previous paragraphs, by multiplying (5.13) by (5.14) and since Bi = Bi−1 + Si,
we have prooved

Proposition 5
Let C be a (n,M, d)r random GF (q)-linear code over GF (qm). Let

∀i = 1, . . . , n, pi
def
= Pr(d = i).

Then we have

∀i = 1, . . . , n, pi =

(
1− Bi−1

qmn

)M−1

−
(
1− Bi

qmn

)M−1

, (5.15)

where Bi is the volume of the ball of rank radius i in GF (qm)n.

We use (5.15) and the fact that for any positive integer N ,

∀a ≥ b ≥ 0, aN − bN = (a− b)

N−1∑
j=0

ajbN−1−j ≤ N(a− b) (max(a, b))N−1 .

By taking a and b such that a =
(
1− Bi−1

qmn

)
> b =

(
1− Bi

qmn

)
, we deduce

pi ≤
(M − 1)Si

qmn

(
1− Bi−1

qmn

)M−2

. (5.16)

The following lemma is a ground stone for prooving theorem 2. It shows that all the
contribution to the minimum rank distance of a random GF (q)-linear reaches GV-bound.

Lemma 1
Let F be a family of (n, qαn2R, dn)r random GF (q)-linear codes over GF (qαn). Let

∀i = 1, . . . , n, p
(n)
i

def
= Pr(dn = i),

• If 1 ≤ i/n ≤ α+1
2 −

√
(α−1)2

4 + αR+ 1
n , then on can find a positive constant C1 such

that
p
(n)
i ≤ C1q

−n. (5.17)
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• If n ≥ i/n ≥ α+1
2 −

√
(α−1)2

4 + αR− 1
n , and if n is large enough, then there is a positive

constant C ′
1 such that

p
(n)
i ≤ q−C′

1n. (5.18)

Proof.
Since M = qαn

2R, and since q ≥ 2 we have that

αn2R > logq(M − 1) ≥ αn2R− 1. (5.19)

To prove the lemma, we upper-bound p
(n)
i by upper-bounding the inequality (5.16).

• From (2.4) and (5.19) we have

p
(n)
i ≤ (M − 1)Si

qα2

(
1− Bi−1

qαn2

)M−2

︸ ︷︷ ︸
<1

≤ (M − 1)Si

qαn2 ≤ q(α+1)ni−i2−αn2(1−R)+σ(q).

The right part of the inequality is smaller than q−λ(n) for some function λ(n) if and only
if −i2+(α+1)ni−αn2(1−R)+σ(q)+λ(n) ≤ 0. The discriminant of this second order
inequality is equal to

∆ = (α− 1)n2 + 4αn2R+ 4λ(n) + 4σ(q).

The smallest root of the second order equation is thus given by

(α+ 1)n

2
−
√

(α− 1)n2

4
+ αn2R+ λ(n) + σ(q),

Therefore, by taking λ(n) = n− σ(q) we obtain: if

i/n ≤ α+ 1

2
−
√

(α+ 1)2

4
+ αR+

1

n
,

Then
p
(n)
i ≤ C1q

−n,

where C1 = qσ(q).

• For the second bound we still use the upper bound (5.16), by upper bounding the other
multiplicative term. We have

p
(n)
i ≤ Si

qαn2︸ ︷︷ ︸
<1

(M − 1)

(
1− Bi−1

qαn2

)M−2

< Me
(M−2) ln

(
1−Bi−1

qαn2

)
.

By properties of the logarithm, we have ∀0 ≤ x < 1, ln(1− x) ≤ −x. Thus

(M − 2) ln

(
1− Bi−1

qαn2

)
≤ −(M − 2)

Bi−1

qαn2 .
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If we use the lower bound given in (2.4), and the fact that logq(M −2) > logq(M)−1 =
αn2R− 1 as soon as M ≥ 4 we have

−(M − 2)
Bi−1

qαn2 ≤ −q(α+1)n(i−1)−(i−1)2−αn2(1−R)+1.

This inequality implies that the quantity −(M − 2)Bi−1

qαn2 is less than −n as soon as

(α+ 1)n(i− 1)− (i− 1)2 − αn2(1−R) + 1− logq(n) ≥ 0.

The discriminant of the inequality is

∆ = (α− 1)2n2 + αn2R+ 4− 4 logq(n).

Therefore as soon as n ≥ 4 logq(n) − 2 we have that ∆ ≤ (α − 1)2n2 + αn2R − n, and
provided that

i/n ≥ α+ 1

2
−
√

(α− 1)2

4
+ αR− 1

n
,

the quantity −(M − 2)Bi−1

qαn2 is less than −n. Therefore p
(n)
i ≤ e−n, and we obtain the

result by taking C ′
1 = logq(e).

■

5.2 Proof of the theorem

In this section we proove theorem 2.

Proof of theorem 2
The proof is divided into two parts. The first part derives an equivalent for the expectation

of the minimum rank distance, while second part gives an equivalent for the variance of the
minimum rank distance

• By definition the expectation of the minimum rank distance is given by

E(dn) =

n∑
i=1

iPr(dn = i) =

n∑
i=1

ip
(n)
i .

Let us define 
an = n

(
α+1
2 −

√
(α−1)2

4 + αR+ 1
n

)
,

bn = n

(
α+1
2 −

√
(α−1)2

4 + αR− 1
n

)
.

The upper bounds for p
(n)
i of Lemma 1 directly implies that for sufficiently large n{ ∑⌊an⌋

i=1 ip
(n)
i ≤ C1q

−n
∑n

i=1 i = O
(
n2q−n

)
,∑n

i=⌈bn⌉ ip
(n)
i ≤ q−C′

1n
∑n

i=1 i = O
(
n2q−C′

1n
)
.

12



Now we want to evaluate the contribution of the terms labeled by ⌊an⌋+1 ≤ i ≤ ⌈bn⌉−1.
We have

an

⌈bn⌉−1∑
i=⌊an⌋+1

p
(n)
i ≤

⌈bn⌉−1∑
i=⌊an⌋+1

ip
(n)
i ≤ bn

⌈bn⌉−1∑
i=⌊an⌋+1

p
(n)
i . (5.20)

Now since

1 =

n∑
i=1

p
(n)
i =

⌈bn⌉−1∑
i=⌊an⌋+1

p
(n)
i +

⌊an⌋∑
i=1

p
(n)
i︸ ︷︷ ︸

O(n2q−n)

+
n∑

i=⌈bn⌉+1

p
(n)
i︸ ︷︷ ︸

O(n2q−C′
1n)

,

we obtain

1 +O(n2q−Cn) ≤
⌈bn⌉−1∑

i=⌊an⌋+1

p
(n)
i ≤ 1,

where C = min(1, C ′
1). From the definition, it is obvious that an = O(n). Therefore, by

replacing the inequalities in equation (5.20), we obtain that

an +O(n3q−Cn) ≤
⌈bn⌉−1∑

i=⌊an⌋+1

ip
(n)
i ≤ bn.

By using all the previous inequalities, we obtain

an +O(n3q−Cn) ≤ E(dn) ≤ bn +O(n2q−C′
1n).

Now to finish the proof we have to show that an and bn are close enough. Let us denote
A =

√
(α− 1)2/4 + αR. From the definitions of an and bn we have

bn − an = nA
(√

1 + 1/(An)−
√
1− 1/(An)

)
,

= nA(1/(An) +O(1/n2)),
= O(1).

Therefore we deduce the result

E(dn) = dGV +O(1), (5.21)

where
dGV

def
= n∆GV .

Therefore
E(dn)

n
= ∆GV +O(1/n).

• The variance is by definition V ar(dn) = E(d2n)−E(dn)
2. From (5.21) and since dGV =

O(n), we have
E(dn)

2 = d2GV +O(n).

13



To deal with E(d2n) we recall its definition:

E(d2n) =

⌊an⌋∑
i=1

i2pi︸ ︷︷ ︸
=O(n3q−C2 )

+
n∑

i=⌈bn⌉+1

i2pi︸ ︷︷ ︸
=O(n3q−C′

1n)

+

⌈bn⌉−1∑
i=⌊an⌋+1

i2pi.

Using the same approach as for the expectation, and the approximations of equation
(5.20), we show that

a2n +O(n4q−Cn) ≤ E(d2n) ≤ b2n +O(n3q−C′
1n).

Since a2n − b2n = O(n), we obtain finally that E(d2n) = d2GV +O(n) and that

V ar(dn) = O(n).

Hence,
V ar(dn)

n2
= O(1/n).

■

6 Packing density of optimal codes

In section 3, we showed that there are no perfect codes in rank metric. From a cryptographic
point of view it is a disappointing result since the existence of perfect codes would provide a
manner to design signature schemes. Namely, the procedure is the following:

• Given a vector y in some space GF (qm)n,

• given a code C,

if the vector y lies within a ball centered on a codeword of C and of radius less than the error
correcting capability of C then return the center of the ball. Else the vector y cannot be
signed.

Under this framework, if the code C was perfect, every vector of GF (qm)n would be
uniquely signed. Since it is not the case, there are residual vectors y that cannot be signed.

Although it is almost the same problem in Hamming metric, a signature scheme was
designed in 2001, based on this principle, [7]. In this construction, the authors used binary
Goppa codes with a very high rate so that the packing density of the code in the ambiant
space is pretty high. Hence, with slight and controlled modifications of the message which has
to be signed, they manage to transformed it into a signable message. In this precise case, the
system is faster if the packing density is higher.

This is one of the main reasons which motivates the study of the packing density of codes
in rank metric and in particular of the MRD codes. By definition, the packing density of a
(n,M, d)r code is

D =
MBt

qmn
,

where t = ⌊(d− 1)/2⌋.
Singleton inequality provides an upper bound on the cardinality of codes with given pa-

rameters. We call optimal codes or MRD (Maximal Rank Distance) codes, codes satisfying
the Singleton equality
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Definition 6 (MRD-codes – [11])
A (n,M, d)r-code over GF (qm) is called MRD if

• M = qm(n−d+1), if n ≤ m.

• M = qn(m−d+1), if n > m

From this definition it follows that, whenever a code is MRD, the corresponding transposed
code is also MRD. In this context we proove the following proposition:

Proposition 6 (Density of MRD-codes)
Let C be a MRD-code, (n, qm(n−2t), 2t+1)r over GF (qm). The packing density of C satisfies

1

q(m−n+1)t+t2
≤ D ≤ 1

q(m−n)t+t2−σ(q)−1
,

The proposition shows that whenever the length of the code is equal to the extension degree,
i.e. n = m and if n tends to ∞, then its packing density is lower bounded by the quantity
q−t2−t. This lower bound depends only on the rank error-correcting capability of the code.
Although MRD codes without distortion are not suitable for cryptograpic applications, it is
worth remarking that there are families of codes whose packing density can be asymptotically
bounded by a function of their minimum rank distance alone.

Therefore constructing such families would be of cryptographic interest. Namely, the
complexity of the decoding algorithms is such that t could remain very small, because they
are exponential in the length or the dimension of the code, [27, 6].

7 Conclusion

In this paper we presented showed that asymptotically random codes reach GV-bounds in rank
metric also. This behaviour can provide a benchmark for the construction of cryptosystems
whose public-key could be secure, since it appears important that the public-code can not be
distinguished from a random codes, as seems to be the case for medium rate Goppa codes (it
is no more the case for high rate Goppa codes,[9]. One of the key arguments for saying that
binary Goppa codes are good candidates for cryptographic applications is that their family
reaches GV whereas for instance the family of BCH codes does not, [22]. So these benchmarks,
from a cryptographic point of view could guarantee some randomness behaviour of a family
of codes in rank metric.

We can mention also some open problems in rank metric that are worth investigating :

• We mentioned in section 4 that the asymptotic relative minimum distance of codes
reaching GV is similar to the Johnson bound for Gabidulin codes. It could be of interest
to understand the link between both bounds.

• Constructing also families of non MRD codes whose packing density depend on the
minimum distance only is a challenging problem.
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