Frédéric Robert 
email: frederic.robert@univ-lorraine.fr
  
Jérôme Vétois 
email: vetois@unice.fr
  
  
  
EXAMPLES OF NON-ISOLATED BLOW-UP FOR PERTURBATIONS OF THE SCALAR CURVATURE EQUATION ON NON LOCALLY CONFORMALLY FLAT MANIFOLDS

Keywords: nonlinear elliptic equations, blow-up, conformal invariance. 2010 Mathematics Subject Classification: 35J35, 35J60, 58J05, 35B44

Solutions to scalar curvature equations have the property that all possible blow-up points are isolated, at least in low dimensions. This property is commonly used as the first step in the proofs of compactness. We show that this result becomes false for some arbitrarily small, smooth perturbations of the potential.

Introduction and statement of the results

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. Given a sequence (h ε ) ε>0 ∈ C ∞ (M ), we are interested in the existence of multi peaks positive solutions (u ε ) ε>0 ∈ C ∞ (M ) to the family of critical equations [START_REF] Ambrosetti | Variational perturbative methods and bifurcation of bound states from the essential spectrum[END_REF] ∆ g u ε + h ε u ε = u 2 ⋆ -1 ε in M for all ε > 0, where ∆ g := -div g (∇) is the Laplace-Beltrami operator, and 2 ⋆ := 2n n-2

is the critical Sobolev exponent. We say that the family (u ε ) ε blows up as ε → 0 if lim ε→0 u ε ∞ = +∞. Blowing-up families to equations like (1) are described precisely by Struwe [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF] in the energy space H 2 1 (M) : namely, if the Dirichlet energy of u ε is uniformly bounded with respect to ε, then there exists u 0 ∈ C ∞ (M ), there exists k ∈ N, there exists k families (ξ i,ε ) ε ∈ M and (µ i,ε ) ε ∈ (0, +∞) such that [START_REF] Brendle | Blow-up phenomena for the Yamabe equation[END_REF] 

u ε = u 0 + k i=1 n(n -2)µ i,ε µ 2 i,ε + d g (•, ξ i,ε ) 2 n-2 2 + o(1),
where lim ε→0 o(1) = 0 in H 2 1 (M ) and lim ε→0 µ i,ε = 0 for all i = 1, ..., k. In this situation, we say that u ε develops k peaks when ε → 0.

We say that ξ 0 ∈ M is a blow-up point for (u ε ) ε if lim ε→0 max Br(ξ 0 ) u ε = +∞ for all r > 0. It follows from elliptic theory that the blow-up points of a family of solutions (u ε ) ε to (1) satisfying ( 2) is exactly {lim ε→0 ξ i,ε / i = 1, .., k}.

Following the terminology introduced by Schoen

[17], ξ 0 ∈ M is an isolated point of blow-up for (u ε ) ε if there exists (ξ ε ) ε ∈ M such that • ξ ε is a local maximum point of u ε for all ε > 0, • lim ε→0 ξ ε = ξ 0 , • there exist C, r > 0 s.t. d g (x, ξ ε ) n-2 2 u ε (x) ≤ C for all x ∈ B r(ξ 0 ), • lim ε→0 max Br(ξ 0 ) u ε = +∞ for all r > 0.
The notion has proved to be very useful in the analysis of critical equations. Let c n := n-2 4(n-1) and R g be the scalar curvature of (M, g). Compactness for the Yamabe equation

(3) ∆ g u + c n R g u = u 2 ⋆ -1
when n ≤ 24 (the full result is due to Kuhri-Marques-Schoen [START_REF] Khuri | A compactness theorem for the Yamabe problem[END_REF]) is established by proving first that the sole possible blow-up points for (3) are isolated, see Schoen [START_REF] Schoen | Notes from graduates lecture in Stanford University[END_REF][START_REF]On the number of constant scalar curvature metrics in a conformal class, Differential geometry[END_REF], Li-Zhu [START_REF] Li | Yamabe type equations on three-dimensional Riemannian manifolds[END_REF], Druet [START_REF]Compactness for Yamabe metrics in low dimensions[END_REF], Marques [START_REF] Marques | A priori estimates for the Yamabe problem in the non-locally conformally flat case[END_REF], Li-Zhang (Theorem 1.1 in [START_REF] Li | Compactness of solutions to the Yamabe problem. III[END_REF]), and Kuhri-Marques-Schoen [START_REF] Khuri | A compactness theorem for the Yamabe problem[END_REF]). When n ≥ 25, there are examples of non-compactness of equation (3) (Brendle [START_REF] Brendle | Blow-up phenomena for the Yamabe equation[END_REF] and Brendle-Marques [START_REF] Brendle | Blow-up phenomena for the Yamabe equation[END_REF]).

In this note, we address the questions to know whether or not blowup solutions for (1) do exist, and whether or not they necessarily have isolated blow-up points. When h ε ≤ c n R g , blow-up does not occur for n ≤ 5 as shown by Druet [START_REF]Compactness for Yamabe metrics in low dimensions[END_REF] (except for the conformal class of the round sphere). When the potential is allowed to be above the scalar curvature, blow-up is possible: we refer to Druet-Hebey [START_REF] Druet | Blow-up examples for second order elliptic PDEs of critical Sobolev growth[END_REF] for examples of nonisolated blow-up on the sphere with C 1 -perturbations of the scalar curvature term in (3), and to Esposito-Pistoia-Vétois [START_REF] Esposito | The effect of linear perturbations on the Yamabe problem[END_REF] for examples of isolated blow-up on general compact manifolds with arbitrary smooth perturbations of the scalar curvature. We present in this note examples of non-isolated blow-up points for smooth perturbations of the scalar curvature term in (3). This is the subject of the following theorem.

Theorem 1.1. Let (M, g) be a non-locally-conformally flat compact Riemannian manifold of dimension n ≥ 6 with positive Yamabe invariant. We fix ξ 0 ∈ M such that the Weyl tensor at ξ 0 is such that Weyl g (ξ 0 ) = 0. We let k ≥ 1 and r ≥ 0 be two integers. Then there exists

(h ε ) ε>0 ∈ C ∞ (M ) such that lim ε→0 h ε = c n R g in C r (M ), and there exists (u ε ) ε>0 ∈ C ∞ (M ) a family of solutions to ∆ g u ε + h ε u ε = u 2 ⋆ -1 ε in M for all ε > 0,
such that (u ε ) ε develops k peaks at the blow-up point ξ 0 . Moreover, ξ 0 is an isolated blow-up point if and only if k = 1.

In particular, Theorem 1.1 applies for M := S p × S q (p, q ≥ 3) endowed with the product metric. In this case, any point can be a blow-up point since the Weyl tensor never vanishes on S p × S q . As a consequence, when dealing with general perturbed equations like [START_REF] Ambrosetti | Variational perturbative methods and bifurcation of bound states from the essential spectrum[END_REF], one has to deal with the delicate situation of the accumulation of peaks at a single point. The C 0 -theory by Druet-Hebey-Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] addresses this question in the a priori setting and L ∞ -norm. We refer also to Druet [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF] and Druet-Hebey [START_REF]Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium[END_REF] where the analysis of the radii of interaction of multi peaks solutions is performed.

The choice of this note is to perturb the potential c n R g of the equation. Alternatively, one can fix the potential c n R g and multiply the nonlinearity u 2 ⋆ -1 by smooth functions then leading to consider Kazdan-Warner type equations: in this slightly different context, Chen-Lin [START_REF] Chen | Blowing up with infinite energy of conformal metrics on S n[END_REF] and Brendle (private communication) have constructed non-isolated local blowup respectively in the flat case and in the Riemannian case.
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Proofs

The proof of Theorem 1.1 relies on a Lyapunov-Schmidt reduction. We fix ξ 0 ∈ M such that Weyl g (ξ 0 ) = 0. It follows from the classical conformal normal coordinates theorem of Lee-Parker [START_REF] Lee | The Yamabe problem[END_REF] that there exists Λ ∈ C ∞ (M × M ) such that for any ξ ∈ M ,

R g ξ (ξ) = 0, ∇R g ξ (ξ) = 0, and ∆ g ξ R g ξ (ξ) = 1 6 Weyl g (ξ) 2 g ,
where Λ ξ := Λ(ξ, •) and g ξ := Λ 4/(n-2) ξ g. Without loss of generality, up to a conformal change of metric, we assume that g ξ 0 = g. We let r 0 > 0 be such that r 0 < i g ξ (M ) for all ξ ∈ M compact, where i g ξ (M ) is the injectivity radius of M with respect to the metric g ξ . We let χ ∈ C ∞ (R) be such that χ(t) = 1 for t ≤ r 0 /2 and χ(t) = 0 for t ≥ r 0 . We define a bubble centered at ξ with parameter δ as:

W δ,ξ := χ(d g (•, ξ))Λ ξ n(n -2)δ δ 2 + d g ξ (•, ξ) 2 n-2 2 
.

We fix an integer k ≥ 1. Given α > 1 and K > 0, we define the set

D (k) α,K (δ) := ((δ i ) i , (ξ i ) i ) ∈ (0, δ) k × M k 1 α < δ i δ j < α ; d g (ξ i , ξ j ) 2 δ i δ j > K for i = j .
For any h ∈ C 0 (M ), we define the functional:

J h (u) := 1 2 M (|∇u| 2 g + hu 2 ) dv g - 1 2 ⋆ M u 2 ⋆ + dv g for all u ∈ H 2 1 (M ). For ((δ i ) i , (ξ i ) i ) ∈ D (k)
α,K , we define the error

R (δ i ) i ,(ξ i ) := (∆ g + h) k i=1 W δ i ,ξ i - k i=1 W δ i ,ξ i 2 ⋆ -1 2n n+2
The classical Lyapunov-Schmidt finite-dimensional reduction yields the following:

Proposition 2.1. We fix α > 1, η > 0, C 0 > 0 such that h ∞ ≤ C 0 and λ 1 (∆ g +h) ≥ C -1 0 . Then there exists K 0 = K 0 ((M, g), α, C 0 , η) > 0, δ 0 = δ 0 ((M, g), α, C 0 , η) > 0 and φ ∈ C 1 (D (k) α,K 0 (δ 0 ), H 2 1 (M )) such that • R (δ i ) i ,(ξ i ) < η for all (δ i ) i , (ξ i ) ∈ D (k) α,K 0 (δ 0 ), • u((δ i ) i , (ξ i )) := k i=1 W δ i ,ξ i + φ((δ i ) i , (ξ i )) is a critical point of J h iff ((δ i ) i , (ξ i )) is a critical point of ((δ i ) i , (ξ i )) → J h (u((δ i ) i , (ξ i ))) in D (k) α,K 0 (δ 0 ), • φ((δ i ) i , (ξ i )) H 2 1 = O(R (δ i ) i ,(ξ i ) ), • J h (u((δ i ) i , (ξ i ) i )) = J h ( k i=1 W δ i ,ξ i ) + O(R 2 (δ i ) i ,(ξ i ) ). Here, |O(1)| ≤ C((M, g), α, C 0 ) uniformly in D (k) α,K 0 (δ 0 ).
This result is essentially contained in the existing litterature. It is a particular case of the general reduction theorem in Robert-Vétois [START_REF] Robert | A general theorem for the construction of blowing-up solutions to some elliptic nonlinear equations via Lyapunov-Schmidt's reduction[END_REF]. We also refer to Esposito-Pistoia-Vétois [START_REF] Esposito | The effect of linear perturbations on the Yamabe problem[END_REF] and to the general framework by Ambrosetti-Badiale [START_REF] Ambrosetti | Variational perturbative methods and bifurcation of bound states from the essential spectrum[END_REF] for nondegenerate critical manifolds.

From now on, we fix ((

δ i ) i , (ξ i ) i ) ∈ D (k) α,K 0 (δ 0 ). Standard computations yield J h k i=1 W δ i ,ξ i = k i=1 J h (W δ i ,ξ i ) + i =j M (∇W δ i ,ξ i , ∇W δ j ,ξ j ) g + hW δ i ,ξ i W δ j ,ξ j dv g - 1 2 ⋆ M k i=1 W δ i ,ξ i 2 ⋆ - k i=1 W 2 ⋆ δ i ,ξ i dv g and M k i=1 W δ i ,ξ i 2 ⋆ - k i=1 W 2 ⋆ δ i ,ξ i dv g = O i =j W δ i ,ξ i ≤W δ j ,ξ j W δ i ,ξ i W 2 ⋆ -1 δ j ,ξ j dv g .
Choosing K 0 larger if necessary, there exists c 1 = c 1 (α, K 0 ) > 0 such that for any i = j and x ∈ M such that W δ i ,ξ i (x) ≤ W δ j ,ξ j (x), we have that d g ξ i (x, ξ i ) ≥ c 1 (d g (ξ i , ξ j ) + d g (x, ξ j )). Therefore, we get that

W δ i ,ξ i (x) ≤ c 2 δ
(n-2)/2 j d g (ξ i , ξ j ) 2-n for all such x, for some constant c 2 = c 2 (α, K 0 ) > 0. Consequently, a rough upper bound yields

J h k i=1 W δ i ,ξ i = k i=1 J h (W δ i ,ξ i ) + O i =j δ i δ j d g (ξ i , ξ j ) 2 n-2 2
and

R (δ i ) i ,(ξ i ) ≤ k i=1 (∆ g +h)W δ i ,ξ i -W 2 ⋆ -1 δ i ,ξ i 2n n+2 +O i =j δ i δ j d g (ξ i , ξ j ) 2 n-2 4 uniformly in D (k)
α,K 0 (δ 0 ). Moreover, see Proposition 2.3 in Esposito-Pistoia-Vétois [START_REF] Esposito | The effect of linear perturbations on the Yamabe problem[END_REF], we have that

J h (W δ,ξ ) = K -n n n 1 + 2(n -1) (n -2)(n -4) (h -c n R g )(ξ)δ 2 + O( h -c n R g C 1 )δ 3 -|W eyl g (ξ)| 2 g 1 64 δ 4 ln 1 δ + O(δ 4 ) when n = 6 1 24(n-4)(n-6) δ 4 + O(δ 5 ) when n ≥ 7 and (∆ g + h)W δ,ξ -W 2 ⋆ -1 δ,ξ 2n n+2 ≤ Cδ 2 1 + h -c n R g C 0 ln 1 δ 2/3 when n = 6 √ δ + h -c n R g C 0 when n ≥ 7.
Here again, |O(1)| ≤ C((M, g), α, C 0 ) uniformly in D

α,K 0 (δ 0 ). We now choose the (δ i ), (ξ i ) ′ s and the function h. For any ε > 0, we let δ ε > 0 be such that

δ 2 ε ln 1 δ ε = ε when n = 6 and δ 2 ε = ε when n ≥ 7.
We let

H ∈ C ∞ (R n ) be such that • H(x) = -1 for all |x| > 2,
• H admits k distinct strict local maxima at p i,0 ∈ B 1 (0) for i = 1, ..., k, • H(p i,0 ) > 0 for all i = 1, ..., k. We let r > 0 be such that for any i ∈ {1, ..., k}, the maximum of H on B 2r (p i,0 ) is achieved exactly at p i,0 and such that |p i,0 -p j,0 | ≥ 3r for all i = j. We let (µ ε ) ε ∈ (0, +∞) be such that lim ε→0 µ ε = 0 and (| ln ε|) -1/4 = o(µ ε ) when n = 6 and ε n-6

2(n-2) = o(µ ε ) when n ≥ 7,
where both limits are taken when ε → 0. As one can check, δ ε = o(µ ε ) when ε → 0. We define

h ε (x) := c n R g (x) + εH µ -1 ε exp -1 ξ 0 (x) for all x ∈ M.
Here, the exponential map is taken with respect to the metric g and after assimilation to R n of the tangent space at ξ 0 : this definition makes sense for ε > 0 small enough. For (t i ) i ∈ (0, +∞) k and (p i

) i ∈ (R n ) k , we define ũε ((t i ) i , (p i ) i ) := u (t i δ ε ) i , (exp ξ 0 (µ ε p i )) i with h ≡ h ε .
The above estimates and the choice of the parameters yield

(4) lim ε→0 J hε (ũ ε ((t i ) i , (p i ) i )) -k K -n n n εδ 2 ε = k i=1 F n (t i , p i ) in C 0 loc ((0, +∞) k × k i=1 B r (p i,0
)), where

F n (t, p) := 2(n -1) (n -2)(n -4) H(p)t 2 -d n |W eyl g (ξ 0 )| 2 g t 4
for (t, p) ∈ (0, +∞) × R n , with d 6 = 1 64 and d n := 1 24(n-4)(n-6) for n ≥ 7. As easily checked, up to choosing the t ′ i s in suitable compact intervals I 1 , ..., I k , the right-hand-side of (4) has a unique maximum point in the interior of k i=1 I i × k i=1 B r(p i,0 ). As a consequence, for ε > 0 small enough, J hε (ũ ε ((t i ) i , (p i ) i )) admits a critical point, ((t i,ε ) i , (p i,ε ) i ) ∈ (α, β) k × k i=1 B r(p i,0 ) for some 0 < α < β independent of ε. Defining ξ i,ε := exp ξ 0 (µ ε p i,ε ) for all i = 1, ..., k, there exists c 0 > 0 such that d(ξ i,ε , ξ i,ε ) ≥ c 0 µ ε for all i = j ∈ {1, ..., k} and all ε > 0 small enough. Defining u ε := ũε ((t i,ε ) i , (p i,ε ) i ), it follows from Proposition 2.1 and the strong maximum principle that

∆ g u ε + h ε u ε = u 2 ⋆ -1 ε in M
for ε > 0 small enough. In addition to the hypotheses above, we require that ε = o(µ r ε ) when ε → 0, which yields lim ε→0 h ε = c n R g in C r (M ). We prove that (u ε ) ε develops no isolated blow-up point when k ≥ 2. We argue by contradiction. Moser's iterative scheme yields the convergence of u ε to 0 in C 2 loc (M \ {ξ 0 }). We then get that the isolated blow-up point is ξ 0 , and thus that there exists r 1 > 0 and (ξ ε ) ε ∈ M such that lim ε→0 ξ ε = ξ 0 and there exists C > 0 such that [START_REF] Druet | From one bubble to several bubbles: the low-dimensional case[END_REF] d g (x, ξ ε ) n-2 2 u ε (x) ≤ C for all ε > 0 and x ∈ B r 1 (ξ 0 ).

For any i = 1, .., k, we recall that ξ i,ε := exp ξ 0 (µ ε p i,ε ) and we define ũi,ε (x) := (δ ε t i,ε ) n-2 2 u ε (exp ξ i,ε (δ ε t i,ε x)) for all |x| < r 0 /(2δ ε t i,ε ). It follows from standard elliptic theory that (6) lim ε→0 ũi,ε = n(n -2)

1 + | • | 2 n-2 2 in C 2 loc (R n ).
Moreover, if δ ε = o(d g (ξ i,ε , ξ ε )) when ε → 0, inequality (5) yields the convergence of ũi,ε to 0 in C 0 loc (R n ): a contradiction to [START_REF]Compactness for Yamabe metrics in low dimensions[END_REF]. Therefore, d g (ξ ε , ξ i,ε ) = O(δ ε ) when ε → 0 for all i = 1, ..., k, and then d g (ξ i,ε , ξ j,ε ) = O(δ ε ) = o(µ ε ) when ε → 0 for all i = j. This contradicts the fact that d g (ξ i,ε , ξ j,ε ) ≥ c 0 µ ε when k ≥ 2. This proves the non-simpleness when k ≥ 2.
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