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Abstract

We consider the model of hashing with linear probing and we establish the moderate
and large deviations for the total displacement in sparse tables. In this context, Weibull-
like-tailed random variables appear. Deviations for sums of such heavy-tailed random
variables are studied in [20, 21]. Here we adapt the proofs therein to deal with conditioned
sums of such variables and solve the open question in [8]. By the way, we establish
the deviations of the total displacement in full tables, which can be derived from the
deviations of empirical processes of i.i.d. random variables established in [28].

Keywords: large deviations, hashing with linear probing, parking problem, Brownian motion,
Airy distribution, fukasiewicz random walk, empirical processes, conditioned sums of i.i.d.
random variables, triangular arrays, Weibull-like distribution.
AMS subject classification: 60F10; 60C05; 60G50; 68W40.

1 Introduction

Hashing with linear probing is a classical model in theoretical computer science that appeared
in the 50’s. It has been studied from a mathematical point of view firstly by Knuth in [14].
Here is a simple description given in [6].

A table of length m, T[1..m] is set up, as well as a hash function h that maps
keys from some domain to the interval [1..m] of table addresses. A collection of
n elements with n < m are entered sequentially into the table according to the
following rule: Each element z is placed at the first unoccupied location starting
from h(z) in cyclic order, namely the first of h(z), h(z) + 1, ..., m, 1, 2, ...,
h(z) — 1.

For more details on the model, we refer to [6, 9, 18, 3, 2, 11]. The length of the move of
each element z is called the displacement of x and the sum of all displacements, denoted
by dp.n, is called the total displacement. In its seminal papers [14, 15|, Knuth assumes that
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all the sequence of hash addresses h(z) are independent and uniformly distributed on [1,m],
computes exact expressions of E[d,, ] and Var(d,, ), and provides their asymptotic behaviors.
The limit distribution of d,, ,, remains unknown until 1998: in [6], Flajolet, Poblete, and Viola
give the limit distribution of d,,, for full tables (n = m) and for sparse tables (n/m = u €
(0,1)) using combinatorial arguments. In [4], Chassaing and Marckert recover the previous
results in the full case via a probabilistic approach. They prove that d,,, is the area under
the Lukasiewicz random walk (also called Breadth First Search random walk) associated to
a Galton-Watson tree with Poisson progeny. Consequently, the limit distribution of the total
displacement d,y, ,, is that of the area under the Brownian excursion, which involves the Airy
distribution.

In [9], reformulating the problem in terms of conditioned sums of random variables, Janson
establishes the limit distribution of d,,, in all cases with probabilistic tools. In [10], Janson
extends the central limit theorem in the sparse case to a general model of conditioned sums
of random variables. The corresponding Berry-Esseen bounds are proved by Klein, Lagnoux,
and Petit in [12]. Concerning the deviations of such conditioned models, Gamboa, Klein, and
Prieur give an answer in the case of light-tailed random variables (see [8]). Unfortunately,
their results cannot be applied to the model of hashing with linear probing since this model
involves heavy-tailed random variables.

In this paper, we establish the moderate and large deviations for the total displacement d,, ,,
in sparse tables. Deviations for heavy-tailed random variables are studied by several authors
(e.g., [24, 17, 20, 21, 22]) and a good survey can be found in Mikosch [19]. In the context
of hashing with linear probing, Weibull-like-tailed random variables appear. Deviations for
sums of such variables are studied by Nagaev in [20, 21]. Here we adapt its proofs to deal
with conditioned sums of such variables. We also need to establish the deviations of d,,,, for
full tables, which can be derived from the deviations of empirical processes of i.i.d. random
variables established by Wu in [28].

The paper is organized as follows. In Section 2, we state the main results for full and sparse
tables. The proofs for full tables are given in Section 3 and those for sparse tables can be
found in Section 5. In Section 4, we expose Janson’s reformulation of the model and provide
several useful estimates required in Section 5.

2 Setting and main results

2.1 Model

An equivalent formulation of the problem of hashing can be made in terms of the discrete
version of the classical parking problem described, for instance, by Knuth [16]:

A certain one-way street has m parking spaces in a row numbered 1 to m. A man
and his dozing wife drive by, and suddenly, she wakes up and orders him to park
immediately. He dutifully parks at the first available space [...].

More precisely, the model describes the following experiment. Let n < m. n cars enter
sequentially into a circular parking uniformly at random. The parking spaces are numbered
clockwise. A car that intends to park at an occupied space moves to the next empty space,
always moving clockwise. The length of the move is called the displacement of the car and
we are interested in the sum of all displacements which is a random variable denoted by d,, ,,.
When all cars are parked, there are N = m — n empty spaces. These divide the occupied
spaces into blocks of consecutive spaces. We consider that the empty space following a block
belongs to this block.

For example, assume that n =8, m = 10, and (6,9,1,9,9,6,2,5) are the addresses where the
cars land. This sequence of (hash) addresses is called a hash sequence of length m and size n.
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Let d; be the displacement of car i. Then d; = dy = d3 = 0. The car number 4 should park
on the 9thspace which is occupied by the 2nd car; thus it moves one space ahead and parks
on the 10thspace so that dy = 1. The car number 5 should park on the 9thspace. Since the
9th, the 10th, and the 1st spaces are occupied, ds = 3. And so on: dg = 1, d7 = 1, dg = 0.
Here, the total displacement is equal to djps = 14+ 3 + 1+ 1 = 6. In our example, there are
two blocks: the first one containing spaces 9, 10, 1, 2, 3 (occupied), and space 4 (empty), and
the second one containing spaces 5, 6, 7 (occupied), and space 8 (empty).

In this paper, we are interested in the deviations of the total displacement d,,, in sparse
tables. To do so, we need the large deviation behavior of d,,, in full tables. By the way, we
also established the moderate deviation behavior of d,, , in full tables.

2.2 Deviations in full tables

In this section, we first recall some already existing results for the total displacement d,,, ,, in
full tables (n = m). As mentioned in the introduction, Knuth in [15] and Flajolet et al. in [6,
Theorem 2]) derive the asymptotic behavior of the expectation and the variance of d,

2 10 —
Eldpl ~ LT3 and Var(dnm) 0243%3. (1)

m—oo 4

The following result was first established in [6, Theorem 3].

Theorem 1 (Standard deviations). For full tables, the distribution of the total displacement
dimm/ m3/? is asymptotically distributed as the area A under the standard Brownian excursion,
in the sense that, for all 6 > 0,

P(dpm = m?26) —— P(A > 6).

m—o0

In this paper, we establish the probabilities of deviation for the total displacement d,, ,.
Theorem 2 (Moderate deviations). For all a € (3/2,2) and for all 6 > 0,

1
— a5 108 P(d g > M?0) ——— —60”.

Theorem 3 (Large deviations). For all 6 > 0,

(5 —0) - A(6) +log(1 — (2 4+6) - A(8)) ifd<1/2

1
——logP(dpm = m?8) —— J(6) := .
m ’ (0.¢) Zf5 2 1/27

m—o0

where A(J) is the smallest solution of the equation in A

<A-<5+;)—1)(1—ek):x (2)

Observe that lower deviations are trivial: for all a € (3/2,2] and all m large enough, P(d,, .m —
E[dm] < —m®d) = 0 because of the positiveness of d,, ,,, and using (1). When dealing with
the very large deviations, the same trivial behavior occurs both for upper and lower deviations:
for all & > 2 and all m large enough, P(d,, ,, — E[dm] = m®0) = 0 and P(d,,m — E[dmm] <
—m®0) = 0, since dp,m < m(m —1)/2.

Remark 4. If 6 = 0, A(0) = 0 is the unique solution of Equation (2). If § € (0,1/2), Equation

(2) has two solutions: A(d) < 0 and 0. Moreover, J(§) ~ 65 as & — 0 (we recover the rate
function of the moderate deviations in Theorem 2) and J(§) — 400 as 6 — 1/2.



Remark 5. The conclusions of Theorems 1, 2, and 3 are still valid replacing ¢ by § + o(1),
since the rate functions are continuous. In particular, one may replace d,,, by d,, as soon
as m —n < m® ! (for instance, in the almost full case where n = m — 1). Indeed, naturally
coupling d,, ,, and d,, , by adding m — n balls, one has

|dimn — | < (M —=1)4+(m—=2)4+---+n~m(m—n) <m*,
whence
P(dyn = m*) = P(dmm = m*(d + o(1))).
Moreover, using a new probabilistic approach developed in [4], Theorem 1 was extended in [9,
Theorems 1.1 and 2.2] to the case (m —n)/\/m — a € [0,00): for all 6 > 0,
P(d,n = m*?8) —— P(W, > §),

with
W, = [ max(b(t) —b(s) —a(t — s))dt

s<t

where b is a Brownian bridge b on [O, 1] periodically extended to R.

2.3 Deviations in sparse tables

In this section, we consider asymptotics in (m,n) with m — oo and n/m — pu € (0, 1) (sparse
case). This definition of the sparse case is a slight extension of that of [6] (n/m = pu € (0,1)).
Set N =m — n. By [6, Theorem 5],

2

i
]E[dm,n] m:oo WN and Var(dmm) mgoo 0'2 (/J,)N, (3)
where (cf. [6, Theorem 5])
0_2( ): 6M2_6/’L3+4/“L4_/’L5 (4)
AT TR

The following result was first proved in [6, Theorem 6] while another probabilistic proof was
given in [9].

Theorem 6 (Standard deviations). The distribution of the total displacement d,, ,, is asymp-
totically Gaussian distributed, in the sense that, for all vy,

P (dm,n - E[dm,n] < N1/2y> — P(Z < y)

where Z ~ N(0,02(p)).

In this paper, we establish the probabilities of deviation of the total displacement d,,,, in the
sparse case.

Theorem 7 (Lower moderate deviations). For all o € (1/2,1) and for all y > 0,
2

Y
——logP(dyy, — E|dn]) < —N© — . )
Theorem 8 (Lower large deviations). For all y > 0,
L og P(dy, 0 — Eldy ] < —Ny) —— A*( ! U ) (6)
~ 10 m,n mmn| X T - ’ - )
N & ’ ’ Y e 11— 2(1— p)? Yy

where A* is the Fenchel-Legendre transform of the function A: R? — (—oo, 00] defined by

logi (:U’l) E[etdl,l,l].



For all o > 1, we have, asymptotically, P(d,,,, — E[d,,] < —N%y) = 0, since d,,, > 0 and
E[d ] is asymptotically linear in V.

Theorem 9 (Upper deviations).
(i) For all o € (1/2,2/3) and for all y > 0,

1 y?
———log P(d,,., — Eld > N“ > — )
N2a71 Og ( m,n [ m,n] y) m—oo 20_2<M) (7)
(ii) For all y > 0,
N1/3 log P(dpmn — E[dpmn] > N2/3y) PR —1(y) (8)
with ,
I(y) = Crm) if y <y,
= 2.2 .
g(p) (1 — t(y)) 2y + §45 ify > y(p),
where

o) =, dnd () + ().

k(p) = p—log(p) —1 € (0,00), J has been defined in Theorem 3, y(u) =3 (q(,u)az(,u))w3 /2,
and t(y) is defined for y > y(u) as the smallest root of the cubic equation in t € [0,1]

2 4
B2 M =0.
4y3
(7ii) For all o € (2/3,2) and for all y > 0,
1 (0%
W logp(dm,n - ]E[dm,n] > N y) m _q(u)yl/? (9)

(iv) For ally > 0,
1
—log P(dpn — E[dmn] = N%y)

N
{ inf {\/g(/@(,u) + J(0)) + A3<11M — g)} if y < p?/(2(1 = p)?)

6>0
—0 ify > p?/(201 — p)?),

—

m—0o0

(10)

where A} is the Fenchel-Legendre transform of the function Ag: R — (—o00,00] defined by
Ao(s) := A(s,0) and A has been defined in Theorem 8.

For all a > 2, we have, asymptotically, P(d,, , — E[dmn,] = N%y) = 0, since dp,, < n(n—1)/2
and N is asymptotically linear in n.

Remark 10. Observe that, for a = 2/3 and for all y > 0,

I(y) = inf [(t),

t€[0,1]
where

70 = (a1 =029 4 5 )

Ify <wyi(p) =3 ((](,u)az(u))w3 /243 then f is decreasing and its minimum y2/(20%(u)) is
attained at ¢t = 1. If y > y;(p), f has two local minima, at 1 and at t(y), corresponding to the
smallest of the two roots in [0, 1] of f'(t) = 0 which is equivalent to t3 —t2+¢*(u)o* () /(4y3) =

b}



0. If y1(p) < v < y(p), the minimum is attained at 1, and at ¢(y) otherwise. Let ¢ =
O

¢*(p)o*(1)/(4y?). One can prove that t(y) = 29Re(z) + 1/3 where 2 is the only complex cube
root of

1 ¢ |c 02

27 2 + 27

having argument in (7/3,27/3).

Remark 11 (Typical events of deviation in Theorem 9).

(i) All the displacements within the blocks are small but their sum has a Gaussian contribution.
(iii) One block has a large size §'/2N®/2¢'/2 and the displacement within this block is N,
d being chosen by the optimization in ¢(u) (two competing terms).

(ii) One block has a large size and the displacement within this block is large (NS(1 —(y))y)
and the sum of the other displacements has a Gaussian contribution (two extra competing
terms).

(iv) One block has a large size 6~'/2Ny'/? and the displacement within this block is N2y
which forces the sum of the length of the other blocks to be abnormally small, that is m —
§TV2NyY2 ~ N((1 — p)~t — 67/2y"/2) (three competing terms).

3 Proofs: full tables

Here, we take n = m. All limits are considered as m — oo unless stated otherwise.

3.1 Upper moderate deviations - Theorem 2

For allm > 1, let (Uy,.i)1<i<m be a sequence of i.i.d. random variables with uniform distribution
U on [0,1] and let, for all ¢ € [1,m], Vi = [mU,,;]. Note that (V,,;)1<i<m IS & sequence
of iid. random variables uniformly distributed on [1,m] and, for all ¢ = 1,....,m, V,,;
corresponds to the hash address of item ¢. Let us define

)= i Ly, <k = Lun([0, k/m]),

where L,, is the empirical measure associated to the random sequence (U, ;)1<i<m-
As in [9, Lemma 2.1], we extend the definition of S,,(k) for k € Z so that the sequence
(S (k) — k)rez be m-periodic, whence

I‘lni]?{Sm(l) —1} = 12}2}”{8771(1) — 1}

Thus, by [9, Equation (2.1) and Lemma 2.1}, the total displacement d,, ., is given by
Z (Sm — = min {S(l) - 1}>
=m Y (L =U)([0,k/m]) —m?* min {(L, —U)([0,1/m])}

k=1 I<ism
= ([ = 20)00.0)y = Juf, (T —U)([0,310} + )
yGQ
where A,, € [-3/2,—1/2]. Let « € (3/2,2). Then,
. Vi () A
P (o > m°0) = P( 0 ([ (L = )(0, 91y = int (L = 2)([0,9)} + ) > 6)

moa—3/2 0<y<1

yeQ
_ p<¢(ﬁ(Lm ~U)) > bn),

me—3/2




where §,, = 6§ — A,,/m~ @Y — § and, for any measure v € M([0,1]) (the space of signed
measures on [0, 1]),

o) = [ w0,y — inf w(0.4)) ()
yeQ

Since .

o(v) = /01(1 —z)dv(xz) — inf Ljgy(x)dv(x)

0<y<l, Jo
yeQ

by Fubini’s theorem, ¢ is a measurable function when M (][0, 1]) is equipped with the o-algebra
generated by the applications v — v(f) for all bounded measurable function f on [0,1]. By
(28, Equation (1.3)], we have

1 m

s —inf {;/;(dl/(y))Qdy e M([0,1)), v < U, p(v) > 6,1(]0,1]) = o}

dy
1 /1 1
— _inf {2/ G(y)dy s G € AC(D, 1)), [ Gly)dy —minG > 6,G(0) = G(1) = o} . (12)
0 0
where AC([0, 1]) is the space of absolutely continuous functions on [0,1]. We have used the
fact that inf {G(y); 0 <y <1,y € Q} = minG by the continuity of G on [0,1]. If G is a
minimizer in (12) and if § is a minimizer of G, then G(y) = G(y 4+ y) — G(§) is also a a

minimizer in (12). The addition § + y has to be understood as the addition on the torus T.
Moreover, min G' = 0 and [, G'(y)?dy = [y G'(y)?dy. So

inf {; /01 G'(y)2dy : G € AC(D, 1]),/1 Gly)dy — minG > 5,G(0) = G(1) = 0}

0

— inf {; /01 G'(y)dy ; G € AC([0, 1]),/01 Gly)dy = 8,G(0) = G(1) = o} . (13)

Using the method of Lagrange multipliers, if G is a minimizer of

1

{2 /01 G'(y)dy : G € AC([0,1]), /01 Gly)dy 5} | (14)

then there exists A € R such that

]_ 1 , 9 1 B
5/0 G'(y) dy+/\/0 G(y)dy = 0.

Differentiating with respect to G, we get
vh e CX(0.1) [ (G () + Nh(y))dy =0
Integrating by parts, one has
vheCx((0.1) [ (G) ~ )i (y)dy =0,

By Du Bois-Reymond’s lemma in [5, p.184], the function y — G’(y) — Ay is constant, so G is
a quadratic polynomial. Getting back to (14), the minimizer is given by

G(y) = 6dy(1 —y)
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and the infimum is 66%. Moreover, we check that G(0) = G(1) = 0 as required in (13).

Consequently,
v m 2

Using the fact that, for ® = o((y/m/m*=3/2) (L,, —U)),
P(®>0+¢) <P(®>06,) <PO®>0—¢) (15)

for all € > 0 and all m large enough, we conclude to the result in Theorem 2 by continuity of
the function § — —652. O

3.2 Upper large deviations - Theorem 3
The result for § = 0 is trivial. Suppose that 6 > 0. We have

P (dre > m5) = B [ (L )0, 30)dy — inf (L~ 24)([0.5)} + 22 > )

yeQ

=P(o(Ln-t) 25~ m),

m

where ¢ is the measurable function defined in (11). By Sanov’s theorem (see, e.g., [28, Equa-
tion (1.1)]), we have

o P (i (L~ U) > )
) dv

— —mf{ <dy(
F'(y)

—inf{/o

)) log(zli;( )>dy cve MI([0,1), v <U, plv—U) > 6}

y)log F'(y)dy ; F € AC([0,1]),F" >0 / y)dy — min(F —id) > 6,
F(0)=0,F(1) = 1}, (16)

where M7 ([0,1]) is the space of probability measures on [0,1]. If F'is a minimizer in (16)
and if 7 is a minimizer of F' —id, then F(y) = F(j +y) — F() is also a a minimizer in (16).
Moreover, min(E —id) = 0 and [} F(y)log F'(y)dy = [} F'(y)log F'(y)dy. So

— jnf{/o1 F'(y)log F'(y)dy ; F € AC(] >0 / y)dy — min(F —id) > o,
F(0)=0,F(1) = 1}

1 1
—inf{/o F'(y)log F'(y)dy ; F € AC([0,1]), F' > 0,/0 F(y)dy =0+,

F(0)=0,F(1) = 1}
—inf K,
where K: AC([0,1]) — [0, 00| is the convex function defined by

Jo F'(y)log(F'(y))dy if F' >0, Jy F(y)dy > 6+ 3, F(0)=0, F(1) =1
00 otherwise.

K(F) = {



It is a standard convex optimization problem, a minimizer of which is

_ a(l—e) =1

F(y) = a(l — &™), here

(y) ( ), w {a — 5 % _ %

(One can see that a > 1 and A < 0.) Indeed, by the definition of a convex functio_n and the
subdifferential, it suffices to check that 0 belongs to the subdifferential of K at F'. For all
h € AC([0,1]) and for all ¢ > 0,

Jo (B 4 th) log(F' +th') if F' +th' >0, [y h =0, h(0) = h(1) =0

00 otherwise.

K(F+th):{

Differentiating under the integral sign with respect to ¢ and integrating by parts gives

K(F;h) = [ () (log F(y) + Dy = =7 [ h(y)dy >0

since h(0) = h(1) =0, [ h(y)dy > 0, and A < 0. It remains to compute the value of K at F
and to apply the same argument of continuity as in (15) to get the required result. O]

4 Interlude

4.1 Janson’s reformulation

Here, we consider (m,n) with m — oo and n/m — p € (0,1). As a consequence, N = m—n —
oo. To make notation clearer, we make quantities depend on N and all limits are considered
as N — oo unless stated otherwise. In the next section, we are interested in the deviations of
dmyny in that regime, which is called the sparse case (see [6, 9] for this denomination with
slight variants). In this section, we introduce a reformulation of the model of hashing with
linear probing due to Janson in [9] and prove some preliminary results.

For all N > 1, we consider a vector of random variables (Xy,Yy) defined as follows. We
assume that Xy is distributed according to the Borel distribution with parameter uy :=
ny/my € (0,1), i.e.

-1
Vie[l,oof P(Xy=1I)= e—uwl(#]\flll)

(see, e.g., [6] or [9] for more details). In some places, for the ease of computation, we may also
use the parametrization Ay = e ¥ uy to get an equivalent definition of the Borel distribution:
1

P<XNIZ>:W T

(17)

(18)

where T is the tree function (see, e.g., [7, p. 127]). Furthermore, we assume that Yy given
{Xn =1} is distributed as dj;_;.
Let (Xn, Yn,i)1<i<ny be an iid. sample distributed as (X, Yy) and define, for all k£ € [1, N],

k k
SN,k = ZXN,’i and TN,k = ZYN:i'
i=1 1=1

To lighten notation, let Sy := Syn and T := T . Notice that, for all N > 1, E[Xy] =
(1—pun)~' =mp/N, so E[Sy] = my. Moreover, P(Sy = my) > 0 and we have the following
identity (see [9, Lemma 4.1]):

E(dmN,nN) = ﬁ(TN ’ SN = mN).

9



4.2 Tail estimates
For all £ € (0,1), recall that k(&) =& —log(¢) — 1 € (0, 00).
Proposition 12 (Tail of Xy). Ifl > 1/uy, then
logP(Xy =1) < —k(un)l. (19)

And if Iy — o0, then

logP(Xn = Iy) ~logP(Xy = In) ~ —k(p)ln. (20)
Proof of Proposition 12. As soon as uyl > 1, and since log(1!) > I(log(l) — 1),
log P(Xy = 1) = —pnl + Ulog(unl) — log(punl) —log(l!) < —l(un —log(un) — 1) = —r(uy)L.

Therefore,

logP(Xy > ly) = log Z P(Xy =1ly) < log Z e~ RNl —r(p)ly.

I=In I=ln

Finally, using Stirling formula, one has

log P(Xn > In) = logP(Xn = Iy) = —pniy + (Iv — 1) log(punin) —log(In!) ~ —r(p)in. O

From the previous proposition and Theorem 3, we deduce the asymptotic behavior of the tail
of the pair (Xy, Yn).

Proposition 13 (Tail of (Xy,Yy)). Let Iy — oo and let py be such that py /I3 — 6. Then

ljvlogm =y, Yy = pn) = —(r(p) + J(8)). (21)

Proof of Proposition 13. It suffices to write

1 1 1
710g]P><XN = lNy YN 2 pN) — *IOgIP’(XN = ZN) + 710g]P>(le,lN—1 2 pN)
lN lN lN

1 1
= —log P(Xy =Iy)+ ;—log P(dyy 1y = 13(6 + 0(1)))
N N

— —(k(n) + J(9))
by Remark 5, Proposition 12, and Theorem 3. O

Lemma 14. Let J < J be any nondecreasing function, continuous on [0,1/2]. For all ¢ > 0,
there exists Ng > 1 and lo > 1 such that, for all N > Ny, for alll > ly, and for all 6 > 0,

logP(Xy =1, Yy = 61%) < —(k(p) + J(8) — €)l.
Proof of Lemma 14. The result is trivial for 6 € (1/2,00). Remember that
P(Xy =1, Yx = 60%) =P(Xy = D)P(dy;_1 = 61%).
On the one hand, let ¢ > 0. By Proposition 12, if N and [ are large enough,
log P(Xy = 1) < —r(pn)l < —(k(p) —€/2)L.

On the other hand, the nondecreasing functions ¢;: 0 € [0,1/2] + min(—I""logP(d;;—1 >
61%), J(6)) converge pointwise to the continuous function Jlj 19 as | — oo, by Theorem 3 ;
thus the convergence is uniform and the result follows. O]

10



In the sequel, we will also need the asymptotic behavior of the tail of Yy alone.

Proposition 15 (Tail of Yy). If py — o0, then

1 , 1
N logP(Yy > py) = —q(p) = — inf p %[Fé(u) +.J(3)]. (22)

Proof of Proposition 15. For § > 0, let Iy = [(pN/(S)l/ﬂ. Then,

In 1 1
logP(Yy > > —— - —logP(Xy=Ilyn, Yy > — ———= k() + J(0)],
/PN gP(Yy = pn) N gP(Xy = Iy, YN = pn) \/5[ (1) ()}
by Proposition 13. Taking the supremum in § > 0, one gets
o _ 1
lim inf — logP(Yy > py) > — | inf | %[H(u) + ()] (23)

Now we turn to the upper bound. Let us fix 5 > 0 such that Sx(pu) > q(p). Let Iy = WP}\{QJ
and write

In

P(Yy 2pn) =Y P(Xn=1, Yy =pn)+ Y, P(Xy=1, Yy =pn)=: Pv+ Rn.
=1 I=In+1

First of all, using Proposition 12,

1 1
log(Ry) <

VPN (fin) VPN
Let € > 0. Taking into account the already proved lower bound, and using Lemma 14 with

76) = 1.65) = {f) S

logP(Xn > ly) = —Br(p) < —q(p).

we deduce that

log(Py)

wr+2(2) -1

lim sup logP(Yn = pn) = limsup
N—o0 PN N—o00 PN

l
< max —
ISIKIv /PN
1
< - i — —
h 1/&2%21/2 N {H(’u) + Je(9) E}
=: M..

Let 6. € (0,1/2) be such that J(0.) = 1/e. We have

dnf )+ 0) — €] > VA(rGn) + £ ) p o

A fortiori, since J. < J,

\}_{/@(,u) + J(6) — 5] — 0.

inf
§:.<0<1/2+/ e—=0

So, if € is small enough,

= } () + J(6) — ]

— inf
1/8<6<1/2 /&

. 1 .
=, ﬁ[“(“) +J0)] <~ inf —[k(u)+ J(6)]

and the result follows. O
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4.3 Useful limit theorems
The following lemma is a direct consequence of [9, Lemma 4.3] and Proposition 17.

Proposition 16. One has
E[Ty | Sy = my] = E[Ty] + o(N/?).

Let (X,Y) be a pair of random variables such that X is distributed according to the Borel
distribution with parameter p = lim uy and Y given {X = [} is distributed as d;;—1. Let
A = e " be the other standard parameter of the Borel distribution as in (18).

Proposition 17 (Moments convergence). (Xy, Yy)ns1 converges to (X,Y) in distribution
and with all mized moments of the type E[XXYreSHIXN] where p > 0, ¢ = 0, s < —log(Xe),
and t € R.

Proof of Proposition 17. Let f: R x R — R be a bounded measurable function. Using (18),
one has

E[f( Xy, Ya) = S E[f(Xy, Ya) | Xy = IP(Xy = 1)

leN

1 ll—l l
=N E[f(l,dpy1)] o —— Ay
= 2_Elf(diy) T()\N) oy

leN
Since Ay converges to A\, T' is continuous, and

1 =t T\ +e) it
Tl <
TOw) 1 TO— )\ T+ 2) 1

o), (21)

as soon as |[Ay — Al < g, we conclude by Lebesgue’s dominated convergence theorem that
(Xn, Yn)ns1 converges in distribution to (X, Y’), where X is Borel distributed with parameter
Aand LY | X =1) = L(d-1).

Let ¢ > 1 such that sc < —log(Ae) and (a,b) € (R%)? such that a™* +b~' + ¢! = 1. Holder’s
inequality yields

[E[XE Yyele+0%)| < E[XG V[V PR fere ]

Hence the convergence of all mixed moments stems from the convergence of all separate
moments of Xy, eX~¥, and Yy. By uniform integrability, it suffices to show that, for each
r>0and s < —log(Xe), (E[XK])n>1, (E[e**¥])y>1, and (E[Y])n>1 are bounded (see, e.g.,
[27, Example 2.21]). By (24), limsup E[X%] and limsup E[e¥*~] (s’ < —log(\e)) are finite.
Moreover, since dj;—1 < [,

E[Yy] =) E[Yy| Xy =1P(Xy =1) <D _I"P(Xy =1) = E[XY],
IEN lEN

so lim sup E[Y}] is finite too. O

Proposition 18 (Local large deviations for Sy). For any sequence of integers(kn)n=1 such
that lim ky /N € (1,00), we have

]]\-fIOgP(SN = kN) ~ —A}N(k}N/N)
Proof of Proposition 18. We just check that we can apply [8, Lemma 3.3] to the sequence
(Xn)nz1- First, Im(Ay ) = (1,00) = Im(A) so, for all N large enough, ky/N € Im(Ay, )
and lim ky /N € Im(A'y ) Secondly, 1nt(dom(AXN)) (—o0, —log(Ane)) and int(dom(Ax)) =
(—o0, —log(Ae)), so that assumption 1. of [8, Lemma 3.3] holds for all N large enough (since
AN —> A). Thirdly, assumption 2. of [8, Lemma 3.3] stems from Proposition 17. ]

12



The following proposition is a non conditioned version of Theorem 9. It stems immediately
from [13] (with e = 1/2 and ¢ = ¢(u)) and Propositions 15 and 17.

Proposition 19 (Large deviations for Ty).

(i) If o < 2/3, then

1 N
1\}5%0 Az T logP(Ty — E[Tn] > N%y) = “020) (25)
(ii) If o« =2/3, then
1
Jim o log P(Ty — E[Ty] > N*y) = —I(y) (26)
where ,
I(y) N 2(5(#) ny < y(:u)a
g(p) (1= t(y) 2y + 592 ify > y(p),

with y(pu) = 3 (q(,u)az(u)) ® 12 and t(y) being defined for y > y(u) as the smallest root
of the cubic equation in t € [0, 1]:

2 4
3 M =0.
43
(iii) If o > 2/3, then
Jim s log P(Ty — E[Tw] > N*y) = —q(u)y"/*. (27)

5 Proofs: sparse tables

5.1 Lower moderate deviations - Theorem 7

One has
]P)(dmN,TLN - E[dmN,nN] < _Nay) = ]P)(TN - E[TN ‘ SN = mN] < _Nay ’ SN = mN)
== ]P)(TN - E[TN] < —NayN | SN == mN) (28)
where .
YN —y—ﬁ( [Tn | Sy = my] —E[In]) =y

by Proposition 16. Since the variables are nonnegative, their Laplace transforms are defined
on (—o0,0) at least. Adapting the proof of [8, Theorem 2.2] to the unilateral case and using
[25] (unilateral version of Géartner-Ellis theorem), we get (5). O

5.2 Lower large deviations - Theorem 8

For any R%valued random variable Z, we denote by A the log-Laplace transform of Z, i.e.
the function defined, for A € R?, by

Az(\) =logE[exp(X - Z)],

and by A} the Fenchel-Legendre transform of the function Az, i.e. the function defined, for
2z € R4, by
A% (2) = sup {)\ cz—NAz(N); A€ Rd} :

13



Proceeding as in the proof of Theorem 7, we get

1 . 1 w?
N logP(dmN,nN - E[dmN,nN] < _Ny) - _A(X,Y) (1 — M? 2(1 _ Iu)g o y)? (29)

since my/N — 1/(1 — p) and admitting that Afxy((1 — p)~',+) is strictly convex on

(0, 12/(2(1 = p)?)).

Let zg = (1—p)~". Let us prove that Afy y (2o, ) is strictly convex. Let y € (0, 4°/(2(1 — p)?)).
First, we prove that Afyy is dlfferentlable at (zo,y). We have (zo,y) € int(dom(Afxy)),
therefore the subdlfferentlal ONx 3 (x0,y) is nonempty, i.e. there exists (s,t) € aAfxvy)(xg, Y)
(see [26, Theorem 23.4]). It remains to prove that such a point (s,t) is unique. Choosing
e > 0 such that A} (y+¢) > 0,

—A{x (20, y) < lim inf N logP(Sy < N(zg+¢),Tn < N(y +¢))
< lim inf N logP(Tw < N(y+¢)) = —Aj(y+¢) <O.

Since Afx yy (o, #?/(2(1 — p)?)) = 0 and A*(wo, -) is convex, one has ¢ < 0. Therefore (s, ) €
int(dom(A(x,y))). To obtain a local version of [26, Theorem 23.5], we notice that

(s,t) € 8A’("X,Y)(x0,y) < (x0,y) € 8Af}‘(7y)(s,t) = 0A(x (s, t) = {VAxy)(s,1)},
since A(x,y) is differentiable on int(dom(A(x y))). Now,
det(Hess(A(x,y))(\, p)) = Var(X) Var(Y) — Cov(X,Y)* > 0

where (X,Y) has a mass function proportional to e***#¥ fx,vy(x,y) which is not supported by
a line, so A(x y) is strictly convex. Thus (s, t) is the unique solution of (z,y) = VAxy)(s,1).
Finally, let ¢ # y and (s',t') = VA Xy)(:co,y’). Remark that (z9,y) = VAx,y)(s,t) and
(w0,y") = VAx,y)(s',t') lead to (s',1') # (s,t). Therefore, by the strict convexity of A(x y),

(

((z0,9") — (20,9), VA(XY) T0,Y') — VA(XY)(x07y)>
<VAXY (S t) VAxy)(S,t),( ,t’)—(S,t» > 0.

/

Thus Afx y (2o, ) is strictly convex. O

5.3 Upper moderate deviations - Theorem 9 (i)
Analogously to (28), one has

Py = P(dynymy — Eldmynn] = No) = P(Ty — E[Tx] > Noyn | Sy = my)  (30)
_ P(Ty — E[Ty] > N*yy)

h ]P)(SN —mN)

mN,MN

(31)

with yy =y + N"*(E[Ty | Sy = my| — E[Ty]) — y by Proposition 16. The upper bound
then follows from Propositions 19 and 18. As for the lower bound, using (30), one has
Py = P(Ty — E[Ty] = Ny, Vi, Yy < NY?| Sy = my)
=P(Ty — E[Ty] = Ny | Vi, Yvi; < N2 Sy = my)P(Vi, Yn; < NY2| Sy = my).

On the one hand, one has

NP(Yy; = N°/2)
]P(SN = mN) '
(32)

]P)(V’l.,YNﬂ' <N°‘/2|SN:mN) = 1—]P)(E|Z,YN71 2N°‘/2\SN:mN) 2 1-—
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Using Propositions 15 and 18, we derive that P(Vi, Yy, < N*/2| Sy = my) — 1. On the other
hand, let us turn to the minoration of P(Ty — E[Tx] = Ny | Vi, Yy < N¥2, Sy = my). In
order to apply Gartner-Ellis theorem, we follow the proof of [8, Theorem 2.2] and we introduce

1

— mlogE[eu(TNfE[TN})/lea ‘Vi, YN,i < Na/Z, Sy = mN}'

gn(u)

Write

E {eu(TN—E[TN])/le"‘

Vi, YN,i < Na/2, Sy = mN}
B[N BN 1 (Vi Vi, < N
]P)(SN =mpy IVZ, YNJ' < Na/2)

e T e W

P(Sy = mn) ’

where S =YV, X5, Ty = X, Yy, and the random vectors (X5 ;, Yx,;) are independent,
each distributed as £((Xy, Yy)| Yy < N®/2). Then,

E{eu(TﬁfE[TN])/Nl—a]l - } _ i T efismNE[eu(T]?f]E[TN})/Nl_“JrisS;}ds
SN:mN 2T —T
- 1
o

:eNAYAf]E[YN](“/Nl_Q);/ﬂ- efismNE{eiSS}f/}NdS
m
NAY]\ffE[YN](u/Nl_Q)]P)(

/71' efiSmNE [eu(Y]\f 7IE[YN])/N1—a+isX§i| Nds

—Tr

Sk =my)

where 5‘}@ stands for >, )A(}{M and the random variables )A(}(,Z are independent copies of X}{,,
the distribution of which is given by

Su oy A< ay (WNTTO) T (Y E—E[Yy]) /N e
P(XY =g):=e YN E[¢v(YF Bl Iyso)-

Consequently,

—2a —a 1 Qu 1
gn(u) = N*72*Ay< gy (u/N'7) + Va1 log P(S§ = my) — Vool log P(S§ = muy).

So, using Lemma 20 below, we get

gn(u) = =N*724 (A%, (ma/N) = N (ma/N) = Ayg gy (w/N')) (1 + (1))
= = N2 (Hy (u/N'") = Hy(0))(1+ (1)),

where

my
HN(t) = Sup {SN — A(Xi/,Y]\?_E[YN])(S’t) , S &€ R} .

Applying the global version of the inverse function theorem to the function (s,¢) € R x R —
(t, smn/N = Nx< ys gy (s t)) and noting that 9, sA(x< v gyy)(s,t) is nonzero since it
is the variance of a non constant random variable, there is a unique maximizer sy(t) in the
definition of Hy(t). Moreover, the same algebraic computations as in [8] yield

Hiy(0) = E[Yy] —E[Yy] and HY(0) = Cy&g S Var(¥),
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where the distribution of (Xy,Yy) is given by

TNfoXE ()

]P’(XN =2,Yy = y)=e P(Xy=zYy =) (33)

and 7y is the unique solution of A',- (7x) = my/N. Then,
N

2 u3

u
() = ~ N (0) — U H(0) — ()
with zy € [0,u/N'"?]. Using Remark 23 below, one has N'"*H}(0) — 0. By Lemma 22

below, by [9, Equation (4.31)], and by (4), we get

Cov(X,Y)?

HyO) =

— Var(Y) = —o*(p).

As in [8], shortening A X5.VE-Elyy]) Into A and using obvious notation for partial derivatives,
one has

A 3 A 2 A
st s,t st
) = () M= 3( ) Mt b 3 A= AL vl

Let us prove that sy(zx) — 0. The sequence of concave functions

my
fn(s) = SW - A(X§,Y1§_]E[YN])(57 zN)

converges pointwise to the strictly concave function f(s) := s(1 — pu)~! — Ax(s). This fact
follows from the uniform integrability of exp(sXy + zn(Yy — E[Yn])), which is a consequence
of Proposition 17 and the fact that zyYy < u/N'73%2 is bounded (remember that o < 2/3).
Now the maximum of f is attained at 0. Let ¢ € (0, —log(Ae)). By the strict concavity of
f, there exists 7 > 0 such that f(0) —n > max(f(—¢), f(¢)) +n. By [26, Theorem 10.8], for
all N large enough, ||fx — f|l., < n, where |||, is the supremum norm over the compact set
[—¢,¢]. For those N, sn(zy) € [—¢,¢]. Since € is arbitrary, we have proved that sy(zy) — 0.
The uniform integrability of (X3)? |Yy — E[Yn]|? exp(sy(2n) X5 + 2n(Yy — E[Yy])) follows
from the same arguments as before and the fact that sy(zy) — 0, and Proposition 17 entails

E[(X5)7 [V — E[Yx][ ¥ e0Xirsnti 5] s B[x [y — B[Y]|].
Therefore, Hy/(zy) is bounded, whence gy (u) — u?c?(n)/2 and (7) follows. O

Lemma 20. Let XN be Xy or )A(}{, Denoting by S’N = XNJ + .. .)v(N,N, we have, for any
sequence of integers (ky)ns1 such that limky/N € (1,00),

1 v
NlogP(SN = /{?N) ~ —A}N(kN/N)

Proof of Lemma 20. We just check that we can apply [8, Lemma 3.3] to the sequences (X§)n=1
and (X}\L/)N21.

o First, Im(A;(§) = (1,00) = Im(A) so, for all N large enough, ky/N € Im(A’va) and
limky/N € Im(A). Secondly, int(dom(Ax<)) = R and int(dom(Ax)) = (—oo, —log(Ae)),
so that assumption 1. holds. Finally, it remains to check that assumption 2. is satisfied. For
s < —log(Ae) and t € R, we have

’E[e(sﬂ't)xﬂ _ E{e(s-&-it)X} ‘

‘E[e(s””xﬂ — E{e(s“t)X” +P(Yy > Nl/Q)E{esx} - E[est Lyysnie
< P(Yx < N'/2) '
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The first term of the numerator converges to 0 uniformly in ¢ € R by Proposition 17. So
does also the second one by Proposition 15. Finally, by the same arguments and Holder’s
inequality, with 1/p +1/¢ = 1 and ps < —log(Xe),

E[e" Ly, s nir2] < E[estN]l/ "P(Yy > N2V,

leading to the required result.
o First, Im(A’X?V) = (1,00) = Im(A%) so, for all N large enough, kn/N € Im(A’X]uV) and
limky/N € Im(A’y). Secondly, int(dom(AX]uV)) = R and int(dom(Ay)) = (—o0, — log(Ae)), so
that assumption 1. holds. Finally, it remains to check that assumption 2. is satisfied. Using
the definition of X%, one gets

E[el+035] = ¢~ vii s VT [l X5 it 05 B |

that converges to E[e*+®)X] uniformly in ¢t € R by similar arguments. O

Lemma 21. Remind that Ty is the unique solution of N~ (7y) = my/N. There exists ¢ > 0
N

such that, for all N large enough, |Tn| < e—eNt,

Proof of Lemma 21. First, for all s < —log(X\e),

E[Xne™|E[e 1y, syon|  E[XneX¥Ty, oy

i e—ClNQM
|:68XN:|E|:€SXNI]_YN<NQ/2:| E[eSXN :H_YN<NO¢/2:|

X

X<(> A,XN ‘_

(34)
for some constant ¢; > 0 (independent of s and N), using Hélder’s inequality and Propositions
15 and 17. Now, write

82

A (s) = E[Xy] + s Var(Xy) + EA%N (1)

with ¢ between 0 and s. Using Proposition 17, there exists s > 0 such that, for all s € [—so, s¢]
and for all N large enough,

|s| Var(Xy)

5 (35)

A/XN (s) —E[Xn] — SVar(XN)‘ <

Since A< (7w) = E[Xy], (34) and (35) yield || < 2e=1N*"* /Var(Xy), hence the desired
N
result since Var(Xy) — Var(X). O

Lemma 22. (X§,Yy)nys1 and (XN,YN)N>1 converge to (X,Y") in distribution and with all
mized moments of the type E[X?Yie SXN], where p >0, ¢ >0, s < —log(\e), and X (resp.
Y ) stands for X< or X (resp. Y=< orY).

Proof of Lemma 22. Following the proof of Proposition 17, we prove separately that (X IN>1
and (Xy)ys1 converge to X in distribution and with all moments and (Y )ys1 and (Y )y
converge to Y in distribution and with all moments.

The convergence of (X§)n=1 is a consequence of the proof of Proposition 18. However we give
a straightforward proof on which the sequel relies. Let f: R +— R be a bounded measurable
function. By Proposition 17, it suffices to prove that E[f(X§)] — E[f(Xn)]| converges to 0.
One has

1

P(Yy > N°/?)
P(Yy < N/2)’

ELf(X3)] — ELF(Xn)] < ([BLF(XN)] + E[f (X))
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The result follows from the fact that f is bounded and from Proposition 15. To prove the
convergence of the moments of (X5)n=1 to those of X, it suffices to show that, for all r > 0,
(E[(X5)"])n=1 is bounded (see, e.g., [27, Example 2.21]) and to conclude by uniform integra-
bility. We have

E[XR]

E[(XS) ] =E[X% | Yy < NV g —— N
[(XR)"] Xy | YN < ] P(Yy < N1/2)’

so limsup E[(X)"] is finite by Propositions 15 and 17. The same calculation leads to the
convergence of (Elexp(sXy)])n>1 and the same lines yield the convergence in distribution of
(Y5 )n>1 to Y and with all moments.

Let us consider ()~( ~N)ns1. Let f: R+ R be a bounded measurable function. One has

1))~ B < V(Xﬁ)(gﬁiﬁ )

erNXJf, . E[eTNXﬂ H

< Bl e

(36)

Using the convergence of (Elexp(sXy)])n>1 together with Lemma 21, Slutsky’s Lemma, and
uniform integrability, we get E [eTN Xlﬂ — 1. Similarly, since

2 2
eTNXjf, . E[@TNXEH — eQTNXf, o 26TNX§’E[GTNX;} + E[(ETNXE} 7

the numerator in the right-hand side of (36) converges to 0. Hence (Xy)ns1 converges in
distribution to X and similar arguments show the convergence of all moments of (Xy)y>1. The
same lines lead to the convergence in distribution of (Yy)ns1 to Y and with all moments. [

Remark 23. Following the same lines as in the proof of Lemma 22 for f = idg and using
Proposition 17 instead of the fact that f is bounded and the fact that 7y converges exponen-
tially rapidly to 0 (by Lemma 21), we get that E[Yx] — E[Yx] converges exponentially rapidly
to 0.

We notice that the rate function in the upper moderate deviations y?/(202(x)) in (7) depends
on the conditioning on {Sy = mx}. As opposed to this, the conditioning does not influence
the expression of the rate function in the upper large deviations, due to the fact that the
random variables Yy are heavy-tailed. As a consequence, our proof of (9) in Section 5.5 does
not mimic that of [8, Theorem 2.1] but is rather inspired by that of [20, Theorem 5].

5.4 Upper intermediate deviations - Theorem 9 (ii)

The upper bound comes from (31) and Propositions 18 and 19 (ii). Let us turn to the lower
bound. We assume that the infimum in the right-hand side of (22) is attained at dy. Let z > 0
and Iy := [(N®z/6)"/?]. By (30), we have

Py 2 P(Tn —E[In] > N%y, Sy = my)
> IP’<TN —E[Ty] > Ny, Sy =mn, Yun —E[Yyn] > NaZ)
Z ]P’(TN,NA - E[TN,NA] P Na(yN - Z)’SN,NA =mpny — ZN)]P)(SN,Nfl =myN — lN)

IP)(YNJV - ]E[YN,N] > NaZ7 XN,N == lN)

By Proposition 13,

1
liminf = log P(Yy — E[Yy] > N2, Xy =1ly) = —q(p)z?
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and by Proposition 18,
o 1
lim inf Nor2 log P(Sy n—1=my —Iy) — 0.

As for the minoration of the remaining term, we follow the same lines as in the proof of the
lower bound in Theorem 9 (i) which remains valid for o = 2/3 and E[Sy x_1] = my+O(NY/2).
Hence,

(y—2)°
202 (1)

Optimizing in z = ty with ¢ € (0,1) leads to (8). O

logP(Tnn-1 — E[TnnN-1] = N (yn — 2) | Snnv-1 = my — In) = —

. 1
lim inf Nar2

5.5 Upper large deviations - Theorem 9 (iii)
Using (31), the upper bound

log(Py) < limsup

hmsu
pN /2 N—oo

1 P(Ty — E[Tny] > N°yn) 1/2
75 ] < T —— >=—q(u)y/,

follows from Propositions 15, 18, and 19 (iii). For the lower bound, assume that the infimum
in the right-hand side of (22) is attained at &;. Let ¢ > 0 and Iy := [(N®(yny +¢)/00)"/?]. By
(28), we have

Py 2 P(Ty —E[Tn] > Ny, Sy = mn)
> P(Tw — E[Tw] > N®yn, Sx = mn, Yun —E[Yyn] > N(yn +¢))
= IED(TN,N—l —E[Tnn-1] 2 —N%, Syn_1=mn — ZN)

P(YN — E[YN] 2 Na(yN + 8), XN = ZN)
= PN71PN,2-

Applying Proposition 13, one gets

Yy+e€

1
do

log(Py.2) = (5(1e) + I (d0)) = —alp)y. (37)

1
im 1 o7
Let us turn to the minoration of Py ;. One has
Py1 2 P(Syn-1=mny —Iy) —P(Tnyn-1—E[Tnn-1] < —N%).

Applying Proposition 18, we derive that

my — | Nl—a/2 l 2 1
IOgP(SNN 1= mN—lN) ~ —Nl a/2A;(N (N]VN) ~ = 20_2 (]@) = O(Nl—a/2)
X

1
Na/2
which converges to 0 since a < 2. Applying a unilateral version of [8, Theorem 2.2], we get

~ —c.N3/271 & oo ifa € (2/3,1]

= —00 fa>1

Na/2 lOg]P)(TNN 1— E[TN,Nfl] < —NO‘E) {

for some c. > 0. Eventually, N~*/2log(Py1) — 0, which leads, together with (37), to
.. 1
lim mfw log(Py) = —q(p)y/?. O
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5.6 Upper large deviations for o = 2 - Theorem 9 (iv)

1/2

By (30) and Proposition 18, making the change of variable ¢ = (y/0)"# in the infimum, and

setting x = (1 — p) ™!, it suffices to prove that

JiflOg P(SN =my, TN 2 Nzy)
. {— inf [e((u) + T (/) + Al — )] ify < (= 1)/2

—00 ify > (x—1)2/2 38)

to establish (10). Assume that (38) holds for y < (z — 1)?/2. Observe that the probability in
the left-hand side of (38) is decreasing in y. Moreover, if y < (z — 1)?/2), then

inf [e(r() + T/ + My =) = inf - [els(u) + I (/) + A = o)

> inf J(y/c?
St e (y/c”)

> V2yJ(y/(z - 1)%)
— o0 asy— (v —1)%/2.
So (38) holds for y > (x — 1)?/2.

Proof of (38) — Lower bound for y < (x —1)?/2. Let ¢ > 0 and Iy = [¢N]. Let also ¢ > 0.
We have

1
N log P(Sy = my, Ty = N?y)

1 1
2 NlogIP’(XN = lN,YN Z N2y) + Nlog]P(SN,N—l =myN — lN>

— —c(k(p) + J(y/c*)) = Ag(z — ¢),
by Propositions 13 and 18. Taking the supremum in ¢ > 0 yields the desired lower bound. [
Proof of (38) — Upper bound for y < (x — 1)?/2. Let us write

P(Sy = my, Ty = N*y) = Pyo+ Pn.

where
Pyo=P(Sy =my, Ty = Ny, Vi € [I,N] Yy; < N%)

and
PN,lz]P’(SN:mN, TN >N2y, di € [[1,N]] YN,i>N2y).

Behavior of Py, Let us apply the exponential version of Chebyshev’s inequality. Let
(s,t) € (—00,0] x [0,400). We have
Pny [Tsy—my<0 Lry/N-Ny=0 Dvic[1,N]  vn.<N?y)

E
]E’[es(SN_mN)"‘t(TN/N_Ny)

NN

Lvien,n YN,1<N2ZJ]
— e—N(smN/N-l-ty)E[esXN+tYN/N ]]-YN<N2y]N- (39)

Let us write

E[esXN+tYN/N 6SAXN-‘rtYN/]\f ]]_ ]+]E[68XN+tYN/N

]]_YNgNZy} — ]E[ YN<N1/2 1N1/2<YN<N2y]
=. El + EQ. (40)
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First, by uniform integrability (see Proposition 17),
E, — E[e*]. (41)
Secondly, remembering that P(Xy =1, Yy =p) =0if [(I - 1)/2 < p,

E2 — E[BSXN+tYN/N 1N1/2<YN<N2y]
_ Z elertp/N]P)(XN =1, Yy =p)
l>N1/4
NY/2<p<N2y
- > ( YN e MNPy =1 Yy 2 p)
I>N1/4 N1/2<p<N2y

+P(Xy =1, Yy > NY2)e/N'"? _P(Xy =1, Yy > N2y)e“vy>7 (42)

after a summation by parts. By uniform integrability (see Proposition 17),
ST Xy =1, Yy > NY2)e/N? = BlesX NP Ge] =0, (43)
I>N1/4

Lemma 24. The function K: 6 € [0,1/2) — 6~ Y/2J(8) is increasing, convex, and K (§) — oo
as d — 1/2.

For all € € (0,1/2), we introduce the function

J.: [0,00) = R
J(0) ifo<1/2—¢
SOV [K(1)2 =)+ (6 —1/2+e)K'(1/2—¢)] if1/2—e<d<1/2
00 if § > 1/2.

The following lemma is a straightforward consequence of Lemma 24.

Lemma 25. The function J. is non decreasing and less than J. Moreover, the function
§ €10,1/2] + 6 Y2J.(68) is a bounded convex function.

Let € € (0,x(u) A1/2). As a consequence of (42), (43), and Lemmas 14 and 25, we get, for
any a > 0,

lim sup Fy < lim sup Z e Z etp/N(1 — @—t/N)e—l(fﬂ(u)JrJa(p/lQ)—a)
I>N1/4 N1/2<p<N2y

< lim sup( Z l(s=r(1)=Je(p/1?)+e)+tp/N N2y Z e—(n(u)—e)l+th)

NY/4<I<Na I>Na
N1/2<p<N?y
< limsup N3ay -exp[ N - max {l<s—/€( )—J<p>+€)+tp} (44)
= P yroexp NY/4<I<Na . “\ 2 N2| |’
N1/2<p<N2y

as soon as (k(u) — e)a > ty. Now,

[ P tp
e (e rw =2 (F) o) + 5]
NY2<p<N2y

< sup [u(s — k() — J(0) +¢) + tduﬂ =:S. (45)

0<6<1/2

N=3/tcug/ys—1
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As soon as

sup [\/ b0~ (s — k(p) — J.(0) + &) + ty} <0,

0<6<1/2

l.e. as soon as

R(p) + Jo(0) —e—s

b dnk, N ! (46)
and, for all N large enough,
_ N—3/4
S = sup [N’3/4(s — k() — J(6) +¢) + th’g/ﬂ < - (k) = €) : (47)
0<6<1/2 2
Therefore, under (46), using (44), (45), and (47),
_ N1/4

limsup E» < limsup N3ay - exp(— () 2€> ) =0 (48)

Combining (39), (40), (41), and (48), we get

1
lim sup N log Py < inf {Ao(s) —sr—ty; s<0, t< inf (k(p)+ J(0)—e— 3)((53/)1/2}

0<d<1/2

—inf sup Ag(s) — sz — (k(p) + J-(8) — e — s)(y/8)/?

50 0<s<1/2
= M.
Lemma 26. The function
f:(0,1/2) x (—00,0] = R
(6,8) = Ao(s) — sz — (w() + J(8) — & — 5)(y/0)"/?
is concave in § and convex in s. Moreover, f(do,-) is bounded from below for some oy € (0,1/2).

Thanks to Lemma 26, the minimax theorem of [23] applies and yields

M! = sup inf {Ao(s) — sz — (k(p) + Jo(6) —e — S)(y/é)l/ﬂ

0<6<1/2 550

== nf [/)20s(0) + J.0) — ) + A (o = (0/9)%)],

0<6<1/2

since x — (y/86)Y? < 2 — /2y < (1 — u)~'. Notice that

inf /8 2(s(n) + J.(6) = ) + Ao = (w/)"2)]

1/2—£<5<1/2

> V() — ) + VIK(1/2 ) + A (2 — V) — o0

e—0

by Lemma 24. A fortiori, since J. < J,

inf 1 w/0) 2 (s(0) + J0) =€) + Ay (v = (9/0) )] — oo

1/2—e<6<1/2 e—0

So, if ¢ is small enough, i.e. ¢ € (0, &),

M= inb N/8) () + J0) — €) + Ao (9/9) %)

0<6<1/2
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Finally, again applying the minimax theorem of [23], we get

inf M= sup inf |(y/0)(n(0) + J(6) — €) + Ay (o (/0) )]

0<e<eo O<e<eg 0<0<1/2

=~ nt [/0)2(n(u) + ) + A5~ (0/0)")]

0<5<1/2
= — inf  e(r(p) + J(y/P) + Nj(z —¢),

V2y<c<z—1

since Afj(z — (y/0)1/?) = oo for § < y/(x — 1)%

Behavior of Py; Let e > 0. We have

Pyy=P(Sy =my, Ty > N?y, Jie [1,N] Yy, > N?y)
< NP(Sy =my, Yy > N%)

L
<NY IP’(mN ~ Nle < Snyo1 < my — N(I— 1);;)1@(]\[(1 “1)e < Xy < Nle, Yy > N%)

1=K
L
<N Z PN,Lh
1=K
where

Py :=P(Syn_1 <my—N({—-1)e)P(N( —1)e < Xy < Nlg, Yy > N%y),

K is the smallest integer such that (Ke)?/2 > y (remember that Yy < X%/2), and L is a
fixed integer such that, for all N > 1, my/N — (L — 1)e < 0 (remember that my/N — x).
Let us evaluate each term. For all | € [/, L],

1
lim sup N log Py1y < —Aj(z — (I = 1)e) — l5</{(,u) + J((é)g))

applying the exponential version of Chebyshev’s inequality, Proposition 13, and the principle
of the largest term. Applying one more time the principle of the largest term, we get:

1
limsupﬁ log Py < —C>iI\1/f27y [AS(I —c+e)+ c(fi(ﬂ) + J(i))} ;

and we get the desired upper bound for Py; when ¢ — 0, since Af(z — ¢ + €) converges
uniformly in ¢ € (/2y,x — 1] to Aj(x — ¢) and since

int | |Aje—cre)e(nm+ ()| 2 asa o+t (st +I(4)

r—1<c<z—14¢ r—1<c<zr—1+4¢ C

— A5(1) + (2 — 1)<m(u) + J<($ _y 1>2>>.

e—0

]

It remains to prove Lemmas 24 and 26. Let us define the function

d: (—00,0] = [0,1/2)

0 ifA=0
A= 1 1 1 :
by + T—eX 2 lf )\ - (_O0,0>
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An easy computation shows that the function ¢ is a smooth nonnegative and concave decreasing
bijection. The function A: [0,1/2) — (—o0,0] defined by (2) is the inverse bijection of ¢ and
thus is a smooth decreasing function. Now let us introduce the functions

H: (—00,0] = [0, 4+00)
AF+»<;—&M>+MJE—N(;+ﬂMD

and

F: (—00,0] = [0, +00)

L if A\ =0
S(N)TVZH(A) if A € (—o0,0).

Proof of Lemma 24. The fact that K(0) — oo as  — 1/2 follows from the already mentioned
fact that J(J) — co as d — 1/2. We want to prove that § — K (8) = 6=Y2J(8) = F(A(9)) is
an increasing convex function. Since K (§) ~ 66%2 as § — 0, K’(0) = 0, so it only remains to
prove that K” > 0 over (0,1/2). Using the expressions of the first and second derivatives of
the inverse function \ of 9, one gets:

K(5) = S F(\6))
= N"(0)F'(M(8)) + (N (6))2F"(A(6))
L1 (00D, L
RE0) ( sz AT EaEy " W)))

1 '
7@ () PO

Hence, since ¢’ < 0, our study reduces to show that F’/d’ is a decreasing function over (—oc, 0).
Now,

F'(A)

&'(A)
The identity H'(A) = —Ad' () entails

£V = (M) — %)\6’()\)5()\) — H(A\)'(AN) k()

B 0(A)? ROV

Differentiating the function k, we get

— ()2 A s,

k%Ay:;5xn(ax)—xy¢n)—5%Aﬂ}uAy+2A&A».

On the one hand, H(\) + 2A5(\) < 0, because

d 3 eM—3X +4) + e*2\2 — 8) + 3\ + 4
—(H z —
dA( (A)*'2A5“”) NI =) !

the sign of which is easy to find (by differentiating several times). On the other hand, §(\) —
A’ (A) > 0, because

eA(=A+4)+eM=2X2—8)+ A+ 4

2X\(1 — e*)? ’
the sign of which is easy to find (similarly). Henceforth, &’ < 0 and k£ > 0 over (—o0,0) (k
is decreasing on (—o0,0] and k(0) = 0). Finally, f is an increasing and nonpositive function.
Together with the fact that A\ — —&(\)'/2 is also an increasing and nonpositive function, we
finally get that F’/§ is a decreasing function. ]

S(A) = A (A) =
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Proof of Lemma 26. The concavity of f(-, s) follows from Lemma 25 and the fact that x(u) —
e—s>0andy > 0. The convexity of f(d,-) follows from the convexity of Ag. Finally, since
y < (z — 1)%/2, one can choose dy € (0,1/2) such that x — (y/8)*/? > 1. Using the definition
of the Fenchel-Legendre transform and Cramér’s theorem for the random variable X > 1,

Ao(s) = s —Aj(1) = s+ logP(X =1),

so the function f(do, -) is bounded from below. O
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