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Large deviations and Berry-Esseen bounds for hashing with linear

probing

T. Klein, A. Lagnoux, and P. Petit∗

Abstract

We study the asymptotic behavior of a sum of independent and identically distributed random variables

conditioned by a sum of independent and identically distributed integer-valued random variables. First,

we prove a large deviations result in the context of hashing with linear probing. By the way, we

establish a large deviations result for triangular arrays when the Laplace transform is not defined in a

neighborhood of 0. Second, we prove a Berry-Esseen bound in a general setting.

Keywords: Berry-Esseen bound ; large deviations ; conditional distribution ; combinatorial problems

; hashing with linear probing.
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1 Introduction

As pointed out by Svante Janson in his seminal work [13], in many random combinatorial problems, the in-
teresting statistic is the sum of independent and identically distributed (i.i.d.) random variables conditioned
on some exogenous integer-valued random variable. In general, the exogenous random variable is itself a sum

of integer-valued random variables. More precisely, we are interested in the law of N−1
n (Y

(n)
1 + · · ·+ Y

(n)
Nn

)

conditioned on a specific value of X
(n)
1 + · · ·+X

(n)
Nn

that is to say in the conditional distribution

Ln := L(N−1
n (Y

(n)
1 + · · ·+ Y

(n)
Nn

) | X(n)
1 + · · ·+X

(n)
Nn

= mn),

where mn and Nn are integers and (X
(n)
i , Y

(n)
i )n∈N∗,16i6Nn be i.i.d. copies of a pair (X(n), Y (n)) of random

variables with X(n) integer-valued.

Hashing with linear probing was the motivating example for Janson’s work [13]. This model comes from
theoretical computer science, where it modelizes the time cost to store data in the memory. Then, it was
introduced in a mathematical framework by Knuth [17]. Due to its strong connection with parking functions,
the Airy distributions (i.e., the area under the brownian excursion) and the Lukasiewicz random walks [20],
this model was studied by many authors (see, e.g., Flajolet, Poblete and Viola [8], Janson [12, 14, 15],
Chassaing et al. [1, 2, 3], and Marckert [22]).

In his work, Janson proves a general central limit theorem (with convergence of all moments) for this kind of
conditional distribution under some reasonable assumptions and gives several applications in classical com-
binatorial problems: occupancy in urns, hashing with linear probing, random forests, branching processes,
etc. Following this work, at least two natural questions arise:

1. Is it possible to obtain a general large deviations result for these models?

2. Is it possible to obtain a general Berry-Esseen bound for these models?
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Partial answer to the first question When the distribution of (X(n), Y (n)) does not depend on n, the
Gibbs conditioning principle ([30, 4, 5]) states that Ln converges weakly to the degenerated distribution
concentrated on a point depending on the conditioning value (see [9, Corollary 2.2]). Around the Gibbs
conditioning principle, general limit theorems yielding the asymptotic behavior of the conditioned sum are
given in [29, 11, 19] and asymptotic expansions are proved in [10, 28].

An extension to arrays has been proposed by Gamboa, Klein and Prieur [9]. They prove a large (and a
moderate) deviation principle under some strong assumptions. The most restricting assumption is that the
joint Laplace transform of (X(n), Y (n)) is finite at least in a neighborhood of (0, 0). This assumption is
satisfied by all the examples considered in [13] except for hashing with linear probing, which is the most
interesting one. Indeed, in this case, the joint Laplace transform is only defined in (−∞, a] × (−∞, 0] for
some positive a.

More generally, it would be interesting to get large deviations results for a larger class of models the Laplace
transforms of which are not defined. In [23, 24], Nagaev establishes large deviations results for sums of i.i.d.
random variables which are absolutely continuous with respect to the Lebesgue measure and the Laplace
transform of which is not defined in a neighborhood of 0. Following this work, we extend his result and prove
a large deviations result (Theorem 3.3) for arrays. It is then natural to consider the asymptotic behavior of
conditioned sums and to extend the work of [9] to models the Laplace transforms of which are not defined.
Proving a theorem for a general class of models seems to be a very difficult task. That is why, we restrict
ourselves to the study of hashing with linear probing (Theorem 3.1).

Let us point out the main differences between the large deviations result of the present work and [9,
Theorem 2.1]. First, the proof in [9, Theorem 2.1] is based on a sharp control of a Fourier-Laplace transform
ΦX(n),Y (n)(t, u) := E

(

exp[itX(n) + uY (n)]
)

of
(

X(n), Y (n)
)

. The Fourier part allows to treat the conditioning
whereas the Laplace one allows to apply Gärtner-Ellis theorem. In the present paper, the proof follows ideas
borrowed from [23, 24]. Contrary to the case when the Laplace transform is defined, the large deviations
of the sum of the random variables with heavy-tailed distributions is due to exceptional values taken by
few random variables. Second, unlike the classical speeds in Nn obtained either in Cramér’s theorem or
in Theorem 2.1 of [9], the speed in this paper is

√
Nn. Third, oscillations of the tails are allowed (in a

controlled range) and may affect the large deviation bounds. When the Laplace transform is defined, the
tails are controlled (see Cramér’s theorem or Gärtner-Ellis theorem in [5]) and the sum satisfies a large
deviation principle with the same lower and upper bounds.

Complete answer to the second question The first Berry-Esseen theorem for conditional models is
given by Quine and Robinson [27]. In their work, the authors study the particular case of the occupancy
problem, i.e. the case when the random variables X(n) are Poisson distributed and Y (n) = 1{X(n)=0}. Up to
our knowledge, it is the only result in that direction for this kind of conditional distribution. In our work,
we prove a general Berry-Esseen bound (Theorem 4.1) that covers all the examples presented by Janson
[13].

Organization of the paper The paper is organized as follows. In Section 2, we present the general
model and describe precisely the framework of hashing with linear probing. Section 3 is devoted to the large
deviations result for hashing. A Berry-Esseen bound (Theorem 4.1) is stated in Section 4, which applies to
the examples presented by Janson [13]. Finally, the last section is dedicated to the proofs.

2 The model

2.1 A general framework for conditional distributions

In the whole paper, N∗ = {1, 2, . . .} is the set of positive integers, N = N
∗ ∪ {0}, and Z is the set of all

integers. For all n > 1, we consider a pair of random variables
(

X(n), Y (n)
)

such that X(n) is integer-

valued and Y (n) real-valued. Let Nn be a natural number such that Nn → ∞ as n goes to infinity. Let
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(

X
(n)
i , Y

(n)
i

)

16i6Nn

be an i.i.d. sample distributed as
(

X(n), Y (n)
)

and define

S
(n)
k :=

k
∑

i=1

X
(n)
i and T

(n)
k :=

k
∑

i=1

Y
(n)
i ,

for k ∈ {1, . . . , Nn}. Let mn ∈ Z be such that P(S
(n)
Nn

= mn) > 0. The purpose of the paper is to derive the
asymptotic behavior of the conditional distribution

Ln := L((Nn)
−1T

(n)
Nn

|S(n)
Nn

= mn).

2.2 Classical examples

In this section, we give several examples.

2.2.1 Occupancy problem

In the classical occupancy problem (see [13] and the references therein for more details), m balls are dis-
tributed at random into N urns. The resulting numbers of balls (Z1, . . . , ZN ) have a multinomial distribu-

tion. It is well known that (Z1, . . . , ZN) is also distributed as (X1, · · · , XN) conditioned on
∑N

i=1Xi = m,
where X1, ..., XN are i.i.d. with Xi ∼ P(λ), for any arbitrary λ > 0. The classical occupancy problem

studies the number of empty urns which is distributed as
∑N

i=1 1{Xi=0} conditioned on
∑N

i=1Xi = m.
Let m = mn → ∞ and N = Nn → ∞ with λn := mn/Nn → λ. Following the work of Janson [13], we

will study the asymptotic behavior of T
(n)
Nn

=
∑Nn

i=1 1{X(n)
i =0} (Y (n) = 1{X(n)=0}) conditioned on S

(n)
Nn

=
∑Nn

i=1X
(n)
i = mn with X(n) ∼ P(λn).

2.2.2 Bose-Einstein statistics

This example is borrowed from [11], see also [6]. Consider N urns. Put n indistinguishable balls in the urns
in such a way that each distinguishable outcome has the same probability

1/

(

n+N − 1
n

)

.

Let Zk be the number of balls in the kth urn. It is well known that (Z1, . . . , ZN) is distributed as
(

X1, · · · , XN

)

conditioned on
{

∑N
i=1Xi = n

}

, where X1, · · · , XN are i.i.d. and geometrically distributed

with any parameter p. The framework is similar to the one of Subsection 2.2.1 and we proceed analogously.

Assume m = mn = n → ∞, N = Nn → ∞ with Nn/n → p, and take X
(n)
i having geometric distribution

with parameter pn = Nn/n.

2.2.3 Branching processes

Consider a Galton-Watson process, beginning with one individual, where the number of children of an
individual is given by a random variable X having finite moments. Assume further that E[X ] = 1. We
number the individuals as they appear. Let Xi be the number of children of the ith individual. It is well
known (see [13, Example 3.4] and the references therein) that the total progeny is n > 1 if and only if

Sk :=

k
∑

i=1

Xi > k for 0 6 k < n but Sn = n− 1 . (1)

This type of conditioning is different from the one studied in the present paper, but by [31, Corollary
2] and [13, Example 3.4], if we ignore the order of X1, . . . , Xn, it is proven that they have the same
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distribution conditioned on (1) as conditioned on Sn = (n − 1). Hence our results apply to variables of
the kind Yi = f(Xi). For example, if Yi = 1{Xi=3}, the sum

∑n
i=1 Yi is the number of families with

three children. The framework is similar to the one of Subsection 2.2.1 and we proceed analogously with
m = mn = n− 1 → ∞, N = Nn = n→ ∞.

2.2.4 Random forests

Consider a uniformly distributed random labeled rooted forest with m vertices and N < m roots. Without
loss of generality, we may assume that the vertices are 1, . . . ,m and, by symmetry, that the roots are the
first N vertices. Following [13], this model can be realized as follows. The sizes of the N trees in the forest

are distributed as X1, . . . , XN conditioned on
∑N

i=1Xi = m, where Xi are i.i.d. as the Borel distribution
with some arbitrary parameter λ ∈

(

0, e−1
]

that is defined in the following way

P(Xi = l) =
1

T (λ)

λlll−1

l!
,

where T is the tree function (see, e.g., [8] or [12] for more details). Then, tree number i is drawn uniformly
among the trees of size Xi.
A classical quantity of interest is the number of trees of size K in the forest (see, e.g., [18, 25, 26]). It means

that we consider Yi = 1{Xi=K}. Let us now assume that we condition on
∑N

i=1Xi = m. The framework is
similar to the one of Subsection 2.2.1 and we proceed analogously. Assume m = mn → ∞, N = Nn → ∞
with mn/Nn → λ, and take X

(n)
i having Borel distribution with parameter λn = mn/Nn.

2.3 Hashing with linear probing

Hashing with linear probing is a classical model in theoretical computer science that appears in the 60’s. It
has been studied from a mathematical point of view firstly in [16] and then by several authors. For more
details on the model, we refer to [8, 12, 14, 2, 22]. The model describes the following experiment. One
throws n balls sequentially intom urns at random; the urns are arranged in a circle and numbered clockwise.
A ball that lands in an occupied urn is moved to the next empty urn, always moving clockwise. The length
of the move is called the displacement of the ball and we are interested in the sum of all displacements
which is a random variable denoted dm,n. We assume n < m.
In order to make things clear, let us give an example. Assume that n = 8, m = 10, and (6, 9, 1, 9, 9, 6, 2, 5)
are the addresses where the balls land. This sequence of addresses is called a hash sequence of length m
and size n. Let di be the displacement of ball i. Then d1 = d2 = d3 = 0. The ball number 4 should land
in the 9th urn which is occupied by the second ball; thus it is moved one step ahead and lands in 10th urn
so that d4 = 1. The ball number 5 should land in the 9th urn, which is occupied like the 10th and the
first one, so that d5 = 3. And so on: d6 = 1, d7 = 1, d8 = 0. Here, the total displacement is equal to
1+3+1+1 = 6. After throwing all balls, there are N := m−n empty urns. These divide the occupied urns
into blocks of consecutive urns. For convenience, we consider the empty urn following a block as belonging
to this block. In our example, there are two blocks: the first one containing urns 9, 10, 1, 2, 3 (occupied) and
urn 4 (empty), and the second one containing urns 5, 6, 7 (occupied) and urn 8 (empty).
Janson [12] prove that the lengths of the blocks (counting the empty urn) and the sums of displacements

inside each block are distributed as (X1, Y1), . . . , (XN , YN ) conditioned on
∑N

i=1Xi = m, where (Xi, Yi) are
i.i.d. copies of a pair (X,Y ) of random variables, X having the Borel distribution with arbitrary parameter
λ ∈

(

0, e−1
)

and Y given X = l being distributed as dl,l−1. For the ease of computation, we use the
parametrization λ = e−µµ to get an equivalent definition of the Borel distribution

P(X = l) = e−µl (µl)
l−1

l!
, µ ∈ (0, 1)

(see section 5.3 for more details on Borel distribution and references therein). Notice that the conditional
distribution of Y given X does not depend on the parameter µ.
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Hence, dm,n is distributed as
∑N

i=1 Yi conditioned on
∑N

i=1Xi = m. The following lemma states basic
results on the total displacement dm,n that will be useful in the proofs.

Lemma 2.1.

1. The number of hash sequences of length m and size n is mn.

2. One has 0 6 dm,n 6
n(n−1)

2 .

3. The total displacement of any hash sequence (h1, . . . , hn) is invariant with respect to any permutation
of the h′is. More precisely for any permutation σ of {1, . . . , n}, the total displacement associated to
the hash sequence (h1, . . . , hn) is the same as the total displacement associated to the hash sequence
(hσ(1), . . . , hσ(n)).

The first two points are obvious and the last one is a consequence of [12, Lemma 2.1].
From now on, we assume that m = mn → ∞ and N = Nn = mn−n→ ∞ with µn := n/mn ∈ (0, 1) → µ ∈
(0, 1), as in Subsection 2.2.1. Let (X

(n)
i , Y

(n)
i )16i6Nn be i.i.d. copies of (X(n), Y (n)), X(n) following Borel

distribution with parameter µn, and Y
(n) given X(n) = l being distributed as dl,l−1. The total displacement

dmn,n is distributed as the conditional distribution of T
(n)
Nn

given S
(n)
Nn

= mn.

Remark 2.2. The local limit theorem stated in Proposition 5.2 is crucial in the proofs of the large deviations
result (Theorem 3.1) and the one of the Berry-Esseen bound (Theorem 4.1) and requires

mn = NnE[X
(n)] +O(

√

Nn).

If one takes µn = µ (i.e. X(n) and Y (n) do not depend on n), the convergence µn → µ only gives

mn = Nn

(

1

1− µ
+ o(1)

)

= NnE[X
(n)] + o(Nn).

So triangular arrays are needed. Therefore, one may choose µn = n/mn, so that mn = NnE[X
(n)].

Also notice that, in the proof of the lower bound in Theorem 3.1, one has to establish

P(S
(n)
Nn

= m′
n) >

c

2πσX(n)N
1/2
n

with m′
n 6= mn in Proposition 5.2.

3 Large deviations result for hashing with linear probing

In [9], the authors prove a classical large deviation principle for the conditional distribution Ln which ap-
plies to Subsections 2.2.1 to 2.2.4. The proof relies on Gärtner-Ellis theorem which requires the existence
of the Laplace transform in a neighborhood of the origin. In the context of hashing with linear probing,
using the results in [8, 13, 12], we can prove that the joint Laplace transform of (X,Y ) is only defined on
[−∞, a] × [−∞, 0] for some positive a. Hence, [9, Theorem 2.1] does not apply. Consequently, one needs
a specific result in the case when the Laplace transform is not defined. Working in a general framework
appears to be difficult. Nevertheless, in the particular case of hashing with linear probing, we establish the
following theorem.

Theorem 3.1 (Large deviations result for hashing with linear probing). If n/mn → µ ∈ (0, 1), there exists
0 < α(µ) 6 β(µ) such that, for all y > 0,

−β(µ)√y 6 lim inf
n→∞

1√
n
logP(dmn,n − E[dmn,n] > ny)

6 lim sup
n→∞

1√
n
logP(dmn,n − E[dmn,n] > ny) 6 −α(µ)√y.

5



Remark 3.2. In the proof, we exhibit

α(µ) = (1 + log(µ)− µ)
√
2 and β(µ) = 4 + log(2) + 2 log(µ)− 2µ.

It is still an open question whether we can take α(µ) = β(µ).

Since Nn/n→ (1 − µ)/µ, the theorem can equivalently be stated as follows:

−β(µ)√y 6 lim inf
n→∞

1√
Nn

logP(T
(n)
Nn

− E[T
(n)
Nn

|S(n)
Nn

= mn] > Nny|S(n)
Nn

= mn)

6 lim sup
n→∞

1√
Nn

logP(T
(n)
Nn

− E[T
(n)
Nn

|S(n)
Nn

= mn] > Nny|S(n)
Nn

= mn) 6 −α(µ)√y.

We will prove the result in the latter form.

The following proposition is a non conditioned version of Theorem 3.1 in a general framework. In fact, it is
a generalization to triangular arrays of [23, Theorem 3]. For the sake of simplicity, we focus on rough large
deviations results instead of precise ones.

Proposition 3.3. For all n > 1, let Y (n) be a real-valued random variable, Nn be an integer,
(

Y
(n)
i

)

16i6Nn

be i.i.d. copies of Y (n), and zn be a positive number. Suppose that Nn → ∞ and that:

(H3.3.1) lim inf zn/Nn > 0;

(H3.3.2) Var(Y (n)) = o
(

N
1/2
n

)

;

(H3.3.3) the right tail of Y (n) satisfies: there exist 0 < α 6 β such that

lim inf
n→∞

1√
zn

logP(Y (n)
> zn) > −β (2)

and

lim sup
n→∞

sup
u>

√
zn

1√
u
logP(Y (n)

> u) 6 −α. (3)

Then,

−β 6 lim inf
n→∞

1√
zn

logP(T
(n)
Nn

− E[T
(n)
Nn

] > zn)

6 lim sup
n→∞

1√
zn

logP(T
(n)
Nn

− E[T
(n)
Nn

] > zn) 6 −α.

Proposition 3.4. Let Y (n) be the random variable appearing in the context of hashing with linear probing.
Then,

−β(µ) 6 lim inf
n→∞

1√
Nny

logP(Y (n)
> Nny) (4)

6 lim sup
n→∞

sup
u>

√
Nny

1√
u
logP(Y (n)

> u) 6 −α(µ) (5)

with

α(µ) = (1 + log(µ)− µ)
√
2 and β(µ) = 4 + log(2) + 2 log(µ)− 2µ.
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4 Conditional Berry-Esseen bound

We come back to the general framework of Subsection 2.1. Let also Un be a random variable distributed as

T
(n)
Nn

conditioned on S
(n)
Nn

= mn.

Theorem 4.1. Suppose that there exist positive constants c̃1, c1, c2, c̃3, c3, c4, c5, and c6 such that:

(H4.1.1) c̃1 6 σX(n) := Var
(

X(n)
)1/2

6 c1;

(H4.1.2) ρX(n) := E

[

∣

∣X(n) − E
[

X(n)
]∣

∣

3
]

6 c32σ
3
X(n) ;

(H4.1.3) for Y
′(n) := Y (n) −X(n)Cov(X(n), Y (n))/σ2

X(n) , there exists η0 > 0 such that, for all s ∈ [−π, π]
and t ∈ [0, η0],

∣

∣

∣E

[

ei(sX
(n)+tY

′(n))
]∣

∣

∣ 6 1− c5
(

σ2
X(n)s

2 + σ2
Y ′(n)t

2
)

;

(H4.1.4) mn = NnE
[

X(n)
]

+O(σX(n)N
1/2
n );

(H4.1.5) c̃3 6 σY (n) := Var
(

Y (n)
)1/2

6 c3;

(H4.1.6) ρY (n) := E

[

∣

∣Y (n) − E
[

Y (n)
]∣

∣

3
]

6 c34σ
3
Y (n);

(H4.1.7) the correlation rn := Cov
(

X(n), Y (n)
)

σ−1
X(n)σ

−1
Y (n) satisfies |rn| 6 c6 < 1, so that

τ2n := σ2
Y (n)(1− r2n) > c̃22(1− c26) > 0.

Then the following conclusions hold.

4.1.a. There exists c̃5 > 0 such that

P(S
(n)
Nn

= mn) >
c̃5

2πσX(n)N
1/2
n

.

4.1.b. For Nn > N0 := max(3, c62, c
6
4), the conditional distribution of

N−1/2
n τ−1

n (T
(n)
Nn

−NnE[Y
(n)]− rn

σY (n)

σX(n)

(mn −NnE[X
(n)]))

on {S(n)
Nn

= mn} satisfies the Berry-Esseen inequality

sup
x

∣

∣

∣

∣

∣

P

(

Un −NnE
[

Y (n)
]

− rnσY (n)σ−1
X(n)(mn −NnE

[

X(n)
]

)

N
1/2
n τn

6 x

)

− Φ(x)

∣

∣

∣

∣

∣

6
C

N
1/2
n

, (6)

where Φ denotes the standard normal cumulative distribution function and C is a positive constant
that only depends on c̃1, c1, c2, c̃3, c3, c4, c5, c̃5, and c6.

4.1.c. Moreover, there exists two positive constants c7 and c8 only depending on c̃1, c1, c2, c̃3, c3, c4,
c5, c̃5, and c6 such that

∣

∣

∣

∣

E [Un]−NnE[Y
(n)]− rn

σY (n)

σX(n)

(mn −NnE[X
(n)])

∣

∣

∣

∣

6 c7 (7)

and
∣

∣Var (Un)−Nnτ
2
n

∣

∣ 6 c8N
1/2
n . (8)
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If Nn > Ñ0 := max(N0, 4c
2
8/c̃

2
3), we also have

sup
x

∣

∣

∣

∣

∣

P

(

Un − E [Un]

Var (Un)
1/2

6 x

)

− Φ(x)

∣

∣

∣

∣

∣

6
C̃

N
1/2
n

, (9)

where C̃ is a constant that only depends on c̃1, c1, c2, c̃3, c3, c4, c5, c̃5, and c6.

Remark 4.2.

1. The fact that Nn → ∞ is only required for the existence of the constant c̃5 which relies on Lebesgue
dominated convergence theorem.

2. The set of hypotheses of Theorem 4.1 implies the one of the central limit theorem established in [13,
Theorem 2.1] which is clearly not surprising.

3. By Hypothesis (H4.1.4), the conditioning value is approximately equal to the mean as in the central
limit theorem given in [13, Theorem 2.3].

4. As a consequence of Lemma 5.5 below, c̃1 can be chosen as c−3
2 /4.

5. Hypothesis (H4.1.7) is not very restricting and holds in the examples provided in Subsection 2.2.

6. One should note that 4.1.a is the analog of Equation (3.7) in [9, Lemma 3.2].

7. Following [13], we introduce Y
′(n) in order to work with a centered variable which is also uncorrelated

with X(n).

8. If (X,Y ′) is a pair of random variables such that the correlation r satisfies |r| < 1, then

∣

∣

∣E

[

ei(sX+tY ′)
]∣

∣

∣ = 1− 1

2

(

σ2
Xs

2 + 2σXσY ′rst+ σ2
Y ′t2

)

+ o(s2 + t2)

6 1− 1− |r|
2

(

σ2
Xs

2 + σ2
Y ′t2

)

+ o(s2 + t2),

so Hypothesis (H4.1.3) is reasonable for i.i.d. sequences.

As in [13], the result simplifies considerably in the special case when the pair (X(n), Y (n)) does not depend
on n, that is to say when we consider an i.i.d. sequence instead of a triangular array. This is a consequence
of the following corollary.

Corollary 4.3. Assume that
(

X(n), Y (n)
) (d)→ (X,Y ) as n→ ∞ and that, for every fixed r > 0,

lim sup
n→∞

E

[

|X(n)|r
]

< +∞ and lim sup
n→∞

E

[

|Y (n)|r
]

< +∞.

Suppose further that the distribution of X has span 1 and that Y is not a.s. equal to an affine function
c+ dX of X. Let mn and Nn be integers such that E

[

X(n)
]

= mn/Nn and Nn → ∞. Then, all hypotheses
of Theorem 4.1 are satisfied and Theorem 4.1 holds.

Each example presented in Subsection 2.2, including hashing with linear probing, satisfies the assumptions
of Corollary 4.3, as shown in [13], leading to a Berry-Esseen bound for all of them.
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5 Proofs

5.1 Technical results

The proofs of Theorems 3.1 and 4.1 intensively rely on the use of Fourier transforms. Define ϕn and ψn by

ϕn(s, t) := E

[

exp
{

is
(

X(n) − E

[

X(n)
])

+ it
(

Y (n) − E

[

Y (n)
])}]

(10)

and ψn(t) := 2πP(S
(n)
Nn

= mn)E
[

exp
{

it
(

Un −NnE

[

Y (n)
])}]

. (11)

In this first subsection, we establish some properties of these two functions. First notice that ϕn(s, 0) =

e−isE[X(n)]
E

[

eisX
(n)
]

and ψn(0) = 2πP(S
(n)
Nn

= mn).

Lemma 5.1. One has

ψn(t) =
1

σX(n)N
1/2
n

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

e
−isσ−1

X(n)
N−1/2

n (mn−NnE[X(n)])ϕNn
n

(

s

σX(n)N
1/2
n

, t

)

ds. (12)

Proof. Since
∫ π

−π

eis(S
(n)
Nn

−mn)ds = 2π1{S(n)
Nn

=mn},

we have

ψn(t) = 2πP(S
(n)
Nn

= mn)E
[

exp
{

it
(

Un −NnE

[

Y (n)
])}]

= 2πE
[

exp
{

it
(

T
(n)
Nn

−NnE

[

Y (n)
])} 1{S(n)

Nn
=mn}

]

=

∫ π

−π

E

[

exp
{

is
(

S
(n)
Nn

−mn

)

+ it
(

T
(n)
Nn

−NnE

[

Y (n)
])}]

ds

=

∫ π

−π

e−is(mn−NnE[X(n)])ϕNn
n (s, t)ds,

which leads to the result after the change of variable s′ = sσX(n)N
1/2
n .

Now we establish the local limit theorem (LLT) which is crucial both in the proofs of Theorem 3.1 and
Theorem 4.1.

Proposition 5.2 (LLT). We assume

1. ρX(n) := E

[

∣

∣X(n) − E
[

X(n)
]∣

∣

3
]

6 c32σ
3
X(n) ;

2. for Y
′(n) := Y (n) −X(n)Cov(X(n), Y (n))/σ2

X(n) , there exists η0 > 0 such that, for all s ∈ [−π, π] and
t ∈ [0, η0],

∣

∣

∣E

[

ei(sX
(n)+tY

′(n))
]∣

∣

∣ 6 1− c5
(

σ2
X(n)s

2 + σ2
Y ′(n)t

2
)

;

3. mn = NnE
[

X(n)
]

+O(σX(n)N
1/2
n ) (remind that mn ∈ Z and P(S

(n)
Nn

= mn) > 0);

Then there exists c > 0 such that

P(S
(n)
Nn

= mn) >
c

2πσX(n)N
1/2
n

.

9



Proof. Only consider the indices n for which σX(n) < +∞. Remember that ϕn(s, 0) = E

[

eis(X
(n)−E[X(n)])

]

and

ψn(0) = 2πP(S
(n)
Nn

= mn) =
1

σX(n)N
1/2
n

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

e−isvnϕNn
n

(

s

σX(n)N
1/2
n

, 0

)

ds

where vn =
mn−NnE[X(n)]

σ
X(n)N

1/2
n

, by Lemma 5.1. Let us prove that the sequence

(un)n =
(

ψn(0)σX(n)N1/2
n ev

2
n/2
)

converges to
√
2π, from which the conclusion follows, since (vn)n is bounded by assumption 3. and P(S

(n)
Nn

=
mn) > 0 for all n. Inequality (13) with l = 0 and t = 0 implies that the sequence (un)n is bounded. Let us
prove that

√
2π is the only accumulation point of (un)n. Let φ(n) such that (uφ(n))n converges. Even if it

means extracting more, we can suppose that (vφ(n))n converges. Let v = lim vφ(n). Using Taylor’s theorem,
one gets

∣

∣

∣

∣

∣

ϕn

(

s

σX(n)N
1/2
n

, 0

)

− 1 +
s2

2Nn

∣

∣

∣

∣

∣

6
|s|3

6σ3
X(n)N

3/2
n

E

[

∣

∣

∣X(n) − E

[

X(n)
]∣

∣

∣

3
]

= o

(

1

Nn

)

where the last equality follows from assumption 1. Now,

e−isvφ(n)ϕ
Nφ(n)

φ(n)

(

s

σX(φ(n))

√

Nφ(n)

, 0

)

→ e−isv−s2/2 = e−v2/2e−(s+iv)2/2

and, by Lebesgue dominated convergence theorem and the fact that σX(n)N
1/2
n → +∞ (see Lemma 5.5),

ψφ(n)(0)σX(φ(n))

√

Nφ(n)e
v2
φ(n)/2 →

√
2π.

Now we give controls on the function ϕn and its second partial derivative.

Lemma 5.3. Under Hypothesis (H4.1.3), for any integer l > 0, |s| 6 πσX(n)N
1/2
n , and |t| 6 η0σY (n)N

1/2
n ,

∣

∣

∣

∣

∣

ϕNn−l
n

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)

∣

∣

∣

∣

∣

6 e−(s2+t2)·c5·(Nn−l)/Nn . (13)

Proof. The proof is a mere consequence of the inequality 1 + x 6 ex that holds for any x ∈ R.

In the sequel, we also need different controls on the first partial derivative of ϕn with respect to the first
variable.

Lemma 5.4. For any s and t, one has
∣

∣

∣

∣

∣

∂ϕn

∂t

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)∣

∣

∣

∣

∣

6
σY (n)

N
1/2
n

(|s|+ |t|); (14)

and
∣

∣

∣

∣

∣

∂ϕn

∂t

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)∣

∣

∣

∣

∣

6
σY (n)

N
1/2
n

(|s|rn + |t|) + σY (n)

Nn

[

s2

2

(

ρX(n)

σ3
X(n)

)2/3(
ρY (n)

σ3
Y (n)

)1/3

+ |st|
(

ρX(n)

σ3
X(n)

)1/3(
ρY (n)

σ3
Y (n)

)2/3

+
t2

2

(

ρY (n)

σ3
Y (n)

)]

. (15)
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Proof. We apply Taylor’s theorem to the function defined by

(s, t) 7→ f(s, t) =
∂ϕn

∂t

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)

.

We conclude to (14) using

|f(s, t)− f(0, 0)| 6 |s| sup
θ,θ′∈[0,1]

∣

∣

∣

∣

∂f

∂s
(θs, θ′t)

∣

∣

∣

∣

+ |t| sup
θ,θ′∈[0,1]

∣

∣

∣

∣

∂f

∂t
(θs, θ′t)

∣

∣

∣

∣

and to (15) using

|f(s, t)− f(0, 0)| 6 |s|
∣

∣

∣

∣

∂f

∂s
(0, 0)

∣

∣

∣

∣

+ |t|
∣

∣

∣

∣

∂f

∂t
(0, 0)

∣

∣

∣

∣

+
s2

2
sup

θ,θ′∈[0,1]

∣

∣

∣

∣

∂2f

∂2s
(θs, θ′t)

∣

∣

∣

∣

+ |st| sup
θ,θ′∈[0,1]

∣

∣

∣

∣

∂2f

∂t∂s
(θs, θ′t)

∣

∣

∣

∣

+
t2

2
sup

θ,θ′∈[0,1]

∣

∣

∣

∣

∂2f

∂2t
(θs, θ′t)

∣

∣

∣

∣

.

Lemma 5.5. Under Hypothesis (H4.1.2), one has σX(n) > (4c32)
−1.

Proof. The proof relies on the fact that, for any integer-valued random variable X (see [13, Lemma 4.1.]),

σ2
X 6 4E

[

|X − E [X ]|3
]

.

The conclusion follows, using Hypothesis (H4.1.2).

5.2 Proof of Proposition 3.3

Since Y (n) − E
[

Y (n)
]

also satisfies the hypotheses, we can assume that E
[

Y (n)
]

= 0. Write

P(T
(n)
Nn

> zn) = P(T
(n)
Nn

> zn, ∀i Y (n)
i < zn) + P(T

(n)
Nn

> zn, ∃i Y (n)
i > zn)

:= PNn,0 + PNn,1.

If we prove that

−β 6 lim inf
n→∞

1√
zn

log(PNn,1) 6 lim sup
n→∞

1√
zn

log(PNn,1) 6 −α (16)

and

lim sup
n→∞

1√
zn

log(PNn,0) 6 −α, (17)

then,

−β 6 lim inf
n→∞

1√
zn

log(PNn,1) 6 lim inf
n→∞

1√
zn

logP(T
(n)
Nn

> zn)

6 lim sup
n→∞

1√
zn

logP(T
(n)
Nn

> zn) 6 −α

which establishes Proposition 3.3.
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Proof of (16). First, using (3),

lim sup
n→∞

1√
zn

log(PNn,1) 6 lim sup
n→∞

1√
zn

log
(

NnP(Y
(n)
Nn

> zn)
)

6 −α.

Let us prove the converse inequality. Let ε > 0. We have

PNn,1 > P(T
(n)
Nn

> zn, Y
(n)
1 > zn)

> P(T
(n)
Nn−1 > −Nnε)P(Y

(n)
> zn +Nnε).

By Chebyshev’s inequality and Hypothesis (H3.3.2),

P(T
(n)
Nn−1 > −Nnε) = 1− P

(

T
(n)
Nn−1 < −Nnε

)

> 1−
σ2
Y (n)

Nnε2
→ 1,

the random variables Y (n) being assumed centered. Finally, using (2) and (H3.3.1), and noting δ :=

lim inf
n→∞

zn
Nn

, one gets

lim inf
n→∞

1√
zn

log(PNn,1) > lim inf
n→∞

√

zn +Nnε

zn

1√
zn +Nnε

logP(Y (n)
> zn +Nnε) > −β

√

δ + ε

δ
.

Conclude by letting ε→ 0.

Proof of 17. Let α′ ∈ (0, α) and sn = α′/
√
zn. The exponential Chebyshev’s inequality for T

(n)
Nn

conditioned

on {∀i, Y (n)
i < zn} yields

PNn,0 6 e−snznE

[

esnY
(n)1Y (n)<zn

]Nn

.

If we prove that

E

[

esnY
(n)1Y (n)<zn

]

= 1 + o(N−1/2
n ),

then log(PNn,0) 6 −α′√zn + o(N
1/2
n ) and the conclusion follows by letting α′ → α. Let η ∈]3/4, 1[. Write

E

[

esnY
(n)1Y (n)<zn

]

=

∫

√
zn

−∞
esnuP(Y (n) ∈ du) +

∫ zn−(zn)
η

√
zn

esnuP(Y (n) ∈ du) +

∫ zn

zn−(zn)η
esnuP(Y (n) ∈ du)

=: I1 + I2 + I3.

By a Taylor expansion of f(t) = et, (H3.3.2) and (H3.3.1), there exists

θ(u) 6 snu 6 sn
√
zn = α′

such that

I1 6

∫

√
zn

−∞

(

1 + snu+
s2nu

2

2
eθ(u)

)

P(Y (n) ∈ du)

6

∫ +∞

−∞

(

1 + snu+
s2nu

2

2
eα

′

)

P(Y (n) ∈ du) = 1 + 0 +
α′2σ2

Y (n)

2zn
eα

′

= 1 + o(N−1/2
n ).

12



Let n0 such that, for all n > n0 and u >
√
zn, logP(Y

(n) > u) 6 −α′√u. Suppose n is larger than n0.
Integrating by part, we get

I2 = −
[

esnuP(Y (n)
> u)

]zn−(zn)
η

√
zn

+ sn

∫ zn−(zn)
η

√
zn

esnuP(Y (n)
> u)du

6 esn
√
znP(Y (n)

>
√
zn) + sn

∫ zn−(zn)
η

√
zn

esnu−α′
√
udu

6 eα
′(1−(zn)

1/4) + sn

∫ zn−(zn)
η

√
zn

exp

(

α′
(

u√
zn

−
√
u

))

du.

Since, for all t ∈ [0, 1],
√
1− t 6 1 − t/2, we get, for all u ∈ [

√
zn, zn − (zn)

η] and n large enough to have

(zn)
ν−1

< 1,

u√
zn

−
√
u 6

√
u
(

√

1− (zn)η−1 − 1
)

6 − (zn)
η−3/4

2
.

Hence, I2 = o(N
−1/2
n ).

Let α′′ ∈ (α′, α ∧ 2α′). Let n1 such that, for all n > n1 and u > zn − zηn, logP(Y
(n) > u) 6 −α′′√u.

Suppose n is larger than n1. Integrating by part, we get

I3 = −
[

esnuP(Y (n)
> u)

]zn

zn−zη
n

+ sn

∫ zn

zn−zη
n

esnuP(Y (n)
> u)du

6 esn(zn−zη
n)P(Y (n)

> zn − zηn) + sn

∫ zn

zn−zη
n

esnu−α′′
√
udu.

Now, since
√
t > t if t ∈ [0, 1],

esn(zn−zη
n)P(Y (n)

> zn − zηn) 6 exp
(√

zn

(

α′ (1− zη−1
n

)

− α′′ (1− zη−1
n

)1/2
))

6 exp
(√
zn(α

′ − α′′)(1 − zη−1
n )

)

= o
(

N−1/2
n

)

.

Finally, applying Taylor’s theorem to the function f(u) = snu− α′′√u around the point zn yields

f(u) =
α′u√
zn

− α′′√u = (α′ − α′′)
√
zn +

(

α′
√
zn

− α′′

2
√
c

)

(u− zn)

with c ∈ [u, zn]. Since α
′′ < 2α′, we have

(

α′
√
zn

− α′′

2
√
c

)

(u− zn) 6

(

α′
√
zn

− α′′

2
√

zn − zηn

)

(u− zn) 6 0,

for n large enough and we conclude that I3 = o(N
−1/2
n ).

5.3 Proof of Proposition 3.4

Remind that (X
(n)
i , Y

(n)
i )16i6Nn are i.i.d. copies of (X(n), Y (n)), X(n) following the Borel distribution with

parameter µn = n/mn → µ ∈ (0, 1), and Y (n) given X(n) = l is distributed as dl,l−1. We start with
computing the asymptotic tail behavior of X(n). Remind that

P(X(n) = xn) = e−µnxn
(µnxn)

xn−1

xn!
.
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Lemma 5.6 (Tail of X(n)). If ln → ∞, then

logP(X(n) = ln) = −κln(1 + o(1)) (18)

and

logP(X(n)
> ln) = −κln(1 + o(1)) (19)

with κ = µ− log(µ)− 1 ∈ (0,∞).

Proof. By Stirling’s formula,

logP
(

X(n) = ln
)

= log
(

e−µnln
(µnln)

ln−1

ln!

)

∼ ln(1 + log(µ)− µ).

Similar estimates give the second result.

Proof of (5). Let u > 0 and nu be the ceiling of the positive solution of 2u = (n− 1)(n− 2):

nu =

⌈

√

2u+
1

4
+

3

2

⌉

. (20)

Since Y (n) conditioned on {X(n) = l} is distributed as dl,l−1, we get

P(Y (n)
> u) =

+∞
∑

l=nu

P(dl,l−1 > u)P(X(n) = l) 6

+∞
∑

l=nu

P(X(n) = l) = P(X(n)
> nu).

By (19) and the fact that nu =
√
2u(1 + o(1)) for u >

√
Nny, we finally conclude that

lim sup
n→∞

sup
u>

√
Nny

1√
u
logP(Y (n)

> u) 6 −κ
√
2.

Lemma 5.7. Let a > 0. Let l = 1 + ⌈√a⌉ and k = ⌊√a⌋. Then

P(dl,l−1 > a) >
1

ll−1

(l − 1)!

2k
.

Proof. Take the hash sequence

(1, 1, 2, 2, . . . k, k, k + 1, k + 2, . . . , l − 1− k) . (21)

Notice that 0 6 k 6 (l − 1)/2. On the one hand, it is decomposed into l − 1 − 2k single numbers and k
pairs leading to a hash sequence of size l − 1 as required. On the other hand, each pair (q, q) (q = 1, . . . ,
k) realizes a displacement equal to (q − 1) + q while each singleton q (q = k + 1, . . . , l − 1 − k) realizes a
displacement equal to k. The total displacement is then k(l − 1− k) which is greater than a.
Moreover as mentioned in Lemma 2.1 the total displacement associated to any hash sequence does not
depend on the order of the hash sequence. One can consider all the permutations of the hash sequence
defined in (21) the total number of which is given by

(

l − 1

1

)(

l − 2

1

)

. . .

(

2k + 1

1

)(

2k

2

)(

2k − 2

2

)

. . .

(

2

2

)

=
(l − 1)!

2k
.

To conclude, it remains to use item 1. of Lemma 2.1.
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Proof of (4). For any ln > 1, one has

P(Y (n)
> Nny) =

+∞
∑

l=1

P(dl,l−1 > Nny)P(X
(n) = l)

> P(dln,ln−1 > Nny)P(X
(n) = ln).

As a consequence, using Lemma 5.7 with a := Nny and Lemma 5.6,

lim inf
n→∞

1√
Nny

logP(Y (n)
> Nny) > lim inf

n→∞
1√
Nny

log

(

1

lln−1
n

(ln − 1)!

2kn
P
(

X(n) = ln
)

)

> lim inf
n→∞

− ln + kn log(2) + κln√
Nny

= −(4 + log(2) + 2 log(µ)− 2µ)

where ln = 1 + ⌈√a⌉ and kn = ⌊√a⌋.

5.4 Proof of Theorem 3.1

Remind that the total displacement dmn,n is distributed as the conditional distribution of T
(n)
Nn

given S
(n)
Nn

=

mn. Notice that E[S
(n)
Nn

] = NnE[X
(n)] = mn. Now let

Pn := P(dmn,n − E[dmn,n] > Nny)

= P(T
(n)
Nn

− E[T
(n)
Nn

|S(n)
Nn

= mn] > Nny|S(n)
Nn

= mn)

= P(T
(n)
Nn

− E[T
(n)
Nn

] > Nnyn, S
(n)
Nn

= mn)/P(S
(n)
Nn

= mn)

where yn := y + 1
Nn

(E[T
(n)
Nn

|S(n)
Nn

= mn]− E[T
(n)
Nn

]). The following lemma entails yn → y.

Lemma 5.8.

E

[

T
(n)
Nn

∣

∣

∣S
(n)
Nn

= mn

]

= E

[

T
(n)
Nn

]

+ o(Nn).

Proof. According to [12, Section 4], the hypotheses of Proposition 5.2 are satisfied by the variables (X(n), Y (n)).
Using (11), differentiating under the integral sign of (12) and using Proposition 5.2 yield

∣

∣

∣E

[

T
(n)
Nn

−NnE

[

Y (n)
]∣

∣

∣S
(n)
Nn

= mn

]∣

∣

∣ =

∣

∣

∣

∣

∣

−iψ′
n(0)

2πP(S
(n)
Nn

= mn)

∣

∣

∣

∣

∣

6
Nn

2πc

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

∣

∣

∣

∣

∣

∂ϕn

∂t

(

s

σX(n)N
1/2
n

, 0

)∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

ϕNn−1
n

(

s

σX(n)N
1/2
n

, 0

)∣

∣

∣

∣

∣

ds. (22)

It remains to show that the integral converges to 0. Putting together (22) and (15), using the fact that
Var(Y (n)) is convergent and the control (13) with l = 1 and t = 0, one gets

E

[

T
(n)
Nn

−NnE

[

Y (n)
]∣

∣

∣S
(n)
Nn

= mn

]

= o(Nn).

Remember that the assumptions of Theorem 4.1 are satisfied. By Lemma 5.8 (respectively Hypothesis
(H4.1.5) and Proposition 3.4), Hypothesis (H3.3.1)with zn = Nnyn (resp. Hypotheses (H3.3.2) and (H3.3.3))
holds.
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Proof of the upper bound. We have

Pn 6
P(T

(n)
Nn

− E[T
(n)
Nn

] > Nnyn)

P(S
(n)
Nn

= mn)
.

The conclusion follows from the upper bound of Proposition 3.3, Proposition 5.2.

Proof ot the lower bound. We have

Pn > P(T
(n)
Nn

− E[T
(n)
Nn

] > Nnyn, S
(n)
Nn

= mn)

> P
(

T
(n)
Nn

− E[T
(n)
Nn

] > Nnyn, S
(n)
Nn

= mn, Y
(n)
Nn

− E[Y
(n)
Nn

] > Nn(yn + ε)
)

> P
(

T
(n)
Nn−1 − E[T

(n)
Nn−1] > −Nnε, S

(n)
Nn−1 = mn − ln

)

P
(

Y
(n)
Nn

− E[Y
(n)
Nn

] > Nn(yn + ε), X
(n)
Nn

= ln
)

=: P1P2

where ln := 1 + ⌈√an⌉ and an := Nn(yn + ε) + E[Y (n)]. Applying Lemma 5.7 and Lemma 5.6, we get

lim inf
n→∞

1√
Nn

log(P2) = lim inf
n→∞

1√
Nn

log
(

P
(

dln,ln−1 > Nn(yn + ε) + E[Y (n)]
)

P
(

X(n) = ln
)

)

> lim inf
n→∞

1√
Nn

log

(

1

lln−1
n

(ln − 1)!

2kn
P
(

X(n) = ln
)

)

> lim inf
n→∞

− ln + kn log(2) + (1 + log(µ)− µ)ln√
Nn

= −(4 + log(2) + 2 log(µ)− 2µ)
√
y + ε.

Letting ε→ 0, we get

lim inf
n→∞

1√
Nn

log(P2) > −β(µ)√y (23)

with β(µ) := 4 + log(2) + 2 log(µ) − 2µ.
Let us turn to the minoration of P1:

P1 = P
(

T
(n)
Nn−1 − E[T

(n)
Nn−1] > −Nnε, S

(n)
Nn−1 = mn − ln

)

> P
(

S
(n)
Nn−1 = mn − ln

)

− P
(

T
(n)
Nn−1 − E[T

(n)
Nn−1] < −Nnε

)

.

Since ln = O(N
1/2
n ), Proposition 5.2 provides a c > 0 such that

P
(

S
(n)
Nn−1 = mn − ln

)

>
c

2πσX(n)N
1/2
n

> c′N−1/2
n

with c′ > 0, since σX(n) converges to the standard deviation of the Borel distribution of parameter µ.

Chebyshev’s inequality and the fact that Var(Y (n)) = o(N
1/2
n ) yield

P
(

T
(n)
Nn−1 − E[T

(n)
Nn−1] < −Nnε

)

6
Var(Y (n))

Nnε2
= o(N−1/2

n ).

Eventually, limn→∞
1√
Nn

log(P1) = 0 that leads with (23) to

lim inf
n→∞

1√
Nn

log(Pn) > −β(µ)y1/2.

16



5.5 Proof of Theorem 4.1

To lighten notation, we denote Sn := S
(n)
Nn

and Tn := T
(n)
Nn

. Remind that Un is distributed as Tn conditioned
on Sn. Part a) is Proposition 5.2 with c̃5 = c. Now we follow the procedure of Janson [13] to uncorrelate
X(n) and Y (n) and center the variable Y (n). We replace Y (n) by the projection

Y
′(n) := Y (n) − E[Y (n)]− Cov(X(n), Y (n))

σ2
X(n)

(

X(n) − E[X(n)]
)

.

Then E[Y
′(n)] = 0 and Cov(X(n), Y

′(n)) = E[X(n)Y
′(n)] = 0. Besides, Hypotheses (H4.1.3) and (H4.1.7)

are verified by Y
′(n). By Hypothesis (H4.1.7),

σ2
Y ′(n) = σ2

Y (n)(1− r2n) ∈ [c̃23(1− c26), c
2
3],

so (H4.1.5) is satisfied by Y
′(n). Finally, by Minkowski Inequality, Hypotheses (H4.1.2) and (H4.1.6), and

the fact that |rn| 6 1,
∥

∥

∥Y
′(n)
∥

∥

∥

3
6

∥

∥

∥Y (n) − E[Y (n)]
∥

∥

∥

3
+

|rn|σX(n)σY (n)

σ2
X(n)

∥

∥

∥X(n) − E[X(n)]
∥

∥

∥

3

6 ρ
1/3

Y (n) + rnσY (n)

ρ
1/3

X(n)

σX(n)

6 σY (n)(c2 + c4).

Hence Y
′(n) satisfies Hypothesis (H4.1.6). Consequently, all conditions hold for the pair (X(n), Y

′(n)) too.
Finally,

T ′
n :=

Nn
∑

i=1

Y
′(n)
i = Tn −NnE

[

Y (n)
]

− Cov(X(n), Y (n))

σ2
X(n)

(

Sn −NnE

[

X(n)
])

.

So, conditioned on Sn = mn, we have T ′
n = Tn − NnE

[

Y (n)
]

− rn
σ
Y (n)

σ
X(n)

(mn − NnE[X
(n)]). Hence the

conclusions for
(

X(n), Y (n)
)

and
(

X(n), Y
′(n)
)

are the same. Thus, it suffices to prove the theorem for
(

X(n), Y
′(n)
)

; in other words, we may henceforth assume that E
[

Y (n)
]

= E
[

X(n)Y (n)
]

= 0. Note that in

that case τ2n = σ2
Y (n) .

Proof of Theorem 4.1 - Part b). We follow the classical proof of Berry-Esseen (see e.g. [7]) combined with
the procedure of Quine and Robinson [27].
As shown in Loève [21] (page 285) or Feller [7], the left hand side of (6) is dominated by

2

π

∫ ησ
Y (n)N

1/2
n

0

∣

∣

∣

∣

∣

ψn(u/σY (n)N
1/2
n )

2πP(Sn = mn)
− e−u2/2

∣

∣

∣

∣

∣

du

u
+

24σ−1
Y (n)N

−1/2
n

ηπ
√
2π

(24)

where η > 0 is such that

η := min

(

2

9
c3c

3
4, η0

)

. (25)

From Lemma 5.1 and a Taylor expansion,

u−1

∣

∣

∣

∣

∣

ψn(u/σY (n)N
1/2
n )

2πP(Sn = mn)
− e−u2/2

∣

∣

∣

∣

∣

= u−1e−u2/2

∣

∣

∣

∣

∣

eu
2/2ψn(u/σY (n)N

1/2
n )

2πP(Sn = mn)
− 1

∣

∣

∣

∣

∣

6 e−u2/2 sup
06θ6u

∣

∣

∣

∣

∣

∂

∂t

[

et
2/2ψn(t/σY (n)N

1/2
n )

2πP(Sn = mn)

]∣

∣

∣

∣

∣

t=θ

6 c−1
n e−u2/2 sup

06θ6u

{

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

∣

∣

∣

∣

∣

∂

∂t

[

et
2/2ϕNn

n

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)]∣

∣

∣

∣

∣

t=θ

ds

}

17



where cn := 2πP(Sn = mn)σX(n)N
1/2
n > c̃5 and vn =

mn−NnE[X(n)]
σ
X(n)N

1/2
n

has already been defined in the proof

of Proposition 5.2. Now we split the integration domain of s into

A1 :=
{

s : |s| < εσX(n)N1/2
n

}

and A2 :=
{

s : εσX(n)N1/2
n 6 |s| 6 πσX(n)N1/2

n

}

,

where 0 < ε < π is such that

ε := min

(

2

9
c1c

3
2, π

)

(26)

and decompose

u−1

∣

∣

∣

∣

∣

ψn(u/σY (n)N
1/2
n )

2πP(Sn = mn)
− e−u2/2

∣

∣

∣

∣

∣

6 sup
06θ6u

[I1(u, θ) + I2(u, θ)] , (27)

where

I1(u, θ) = c−1
n

∫

A1

e−(u2+s2)/2

∣

∣

∣

∣

∣

(

∂

∂t

[

e(t
2+s2)/2ϕNn

n

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)])

t=θ

∣

∣

∣

∣

∣

ds, (28)

I2(u, θ) = c−1
n e−u2/2

∫

A2

∣

∣

∣

∣

∣

(

∂

∂t

[

et
2/2ϕNn

n

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)])

t=θ

∣

∣

∣

∣

∣

ds. (29)

If we prove that there exists positive constants C1, C2 and C3, such that

∫ ησ
Y (n)N

1/2
n

0

sup
06θ6u

I1(u, θ)du 6
C1

N
1/2
n

(30)

and
∫ ησ

Y (n)N
1/2
n

0

sup
06θ6t

I2(u, θ)du 6 C2e
−C3Nn , (31)

we conclude to part b) of Theorem 4.1 writing

C2e
−C3Nn =

C2C
−1/2
3

N
1/2
n

(C3Nn)
1/2e−C3Nn 6

C2C
−1/2
3

N
1/2
n

(1/2)1/2e−1/2,

since x1/2e−x is maximum in 1/2. The proofs of (30) and (31) are postponed after the present proof. So,

sup
x

∣

∣

∣

∣

∣

P

(

Un −NnE
[

Y (n)
]

N
1/2
n τn

6 x

)

− Φ(x)

∣

∣

∣

∣

∣

6
C

N
1/2
n

with

C := C1 + C2C
−1/2
3 (1/2)1/2e−1/2 +

24

c̃3π
√
2π

(

min

(

2

9
c3c

3
4, η0

))−1

. (32)

Now it remains to prove (30) and (31). To bound I1(u, θ), we use a result due to Quine and Robinson ([27,
Lemma 2]).

Lemma 5.9. [Lemma 2 in [27]] Define

l1,n := ρX(n)σ−3
X(n)N

−1/2
n and l2,n := ρY (n)σ−3

Y (n)N
−1/2
n .

If l1,n 6 1 and l2,n 6 1, then, for all

(s, t) ∈ R :=

{

(s, t) : |s| < 2

9
l−1
1,n, |t| <

2

9
l−1
2,n

}

,

18



we have

∣

∣

∣

∣

∂

∂t

[

e(s
2+t2)/2 ϕNn

n

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)]∣

∣

∣

∣

∣

6 C0(|s|+ |t|+ 1)3(l1,n + l2,n) exp

{

11

24

(

s2 + t2
)

}

(33)

with C0 := 98.

Proof. We refer to the proof in the appendix of [27]. The condition l1,n < 12−3/2 and l2,n < 12−3/2

appearing in [27, Lemma 2] can be replaced by l1,n 6 (33/32)3/2 and l2,n 6 (33/32)3/2 since the factor 8/27
in (A4) of their proof can be replaced by a factor 1/27. Since we do not provide the best constants here,
we simply suppose l1,n 6 1 and l2,n 6 1. Finally, C0 has to be greater than 4 and

sup
(v,s)∈R2

27(|v|+ 2 |s|)(|v|3 + |s|3)
(|v|+ |s|+ 1)3

e−(v2+s2)/24
6 54 · (|v|+ |s|)e−(v2+s2)/24

6 108 ·
√
6

√

v2 + s2

12
e−(v2+s2)/24

6
108 ·

√
6

e
6 98.

By Hypotheses (H4.1.2) and (H4.1.1),

l1,n 6 c32N
−1/2
n 6 c32c1σ

−1
X(n)N

−1/2
n , (34)

which implies that σX(n)N
1/2
n 6 c−3

2 c−1
1 l−1

1,n. Similarly,

l2,n 6 c34N
−1/2
n 6 c34c3σ

−1
Y (n)N

−1/2
n , (35)

and σY (n)N
1/2
n 6 c−3

4 c−1
3 l−1

2,n.

Lemma 5.10. There exists a positive constant C1 such that

∫ ησ
Y (n)N

1/2
n

0

sup
06θ6u

I1(u, θ)du 6
C1

N
1/2
n

.

Proof. Conditions (26) and (25) imply that, on A1,

|s| < εσX(n)N1/2
n 6

2

9
l−1
1,n and |θ| 6 |u| 6 ησY (n)N1/2

n 6
2

9
l−1
2,n,

which ensures that (s, u) ∈ R as specified in Lemma 5.9. Moreover, since we have Nn > max(c62, c
6
4) (cf.

Hypothesis in 4.1.b), l1,n 6 1 and l2,n 6 1. Now applying Lemma 5.9 in (28) and using part 4.1.a, we get

∫ ησ
Y (n)N

1/2
n

0

sup
06θ6u

I1(u, θ)du

6 c−1
n C0(l1,n + l2,n)

∫ ησ
Y (n)N

1/2
n

0

∫

A1

(|s|+ |u|+ 1)3e−(s2+u2)/24dsdu

6 N−1/2
n c̃−1

5 C0(c
3
2 + c34)

∫

R2

(|s|+ |u|+ 1)3e−(s2+u2)/24dsdu

and the result follows with C1 = c̃−1
5 C0(c

3
2 + c34)

∫

R2(|s|+ |u|+ 1)3e−(s2+u2)/24dsdu.
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Now, we study the integral on A2.

Lemma 5.11. There exist positive constants C2 and C3, only depending on c̃1, c1, c2, c̃3, c3, c4, c5, c̃5,
and c6, such that

∫ ησ
Y (n)N

1/2
n

0

sup
06θ6t

I2(u, θ)du 6 C2e
−C3Nn .

Proof. We use the controls (14), (13) with l = 1, and |ϕn| 6 1 to get

∣

∣

∣

∣

∣

(

∂

∂t

[

et
2/2ϕNn

n

(

s

σX(n)N
1/2
n

,
t

σY (n)N
1/2
n

)])

t=θ

∣

∣

∣

∣

∣

= eθ
2/2

∣

∣

∣

∣

∣

ϕNn−1
n

(

s

σX(n)N
1/2
n

,
θ

σY (n)N
1/2
n

)∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

θϕn

(

s

σX(n)N
1/2
n

,
θ

σY (n)N
1/2
n

)

+
Nn

σY (n)N
1/2
n

∂ϕn

∂t

(

s

σX(n)N
1/2
n

,
θ

σY (n)N
1/2
n

)∣

∣

∣

∣

∣

6 eθ
2/2e−(s2+θ2)·c5(Nn−1)/Nn(|s|+ 2 |θ|).

Finally by (29) and for Nn > 2, we conclude that

∫ ησ
Y (n)N

1/2
n

0

sup
06θ6u

I2(u, θ)du

6 2c−1
n

∫ +∞

0

∫ +∞

εσ
X(n)N

1/2
n

sup
06θ6u

[

(s+ 2θ) exp

(

− u2

2
+
θ2

2

(

1− 2c5
Nn − 1

Nn

))]

· e−s2·c5(Nn−1)/Nndsdu

6 2c̃−1
5

∫ +∞

0

∫ +∞

εσ
X(n)N

1/2
n

(s+ 2t)e−min(1,c5)u
2/2e−s2c5/2dsdt

6 2c̃−1
5

2

c5
e−Nnc5ε

2σ2

X(n)/2

√
2π

2
√

min(1, c5)
+ 2c̃−1

5

2

min(1, c5)

e−Nnc5ε
2σ2

X(n)/2

c5εσX(n)N
1/2
n

.

The conclusion follows with

C2 := 2c̃−1
5 c−1

5









√
2π

√

min(1, c5)
+

2

min(1, c5)min

(

2
9c1c

3
2, π

)

c̃1









(36)

and C3 := c5 min

(

2
9c1c

3
2, π

)2

c̃21/2.

Proof of Theorem 4.1 - Part c). We start proving (7). We adapt the proof given in [13]. Using (11) with
E[Y (n)] = 0, and differentiating under the integral sign of (12), we naturally have

|E [Un]| =
∣

∣

∣

∣

−iψ′
n(0)

2πP(Sn = mn)

∣

∣

∣

∣

6
σ−1
X(n)N

−1/2
n Nn

2πP(Sn = mn)

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

∣

∣

∣

∣

∣

∂ϕn

∂t

(

s

σX(n)N
1/2
n

, 0

)∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

ϕNn−1
n

(

s

σX(n)N
1/2
n

, 0

)∣

∣

∣

∣

∣

ds. (37)
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Using inequality (15) of Lemma 5.4 with rn = 0 and t = 0, Hypotheses (H4.1.1), (H4.1.2), and (H4.1.6), we
deduce

∣

∣

∣

∣

∣

∂ϕn

∂t

(

s

σX(n)N
1/2
n

, 0

)∣

∣

∣

∣

∣

6
s2

2

ρ
1/3

Y (n)ρ
2/3

X(n)

σ2
X(n)Nn

6
c22c3c4
2Nn

s2.

Then using inequality (13) with l = 1 and t = 0 and for Nn > 2,

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

∣

∣

∣

∣

∣

∂ϕn

∂t

(

s

σX(n)N
1/2
n

, 0

)∣

∣

∣

∣

∣

·
∣

∣

∣

∣

∣

ϕNn−1
n

(

s

σX(n)N
1/2
n

, 0

)∣

∣

∣

∣

∣

ds 6
c22c3c4
2Nn

∫ +∞

−∞
s2e−c5s

2/2ds.

So, (7) holds with c7 :=
c22c3c4
2c̃5

∫ +∞
−∞ s2e−c5s

2/2ds.

To prove (8), since τn = σY (n) and E [Un] is bounded, it suffices to show that the quantity
∣

∣E
[

U2
n

]

−Nnσ
2
Y (n)

∣

∣

is bounded by some c′8N
1/2
n . Proceeding as previously,

E
[

U2
n

]

=
−ψ′′

n(0)

2πP(Sn = mn)

= −c−1
n Nn(Nn − 1)

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

(

∂ϕn

∂t

(

s

σX(n)N
1/2
n

, 0

))2

ϕNn−2
n

(

s

σX(n)N
1/2
n

, 0

)

ds (38)
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n Nn

∫ πσ
X(n)N

1/2
n

−πσ
X(n)N

1/2
n

∂2ϕn

∂t2

(

s

σX(n)N
1/2
n

, 0

)

ϕNn−1
n

(

s

σX(n)N
1/2
n

, 0

)
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First, by inequality (15) with rn = 0 and t = 0, the control (13) with l = 1 and t = 0, and for Nn > 3, one
has
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6
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2
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4
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and finally using 4.1.a, the term (38) is bounded by

c′′8 :=
c42c

2
3c

2
4

4c̃5

∫ +∞

−∞
s4e−c5s

2/3ds. (40)

Second, we study the term (39). We want to show that

∆n := c−1
n
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n . Recall that, by Lemma 5.1 and Hypothesis (H4.1.4),
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so

∆n = c−1
n
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Applying Taylor’s theorem to the function

f(s) = −eisσ
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yields

|f(s)| 6 |s| sup
u∈[0,s]

∣

∣

∣

∣

∣

−iX
(n) − E[X(n)]

σX(n)N
1/2
n

e
iuσ−1

X(n)
N−1/2

n (X(n)−E[X(n)])

+E

[

i
X(n) − E[X(n)]

σX(n)N
1/2
n

e
iuσ−1

X(n)
N−1/2

n (X(n)−E[X(n)])
]

∣

∣

∣

∣

∣

6
|s|
N

1/2
n

( ∣

∣

∣

∣

X(n) − E[X(n)]

σX(n)

∣

∣

∣

∣

+ E

[ ∣

∣

∣

∣

X(n) − E[X(n)]

σX(n)

∣

∣

∣

∣

])

.

Thus, using Hölder’s inequality,
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ρ
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)

and, using part 4.1.a, Hypotheses (H4.1.1), (H4.1.2), (H4.1.5), (H4.1.6), and the majoration (13) with t = 0,
we get
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−1
5 (1 + c2c

2
4)

∫ +∞

−∞
|s| e−s2c5/2ds. (41)

Finally,
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22



Now we turn to the proof of (9). Let us show that the previous estimates of E[Un] and Var(Un) make it
possible to apply (6). Remind that E

[

Y (n)
]

= 0. Write

{

Un − E[Un]
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6 x

}

=

{
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,

where
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N
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.

The previous estimates of E[Un] and Var(Un) yield
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Now,
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For Nn > 4c28/c̃
2
3, an > 1/2 and applying Taylor’s theorem to Φ yields
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the supremum being over t between x and anx+ bn. The last function in x being bounded, we get (9) with

C̃1 := max(c8c̃
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3 ) sup
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.
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