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Abstract

We study the asymptotic behavior of a sum of independent and identically distributed random variables
conditioned by a sum of independent and identically distributed integer-valued random variables. We
prove a Berry-Esseen bound in a general setting and a large deviation result when the Laplace trans-
form of the underlying distribution is not defined in a neighborhood of zero. Then we present several
combinatorial applications. In particular, we prove a large deviation result for the model of hashing
with linear probing.
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1 Introduction

As pointed out by Svante Janson in his seminal work [13], in many random combinatorial problems, the in-
teresting statistic is the sum of independent and identically distributed (i.i.d.) random variables conditioned
by some exogenous integer random variable. In general, this exogenous random variable is itself a sum of
integer-valued random variables. A general framework for this kind of problem may be formalized as follows.
In the whole paper, N* will denote the set {1,2,...} of positive integers, N = N* U {0}, and Z will be the
set of all integers. Let (k,)nen- be a sequence of integers and (N, ),en+ be a sequence of positive integers.
Further, let (X](-n), j(n))neN*,j:L___7Nn be a triangular array of pairs of random variables such that each line
contains i.i.d. copies of a pair (X (), Y(”)) of random variables. Moreover, it is assumed that the elements of
the array (X]('n))neN*,j:L...,Nn are integers. We are interested in the law of (N,,) "7}, := (N,,)~! Zjvz"l Yj(")

conditioned on a specific value of 5, := Zjv;’l X ]("); that is to say in the conditional distribution
Ly = L((Np) TS0 = k).

The motivation for considering distributions of (X ™), Y (")) that depend on n comes from the discrete nature
of the problem that can lead to a degenerated conditional law as soon as P(S,, = k,) = 0. Nevertheless
in many applications (e.g., occupancy problem or hashing ; see [13]), the distribution of the conditioning
random variable X depends on a parameter A that can be freely chosen: for example, A € R is the parameter
of a Poisson distribution in the occupancy problem and A €]0, e~!] is the parameter of the Borel distribution
for hashing. One can take advantage of this fact to overcome contexts in which P(S,, = k,) = 0 proceeding

as follows. Consider a triangular array (XJ("), Yj(n))neN*,j:L..Nn such that (X(”), Y(”)) converges weakly to
(X,Y). Then choose a sequence of parameters A\, — A such that, for any n, P(Zj.vz"l X](.”) =ky) > 0.

In his work, Janson proves a general central limit theorem (with convergence of all moments) for this kind of
conditional distribution under some reasonable assumptions and gives several applications in classical com-



binatorial problems: occupancy in urns, hashing with linear probing, random forests, branching processes,
etc. Following this work, at least two natural questions arise:

1. is it possible to obtain a general Berry-Esseen bound for these models?
2. is it possible to obtain a general large deviation result for these models?

A Berry-Esseen theorem is given by Quine and Robinson [25]. In their work, the authors study the
particular case of the occupancy problem where the random variables X (™ are Poisson distributed and
Yy =1 {xm—g}- Up to our knowledge, it is the only result in that direction for this kind of conditional
distribution. In our work, we prove a general Berry-Esseen bound (Theorem 2.1) that covers all the examples
presented by Janson [13].

When the distribution of (XY (™)) does not depend on n, the Gibbs conditioning principle ([28, 4, 5])
states that £,, converges weakly to the degenerated distribution concentrated on a point x depending on the
conditioning value (see [9, Corollary 2.2]). Around the Gibbs conditioning principle, general limit theorems
yielding the asymptotic behavior of the conditioned sum are given in [27, 11, 18] and asymptotic expansions
are proved in [10, 26]. In this paper our aim is to prove a large deviation result for £,, when the joint
Laplace transform of (X §"),§/}(n)) is not defined everywhere: we give an exponential equivalent for this
conditional distribution.

The case when the Laplace transform is defined has been treated by Gamboa, Klein and Prieur [9]. They
prove a large (and a moderate) deviation principle under some strong assumptions. The most restricting
assumption states that the joint Laplace transform of (X (n), Y(")) is finite at least in a neighborhood of
(0,0). Unfortunately, this assumption fails to be satisfied for the most interesting example presented in [13]:
hashing with linear probing. In this case, the joint Laplace transform is only defined in | — 0o, a]x] — 00, 0]
for some positive a. It is then natural to extend the work of [9] for such distributions. In [21, 22], Nagaev
establishes large deviation results for sums of random variables which are absolutely continuous with respect
to the Lebesgue measure and the Laplace transform of which is not defined in a neighborhood of 0. Following
this work, we prove a large deviation result (Theorem 2.4).

Let us point out the main differences between Theorem 2.4 of the present work and Theorem 2.1 of
[9]. First, the proof in [9] is based on a sharp control of a Fourier-Laplace transform @y ym) (t,u) =
E (exp[itX(”) + uY(”)]) of (X("),Y(")). The Fourier part allows to treat the conditioning whereas the
Laplace one allows to apply Gértner-Ellis theorem. In the present paper, the proof follows ideas borrowed
from [21, 22]. More precisely, contrary to the case when the Laplace transform is defined, the large devia-
tions of the sum of the random variables with heavy-tailed distributions is due to exceptional values taken
by few random variables. Second, unlike the classical speeds in N,, obtained either in Cramér’s theorem or
in Theorem 2.1 of [9], the speed in this paper is /N,. Third, one originality of our work is that the lower
and upper bounds may differ (see equations (6) and (7)). When the Laplace transform is defined, the tails
are controlled (see Cramér’s theorem or Gértner-Ellis theorem in [5]) and the sum satisfies a large deviation
principle with the same lower and upper bounds. Here, as opposed to previous classical theorems, one may
allow oscillations of the tails (in a controlled range) that lead to a large deviation result with two different
bounds. Last but not least, the rate function obtained is not affected by the conditioning variable: the rate
functions are the same in the conditional case and in the unconditional one (see Theorems 2.4 and 2.6).
On the contrary, when the Laplace transform is defined in a neighborhood of the origin, the rate function
strongly depends on the dependence between X (™ and Y (). It is y Vi) vy (A Y) — iy (A) (Where
A is the limit of the ratio k,/N,), the difference between the joint Fenchel—,Legendre transform and the
Fenchel-Legendre transform of the conditioning random variable X (). This rate function is y Y3y ()
when the conditioning term is ineffective, that is to say when the random variables X and Y are
independent.

As pointed out by Janson in [13], hashing with linear probing was the motivating example for his work (see
section 3 for a complete description of the model). This model comes from theoretical computer science,
where it modelizes the time cost to store data in the memory. Then, it was introduced in a mathematical
framework by Knuth [16]. Due to its strong connection with parking functions, the Airy distributions (i.e.,



the area under the brownian excursion), this model was studied by many authors (see, e.g., Flajolet, Poblete
and Viola [8], Janson [12, 14, 15], Chassaing, Janson, Louchard and Marckert [2, 1, 3], and Marckert [20]).
Theorem 2.4 allows to treat the interesting example of hashing with linear probing: Proposition 3.3 is the
formulation of Theorem 2.4 in this particular framework.

The paper is organized as follows. In section 2, we present the general model and give our two main
theorems. First we prove a Berry-Esseen bound (Theorem 2.1) and show how it straightforwardly applies to
the examples presented by Janson [13]. Second we establish a large deviation result (Theorem 2.4). Section
3 is devoted to the study of hashing with linear probing. Finally, we prove our main results in the last
section.

2 Main results

2.1 Framework and notation

For all n > 1, we consider a pair of random variables (X (”),Y(”)) such that X is integer-valued and
Y (™ real-valued. Let N,, be a natural number such that N,, — +00 as n goes to infinity. Let (XZ-(n), Y;(n))
(t=1,2,...,N,) be an i.i.d. sample distributed as (X(”), Y(”)) and define

N, Np,
=3 X" and T,:=Y v
i=1

i=1

Let k,, € Z be such that P(S,, = k,,) > 0 and let U,, be a random variable distributed as T}, conditioned on
Sy = k,. We establish a Berry-Esseen bound and a large deviation result for (Up)n>1.

2.2 Conditional Berry-Esseen bound
Theorem 2.1. Suppose that there exist positive constants ¢1, ¢1, 2, €3, C3, C4, C5, and cg such that:

(H2.1.1) & < oy = Var (X®)'? < ¢y

(H2.1.2) pym :=E “X(n) — [X(n)” } c%agﬂn) :

(H2.1.3) define Y ™ =y () _X) Cov(X ™ Yy () /g2
and t € [0,m0],

(s there exists g > 0 such that, for all s € [—, 7]

‘IE [ei(sx<n)+ty’<n))} ’ <1 = c5(0% 0 52 + 020 t);
(H2.1.4) ky = NuE [X™] 4 O(0x0n Na/?) (remind that k,, € Z and (S, = ky,) > 0);
(H2.15) & < oy = Var (Y) % < ey
(H2.1.6) pye :=E [V —~E[Y™][’| < clod,);
(H2.1.7) the correlation r,, = COV( X ™) Y(”)) X(n)ay(n) satisfies |rn| < cg < 1, so that
=0y (1=m) > &1 —c) > 0.

Then the following conclusions hold.

2.1.a. There exists ¢5 > 0 such that



2.1.b. For N,, > Ny := max(3,c5,c$), the conditional distribution of

NP1 (T = NGEY ) = 1, 222 (k= NLE[X )
O x(n)

gwen S, = k, satisfies the Berry-Esseen inequality

sup
xT

B Wa (1)

. (Un — NoE [YO] = 10y 005 () (kn — NaE [X™)])

C
7 <z | —0(2)| <
Ny "m,

where ® denotes the standard normal probability distribution, and C' is a positive constant that only
depends on ¢1, c1, c2, C3, C3, C4, C5, C5, and cg.

2.1.c. Moreover, there exist two positive constants c; and cg only depending on ¢1, ¢1, c2, C3, C3, C4, Cs,
Cs, and cg such that

‘E [Un] — NaE[Y™] =y Xk, — NnE[X(")])‘ <er (2)
O x(n)
and
|Var (U,) — N2 | < csNp/2 (3)

If N,, > No := max(No, 4c2/¢3), we also have

- E 9
sup |P (]717[[1]"2] <a | —P(x)] < ?2, (4)
z Var (Uy,) / Nn/

where C is a constant that only depends on ¢1, c1, co, C3, C3, C4, C5, C5, and cg. This result means
that Uy, is asymptotically normal.

Remark 2.2.

1. The fact that IV,, — 400 is only required for the existence of the constant ¢5 which relies on Lebesgue
dominated convergence theorem.

2. The set of hypotheses of Theorem 2.1 implies the one of the central limit theorem stated in [13,
Theorem 2.1] which is clearly not surprising. Notice that by assumption (H2.1.4), the conditioning is
approximately equal to the mean as in the central limit theorem given in [13, Theorem 2.3].

3. As a consequence of Proposition 4.4 below, ¢; can be chosen as ¢ 3 /4.
4. Assumption (H2.1.7) is not very restricting as we will see later in the examples.
5. One should note that 2.1.a is the analogue of Equation (7) of Lemma 3.2 in [9)].

6. In the proof, we will replace Y (") by the projection Y™ in order to work with a centered variable
which is also uncorrelated with X (). We introduce Y () for that purpose.

7. If (X,Y”) is a pair of random variables such as the correlation r satisfies |r| < 1, then

. , 1
’E[eZ(SXHY )} ’ =1- 5 (0% s> + 20x0y:rst + o3, t%) + o(s* + %)

1—|r|

<1-
2

(0% s* + o3t?) + o(s® + t2),

so hypothesis (H2.1.3) is reasonable for i.i.d. sequences.



As mentioned in [13], the result simplifies considerably in the special case when the pair (X, Y (™)) does
not depend on n, that is to say when we consider a single sequence instead of a triangular array. This is a
consequence of the following more general corollary.

Corollary 2.3. Assume that (X(”), Y(”)) @ (X,Y) as n — oo and that, for every fized r >0,

limsupE [|X(")|T} < oo and limsupE [|Y(”)|T} < 00.
n—+oo n—+oo
Suppose further that the distribution of X has span 1 and that Y is not a.s. equal to an affine function

c+dX of X, that k,, and N,, are integers such that E [X(")] =k, /N, and N,, — +o00. Then, all hypotheses
of Theorem 2.1 are satisfied and Theorem 2.1 holds.

2.3 Applications

In this section we give several examples borrowed from [13] and [11]. A direct application of Corollary 2.3
leads to Berry-Esseen bounds in each of them.

2.3.1 Occupancy problem

In the classical occupancy problem (see [13] and the references therein for more details), m balls are dis-
tributed at random into N urns. The resulting numbers of balls (Z7,...,Zx) have a multinomial distri-
bution which equals that of (Xi,---, Xx) conditioned on sz\; X, = m, where X1, ..., Xy are i.i.d. with
X; ~ P()N), for any arbitrary A > 0. The classical occupancy problem studies the number W of empty urns
that is the distribution of Zf\il 1{x,=0) conditioned on Zf\il X =m.

Let us follow the work of Janson [13] and suppose that m = k,, — co and N = N,, — oo with k,,/N,, — A.
Then W can be taken as U, in Theorem 2.1 with X ~ P(),) and Y(") = Lixmm—gy for any An; we
choose A\, = ky, /Ny, so that assumption (H2.1.4) holds.

o If k,, N,, — oo such that k,/N, — X € (0,00), then Corollary 2.3 immediately yields that the
conclusions of Theorem 2.1 hold.

e In the case k,,/N,, — oo, assumption (H2.1.1) is clearly violated and Theorem 2.1 does not apply.

e In the case k,/N,, — 0, Theorem 2.1 can not be applied as stated since Yy = Lix(m—gy implies
that assumption (H2.1.7) does not hold (r, — —1). As explained in [13], one can choose instead
y .= Lixm—oy + X -1 =(X™ —1), and it is clearly verified that Theorem 2.1 applies without
any extra assumption.

2.3.2 Branching processes

Consider a Galton-Watson process, beginning with one individual, where the number of children of an
individual is given by a random variable X having finite moments. Assume further that E(X) = 1. We
number the individuals as they appear. Let X; be the number of children of the " individual. It is well
known (see [13, Example 3.4] and the references therein) that the total progeny is n > 1 if and only if

k
Sk::ZXiZkfor0§k<nbutSn:n—l. (5)

i=1

This type of conditioning is different from the one studied in the present paper, but Janson proves [13,
Example 3.4] that if we ignore the order of Xi,...,X,,, they have the same distribution conditioned on (5)
as conditioned on S,, = n — 1. Hence our results apply to variables of the kind ¥; = f(X;). For example if
Y = 1;x,-3y, the >, Y; is the number of families with three children.



2.3.3 Random forests

Consider a uniformly distributed random labeled rooted forest with m vertices and N < m roots. Without
loss of generality, we may assume that the vertices are 1,...,m and, by symmetry, that the roots are the
first NV vertices. Following [13], this model can be realized as follows: the sizes of the N trees in the forest are
distributed as X1,..., Xy conditioned on Zivzl X; =m, where X; are i.i.d. with the Borel distribution for
some arbitrary parameter A €]0,1/e] (see section 3.3 for more details on Borel distribution and references
therein). Further tree number ¢ is drawn uniformly among the trees of size X;.

A classical quantity of interest is the number of trees of size K in the forest (see, e.g., [17, 23, 24]). It means
that we choose Y; = 1;x,—x}. Let us now assume that we condition on Zfil X, =m with m =k, — +o0,
N = N,, — +o0o. The framework is similar to the one of Subsection 2.3.1 and we proceed analogously.
Assume k,,/N,, — X\ and take XZ-(") having Borel distribution with parameter \,, = k;, /N,,.

2.3.4 Bose-Einstein statistics

This example is borrowed from [11]. Consider N urns. Put n indistinguishable balls in the urns in such a
way that each distinguishable outcome has the same probability

1/<n+g—1>,

see for example [6]. Let Zj be the number of balls in the k" urn. It is well known that (Z1,...,Zy) is
distributed as (Xl, e ,XN) conditioned on Zf\il X, = n, where Xy, -+, Xy are i.i.d. and geometrically
distributed.

2.3.5 Hashing with linear probing

Hashing with linear probing can be regarded as throwing n balls sequentially into m urns at random; the
urns are arranged in a circl and labeled. A ball that lands in an occupied urn is moved to the next empty
urn, always moving in a fixed direction. The length of the move is called the displacement of the ball, and
we are interested in the sum d,, , of all displacements. We assume n < m and denote N =m —n.

Janson [12] proved that the length of the blocks (counting the empty urn) and the sum of displacements
inside each block are distributed as (X1,Y1),...,(Xn,Yn) conditioned on Zf;l X; = m, where (X;,Y;)
are i.i.d. copies of a pair (X,Y) of random variables, X having the Borel distribution with any parameter
A€ }0,671] (see section 3.3 for more details on Borel distribution and references therein), and Y given
X =1 is distributed as dj;—1. As in 2.3.1, we assume that m = k, — oo and N = N,, — oo with
kn/Nn — a € [1,+00]. So, Ay := (nn/my) exp(—ny/my) € [0,e7 [ and A, — (1—1/a)exp(—1+1/a) =: A.
If X (™) has Borel distribution with parameter \,, Corollary 2.3 yields the desired Berry-Esseen bound.

2.4 Conditional large deviation result

In [9], the authors proved a classical large deviation principle for the conditional distribution £,, which
applies to examples 2.3.1 to 2.3.4. Their result [9, Theorem 2.1] is the analogue of the central limit theorem
of Janson [13]. The proof relies on Géartner-Ellis theorem which requires the existence of the Laplace
transform in a neighborhood of the origin. In the context of hashing, however, the joint Laplace transform
is only defined on (—o0,a) x (—o0,0) for some a > 0 and [9, Theorem 2.1] cannot be applied. Consequently
one needs a specific result in the case when the Laplace transform is not defined.

Theorem 2.4. Suppose that:

(H2.4.1) log(oxm) = O(Nn1/2) where 0y @) = Var (X(n))1/27.

(H24.2) pyon = E[| X0 —E[XO][*] =0 (N}?0%.,) ;



(H2.4.3) there exists ¢ > 0 such that, for alln >1 and s € [—m, 7],
[ []] < 1 - eokns?

(H2.4.4) k, = N,E [X(”)] + O(oxm) N%/Q);.

(H2.4.5) Var (Y(™) = o (N,{/Q),

(H2.4.6) the right tail of Y (") satisfies: there exist o > 0 and B> 0 such that, for all y > 0,

lim inf

1
logP(Y™ > N,y) > — 6

and i
limsup sup —logP(Y™ > u) < —a. (7)
n—00 y>\/N,y VU

Then, for all y > 0,

1
_ < i 1 — — > =
BVY < hgn inf ~ logP(T,, — E [T5,|Sn = kn] = Nuy|Sn = kn)

log P(T}, — E [T, |Sn = kn] = Noy|Sn = kn) < —a /7.

< limsup

1
n—oo \/ Nn
Remark 2.5.

1. Notice the different nature of the assumptions on the standard deviations oy ) and oy (n).

2. The small shift allowed in assumption (H2.4.4) is the same as the one in assumption (H2.1.4) of
Theorem 2.1. When the joint Laplace transform is defined in a neighborhood of the origin, one can
use exponential changes of probability: a first one is based on the Laplace transform of X (") and leads
to reduce the conditioning to the mean N,E [X (")] of S,, whereas the second relies on the Laplace

transform of Y (™ and removes the conditioning leading to the study of a pair of random variables
(see [9]). The large deviation principle is then proved for a larger range of shifts in the conditioning.

The result deeply relies on the following unconditioned one.
Theorem 2.6. For alln > 1, let z, be a positive number. Suppose that N, — +oo and that:

(H2.6.1) liminf z,/N,, > 0;
(H2.6.2) Var(Y (™) = o (N,VQ),-

(H2.6.3) the right tail of Y™ satisfies: there exist o > 0 and § > 0 such that
1

lim inf logP(Y(™ > 2,) > — 8
im inf —— log P( ) = —f (8)
and )
limsup sup — logP(Y (™ >u) < —a. 9
n_mopu}\%\/ﬂ g P( ) 9)
Then
1
—B < liminf logP(T,, — N, E[Y™] > 2,
B < lim inf —— log ( Y] 2 2n)
1
< lim sup logP(T,, — NnE[Y(")] > zp) < —au
n— o0 Zn

Remark 2.7. Assumption (H2.6.1) naturally implies that z, goes to infinity with n.



3 Application to hashing with linear probing

In this section we show that the example of hashing with linear probing briefly presented in section 2.3.5
satisfies the hypotheses of Theorem 2.4. We begin with a precise description of the model.

3.1 Complements on the model

Hashing with linear probing is a classical model in theoretical computer science which has been studied
from a mathematical point of view by several authors [8, 12, 14, 1, 20]. For more details on the model, we
refer to [8, 12, 14]. The model describes the following experiment. One throws n balls sequentially into
m urns at random; the urns are arranged in a circle and numbered. A ball that lands in an occupied urn
is moved to the next empty urn, always moving in a fixed direction. The length of the move is called the
displacement of the ball and we are interested in the sum of all displacements which is a random variable
noted d,, ,. We assume n < m and define N =m — n.

In order to make things clear, let us give an example. Assume that n =8, m = 10, and (6,9,1,9,9,6,2,5)
are the addresses where the balls land. This sequence of addresses is called a hash sequence of length m and
size n. Let d; be the displacement of ball ¢, then di = dy = d3 = 0. The ball number 4 should land in the 9"
urn which is occupied by the second ball; thus it moves one step ahead and lands in urn 10 so that ds = 1.
The 5% ball should land in the 9** urn. Since it is not possible (the urn being occupied by the second ball),
it moves to the 10" urn which is also occupied; it then moves to the first urn (also occupied) and finally
to the second urn so that ds = 3. And so on: dg = 1, d7 = 1, dg = 0. Here, the total displacement equals
1+3+1+1=6. After throwing all balls, there are N = m —n empty urns. These divide the occupied urns
into blocks of consecutive urns. For convenience, we consider the empty urn following a block as belonging
to this block. In our example, there are two blocks: the first one containing urns 9, 10,1, 2,3 (occupied),
and urn 4 empty, and the second one containing urns 5, 6,7 (occupied), and urn 8 empty.

Janson [12] proved that the lengths of the blocks (counting the last empty urn) and the sum of displacements
inside each block are distributed as (X1,Y1),...,(Xn,Yn) conditioned on sz\; X; = m, where (X;,Y;)
are i.i.d. copies of a pair (X,Y) of random variables, X having the Borel distribution with any parameter
AE } 0, e_l] (see section 3.3 for more details on Borel distribution and references therein) and the conditional

distribution of Y given X = [ being the same as the distribution of d;;—1. So, dyy,,, is distributed as sz\; Y;

conditioned on ZZ]\; 1 Xi = m. The following lemma presents already known results on the total displacement
dp+1,n, that will be useful in the proofs.

Lemma 3.1.

1. The number of hash sequences of length n+ 1 and size n is (n +1)".

n(n—1) )

2. One clearly has 0 < dpy1,n < —

3. For any y > 0, the function defined from N to [0,1] by n — P(dpt1,n = y) is an increasing function
of n.

4. The total displacement of any hash sequence (hi, ..., hy) is invariant with respect to any permutation
of the h}s. More precisely for any permutation o of {1,...,n}, the total displacement associated to
the hash sequence (h,...,hy) is the same as the total displacement associated to the hash sequence

(ho'(l)7 ceey ha(n))'

Proof of Lemma 3.1. The first three points are obvious. Let us prove the last one. It is a consequence of
[12, Lemma 2.1]. For any hash sequence (hq,...,h,) and for any i = 0,...,n + 1, let us define

Z; .= Card{k € [1,n],hy, =i}



and X; := 2221 Z; (notice that Zy = 0 and Xy = 0). It is obvious that the sequence (3;);=o,... n+1 does not
depend on the order of the hash sequence (hq,...,h,). Now, formula (2.1) in [12, p. 442] establishes that

n+1

dn+1,n - Z Hz -n
=1

where H;, the number of items that make attempt to be inserted in cell i, is related to the sequence
(3i)i=0,... n+1 with the following formula (see [12, Lemma 2.1]):

Hi :Ez—z—mm(Zk—kz)—i—l
k<i

Hence dy11,, does not depend on the order of the hash sequence (hy, ..., hy). O

Using the results in [8, 13, 12], we can prove that the joint Laplace transform of (X,Y") is only defined on
(—00,a) x (—00,0) for some positive a. Hence, Theorem 2.1 of [9] can not be applied here.

3.2 Large deviations for hashing with linear probing

In order to provide large deviation bounds for d,, ,,, we need to describe the asymptotic behavior of P(Y > ),
which is given in the following proposition.

Proposition 3.2. Let A be the parameter of the Borel distribution of X be such that k := —log(\) — 1 <
log(2). Then,
1 1
— B <liminf —logP(Y > y) < limsup — log P(Y > y) < —¢, 10
iminf = log B(Y > 1) < limsup = log P(Y > ) (10)
with
1 1+4log2
o= rV2 and 8= 2n\/<1+—) <1+ﬂ>.
K K
Now, for all n > 1, let m, and n, be integers such that n, < m,, and N, = m, — n,. Suppose

that m,/N, — a € [1,+00[. We introduce A, := (nn/my)exp(—nn/my) € [0,e71[. Hence A, — (1 —

1/a) exp(—1+1/a) =: \. To apply Proposition 3.2, suppose that A > (2¢)~1. Let (X, Y,");_1 5., be
i.i.d. copies of (X, Y (™), X following Borel distribution with parameter \,, (so that E[X (] = m,, /N,,),
and Y™ given X (") = [ being distributed as dij—1. Let

Ny Ny
Sp = EXi(n) and T, := 2}2.(").

The total displacement d,,, ,, is distributed as the conditional distribution of 7;, given S,, = m,,. Since
assumptions (H2.4.1) to (H2.4.5) are also satisfied by (Xi("), Yi(")) (i=1,2,...,N,), we can apply Theorem
2.4.

Proposition 3.3 (Large deviations for hashing with linear probing). For « and 8 defined in Proposition
3.2 and k,, = m,,, assumptions (H2.4.1) to (H2.4.6) are satisfied. Then, for all y > 0,

1
VN,

. 1
< lim sup

n—oo Nn

*ﬂ\/@ < lim inf 1ng(dmn,nn - E[dmn,nn] = Nny)
n—roo

1ng(dmmnn - E[dmn,nn] 2 Nny) g *Of\/g-



3.3 Proof of Proposition 3.2

We start computing the asymptotic tail behavior of X. Remind that X has Borel distribution with parameter
A€ }0, 671] which means that

1 Anpn—t
ST\ a7

where T is the well-known tree function (see, e.g., [8] or [12] for more details). We define s €]0, +o00[ by
k= —log(A) — 1.

Lemma 3.4.
(i) The asymptotic behavior of X is given by

logP(X =n) = —kn(1+ o(1)). (11)

(i) The asymptotic tail behavior of X is given by
logP(X > n) = —kn(l+o(1)). (12)

Proof. (i) By Stirling formula,

1 (Ae)™

mm) (I4+0(1)) = —kn(l +o(1)).

logP(X =n) = log <

(ii) Similarly, using Stirling formula,

1
PX >n) = S B(X = k) = o 3 e~ ko) =32
ion V21T (N) >n
! —rk(1+o(k))
_ N, _
V27T(N) gl

Let € > 0. Then there exists ng € N such that, for any k > ng, |o(k)| < e. Thus, for any n > ng,

D eI < VarT(WP(X 2 n) < D e "9,

k>2n k>n

Using the fact that Ae < 1, we get

1 e—kn e:tnns

log | —— e~ k(e | — g ( >

&\ VarT(n) ; S\ VarT(\) 1= e—~(%2)
=—rn(l+e)(1+o(1)),

which leads to the required result when ¢ goes to 0. |

Proof of the upper bound in (10). Let y > 0 and n, be the ceiling of the positive solution of 2y = n(n —1):

ny:L/Qy—i-i—i—%—‘. (13)

Since Y conditionally to X = n 4+ 1 is distributed as d,,41,,, we get

+oo too
P(Y 2y)= Y Pldpy1n2y)P(X =n+1)< Y P(X =n+1)=P(X >n,)

="y Nn=ny

10



By (12) and the fact that n, = +/2y(1 + o(1)), we finally conclude that

limsuplogP(Y > y) < —ky/2y.

y—>+00

Proof of the lower bound in (10). Let y > 0. For any m, € N* such that m, > n,, one has

+oo
P(Y > y) = Z P(dn-i-l,n = y)]P)(X =n-+ 1)

N=ny

>P (dmy+1,my > y) P(X =m, +1)

So, we are interested in the hash sequences of length m, + 1 and size m, that realize a total displacement
greater than y. More precisely, we want to evaluate the probability P (dmyJ’,l’my > y) or at least to bound
it from below. In that view, for any 0 < k < % consider the following hash sequence:

(1,1,2,2, ...k ke k+1,k+2, ..., m, —k). (14)

On the one hand, it is decomposed into m, — 2k single numbers and k pairs leading to a hash sequence
of size m, as required. On the other hand, each pair (¢, ¢) (¢ = 1...k) realizes a displacement equal to
(¢ — 1) + g while each singleton ¢ (¢ = k+ 1...m, — k) realizes a displacement equal to k. The total
displacement is then k(m, — k). It remains to choose m, and 0 < k < % such that k(m, — k) > y in order
to obtain the best possible lower bound.

Moreover as mentioned in Lemma 3.1 the total displacement associated to any hash sequence does not
depend on the order of the hash sequence. One can consider all the permutations of the hash sequence
defined in (14) whose total number is given by

() CIIEE) -

As a consequence, P(Y > y) is bounded from below by WTZ—?P(X = my + 1). By Stirling formula,
n! ~+/2mn (%)n and the asymptotic behavior of X given in (11),

1 my,!
Now the inequality k(m, — k) > y admits solutions as soon as m,, > 2,/y. Hence we take m, = 2t,/y for

—/m2—4
some t > 1. Simple computation shows that the best possible choices for k£ and ¢ are k = W and

) ~1/2
t= (1 +2 ”+1) ((1 +2 ”'H) - 1) . Plugging the values of m,, and k into (15) leads to the value

log 2 log 2
1 1+ log2
—omy (14 =) (14 —/—22)
() (e 25 )

which completes the proof of the minoration. |
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4 Proofs

4.1 Notations and technical results

The proofs of Theorems 2.1 and 2.4 intensively rely on the use of Fourier transforms. Define ¢,, and 1, by
on(s,t) i=E [eXp {zs (X<"> ) {XW)D +it (Y<"> _E {Y(")} ) H (16)
and Y (t) := 27P(Sy, = kn)E [exp {it (Un ~ N,E [Y(")DH . (17)

In this first section, we establish some properties of those two functions. First notice that we have ¢,,(s,0) =
o—isE[X W] [eisX(n)i| and ¥, (0) = 27P(S,, = kn).

Lemma 4.1. One has

1 "N Nk NaE[XO]) 5
wn(t>=7/ e o | 7t | ds- (18)

1/2 1/2°
O x(n) Nn/ —TO +(n) N}/Z 0 x(n) Nn/

Proof. Since

/ e =h) ds = 211 g k),

we have
Un(t) = 27P(S,, = K )E [exp {it (Un ~N,E [Y(")DH
— 27k [exp {z’t (Tn ~N,E [Y(”)} )} 1Sn:kn}
_ /7; E {exp {is (S — k) + it (Tn _N,E [Y“ﬂ ) }] ds
_ /W ¢ (kn = NuE[X ] N (g s
which leads to the result after the change of variable s' = sy () No/2. O

Lemma 4.2.

(i) Under assumption (H2.1.3), for any integer 1 > 0, and for |s| < 7T0'X(n,)N7ll/2, [t] < noaym)N%/Q,

g e—(52+t2)‘05(Nn—l)/Nn. (19)

QDN"_l< s t )
" Ux(n)N»i/Q, Uy(n)N',ll/2

(i1) Under assumption (H2.4.3), for any integer l > 0, and for |s| < 7T0'X(n)N7ll/2,

N, —1 s
<Pnn < 7()>
O'X(n)]\[%/2

Proof. The proof is a mere consequence of the inequality 1 + z < e®. O

< efsz-c(anl)/Nn' (20)

In the sequel, we also need different controls on the first derivative of ¢,, with respect to the first variable.

Lemma 4.3. For any s and t, one has:

12



(i)

(9(,0" S t Oy (n)
X t y 21
at (o’X(n)N,,]i/27O'Y(n)NT]i/2> Né/Q (|S|+| |) ( )
(it)
dipn s t
| (22)
ot (Ux(mN%/Q Uy(n)N%/2>|
Oy (n) Ty (n) 52 Px(n) 23 Py (n) 1/3
< n |t - : -
e+ G [ () (52
1/3 2/3 2
n n t n
+|St|</)§< >> (Pag( >) +_<P13/( >)] (23)
Oxm) Oy (n) 2\ 0y
Proof. We apply Taylor Theorem to the function defined by
Opn s t
(5,8) 1> f(s,1) = , .
ot O'X(n)]\[%/2 Uy(n)]\[%/2
We conclude to (i) using
0 0
0= 00<l s (Fesonc s 9 oson)
0,0’€[0,1] S 0,0’€[0,1] ot
and to (ii) using
[f(s,t) — f(0,0)] < |s] g(o 0)| + |t g(o 0) +i su ﬁ(@s 0't)
’ RGPS ot 2 g 1025 T
,07€[0,1]
0%f t2 0%f
+|st| sup 0s,0't ’—i—— sup | === (0s,0't ’
| |9,9’e[0,1] 3t35( ) 9,6'€[0,1] 82t( :

Proposition 4.4.

1. Under assumption (H2.1.2), one has oxm) > (4¢3)7 L.

2. Under assumption (H2.4.2), one has UX(n)Né/Q — +o0.

Proof. The proofs of both results rely on the fact that, for any integer-valued random variable X (see [13,
Lemma 4.1.]),

0% <AE [|X ~E [X]ﬂ .
The conclusion follows, using hypothesis (H2.1.2) (resp. (H2.4.2)). O

Proposition 4.5. We assume hypotheses (H2.1.2), (H2.1.3), and (H2.1.4) (or (H2.4.2), (H2.4.3) and
(H2.4.4)). Then there exists m > 0 such that



Proof. Ouly counsider the indices n for which oxm) < +00. Remember that ¢, (s,0) = E eis(X ™ —E[X])

and
1 T x(n) erz,/Z . S
P (0) = 27P(S,, = ky) = 7/ T TA pe—— ) I
! ! ! UX(n)erz/2 —70 () Na/? " \oxm N,/
En— N, E[X (™)
where v,, = %, by lemma 4.1. Let us prove that the sequence
9 x(n) Nn

(tn)n = (7/)71(0)(7)((71)]\7%/2 ”721/2)

converges to /27, from which the conclusion follows, since (vy,),, is bounded by (H2.1.4) (or (H2.4.4)) and
P(S, = kn) > 0 for all n. Inequality (19) with [ = 0 and ¢ = 0 (or (20) with [ = 0) implies that the
sequence (uy, ), is bounded. Let us prove that v/27 is the only accumulation point of (u,),. Let ¢(n) such
that (U¢(n))n converges. Even if it means extracting more, we can suppose that (’U¢(n))n converges. Let
v = limvy(,). Using Taylor Theorem, there exists ¢ € R such that

2
S S

pn | ———5.0] -1+
(UX(n,)erl/Q ) 2Nn

where the last equality follows from hypothesis (H2.1.2) (or (H2.4.2)). Now,

E 3 1
< E ’Xm)_]E{X(n)” — o =
603 () N2 Nn

X(n)ttn

e_isv¢(")g0N¢(n) ( S 0) s e—isv—s2/2 _ e—vz/Qe—(s+iv)2/2

¢\ ox@mn /Nom)

and, by Lebesgue dominated convergence theorem and the fact that UX(MN}/ 2 5 400 (see Proposition

4.4),
Yo(n) (0)ox @) me%m)/? — V2.

4.2 Proof of Theorem 2.1

Part a) is Proposition 4.5 with é; = m. Now we follow the procedure of Janson [13] to uncorrelate X (™)
and Y(") and center the variable (™). We replace Y (™) by the projection

, Cov(X (™ y ()
Y oy gy - SV (x —EX0)).

Tx ()
Then E[Y ] = 0 and Cov(X™,Y () = E[ XY ("] = 0. Besides, assumptions (H2.1.3) and (H2.1.7)
are verified by Y (). By assumption (H2.1.7),

U?/'(n) = ‘732/<n) (1—r3) €31 —cf), 3],

so (H2.1.5) is satisfied by V' (™). Finally, by Minkowski Inequality, assumptions (H2.1.2) and (H2.1.6), and
the fact that |r,| <1,

HY’<”> < HY<”> flE[Y“”]’ + —|T"|J)§(”')JY(") ’X(”) fE[X“”]’
3 3 UX("') 3
/3
1/3 X(m)
< nOy (n
Py ) T TnOy o

< Oy ) (CQ + 64).
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Hence Y (™ satisfies assumption (H2.1.6). Consequently, all conditions hold for the pair (X ), Y/(")) too.
Finally,

In () y )
T = ; Y, =T, - N,E [y)] - % (52— N.E [x])

So, conditioned on S,, = k,, we have T, = T,, — N,E [Y(”)] -7 m(k:n — NnE[X(”)]). Hence the

"oy (n)

conclusions for (X(”),Y(”)) and (X(”),Yl(")) are the same. Thus, it suffices to prove the theorem for

(X(”), Y/(”)); in other words, we may henceforth assume that E [Y(")} =E [X(")Y(”)] = 0. Note that in

2’ 2
that case 7, = 05.(,)-

Proof of Theorem 2.1 - Part b). We follow the classical proof of Berry-Esseen (see e.g. [7]) combined with
the procedure of Quine and Robinson [25] to establish the result of Theorem 2.1.
As shown in Loeve [19] (page 285) or Feller [7], the left hand side of (1) is dominated by

o _ 1/2
2/77 Y(”)N ’l/)n(’u,/Jy(n)N 1/2 ) 767u2/2 d_u " 24UY(1”)N / (24)
7 Jo 27P(S,, = ky) U /2w
where n > 0 will be specified later. From Lemma 4.1 and a Taylor expansion,
- Yo (u/oy o Na'?) /2| _y1p-u?/2 € 2 (ufoy o Ny 4
27P(S,, = ky) 27P(S,, = ky)
2 1/2
ceiz g |2 [ 20ty M)
0<o<u 815 27T]P)(Sn = kn) i
70 (n) N3/ 2
<cple™ /2 sup {/ ) i et 12l : 172’ t 172 ds
0<0<u | J =70 () Ni/? ot oxyNp'™ oy Np =0
_ x(n
where ¢, 1= 27P(S,, = kpn)oxm) Nn 1/2 > ¢5 and v, = LE[I/Q] has already been defined in the proof of

X(n) n
Proposition 4.5. Now we split the integration domain of s into

Ay = {s D s) < Eaxm)Nﬁ/Q} and Ap = {s D eoxmNM? s < ﬂ'aX(n)NTllm},
(where 0 < e < 7 will be specified later) and decompose

1/2
Un(w/oyer Na®) oo

-1 < I (u, 0) + I (u, 0 25
27 P(S,, = k) Oz‘;gu[ 1(u, 0) + Iz (u,0)] (25)
where

Il ) — o1 (24522 | [ O o(+57)/2 N, s t d 9%
1(’[1,, ) =cC, e a_ CPn 1/2° 1/2 S, ( )

A 0xn) Ny oy ) Ny, i

2 0 S t
Ir(u,0) = c;lefu /2 <— [ ¢ /ngfj ( , )1) ds. (27)
2 at UX(n)]Vrll/2 O’Y(n)]\frll/2 1—0

To bound I3 (u, ), we use a result due to Quine and Robinson ([25, Lemma 2]).
Lemma 4.6. [Lemma 2 in [25]] Define

1/2 1/2.

lin —pX<n)aX(n)N and lon —pwn)ay(n)N

15



Ifli, <1 andly, <1, then, for all

(s,t) € R:= {(s,t): ls|] < = 1n,|t| < —12711},

we have

a 2,2 S t

2|7+t /2 Ny

e Sﬁn )
‘Gt [ <UX<n>N$/2 Uy(mN%/Q)H
11
Co(|s| + [t| + 1)*(I1n + l2.n) exp {ﬂ (32 + t2)} (28)
with
CO = 98.

Proof. We refer to the proof in the appendix of [25]. The condition Iy, < 1273/2 and Iy, < 1273/2
appearing in [25, Lemma 2] can be replaced by I; ,, < (33/32)3/2 and I, < (33/32)3/2 since the factor 8/27
in (A4) of their proof can be replaced by a factor 1/27. Since we do not provide the best constants here,
we simply suppose /i, < 1 and Iy, < 1. Finally, Cy has to be greater than 4 and

3 3
wup 20001 2D+ 158
s (T A FESE

4- ([o] + |s])e= @ +s7/24

<1086y & +S —wtretyjan 18 VG g0

e
O
By assumptions (H2.1.2) and (H2.1.1),
lin <ANSY2 < Bero (N2, (29)
which implies that JXW)N%/Q < cggcflli}l. Similarly,
l?,n B CiN 1/2 C4C3Jy(n)N 1/25 (30)
and oy Np /2 <cleyt 27711. Assume henceforth that
(2 3 (2 3
€ :=min ge1ca ™ and 7 := min ¢3¢0 |- (31)
Lemma 4.7. There ezists a positive constant Cy such that
N0y (n) V. C
’ sup I (u, 0)du < ——. (32)
0 0<o<u N2

Proof. Conditions (31) imply that, on Ay,
2
|s| < eoxmNY? < 511_,11

2
and 0] < [u| <oy Ny < §12,71w

16



which ensures that (s,u) € R as specified in Lemma 4.6. Moreover, since we have N,, > max(c$, c$) (cf.
hypothesis in 2.1.b), I, < 1 and I3, < 1. Now applying Lemma 4.6 in (26) and using part 2.1.a, we get

10y () N/?
/ sup I (u,0)du
0 0<0<u

1 nay(n)erz,/Z 5 o
¢, Collyn + lg,n)/ / (8] + Ju| + 1)3e= "+ /24 g5y
0 Ay
< NV2E 0o (B + 04)/ (Is| + |u| + 1)2e="+u) /24 ggqy,
RQ
and the result follows with

o :aglco(c§+ci)/ (Is] + Ju| + 1)3e~ ¥/ 24 g5 gy,
]RQ

Now, we study the integral on As.

Lemma 4.8. There exist positive constants Co and Cs, only depending on ¢, ¢1, c2, C3, C3, ¢4, C5, C5, and
cg, such that

10y (ny Ny 2
/ sup I (u,0)du < Coe~C3Nn (33)
0

0<0<t

Proof. We use the controls (21), (19), and |¢,| < 1 to get

\(ﬁl”ﬂ )|

ot " UX(n)]V%/Q7 Uy(n)erl/2 t=0
e e
n O'Xm)N'rlz/2, Uy(n)erl/2 JXM)N%/Q’ UY(n)Né/Q

+ N, &Pn S 0
Uy(n)N'rlz/2 at Ux(n)Nrrll/2, Uy(n)Nrrll/2
< 662/267(524’92)'65( n—1)/Ny (| |+2|9|>

92/2

Finally by (27) and for N,, > 2, we conclude that

N9y (n) Nyll/z
/ sup I (u,0)du
0

0<o<u

e 292 N, —1
2071/ / su [s+29 ex (u—+—<12c n >>}
co (n)N/ O<GI<)u ( ) P 2 2 ° Nn

e es(Na=1)/Nu gs iy

N

+oo
<28t / / (s + 2t)e~ min(hes)u?/2o=s"es/2 g g gt
1/2
[S(e) (n)N

—N,cse202 /2

2~_1—e N,cse2o? (n)/2 vV 2T +25_1 2 e n x(n)
- 5 1/2

cs 24/min(1, c5) min(1, c5) C5€O’X(n)Nn/

17



The conclusion follows with

V2T 2
+

Cy = QEglcgl - (34)
min(1, ;) min(1, c5) min (%clcg,ﬂ) ¢
and
9 2
C3 := ¢; min (gclcg,ﬂ> /2. (35)
O
To conclude to part b) of Theorem 2.1, just wright
o, O/ o, O/
026—03Nn _ 243 (C5N, )1/26—03Nn < 2273 (1/2)1/26—1/2
N7ll/2 34Vn X N7ll/2 )
since z'/2¢7® is maximum in 1/2. So,
U, — N,E [y (™)
sup |PP il [ }gx —P(z)| < ¢
E N2t N,/?
with
C = Cy 4 CyCy /2 (1/2)1 /27172, 36
3
O

Proof of Theorem 2.1 - Part ¢). We start proving (2). We adapt the proof given in [13]. Using (17) with
E[Y (] = 0, and differentiating under the integral sign of (18), we naturally have

Opn, S No—1 s
70 R 770
ot <O‘X(n)]\fé/2 ) | Ux(n)]\fé/2

Using inequality (22) of Lemma 4.3 with r, = 0 and ¢ = 0, assumptions (H2.1.1), (H2.1.2), and (H2.1.6),
we deduce

—i,(0)
27P(S,, = ky)
Ot N VPN, o N2
= 27P(S,, = k) /

B [Un]| =

ds. (37)

—TO (n) N}/Z

1/3 2/3
on S < ipympxw < 03030482
I ~ X .
ot JX(n)Né/Q 2 O';(n)Nn 2N,

Then using inequality 19 of Lemma 4.2 with t = 0 and for N,, > 2,

mTX(n)er‘/Z a‘Pn S S 2eac 2
Nt [ — 2 < Q28 [ o —css?/2
[ 12| Ot 1/270 2% 1/2,0 ds < N s‘e ds.
T x(n) Nn UX(")Nn O'X(n)Nn n R
So, 2 holds with
2
cr = w s2e7%% /2 (s, (38)

265 R
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To prove (3), since 7,, = 0y and E [U,,] is bounded, it suffices to show that the quantity ‘IE [U,ﬂ — Nnaf,(n)

is bounded by some cgN%/ 2, Proceeding as previously,

—n(0)
E[U3] = S
[ "] 27P(S,, = ky)
o N/2 2
_ -1 _ xtm n S N,—2 5
TN (N, 1)/_ NW(at <U N1/2’0>> ol < N1/2’0> ds  (39)
7O (n) Nn X (n)1Vn O x(n)iVn
WUX(n)NTIL 2 62(‘0” s S
—n ' Na 12 Of2 i72:0 on" —— a0 ds (40)
=70 (n) Nn o x ) Nn oxm Nn

First, by inequality (22) with 7, = 0 and ¢ = 0, the control (19) with ¢ = 0, and for N,, > 3, one has

2

70 (m) No'? dpn, s Np—2 s
/ —_ 71/2,0 o 71/2,0 dv
—7'&'(7')((71)]\/}1/2 at Ux(n,)Nn Ux(n,)Nn
4.2.2
€2C3¢ 4 ,—c55%/3
§4N72l/]Rse 5/ds,
and finally using 2.1.a, the term (39) is bounded by
4.2 2
cg = %/84676552/36%. (41)
4¢5  Jr

Second, we study the term (40). We want to show that

1/2
Toxm Na'T 92 S S
-1 Pn N,—1 2
dpmet [ e (o) (o) ds ot
77TUX(n)Nn Ux(n,)Nn UX(”)Nn

is bounded by some cg”/N%/Q. Recall that, by Lemma 4.1 and assumption (H2.1.4),

70 () Np/? s
oNn [ ———,0 | dv = 27P(S,, = kpn)ox ) N2 =¢,,
UXm)erz/Q "

n
_ﬂ"TX(n)NTlL/2

TI'O'X(TL)NTIL/Z 82
_ -1 Sﬁn S 2 S
Bn =t /w, N2\ 0t \ g N1/2’0 v | N1/2’0
x(n)Nn X (n)LVn X(n)LVn

N, —1 S
UX(")Nn

TOo TLNTIL/2 o
=l / o E[Y<”’2( 9 ety N 2 (X X))

77TG'X(n) ]\fyll/2

SO

+ E[eisa;mNJI/Z(X(")—E[X(")])} )]

N, —1 S
O—X(n)Nn

is0 (o No /(X —]E[X(")])}

Applying Taylor theorem to the function

iso L —1/2x(n) _ (n)
f(S) = —¢ X(n)Nn (X ]E[X ]) —|—E e
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N V2(X ) _E[X M)

yields
X(") _ X( ") iuo !
|f(s)] < |s| sup _@'—[/] o
u€(0,s] Ux(n)N
—|—E|: L[‘X;(n)] Zuoxén)Nn1/2(X(")—]E[X(")]):|
UX<n>N
X)) _RIX (n) ¥ () _ R x ()
)
Ox(n) Oxm

Thus, using Holder Inequality,
x () _gix @) X)) _E[x®)
R (e R (]

O x(n) O x(n)

o2 Mp“p“
Y (7) ( Yy (n) Fx(n) +1)

N,,ll/2 Y(n) O—X(n)
and, applying equation 2.1.a, assumptions (H2.1.1), (H2.1.2), (H2.1.5), (H2.1.6), and the majoration (19)
with t = 0, we get
2/3  1/3 ///
A < az//;m (wa) Px ) n 1) / |s|e=* %es(Nn—=1)/Nu g < 1/2
N’n Y(n) 0 x(n) N
with
g =3l (1 + czci)/ |s|e™% %5/ 2ds (42)
R
Finally,
‘Var ‘ cr +cg + c/g”Nﬁ/2 < 08]\771/2
with
i
(43)

cg —C7+68+68
_ —cs /Qd +CQC3C4/ 4 e~ 058 /3d5+03c5 (1+CQC4 /l | —s C5/2ds
4¢5 Jr

020304 /
2¢5  Jr
Now we turn to the proof of (4). Let us show that the previous estimates of E[U,,] and Var(U,,) make it

possible to apply (1). Remind that E [Y(”)] = 0. Write
U, — E[U,] U,
——— L ST =5 — Sar+by,
N2

Var (Un)l/2 Ty (n)
where Var(U,)"/? E[U,]
Ay, = ]\]1/27" and b, := e L
n' Oy n oy
The previous estimates of E[U,,] and Var(U,,) yield
cgCsy 1Nn 2 and b, < crCs 1N 172,

lan — 1] < ’a%fll

Now,
U, —E|U, U,
P 7[1/l<x —P(z)| < |P —7 — < < anz + by, D (anx + by)
Var (Uy,) Ny oy
+ [®(an® + bn) — ()|
C
< s+ Coem O (B (anz + by) — B(a)].
Ny,
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For N,, > 4c%/é, a,, > 1/2 and applying Taylor theorem to ® yields

—t%/2
e
P(a,z +0b,) — P(x)| <|(a, — 1)z + b, sup ——
900 +b1) = 9(a)| < [(an = Do +b 510
< Nn_l/2 max(c8é§1,07651)(|x| + 1)6_(‘$‘/2_c76;1)2/2,

the supremum being over ¢ between z and a,x + b,,. The last function in x being bounded, we get (4) with

Oy = max(cgé3 ', cré3 V) sup | (2| + 1)6_(‘1‘/2_676;1)2/2]
z€R

4.3 Proof of Theorem 2.6

We start with the proof of Theorem 2.6, which relies on three different lemmas.

Proof of Theorem 2.6. Let z, such that liminf ;—" > 0. Since Y™ — T [Y(")] also satisfies the hypotheses,

n—o0 n

we can assume that E [Y(”)] = 0. Define

and for any m € [0, N,],

with the usual convention [1,0] = 0 and [N,, + 1, N,,] = 0. Now write

N
Py, = Pn, 0+ NnPn, 1+ Z < >PNn,m- (44)
m=2 m
Using Lemmas 4.9, 4.10 and 4.11 that follow, we conclude the proof of Theorem 2.6. O
Lemma 4.9. )
lim sup log(Pn, 0) < —a
n—oo Zn
Lemma 4.10. . )
—f < liminf log(N,, Py, 1) < limsup log(N,, Py, 1) < —a.
n—oo Zn n—00 Zn
Lemma 4.11.
No o /s
> () pn o).
m=2 m

Proof of Theorem 2.6. Lemmas 4.9, 4.10, and 4.11 yield, for all o/ < «,

1 1
—3 < liminf log(N,, Py, 1) < liminf

n—o0o \/Z n—oo \/Z

1 1 /
log(Pn,,) < lim log (3670‘ Z") =—d.
n—r oo

log(Py,)

< lim sup

n—roo z’ﬂ, V Z’fl

Conclude by letting o/ — «. O
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Proof of Lemma 4.11. Let o/ € Ja/2,a]. Using (9) and noting that z, > /2, for n large enough, we have,
for all n large enough,

N, Ny 2 ,—2a\/Zn
N, m n m Nyp“em = ven —an/z
> ( )PN"”"ngN" PO > 20" < T = ()

m=2 m =2
O
Proof of Lemma 4.10. First, using (9),
1 1
lim sup log(Ny, Pn, 1) < limsup log]P’(Y(") > z,) < —a.
n— oo Zn n—00 Zn
Let us prove the converse inequality. Let € > 0. We have
Py,i=P (Tn > 20 YW 22, Vie[,N,—1] Y < zn)
—+oo
- / P (Tn,1 >zn—u, Vie[l,N,—1] Y™ < zn) P(Y™ € du)
oo
> / P (Tn_1 >z, —u, Vie[l,N,—1] v < zn) P(Y™ € du)
zZn+Nne
>P (Tn,1 >-Nye, Vie[l,N,—-1] Y™ < zn) P(Y™ > 2, + Nye).
Observe that
P(T, 1> —Nye, Vie[l,N,—1] Y <z,)
N,—1
>P (Y<"> < zn) P (Th_y < —Npe) — 1.
() N,—1
Indeed, P (Yl < zn) — 1, using (9); and, by Chebyshev inequality and assumption (H2.6.2),
0% )
P(T)_1 < —Nne) < X2 0,
(Tn1 < 2 N, 2
the random variables V(™) being assumed centered. Finally, using (8) and (H2.6.1), and noting § =
.. o Zn
hnlrE> gf N one gets
1 2n + Nype 1
. . > i . mn n (n) >
hnnilgf NG log(N,Pn, 1) > hnni}o%f - N logP(Y'"™ > z,, + N,e)
0+¢
> - .
p 1)
Conclude by letting e — 0. O

Proof of Lemma 4.9. Let ¢ € ]0,af and s, = &'/\/z,. The exponential Chebyshev inequality for T,
conditioned on {Vi € [1, N,,] , Yi(") < zn} yields

—SnZn s, Y (M) Nn
Pn,o<e E |e ].Y(n)<zn .

If we prove that

s, Y (™ 1
E |:e nY ]'Y(")<Zn:| =14o0 (W) ,

n
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then
log(Py, 0) < —/\/Zn + 0o(N}/?)
and the conclusion follows by letting o/ — «. Let n €]3/4,1[. Write

(n)
E (e 1y, )

VZn z2n—(2n)" Zn
— / e "P(Y™ € du) + / e P(Y™ € du) + / e P(Y™ e du)
Ve 20— (2n)"

— 00

= Il + 12 + 13.
By a Taylor expansion of f(t) = €', (H2.6.2) and (H2.6.1), there exists

O(u) < spu < Spy/2n =

such that
Vzn 2,2
I < / (1 4 sput %e““)) P(Y™ € du)
+o0 2,2 a?c2,., 1
< 1+snu+snu e VPY™ edu) =140+ —X2e =140 —= ).
— 00 2 2Zn ]\]%/2

Let ng such that, for all n > ng and u > /z,, log IP’(Y(") > u) < —a/y/u. Suppose n is larger than ng.
Integrating by part, we get

zZn—(2n)"

zn—(zn)"
+ Sn/ e P(Y ™ > u)du
Nen

Ner
Zn*(zn)n ,

VTR > ) b, [ ey
e

’ 1/4 zn—(2n)"
< e (1=(zn) o) + Sn/ exp (o/ ( v \/a)) du.
N VZn

Since, for all t € [0,1], V1 —t < 1 —t/2, we get, for all u € [\/Zp,, zn — (2,)"] and n large enough to have
(za)" "' < 1,

I, =— [es"'“P(Y(") > u)]

u

NEA

(Zn)n_3/4
2

~Va<Va (V=T -1) < -

1
b:o(__)_
N2

Let o € ]a/, a0 A 2d/[. Let ny such that, for all n > ny and u > 2, —2]1, log ]P’(Y(") > u) < —a’y/u. Suppose
n is larger than n;. Integrating by part, we get

Hence,

Iy = —|esn'P(Y(™ > u)} ’ Lt sn/ ’ e P(Y ™ > u)du
Zn=Zn Zn—2g

B R POy Lo

Now, since v/t > t if t € [0,1],
eSn(Zn*ZZ)P(Y(n) > 2, — 2) < exp ( o (a/ (1 _ Zz—l) _a (1 _ z271)1/2))

< (Vanla' — 1= =) =017

n
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Finally, applying Taylor theorem to the function f(u) = s,u — «”y/u around the point z, yields

o'u o o

) = S o= (0 =) ( - ) =)

with ¢ € [u, z,,]. Since o < 2a/, we have

(\;‘_Z_n_;_\/a) (u—2,) < (%—2h> (u—2zn) <0,

for n large enough and we conclude that
1
n=o(5)

4.4 Proof of Theorem 2.4

Now we turn to the proof of Theorem 2.4. So as to apply Theorem 2.6, we need the next result, which is
analogous to equation (2).

Proposition 4.12. Under assumptions (H2.4.1), (H2.4.3) and (H2.4.5), one has
E[T,| Sy = kn] = N,E [Y(")} + o(Ny).

Proof. Using inequality (37) and Proposition 4.5 yield

—i;,(0)
27P(S,, = ky)

0vn, 5 N.—1 s
- | 7350 )| |¢n" —— 75,0
ot (Ux<n> N,/ >| Ox(n) Ny

It remains to show that the integral converges to 0. Putting together (45) and (22), and using hypothesis
(H2.4.5) and the control (20), one gets

’IE [Tn — N,E [YW} ’ S, = kn}

1/2
Nn TK‘G'X(n)Nn/

ds. (45)

=2 1/2
m =70 (n) N

E [Tn ~N,E {Y“ﬂ ‘ S, = kn] = o(Ny).
O
Proof of Theorem 2.4. Let y > 0. Since (X("), Y™ _E [Y(”)]) also satisfies the hypotheses, we can assume

that E [Y(")} = 0. According to Proposition 4.12,

Yn =y + NLH]E[U”] -y
We have
P(U, — E[U,] = N,y) =P(T,, — E[T,|Sy, = kn] = Npy|Sn = kn)
P(Tn = Npyn, Sp = kn) < P(Tn Z Nnyn)
P(S, = kn) = P(Sy, = kn)

The conclusion follows using Theorem 2.6, Proposition 4.5 and (H2.4.1).
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Using decomposition (44), we get

P(U, —E[U,] > N,y) =P(T,, — E[T,|S, = kn] = Npy|Sn = kn)
P(Tn = Nnyna Sn = kn)

> NoP(To = Nugn, Y, 2 Noyo,Vi € [1,N, — 1] Y™ < Noyn,  Sn = kn).

Define
Qn,1:=P (Tn > Ny, Y > Noyn, Vie[L,N,—1] Y™ < Noyn, Sn = kzn) .

It remains to show that

lim inf
n— o0

log(NnQ@n, 1) = —5,

nY

which is analogous to the lower bound of Lemma 4.10. We have, for any € > 0,

> P (Tn,1 > Ny — u, Vi € [1, N, — 1] Y, < Nyyn, Sn = kn) P(Y™ € du)
>P (Tn_1 > —Nye, Vi€ [1,N, — 1] Y. < Nyyn, Sn = kn) P(Y™ > N, (yn +¢)).
Observe that

P(Tp 12 —Npe, Vi€ [L,N,—1] Y < Nyyn, Sn=k,)
N,—1

>P (Y(”) < Nnyn) N (A= P(Sh = kn)) = P (Thoy < —Nye).
For o/ €]0, af and n large enough, using (7), one has
N,—1 ) 1
P (Y(n) < Nnyn) >(1—e @ \/Nnyn)anl =140 <T/2) .
Ny

By Chebyshev Inequality and hypothesis (H2.4.5), one has straightforwardly

P (T, Npe) < Ty !
n—1 < —1Vp S = .
! SN2 0 N1/2

Hence, using Proposition 4.5 and hypotheses (H2.4.1) and 6,

1 1 m 1
lim inf log(N,Qp,1) > liminf log + lim inf log P(Y (™)
n—oo /Nyny n—oo /Nyny Ux(n)Nﬁ/Q n—oo /Npy
+e
> Nalyn +)) = =6y /==

Conclude by letting e — 0.
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