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Context

Context

Organic Rankine cycle (ORC) for waste heat recovery

@ More than a third of the energy
produced by internal
combustion engines is released
in the form of heat through
exhaust gas.

@ Rankine cycle is a system for
waste heat recovery.

100% chemical energy

cooling

mechanical power exhaust heat
recovery
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100% chemical energy

@ More than a third of the energy
produced by internal
combustion engines is released
in the form of heat through
exhaust gas.

. . cooling
@ Rankine cycle is a system for

waste heat recovery.
¥ mechanical power exhaust heat

recovery
4

On board a diesel-electric train

@ Main specificity: limited capacity of the cold sink.

@ Objective: find an optimal control policy.
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ORC: optimal control problem
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ORC: optimal control problem
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System description
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Main actuators

@ evaporator by-pass: lets a fraction of exhaust gas feeding ORC.
@ pump: circulates the working fluid.

@ fan: provides a cooling air flow.

4/15



ORC: optimal control problem
[ ]

Two state ORC model

Supervisory oriented model

@ Simplified but physically meaningful.
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ORC: optimal control problem
[ ]

Two state ORC model

Supervisory oriented model

@ Simplified but physically meaningful.

o Validated on experimental data (captures slowest dynamics).

o
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ORC: optimal control problem
[ ]

ORC optimal control problem

Objective: Maximizing energy recovered

@ Performance index:

tr
J= / Pturbine(X) - Ppump(X) - Pfan(ua t)7 dt.
0

2Superheating is considered as perfectly regulated by pump (Peralez et al. [2013]).

V.
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ORC optimal control problem

Objective: Maximizing energy recovered

@ Performance inde>§:
f
J= / Pturbine(X) - Ppump(X) - Pfan(u7 t)7 dt.
0

@ Input control variables®:
u={Vse,ma} €[0,1] x [0, u™]

@ Security constraint:
p1(x,t) < 25bar, Vt € [0, tf]

2Superheating is considered as perfectly regulated by pump (Peralez et al. [2013]).

This problem is challenging to solve

@ The model is non-linear, implicit, time-variant.

The cost function is non-convex .

(]
e Two control variables / two dynamic states.
("]

State constraint.

6/15



© Dynamic Programming
@ DP principle and Level-Set algorithm
@ Adaptive-grid algorithm



Dynamic Programming
@00

Dynamic Programming for discrete-time systems

Generic optimal control problem

o Discretized dynamic system:

Xkpr = e (X, uk)
X = Xo
X, € X, CR"
u, € U,C RrR™
@ Cost functional to minimize N
min g (xn) + ;0 hi (X, Uk)

N

Dynamic Programming (DP)
@ Based on principle of optimality introduced by Bellman.
@ Main advantage: no assumption on model linearity or cost convexity.

@ Main drawback: the computational load grows exponentially with

the dimension of the problem.
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Dynamic Programming
o] lo}

Dynamic Programming Principle

Considering the cost functional

N

g0w) + D b (e, uk)

k=0

DP proceeds backwards in time to evaluate the optimal cost-to-go:

| Final time computation

gn(x'), for x' € Xy
oo else.

In(x') = {

8/15



Dynamic Programming
o] lo}

Dynamic Programming Principle

Considering the cost functional

N

g0w) + D b (e, uk)

k=0

DP proceeds backwards in time to evaluate the optimal cost-to-go:

| Final time computation

gn(x'), for x' € Xy
oo else.

In(x') = {

Il Intermediate computations for k =N —1to 0

Ti(x") = min {he(x", uk) + Tira (fc(X', uk)) 1}

ur€ Uk
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Dynamic Programming
[ele] J

Penalty method vs Level-set function

Fi(ays u)

A major issue backward ol .
appears in 5 reachable . '
presence of space

state .

not
* backward
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1
k k+1 N

time index
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Dynamic Programming
[ele] J

Penalty method vs Level-set function

A major issue backward ol
appears in 5 reachable

presence of space

state

constraint:

* backward
. reachable

|
k+1 N

Level-set method deals with this problem

It introduces a new cost function Z:
Z(x) <0, if x is feasible
Z(x) > 0 else.

Z is minimized, in parallel with J2.
2Elbert et al. [2013]




Dynamic Programming
000

Adaptive-grid algorithm

At each time step, a second discretization of state space is introduced:

I, >0 I >0
1 1 ; 1
! ' . i
N | | | )
8 | 8 | I
| I 1 )
| | . i
X1 T1

= improves the estimation accuracy (but requires additional
computations).
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Dynamic Programming
(o] le]

Adaptive grid efficiency (1/2)

A simple energy management example
@ Analytic solution is known: Petit and Sciarretta [2011].

@ Problem: finding the speed and distance trajectories which
minimizes the consumption of an electric vehicle.
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Dynamic Programming

Adaptive grid efficiency (2/2)

ocoe

Algorithm accuracies

The error is quantified for several levels of discretization:
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ORC: numerical solution
[ ]

ORC Optimal control problem: External conditions

Intercity train trip

@ Results in a set of external conditions for the ORC:
o exhaust gas temperature Teu(t)
o exhaust gas mass flow Men(t).

@ A large variation of ambient temperature Ta(t) is considered.

Il Il
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Time [sec]
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DP solution

ORC: numerical solution
[ ]

— Prurtbine [FW]
- Pran[kW]
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Adaptive-grid algorithm solution (Nx1 = Nx2 = Nuz = Ny = 21)
Highlights

o Energy recovered was improved by 7% (compared to static
optimization).

@ Strong influence of ambient temperature on energy production.
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Conclusion

Conclusion

@ We have formulated and solved an original optimal control problem
for a vehicular Rankine system.

@ We have developed an Adaptive grid algorithm which achieves the
required accuracy within acceptable computational time.

v

On-going work

@ Thanks to these results it becomes possible to carry out extensive
parametric studies.

@ These results also prove useful for the design of an online strategy.
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