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Context

Organic Rankine cycle (ORC) for waste heat recovery

More than a third of the energy
produced by internal
combustion engines is released
in the form of heat through
exhaust gas.

Rankine cycle is a system for
waste heat recovery.

On board a diesel-electric train

Main speci�city: limited capacity of the cold sink.

Objective: �nd an optimal control policy.
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System description

1 Vaporization

2 Expansion

3 Condensation

4 Compression

Main actuators

evaporator by-pass: lets a fraction of exhaust gas feeding ORC.

pump: circulates the working �uid.

fan: provides a cooling air �ow.

4 / 15



Title Context ORC: optimal control problem Dynamic Programming ORC: numerical solution Conclusion

System description

1 Vaporization

2 Expansion

3 Condensation

4 Compression

Main actuators

evaporator by-pass: lets a fraction of exhaust gas feeding ORC.

pump: circulates the working �uid.

fan: provides a cooling air �ow.
4 / 15



Title Context ORC: optimal control problem Dynamic Programming ORC: numerical solution Conclusion

Two state ORC model

Supervisory oriented model

Simpli�ed but physically meaningful.

Validated on experimental data (captures slowest dynamics).
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ORC optimal control problem

Objective: Maximizing energy recovered

Performance index:

J =

∫ tf

0

Pturbine(x)− Ppump(x)− Pfan(u, t), dt.

Input control variablesa:

u = {Vo,e ,
∗
mA} ∈ [0, 1]× [0, umax ]

Security constraint:
p1(x , t) < 25 bar, ∀t ∈ [0, tf ]

aSuperheating is considered as perfectly regulated by pump (Peralez et al. [2013]).

This problem is challenging to solve

The model is non-linear, implicit, time-variant.

The cost function is non-convex .

Two control variables / two dynamic states.

State constraint.
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Dynamic Programming for discrete-time systems

Generic optimal control problem

Discretized dynamic system:

xk+1 = fk (xk , uk)

x0 = x0

xk ∈ Xk ⊆ Rn

uk ∈ Uk ⊆ Rm.

Cost functional to minimize

min
u

g (xN) +
N∑

k=0

hk (xk , uk) ,

Dynamic Programming (DP)

Based on principle of optimality introduced by Bellman.

Main advantage: no assumption on model linearity or cost convexity.

Main drawback: the computational load grows exponentially with
the dimension of the problem.
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Dynamic Programming Principle

Considering the cost functional

g (xN) +
N∑

k=0

hk (xk , uk) ,

DP proceeds backwards in time to evaluate the optimal cost-to-go:

I Final time computation

JN(x i ) =
{

gN(x
i ), for x i ∈ XN

∞ else.

II Intermediate computations for k = N − 1 to 0

Jk(x i ) = min
uk∈Uk

{hk(x i , uk) + Jk+1(fk(x
i , uk))}.
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Penalty method vs Level-set function

A major issue
appears in
presence of
state
constraint:

k k+1 N
time index

x
1

backward
reachable
space

not
backward
reachable

fk(x
p
k, u

1
k)xp

k

Level-set method deals with this problem

It introduces a new cost function I:{
I(x) ≤ 0, if x is feasible
I(x) > 0 else.

I is minimized, in parallel with Ja.
aElbert et al. [2013]
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Adaptive-grid algorithm

At each time step, a second discretization of state space is introduced:

x1

x
2

x1

x
2

Ik > 0

Ik < 0

Ĩk > 0

Ĩk < 0

⇒ improves the estimation accuracy (but requires additional
computations).
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Adaptive grid e�ciency (1/2)

A simple energy management example

Analytic solution is known: Petit and Sciarretta [2011].

Problem: �nding the speed and distance trajectories which
minimizes the consumption of an electric vehicle.

Optimal trajectory (xo ,vo) and evolution of backward-reachable space:
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Adaptive grid e�ciency (2/2)

Algorithm accuracies

The error is quanti�ed for several levels of discretization:
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ORC Optimal control problem: External conditions

Intercity train trip

Results in a set of external conditions for the ORC:

exhaust gas temperature Texh(t)

exhaust gas mass �ow
∗
mexh(t).

A large variation of ambient temperature TA(t) is considered.
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DP solution
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u1 = Vo,e[−]

u2/3 =
∗
mA [kg/s]

Adaptive-grid algorithm solution (Nx1 = Nx2 = Nu1 = Nu2 = 21)

Highlights

Energy recovered was improved by 7% (compared to static
optimization).

Strong in�uence of ambient temperature on energy production.
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Conclusion

Summary

We have formulated and solved an original optimal control problem
for a vehicular Rankine system.

We have developed an Adaptive grid algorithm which achieves the
required accuracy within acceptable computational time.

On-going work

Thanks to these results it becomes possible to carry out extensive
parametric studies.

These results also prove useful for the design of an online strategy.
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