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Abstract—The ever increasing complexity of distributed sys-
tems mandates to formally verify their design and implementa-
tion. Unfortunately, the common approaches and existing tools to
formally establish the correctness of these systems remain hardly
applicable to the kind of legacy applications that are commonly
found in the HPC community.

We present how system-level memory introspection can be
achieved directly at runtime without relying on the source
code analysis. We use this mechanism to detect the equality
of the application’s state at system level. As the storage of
the system state may be memory expensive, we compact the
memory by sharing unchanged memory pages between snapshots.
This enables the automated verification of safety and liveness
properties on legacy distributed applications written in Fortran or
C/C++ using the MPI standard. We demonstrate the effectiveness
of our approach on several programs from the MPICH3 test suite.

I. INTRODUCTION

Model checking is an appealing automated technique to
establish the correctness of distributed systems, but it is diffi-
cult to apply to legacy applications as it requires a complete
model of the application. Manually building such models is
error-prone and labor-intensive. Keeping the resulting model
up to date when the real application is modified constitutes
another challenge. A guided approach such as the CEGAR
abstraction/refinement methodology [1] can ease this modeling
step, but the user still needs a high level of expertise in
formal methods. Static code analysis [2] can automatically
reconstruct the model, thus removing the burden induced by
the modeling step. This interesting approach is used in many
existing tools [3], [4], [S]. Our work is in line with another ap-
proach called formal dynamic verification (or execution-based
model checking), where the model is not explicitly known
but only implicitly explored through the actual execution of
the real application. The verification is thus performed on
the concrete implementation of the application. It is in some
sense orthogonal with the static analysis, as a tool could for
example leverage information gathered statically to improve
the dynamic exploration.

Ultimately, our goal is to dynamically verify unmodified
legacy distributed applications which allow Communicating

Sequential Processes (CSP) to interact through message pass-
ing using MPI or similar APIs. We do not aim at certifying
such applications, but merely at finding unknown issues in
real applications. We dynamically verify software toward bug
finding through falsification.

We build upon a previous work of Rosa et al. described
in [6]. Authors presented in this paper a multi-API solution
enabling the formal verification of such applications within
the SimGrid framework [7]. In the current work, we tackle the
problem of introspecting the state of arbitrary legacy applica-
tions written in Fortran or C/C++. The motivation comes from
the need to detect state equalities during the exploration, and
thus to detect cycles and infinite executions. Detecting such
cycles also proves important to verify liveness properties in
the general case. Our approach faced with this problem is to
leverage debugging techniques and tools to retrieve semantic
information on the running application toward system-level
detection of application’s state equality.

Specifically, this paper makes the following contributions:
we detail the OS-level challenges behind the considered prob-
lem and we propose solutions to mitigate each of those
difficulties. We show the practical effectiveness of our proposal
through three kinds of experiments: we find a liveness issue in
a custom MPI code, we explore exhaustively an infinite-time
MPI application as well as several of the MPI applications
from the official MPICH3 testsuite.

The remainder of this paper is organized as follows: Sec-
tion II introduces our motivations and the problem statement.
Section III details our contribution, which is evaluated in Sec-
tion IV. Section V presents the related work while Section VI
concludes this paper and discusses some leads of future work.

II. CONTEXT, MOTIVATION AND PROBLEM STATEMENT

Originally, the SimGrid framework was intended to assess
the performance of distributed applications through fast but
realistic simulations [7]. SimGridMC extends this framework
to evaluate the correctness of distributed applications through
dynamic verification. As detailed in [6], SimGridMC leverages
the simulator architecture, where the distributed processes
are folded as threads into a system process, and where all
communications are mediated by the simulator. Folding the
evaluated application in a single process makes it much easier



to inspect the network state and to checkpoint the complete
system state. The non-deterministic choices are controlled
through the mediation of communication, enabling the whole
verification process. In addition, every memory allocation is
intercepted to two separate heaps: the application’s memory
gets overwritten when restoring the system before the explo-
ration of another branch while the model checker’s memory is
naturally preserved on such rewinds.

Prior to this work, SimGridMC was stateless, only the
system’s initial state was checkpointed. When rewinding the
application, this initial state was first restored and then all
transitions leading to the desired state were replayed. This
was satisfying in the considered context of Peer-to-Peer (P2P)
protocols, because the computations are classically inexpensive
in this case. A Dynamic Partial Ordering Reduction (DPOR)
technique helped mitigating the state space explosion.

While relatively effective, this stateless approach suffered
from several problems in terms of performance and applica-
bility, as detailed below.

A. Efficiently Verifying HPC Programs and State Equality
Reduction

By reusing the internals of the versatile SimGrid frame-
work, SimGridMC could already verify applications specified
with any of the APIs implemented on top of SimGrid, from
the simple specific interfaces to the classical MPI standard
which were partially implemented on top of SimGrid. But
the stateless approach is less adapted to HPC applications, as
computations become much more expensive on path replays.
It then becomes interesting to checkpoint more states to save
time when rewinding the system. Several verification tools use
stateful explorations, but they either save only parts of the
system state after decomposition [8] or only save a bitstate
hash of each reachable state rather than the state itself [9].
In these cases, the intermediate states cannot be restored and
must be recomputed. Until recently, memory limitations made
it impossible to checkpoint the full state at each step, but these
limitations now tend to become less pressing as systems with
hundreds of gigabytes per node become available. It is then
appealing to refine the state comparison using any memory
information.

The stateful exploration can also reduce the size of the
explored state space by detecting whether the current state was
already visited previously, and cutting the exploration when it
occurs. Implementing this approach is however much harder
with real applications than with abstract models, as the appli-
cation’s state is obviously harder to explore. Bitstate hashing is
often leveraged in the literature to that extend, even if any hash
collision would hinder the exploration soundness. Moreover,
technical considerations make very difficult to compute that
hash for some systems that we consider in this work.

We checkpoint all states instead and detect cycles through
the comparison of the current state with all previously check-
pointed states. As detailed in next section, syntactic memory
comparison byte per byte is not sufficient in our case, as many
details may vary without altering the application’s semantic.
All details of that semantic must be considered accurately

instead, including global variables, the heap, the simulated
processes’ stacks, as well as the simulator’s network state.
Our work builds upon the many existing solutions based on
canonicalization by applying similar techniques to languages
which are not garbage collected. Introspecting the raw data
then reveal much more challenging.

B. Verifying Arbitrary Liveness Properties on Legacy Code

Execution loops as detected by the state equality mechanism
constitute non-progressive cycles. They play a central role in
the verification of liveness properties, as the counterexample
to liveness properties are infinite paths. If the application state
size is bounded (in particular, if the stack size is bounded),
infinite paths must contain such an execution loop. Liveness
properties are then verified through the search of acceptance
cycles in the Cartesian product of the application with a Biichi
automaton encoding the negation of the verified property. If
found, such an acceptance cycle denotes an infinite execution
path which constitutes a counterexample to the property.

This approach can sometimes be used to falsify the pro-
gram termination using the property “Always, Eventually, the
program terminates”. If it is naturally impossible to solve
the Halting Problem in all generality, it remains sometimes
possible to prove whether a given program terminates or
not [10]. Dynamic verification can enforce the termination
of any finite protocol (although sometimes inefficiently). It
could also correctly diagnose applications that do not terminate
because of non-progressive cycles (provided that these cycles
are detected). This approach fails on applications which do not
terminate but whose the state changes infinitely often, which
is consistent with the indecidability of the Halting Problem.

MaceMC [11] can also verify liveness properties on concrete
C++ implementations of distributed systems. Instead of detect-
ing the acceptance cycles, it looks for the so-called critical
transition that plunged the property into a violation. The
exploration performance is then improved using state hashing.
This approach remains however limited to the restricted set
of liveness properties that can be expressed as (IOp (Always
Eventually p, where p is a logical predicate), while detecting
acceptance cycles can be used to verify arbitrary LTL_x
formula.

C. Verifying (infinite-time) Cyclic Protocols

Non-progressive cycles constitute an inherent part of a
whole class of applications, such as the cyclic protocols which
react to external periodic events (as most P2P protocols).

DPOR cannot study such systems because even if it re-
duces the amount of explored interleavings by detecting the
independent actions, it does not detect all execution cycles.
The state space is still infinite after the DPOR and thus
cannot be explored explicitly during a dynamic verification.
On the contrary, a state equality reduction would cut the
repetitive patterns of the application behavior, which permits
the exhaustive verification of cyclic protocols.

III. SYSTEM-LEVEL STATE EQUALITY DETECTION

Comparing memory byte per byte is not sufficient to detect
the state equality, as it detects many syntactic differences that



are not significant to the application semantic. For example,
the numerical values of pointers on different memory areas are
syntactically different while the pointed memory areas could
be semantically equals. Such false negative must be avoided by
all means, as the tool could fail to detect some state equalities,
possibly leading to the non-detection of a property violation.

The key to a better state equality detection lies in the ability
to introspect the memory and to reconstruct the semantic of
bits. Several approaches can be leveraged to that extent. For
Java applications, all of the memory is handled by the virtual
machine. Using the meta-data known to the JVM, it should
thus be possible to reconstruct the semantic of each byte
found in memory, making it possible to detect system state
equalities. However, this would probably require to modify
the JVM directly, as Java introspection is more intended to
explore the values of objects’ content rather than exploring
the meaning of memory locations. Adding the needed meta-
data and keeping them in sync in the whole JVM source code
constitutes a daunting task, but remains feasible [12].

However, Java is almost never used in the context of HPC
applications using MPI, calling for another approach that
would be applicable to C/C++ applications. In [13], the user
must provide a hashing function that can be used to detect
the state equalities. Detecting system state equalities is easier
when the complete data semantic is known, but this remains
a burdensome and highly error-prone task, hardly adaptable
to complex systems. In the following, we propose a generic
solution which operates at the operating system level. Instead
of specifying the segments of memory that are relevant to the
system’s semantic, we start by considering the whole system
memory, and optionally ignore some sections that are known
to be irrelevant.

The system state that we consider aggregates the applica-
tion’s global variables, the application’s heap and the stack of
each process (Fig. 1). The global variables of the simulator
are also included in the comparison, as they contain the
network’s state during the simulation. At the OS-level, these
data are stored in several memory segments that must be
considered separately. In the following, we detail our approach
using Linux as an example, but our work could probably be
implemented for any other operating system.

Kernel space ’
/
) BSS
l Stack / Data
/ libc.so
/ Int. data
! Text
Memory Mapping Segment
Dynamic libraries BSS
User \ Data } libsimgrid.so
space \\ Int. data
T HiEE | Text
\

BSS segment \
Uniniti static variables
Data segment
Initialized static variables
Text segment
Executable

— Dynamic system state

Fig. 1. Memory layout of a process.

In the remainder of this section, we detail the causes of the
syntactic differences that defeat the byte per byte comparison
of memory segments. For each of these challenges, we show
how additional information could be retrieved from the system,
and leveraged to rebuild semantic information needed. For
some of these difficulties, we must rely on heuristics that
could conclude on the difference of semantically equal states.
This must be avoided when possible, as this could jeopardize
the soundness of the verification process. That is why we do
not aim at certifying the verified applications. Our tool is
rather intended to find bugs that are hard to detect on real
applications.

A. Memory Overprovisioning

Most implementations of the malloc library allocate mem-
ory chunks whose sizes are powers of two to avoid the memory
fragmentation. For example, a memory area of 64 bytes will
be used to serve a request of 48 bytes. It is expected that
the application only uses the requested area while the extra
area remains unused (Fig. 2). In our context, this memory
overprovisioning may result in irrelevant byte differences, as
the unwanted area contains unspecified values: the data written
by the previous user of each remaining memory chunk.

allocated size 256 256 512 1024 256 256 1024 512

A 77 77 vrrss4
7 777 77 77774
z 777 77 rrr774

240 200 400 924 256 648

size used

Fig. 2. Memory allocation with overprovisioning.

As detailed earlier, SimGridMC uses two separated heaps
for the verified application and the model checker itself. We ex-
tended this implementation of malloc (based on mmalloc)
to address the issue of memory overprovisioning.

A first approach to not take these unspecified values into
account is to ignore the unwanted area during the state
comparison. But this would not be robust against applications
with buffer overflows. In particular, if write accesses overflow
from the requested area but remain within the allocated area,
the application would fail with our malloc but work with a
classical one. In order to address this issue, we fill each newly
allocated area with zeroes before handing it to the application.
This ensures that every value is specified while remaining
robust to limited buffer overflows. Although SimGridMC is
not specialized in the detection of this kind of bug, we could
add an option to detect and report such overflows to the user.

Memory overprovisioning also occurs within the processes’
stacks. When a function returns, the memory occupied by its
stack frame is not zeroed by the system, resulting in irrelevant
syntactic differences. In this case, instead of zeroing the
memory area after each function return, we retrieve the stack
pointer in a portable way using the libunwind library', and
only consider the valid stack frames during the comparison.
It is safe to assume that no buffer overflow occurs on the
stack given the protection added by the compiler against stack
smashing security attacks.

Thttp://www.nongnu.org/libunwind/



B. Padding Bytes

When necessary, the compiler adds some padding bytes
between the variables to enforce memory alignment constraints
that speed up the data movement between the memory and the
CPU registers (Fig. 3). Since the application’s structures are
sparse, this mechanism results in irrelevant syntactic differ-
ences if the values of padding bytes are compared.

struct foo {

Padding bytes

char c;
int 1i; c A/l s \A P
short s [l | V)
void *pj; 700000 7500500500500
} 1 3 4 2 6 ]

Fig. 3. Data memory alignment is preserved by adding unused padding bytes.

In the heap, our solution to the previous issue happens to
address that problem too, since the padding bytes are zeroed
and thus specified. This remains problematic in the stack
because of irrelevant differences induced by the system. Even
if we zero the stack before each call (as done in §III-E), the
compiler or the system could add syntaxic differences such as
the canaries used to detect stack smashing security attacks.

Our approach is to focus on the actual data stored on the
stack instead and to ignore the unspecified values of padding
bytes. We retrieve the needed information from the debugging
symbols. The description of all variables contained in the
system state (name, type, size and memory address) is retrieved
from the DWARF?-formatted debugging information. It is a
debugging file format used by many compilers and debugger to
support source level debugging. This information is sufficient
to rebuild a fine-grain semantic of each byte in the global
segment. It can also be coupled with stack frame information
extracted from libunwind to explain each byte of the stack
area. This way, the comparison is only done on information
which characterizes the system state at a given execution time.

It is possible to disable these padding bytes with some
compilers by setting the alignment of all aggregate members to
a specified byte boundary. This operation may be performed
thanks to the directive #pragma pack (1). However, this
may have a significant impact on the performance of the appli-
cation as the compiler must (on some platforms) generate code
to access a misaligned member a byte at a time. Moreover, it
requires to modify all parts of the application but also the
simulator in our case.

C. User-defined Irrelevant Differences

Specific variables and memory areas can be explicitly ig-
nored during the comparison. The user may leverage this to
ignore the step number in a cyclic protocol, the value of an
iterator in a loop or any value that he considers as irrelevant
to its state. A different system behaviour resulting from the
value of the counter will be detected in the other memory
areas, while this counter could be ignored.

This information is stored in a new meta-data of our
malloc implementation and used during the comparison. The

Zhttp://www.dwarfstd.org/

same mechanism is used to mask irrelevant differences caused
by the simulator internals, such as the total amount of messages
sent during the simulation that is constantly incremented.

D. Dynamic Semantic Comparison of Heap

The last and most difficult technical lock encountered during
the system state comparison is due to the fact that the order in
memory of malloced blocks rarely matters to the application
semantic. Fig. 4 depicts two heaps that are semantically similar
despite the block ordering. Blocks 0x30, 0x40 and 0x50
are syntactically different, yet both heaps are semantically
equivalent. All observed differences can be explained by the
fact that the block 0x30 of one heap corresponds to the block
0x40 of the other heap.

Such situation often occurs in our context because the
block ordering stems from the order of malloc requests, which
change when the process execution order changes, as in the
dynamic verification.

Moreover, the numerical value of a pointer remains un-
changed in C when the pointed area is freed. As the system
may reallocate the previously freed memory, the pointed data
may be completely different. It is a good habit as a programmer
to set the pointer variables to NULL in this case, but this is
not requested by the C standards. The manual detection of
these dangling pointers by the user is however essential to the
soundness of our approach, as the comparison of unrelated
memory areas leads to the non-detection of the system state
equality.

[ox10 [ 1234 | [[0x20 [ asby |

[ox10 | 1234 | [0x20 [ asby |

Fig. 4. Two heaps syntactically different but semantically identical.

Even if there is no dangling pointer, detecting the semantic
equality between heaps in which blocks were reordered re-
mains hard. We cannot directly leverage DWARF debugging
information, as the considered memory is allocated during
the execution and thus unknown at compile time when this
information is produced.

In [14], the author presents a heap canonicalization algo-
rithm that can reorder the blocks in a canonical form. It is
then much easier to compare the heaps together. This approach
relies on a garbage collecting mechanism in a language where
all references to allocated data are clearly known to the system.
A mark-and-sweep algorithm is then conducted from all vari-
ables down to the blocks. The graph traversal is deterministic
by construction, and the blocks are reordered on-the-fly into a
canonical form.

This approach cannot be applied as is to our context because
we cannot assume that the verified application uses one of
the existing garbage collector for C/C++. We can retrieve the



Issue Heap solution

Stack solution

Overprovisioning memset 0

Stack pointer detection

Padding bytes memset 0

DWAREF + libunwind

Irrelevant differences

Ignore explicit areas

DWAREF + libunwind + ignore

Syntactic differences

Dynamic semantic comparison

N/A (sequential access)

Uninitialized data memset 0

Stack cleaner by binary code modification

TABLE 1.

references located in local and global variables according to
their DWARF signature, but we will probably miss some
references located in heap blocks as we lack any semantic
information on the content of these blocks. Because of these
missing references, it is impossible to move memory blocks:
any reference still pointing to an old block location would
cause the application to abort immediately.

Yet, our heuristics compares states on the fly by traversing
the heap, starting from the globals and locals down to the
blocks it can reach with the pointers it knows. It does so until
all blocks are matched (in which case the heaps are equivalent)
or until an inexplicable difference is detected.

One extra difficulty in this traversal is that local variables
may be hidden at some execution points, for example because
another variable of this name exists in a closer lexical scope.
Since we cannot consider all variables, and since we lack any
semantic information on the heap, we can only design a heuris-
tics, whose practical effectiveness is evaluated experimentally
in the next section.

We perform a partial mark-and-sweep, starting from the
variables we know and iterating on data for which we have
the debugging information. For each variable that is a pointer
to a block, we retrieve the datatype of the pointed data, and
iterate. This approach allows to match the pointed blocks even
if their numerical position in each heap does not match. This
traversal stops in the case where all blocks can be traversed
and matched, or because of a detected difference, or because of
some information that is missing to further guide the traversal.
That information may be missing because of hidden local
values or because of voidx+ datatypes hiding the real type
of pointed data.

The blocks for which we lack any debugging information
are then compared byte per byte. If we find a difference, we
attempt to explain this as a pointer difference: in each heap,
we read the aligned 8 bytes that contain the differing byte as
a numerical value. If each value corresponds to the address
of a valid block, the comparison iterates recursively on the
designated blocks.

E. Uninitialized data

Uninitialized variables remain a problem as the memory area
is allocated but the corresponding bytes are not specified. In
the heap, we modified the malloc implementation in order to
zero the allocated memory before handling it to the application.
However, this approach does not work for local variables
allocated on the stack.

In the stack, this problem is managed by zeroing the stack
frame at the beginning of each function. This is currently
implemented by modifying the assembly of the function gen-
erated by the compiler before giving it to the assembler: a

SUMMARY OF ISSUES AND SOLUTIONS FOR THE SYSTEM-LEVEL STATE EQUALITY DETECTION.

script evaluates the size of the stack frame of each function
by parsing its assembly code, and prepends to the function the
assembly instructions that set to O that stack area.

F. Same-page-sharing snapshots

At each node of the execution graph, SimGridMC takes a
full snapshot of the application state: the whole content of
the application heap, its stacks and the sections containing its
global variables is copied. Making a copy of the whole state
of the application at each node of the graph rapidly exhausts
the available memory when the number of states increases. In
many applications, only a small part of the memory changes
between consecutive states. In some applications 99% of the
memory pages do not change between consecutive states.

As an answer, our snapshots are compacted by storing each
memory page only once. When storing a new page, we detect
whether a page of the same content is already stored by first
computing a hash of the page content, and then comparing
byte-per-byte the content with the already stored pages that
have the same hash value. If the page is already stored, it is
reused in the new snapshot to save memory.

We used the memory page granularity (4KiB on x86 and
x86_64), but smaller chunks could be used to increase the
data sharing between snapshots, at the cost of an increase of
the metadata used to manage the chunks.

G. Summary

As a final optimization, we test first and foremost several
efficient criteria such as the total amount of allocated blocks,
allocated data, and stack sizes of all processes. This allows
to eliminate many candidate states even before traversing the
heaps.

Strictly speaking, this heuristics is not a heap canonical-
ization algorithm, as it does not change the order of blocks
in place. Nevertheless, this memory introspection technique
is not restricted to object-based programs. To the best of
our knowledge, this constitutes the first known approach to
detect the system state equality for programs that do not use
garbage collections (see Section V). Moreover, the verification
is performed on the actual program memory without using state
vectors. It differs to methods based on state abstractions in
which the system state is described in a first time according to
some memory information then analysed. Despite its apparent
simplicity, this heuristics proves efficient in practice. As shown
in the next section, it makes it possible to actually verify and
exhaustively explore legacy distributed applications.

IV. EXPERIMENTAL EVALUATION

This section evaluates our contribution through three sets
of experiments which illustrate each motivating example of



Application 4p Stateless exploration Stateful exploration without same-page-sharing ‘ Stateful exploration with same-page-sharing
# States Time Memory | # States Time Memory ‘ # States ‘ Time Memory
beasttest (C) 3 > 1.4 millions > 27h 0.38GiB 5,160 18 min 38.5GiB 5,160 31 min 1.02GiB
beastzerotype (C) 5 12,135,948 23min50s | 0.34GiB 4,734 6min 10s 5.54 GiB 4734 6min 50 s 0.83 GiB
6 > 200 millions > 20h 0.34 GiB 56,054 5h56 min 59 GiB 56,054 9h 58 min 6.93 GiB
4 102,289 13s 0.34 GiB 1,556 Iminlls 3.36 GiB 1,556 I min19s 0.48 GiB
commcreatel (C) 5 12,710,034 25min37s | 0.34 GiB 8,559 18 min 528 10 GiB 8,359 20min30s 1.42GiB
6 > 750 millions > 27h 0.33GiB 99,235 21h 55 min 103 GiB 99,235 25h 54 min 13.7 GiB
2 907 2s 0.34 GiB 105 2s 0.47 GiB 105 2s 0.34 GiB
dup (©) 3 138,678 17s 0.34 GiB 574 Ss 0.91 GiB 574 6s 0.36 GiB
4 78,082,843 3h42 min 0.34 GiB 3,058 1 min44s 3.67 GiB 3,058 1 min 54 s 0.7GiB
4 102,289 125 0.34 GiB 1,205 42s 1.76 GiB 1,205 45s 0.43 GiB
groupcreate (C) 5 12,710,034 24min31ls | 0.34GiB 6,237 9min 56 7.26 GiB 6,237 11 min03s 1.16 GiB
6 > 780 millions > 27h 0.36 GiB 80,878 16 h 03 min 85GiB 80,878 17 h 38 min 11.1GiB
inplacef (Fortran) 3 > 570 millions > 27h 0.37GiB 22,223 25min37s 27.22 GiB 22,223 28 min35s 3.50 GiB
3 358 Is 0.34 GiB 94 2s 0.45 GiB 94 3s 0.34 GiB
op_commutative (C) 4 102,289 12s 0.34GiB 1,545 I min10s 2.36 GiB 1,545 1 min 18s 0.47 GiB
5 12,710,034 25min39s | 0.34GiB 10,998 41min20s 13.6 GiB 10,998 54min20s 1.72 GiB
sendrecv2 (C) 2 > 270 millions > 27h 0.36 GiB 1,877 20s 3.09 GiB 1,877 19s 0.48 GiB

TABLE II.

Section II. Section IV-A focuses on the formal verification
of several applications distributed as part of the MPICH3
testsuite. Several point to point and collective communications
patterns are exhaustively explored this way. Section IV-B then
evaluates the tool’s ability to detect a liveness violation on a
custom MPI application. Section IV-C demonstrates how state
equality detection enables the exhaustive exploration of cyclic
applications whose behavior is regular but not bounded in time.

We used SimGrid (git version e214f3, 60,000 lines of code),
as our contribution is integrated to the public version of this
framework. These experiments were conducted on a Intel(R)
Xeon(R) CPU E7540 @ 2.00GHz, RAM 512GiB, 48 cores,
with debian wheezy environment 3.2.0-4-amd64 and 3 extra
packages (cmake 2.8.9, libunwind7, and gfortran 4.7.2).

In all subsequent tables, "#P’ is the total amount of processes
in the studied application, # States’ corresponds to the number
of expanded states before finding the counterexample (or the
total number of states in the case of exhaustive exploration),
and 'Depth’ is the depth in which the counterexample has been
found (only for the verification of a liveness property).

A. Verification of the MPICH3 testsuite

This first experiment focuses on the MPICH3 testsuite [15].
This testsuite allows to test any MPI implementation to be in

EXHAUSTIVE VERIFICATION OF MPI APPLICATIONS FROM MPICH3 TESTSUITE.

compliance with the standards. Not all of the tested features
are currently implemented in SimGrid so we eliminated the
corresponding tests. We verified several applications (about
1,300 lines of code per application) from this testsuite, written
in C or Fortran. Since our tool is written in C and C++ itself,
these experiments demonstrate our ability to verify programs
written in C/C++ or Fortran.

We looked for deadlock or livelock corresponding to non-
progressive cycles. We managed to exhaustively explore the
state space of these applications for up to 6 processes. No
error has been found during these exploration. Table II clearly
demonstrates that a stateful exploration reducing the state
space is mandatory to perform an exhaustive verification on
even basic tests with few processes. It also shows the effec-
tiveness of our memory compaction approach, which reduce
the memory consumption by a factor of ten on large scenarios
while only slowing the exploration by 10%.

B. Dynamic verification of a liveness property

This experiment uses a custom MPI implementation of the
centralized mutual exclusion algorithm (about 100 lines of
code), where a coordinator grants infinitely often a mutex
to the clients that request it. We introduce an error so that
one of the clients never gets the requested critical section

4p With same-page-sharing Without same-page-sharing
# States [ Time [ Memory [ Depth | # States [ Time [ Memory [ Depth
3 64 297s 0.33 GiB 57 64 2.40s 0.48 GiB 57
4 301 3.26s 0.35GiB 278 301 3.46s 1.2GiB 278
5 1,041 9.97s 0.6 GiB 949 1,041 11.37s 3.4GiB 949
6 4,494 33s 1.9GiB 4,116 4,494 48's 14 GiB 4,116
7 25,097 9min12s 11 GiB 23,207 25,097 8min40s 83 GiB 23,207

TABLE III.

STATEFUL VERIFICATION OF MPI BUGGED MUTUAL EXCLUSION EXAMPLE (INFINITE-TIME VERSION) WITH LTL PROPERTY LJ(r — {cs).



4P With same-page-sharing Without same-page-sharing
# States Time Memory | # States Time Memory
3 4,884 1 min 0.75 GiB 4,884 I min12s 6.8 GiB
478,396 | 17h50 min 49 GiB - - > 300 GiB

TABLE IV.

(its requests are discarded). We verify the following liveness
property: O(r — Ocs) (any process that requests (r) it must
obtain the critical section (cs)). Since one client never gets the
cs, this property is violated and a counterexample must be
eventually found.

That counterexample can be found either after a few seconds
if it is on the first explored branch, or after several hours if
located in another branch. Table IIT presents the worst case
results, when the buggy process is the last one. With such
infinite-time applications, a stateful exploration is mandatory
to detect and avoid non-progressive cycles that could prevent
the verification from terminating.

C. Stateful exhaustive exploration of infinite-time application

This last experiment performs a stateful exhaustive explo-
ration of an infinite-time MPI application (about 100 lines),
without a property to verify. The goal is to benchmark an
exploration of the whole state space, using the same centralized
mutual exclusion algorithm than in previous section (without
the bug introduced). The results presented in Table IV clearly
show the usefulness of the memory compaction: without this
mechanism, the exploration exhausts the available memory
(300 GiB) for four processes already, while we managed to
explore exhaustively the same example with this mechanism.

V. RELATED WORK

Since this work leverages dynamic analysis techniques, we
will not discuss approaches based on static analysis; that is
orthogonal. Both approaches could be used jointly to benefit
both several sources of information during the verification.

Many tools exploit dynamic analysis either for the verifica-
tion of C programs [16], [4], [17] with abstract interpretation in
some cases and focused on memory-related errors [18], [19]
or in particular for the termination analysis [20], [21]. This
approach is also commonly used for Java [12] or object-based
program analysis, with a garbage collection mechanism for
some [22]. As explained in section III, it is easier to implement
this approach for languages served by a virtual machine, as the
meta-data known to the virtual machine are precious in this
context. The semantic of any byte of memory is known to the
VM, that can in particular retrieve and follow pointers. This
operation is much harder in our case, especially with generic
pointers and invisible variables. We must rely on a heuristic
to deal with the possible memory leaks and dangling pointers,
that cannot happen when using a garbage collector.

The need of formal methods for HPC applications is well
acknowledged [23], but there exists few verification tools
for MPI applications. To the best of our knowledge, MPI-
CHECK [24] is the only verification tool of Fortran 90 MPI
programs. Thanks to compile-time and runtime tests, it detects
deadlocks and some inconsistencies in MPI calls such as

STATEFUL EXHAUSTIVE EXPLORATION OF MPI CENTRALIZED MUTUAL EXCLUSION ALGORITHM (INFINITE-TIME VERSION).

negative message lengths. But the exploration is not exhaustive
and the achieved tests are limited. Gauss [25] and MPI-
Spin [26] are model extractors for MPI applications which can
then be checked with Zing [27] and SPIN [28] respectively.

Finally, ISP [29] and its distributed counterpart DAMPI [30]
are dynamic verifiers specifically tailored for the verification
of MPI applications written in C. They check for deadlock
and local assertions violations without requiring users to
manually model their code. ISP hijacks the PMPI profiling
interface that is normally intended for tracing tools to gather
information about the MPI calls. ISP mediates these MPI
calls and performs the dynamic verification at that level. A
distributed protocol is then used between nodes to determine
which messages should be delayed within the “’profiling” call,
and which ones can proceed (after being rewritten).

This approach leads however to two major drawbacks. First,
collective operations are seen as atomic calls from the profiling
interface perspective. The point-to-point communications that
compose these collectives are completely invisible at this
level. It means that unlike SimGridMC, ISP cannot properly
verify collective operations, that must be assumed intrinsically
correct. This seems unfortunate given the current momentum
on asynchronous group collectives, that are known to be error-
prone to implement [23]. Moreover, the real execution of the
application on a real distributed platform may pose subtle
challenges to ensure that the simulation is reproducible. Like-
wise, rewriting the MPI calls may change the synchronization
semantic, that may depend on the buffer sizes in some border
cases [31]. SimGridMC is based on the versatile SimGrid
framework instead which is reproducible by design. It is much
easier to observe and control the distributed system when it
is folded into a unique system process as in SimGridMC,
resulting in simpler and thus more robust setups.

VI. CONCLUSION AND FUTURE WORK

System state equality detection is essential for the dynamic
verification of applications. It is important to verify arbitrary
liveness properties, to explore exhaustively infinite cyclic
protocols and constitutes an efficient reduction mechanism
during stateful explorations. Detecting system state equalities
is however much harder with legacy distributed applications
than with abstract models.

In this paper, we detailed the root causes of these diffi-
culties, and proposed various solutions leveraging debugging
information and tools. To the best of our knowledge, it is the
first solution to reconstruct the needed semantic information
about systems that use programming languages without au-
tomatic garbage collection. We evaluated our implementation
on several programs, including tests from the official MPICH3
testsuite. Our work is integrated in the SimGrid framework>.

3SimGrid is freely available from http://simgrid.org/ (LGPL license).



Since the state space equality detection relies on a heuristic,
our approach cannot be used for certification but only for
bug finding. The improvement beyond prior work on veri-
fying unmodified legacy HPC programs is many-fold: any
safety or liveness property can be verified, and some class
of infinite time-applications can be verified. These properties
can be assessed on arbitrary C/C++ or Fortran mono-threaded
applications based on MPI, using only the debugging symbols
even if the source code is not available.

In the future, we want to combine our approach with other
classical methods to increase the amount of available informa-
tion during the reduction. For example, visibility information
that can be extracted from instrumentation are mandatory to
combine the DPOR and stateful reductions [32], and would
perfectly complement the runtime system-state analysis that
our approach provides. Memory graphs that can be recon-
structed from static analysis would help extending the appli-
cability of our approach to multithreaded MPI applications.

We also want to evaluate complex MPI code, such as
the asynchronous collective calls implemented in MPICH
and OpenMPI or even full MPI applications. Thanks to the
SimGrid framework, the correctness and performance of these
code could be evaluated jointly.
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