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The topological gradient is defined as the leading term in the asymptotic expansion of a shape functional with respect to the size of a local perturbation. First introduced by Schumacher [

1. Introduction. The goal of this paper is to generalize the topological gradient method studied and applied in segmentation of images [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF][START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF][START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF][START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF] to a more general and higher order problem adapted to object detection. Objects can of Lebesgue measure different to zero. In this case, we are interested in the detection of the boundary of the object commonly called edge. The discontinuity associated to an edge is a discontinuity with a jump of intensity across the structure. Objects can also be of zero Lebesgue measure (filaments, points in 2D) and in this case we want to detect the whole object. Such object is called fine structure and there is no jump of intensity across the structure (see Figure 1). In [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF][START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF], the topological gradient has been applied to a problem of edge detection. It is well known that the detection of edges by using differential operators needs first order derivatives. It is no more true for fine structures which are discontinuities without jump of intensity across the structure. In [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF][START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF] authors justify theoretically and verify numerically that the detection of fine structures by using differential operators need second order derivatives. Hence they introduce a cost function involving second order derivatives of a regularization of the data solution of a fourth order PDE. In this paper we wonder what does happen for higher order problems with respect to these two kinds of structures ? In 1D a contour can be modelled by the Heaviside function H. We can approximate H by a regular function H η,p ∈ C p (R), p ≥ 1, which writes H η,p (x) = ϕ x η 1 |x|<η + 1 x≥η where ϕ(x) = 1 2 + p k=0 a k x 2k+1 with (a k ) 1≤k≤p such that ϕ(1) = 1 and ϕ (k) (1) = 0 for k ∈ [ [1, p]]. Similarly, in 1D a fine structure can be modelled by f (x) = 0 for x = 0 and f (0) = 1. It can be approximated by f η (x) = e -x 2 /η 2 . On Table 1, we study the m-th derivatives of the functions f 1 and H 1,4 with m ∈ [ [0,[START_REF] Amstutz | Topological sensitivity analysis for high order elliptic operators[END_REF]]. We see that derivatives of odd order penalize more edges than fine structures, while derivatives of even order are extremal on fine structures and null on edges. We can generalize this reasoning in 2D by working on transverse cut. Keeping these considerations in mind, in this paper we propose to develop a topological gradient method based on m-th derivatives of a regularized version of the data. From a numerical point of view the high order of the PDE may seem a source of instabilities. However, the generalization of the two cases [m = 1] [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF] and [m = 2] [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF], is theoretically interesting and shows that the topological gradient can be fully explicit in the case of a straight crack. Roughly speaking, the topological gradient is performed as follows : let Ω a regular domain of R 2 , j(Ω) = J(Ω, u Ω ) be a shape functional with u Ω solution of a PDE defined on Ω and J(Ω, .) a cost function depending on Ω. For small ǫ > 0, let Ω ǫ = Ω\{x 0 + ǫω} where x 0 ∈ Ω and ω is a given subset of R 2 (typically a crack or a ball). The topological sensitivity of j(Ω) is given by the leading term in the difference j(Ω ǫ )j(Ω) and generally it takes the form : j(Ω ǫ )j(Ω) = ϕ(ǫ)I(x 0 , ω) + o (ϕ(ǫ)) with ϕ : R + -→ R such as |ϕ| → 0 and I(x 0 , ω) is called the topological gradient associated to the cost function j(Ω). As said before, in [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF][START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF] the authors have studied the topological sensitivity of a shape functional of the form j(Ω) = J(Ω, u Ω ) = Ω F (u Ω , ∇u Ω , ∇ 2 u Ω ) where u Ω is solution of Au Ω + u Ω = f where A denotes either the Laplacian or the bilaplacian with Neumann homogeneous boundary conditions and f stands for the data. In this paper we consider a general cost function verifying Hypotheses 1 and defined from the p-th derivatives (0 ≤ p ≤ m) of 2m-th order's PDE solution. In particular, we apply our general study to quadratic cost functions of the form J p (Ω, u) = Ω |∇ p u| 2 with 1 ≤ p ≤ m. Let us notice that the PDE studied is (-1) m ∆ m u Ω + u Ω = f with Neumann homogeneous boundary conditions and it is associated to the problem min H m (Ω) J m (Ω, u) + uf 2 0,Ω . In image processing, f is generally the observed image possibly degraded by a Gaussian noise and u Ω can be seen as a regularization of f . A high order problem has already been studied in [START_REF] Amstutz | Topological sensitivity analysis for high order elliptic operators[END_REF] but with homogeneous Dirichlet conditions of ∂Ω and the result is given in function of polarization tensors which are not known in general and hard to evaluate. Here, we consider a cracked domain Ω ǫ = Ω\{x 0 + ǫσ(n)}, where σ(n) is a straight crack centered, the origin and x 0 ∈ Ω and ǫ small enough to avoid a possible contact between the perturbation an the boundary of Ω. With these notations we have Ω 0 = Ω. The paper reads as follows. First we determine the Euler equations associated to the minimization in H m (Ω) of the energy function J Ω (u) = Ω |∇ m u| 2 . Then we state the problem and we compute the topological gradient associated to a shape functional verifying Hypotheses 1 an defined from u Ωǫ the solution of a 2m order PDE defined on Ω ǫ . The final topological gradient expression is explicit in function of m, u Ω and an adjoint state v Ω defined on the unperturbed domain Ω. We give short numerical illustrations in imaging for m ∈ {1, 2, 3} in section 9. For more complete numerical illustrations and applications in imaging we refer the reader to [START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF][START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF] for m = 1 and to [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF] for m = 2. In the sequel, we place us in the local coordinate system to the crack in such a way the center of the perturbation is x 0 = 0 and the abscissa axe is given by the crack direction. We consider the function

J Ω : H m (Ω) -→ R : (1.1) J Ω (u) = Ω m k=0 C k m ∂ m u ∂x k 1 ∂x m-k 2 2 = Ωǫ |∇ m u| 2 Let u Ω ∈ H(Ω) defined by (1.2) u Ω = argmin u∈H(Ω) J Ω (u) + u -f 2 0,Ω where H(Ω) is the Hilbert space H(Ω) = u ∈ L 2 (Ω), ∇ m u ∈ L 2 (Ω) . Gagliardo- Nirenberg inequalities (see [1] pp 75-79) lead to H(Ω) = H m (Ω). We define the bilinear form b Ω (u, v) = 1 2 DJ Ω (u).v : H m (Ω) × H m (Ω) -→ R by : (1.3) b Ω (u, v) = Ω m k=0 C k m ∂ m u ∂x k 1 ∂x m-k 2 ∂ m v ∂x k 1 ∂x m-k 2 
To shorten notations we denote u ǫ = u Ωǫ and define on H m (Ω ǫ ) the bilinear and linear forms a ǫ (u, v) and l ǫ (v) :

(1.4) 

a ǫ (u, v) = b Ωǫ (u, v) + Ωǫ uv and l ǫ (v) = Ωǫ f v Values of m Contour Filament m = 0 m = 1 m = 2 m = 3 m = 4
Ω (u, v) = (-1) m Ω ∆ m uv + m-1 i=0 ∂Ω A i (u) ∂ m-1-i v ∂n m-1-i dσ where A i : H m (Ω) -→ H -i-1/2 (∂Ω) for i ∈ [[0, m -1]]
is the differential operator of order i + m defined by

A i (u) = m k=0 C k m k-1 j=0 (-1) j 0≤p≤k-j-1 0≤q≤m-k p+q=i-j (-1) q C p k-j-1 C q m-k ∂ p+q ∂τ p+q n k-j-p+q 1 n m-k-q+p 2 u k+j,m-k + 0≤k+l≤i C k m (-1) i C i-(k+l) m-k-l-1 ∂ i-(k+l) ∂τ i-(k+l) n i-(k+l) 1 n m-i 2 u 2k,m-k+l
with the convention -1 k=0 = 0. In the case of a straight crack σ = {(s, 0), -1 < s < 1}, we have :

(i) For i ∈ [[0, ⌊ m-1 2 ⌋]] A 2i = i k=0 (-1) i-k C 2k m   2k-1 j=0 C k+i-j 2k-j-1 C i-k m-2k   u 2(k+i),m-2k + 2i k=0 C k m u 2k,m-2k+2i (ii) For i ∈ [[0, ⌊ m-2 2 ⌋]] : A 2i+1 = i k=0 (-1) i-k+1 C 2k+1 m   2k-1 j=0 C k+i-j+1 2k-j C i-k m-2k-1   u 2(k+i+1),m-(2k+1) - 2i+1 k=0 C k m u 2k,m-2k+2i+1
Remark 1. For m = 1, with these statements A 0 = ∂ ∂n = ∂ ∂x2 . For m = 2, we have (see the Kirchhoff thin plate equation [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF][START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF] with Poisson ration

ν = 0), A 0 = B 2 and A 1 = -B 1 . In the case of the straight crack σ = {(s, 0), -1 < s < 1}, for m ≥ 1, we have A 0 = ∂ m ∂n m = ∂ m ∂x m 2
, and A i are homogeneous differential operators of order m + i. Proof. Sucessive integration by parts and relations

∂ ∂x 1 = n 1 ∂ ∂n -n 2 ∂ ∂τ and ∂ ∂x 2 = n 2 ∂ ∂n + n 1 ∂ ∂τ
give the result. For a complete proof see [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF].

2. Fundamental solution associated to the m-th Laplacian in 2D. Many solutions of linear differential problems can be expressed by using the fundamental solution associated to the differential operator. In this section we compute the fundamental solution associated to the m-th Laplacian ∆ m .

Theorem 2.1. Let E m (x) be the fundamental solution of the m-Laplacian defined by

(2.1) -∆ m E m = δ 0 in D ′ (R 2 )
where δ 0 is the Dirac distribution. Then

(2.2) E m (x) = - 1 2 2m-1 π((m -1)!) 2 |x| 2(m-1) log(|x|) Proof. For m = 1, E 1 (x) = -1
2π log(|x|), and for m = 2, E 2 (x) = -1 8π |x| 2 log(|x|). We search E m (x) as follows E m (x) = a m |x| pm log(|x|). (2.1) rewrites as -∆ m-1 (∆E m ) = δ 0 . We deduce that : ∆E m = E m-1 + P 2m-3 (x) = a m-1 |x| pm-1 log(|x|) + P 2m-3 (x) where P 2m-3 (x) is a polynomial function of degree less or equal than 2m -3. By 

1 2 2m-1 π((m-1)!) 2 . We check that |x| pm-2 = |x| 2(m-2)
is a polynomial function of degree 2m -4 ≤ 2m -3 and we deduce the expression (2.2).

Statements of the problem and notations.

Let Σ ⊂ R 2 a regular open manifold of dimension 1 and Σ a closed and regular curve containing Σ (see Figure 2). We define the following functional spaces :

H 1/2+i 00 (Σ) = {u |Σ , u ∈ H 1/2+i ( Σ), u | Σ\Σ = 0}, ∀i ∈ [[0, m -1]]
We endow these spaces with the norms : Let σ ⊂ Ω a regular open manifold of dimension 1 containing the origin and of normal n. We denote by τ the vector such that (n, τ ) be orthonormal. ∂τ stands for the differentiation in the direction τ and along σ. in this section we denote by Λ = R 2 \σ the exterior domain of σ and we define the following weighted Sobolev space (see [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF]) :

u |Σ H 1/2+i 00 (Σ) = u H 1/2+i ( Σ)
(3.1) W m (Λ) = u, ∇ k u (1 + r 2 ) m-k 2 log(2 + r 2 ) ∈ L 2 (Λ), for k ∈ [[0, m -1]], ∇ m u ∈ L 2 (Λ)
where r = |x|. W m (Λ)/P m-1 is the quotient space of functions W m (Λ) defined up P m-1 functions. We assume that σ ǫ = {x, x ǫ ∈ σ} does not touch ∂Ω; thus we have ∂Ω ǫ = σ ǫ ∪ Γ. Let σ a closed and regular curve of same dimension of σ such that σ ⊂ σ, and let ω be the bounded domain of R 2 such that ∂ ω = σ; we denote by ω ǫ = {x, x ǫ ∈ ω}, Ω ǫ = Ω\ ω ǫ and we choose r > 0 and ǫ small enough such that ω B r ⊂ Ω ǫ (see Figure 3). For v ∈ H m (Ω ǫ ) and u ∈ H 2m (Ω ǫ ), by using the integration by parts formula given in Theorem 1.1 on Ω\ ω ǫ ∪ ω ǫ , we get

(3.2) Ωǫ ((-1) m ∆ m u + u) v = a ǫ (u, v) + σǫ m-1 i=0 A i (u) ∂ m-1-i v ∂n m-1-i
where a ǫ (u, v) is given in (1.4) and

∂ k v ∂n k = ∂ k v ∂n k + -∂ k v ∂n k - denotes the jump of ∂ k v
∂n k across σ ǫ , by using notations described in Figure 3. From (1.5) and (3.2), and by assuming that u ǫ ∈ H 2m (Ω ǫ ), u ǫ is given by :

(3.3) (P ǫ ) (-1) m ∆ m u ǫ + u ǫ = f, in Ω ǫ A i (u ǫ ) = 0, on σ ǫ ∪ Γ, ∀i ∈ [[0, m -1]]
where f ∈ L 2 (Ω ǫ ). We introduce a cost function J(Ω, u) : H m (Ω) -→ R verifying Hypotheses 1.

J(Ω ǫ , u ǫ ) -J(Ω, u 0 ) = L ǫ (u ǫ -u 0 ) + ǫ 2 δJ(x 0 , n) + o(ǫ 2 )
where L ǫ (u) writes

(3.4) L ǫ (u) = Ωǫ l 0 u + 1≤i≤m-1 σǫ B i ∂ m-1-i u ∂n m-1-i + 0≤i≤m-1 Γ D i ∂ m-1-i u ∂n m-1-i with l 0 0,Ωǫ ≤ C, D i ∈ H -i-1/2 (Γ), B i ∈ H i+1/2 00 (σ ǫ ) ′ and B i (ǫx) H i+1/2 00 (σ) ′ ≤ C where C is a constant not depending on ǫ.
To shorten notations, we denote J ǫ (u) = J(Ω ǫ , u) and δJ instead of δJ(x 0 , n). In the sequel, to simplify we assume that the crack σ is straight and we assume that σ = {(s, 0), -1 < s < 1} (we place us in the local coordinate system associated to the crack). We compute the topological gradient by evaluating the leading term with respect to ǫ of the difference J ǫ (u ǫ ) -J 0 (u 0 ) when ǫ → 0. By using the equations filled by u ǫ and u 0 and Hypotheses 1, we have :

(3.5) J ǫ (u ǫ ) -J 0 (u 0 ) = L ǫ (u ǫ -u 0 ) + ǫ 2 δJ + o(ǫ 2 )
where L ǫ (u) is given by (3.4) and we set

(3.6) J ǫ = ǫ 2 δJ + o(ǫ 2 )
To compute (3.5), we introduce v ǫ ∈ H m (Ω ǫ ) solution of the adjoint problem :

(3.7) a ǫ (u, v ǫ ) = -L ǫ (u), ∀u ∈ H(Ω ǫ )
From (3.7), (3.6) and (3.2), then (3.5) writes

J ǫ (u ǫ ) -J 0 (u 0 ) = -a ǫ (u ǫ -u 0 , v ǫ ) + J ǫ = -l ǫ (v ǫ ) + a ǫ (u 0 , v ǫ ) + J ǫ = - Ωǫ f v ǫ + Ωǫ ((-1) m ∆ m u 0 + u 0 ) v ǫ - σǫ m-1 i=0 A i (u 0 ) ∂ m-1-i v ǫ ∂n m-1-i + J ǫ = - σǫ m-1 i=0 A i (u 0 ) ∂ m-1-i v ǫ ∂n m-1-i + J ǫ
By setting w ǫ = v ǫv 0 with v ǫ and v 0 given by (3.7) for ǫ > 0 and ǫ = 0; we rewrite

J ǫ (u ǫ ) -J 0 (u 0 ) in function of w ǫ : (3.8) J ǫ (u ǫ ) -J 0 (u 0 ) = - σǫ 2m-1 i=m A i (u 0 ) ∂ 2m-1-i w ǫ ∂n 2m-1-i + J ǫ
Then, a change of variables and subscripts give (3.9)

J ǫ (u ǫ ) -J 0 (u 0 ) = - m-1 i=0 ǫ σ A i (u 0 )(ǫX) ∂ m-1-i w ǫ ∂n m-1-i (ǫX) dσ + J ǫ = - m-1 i=0 ǫ σ A i (u 0 )(ǫX) 1 ǫ m-1-i ∂ m-1-i (w ǫ (ǫX)) ∂n m-1-i dσ + J ǫ = - m-1 k=0 ǫ 1-k σ A m-1-k (u 0 )(ǫX) ∂ k ∂n k (w ǫ (ǫX)) dσ + J ǫ = - m-1 k=0 I k + J ǫ where I k for k ∈ [[0, m -1]
] are defined by :

(3.10)

I k = ǫ 1-k σ A m-1-k (u 0 )(ǫX) ∂ k ∂n k (w ǫ (ǫX)) dσ
Now, we need to establish the asymptotic expansion of w ǫ in H m (Ω ǫ ) norm. To do that, first we search for the leading terms in w ǫ which need to be compensated in order to have an asymptotic expansion in o(ǫ) in H m (Ω ǫ ) norm (see section 5).

Estimations of

A i (v 0 )(ǫX) for X ∈ σ.
The following lemma gives the expansion with respect to ǫ at 0 of A i (v 0 )(ǫX) for X ∈ σ.

Lemma 4.1. Let v 0 solution of (3.7) with ǫ = 0. In the case of a straight crack, assuming that v 0 is regular (or equivalently that f is regular), we have the following estimations :

(4.1a) A 0 (v 0 )(ǫX) = g 0 (X) + O(ǫ) (4.1b) A i (v 0 )(ǫX) = g i (X) + O(1), ∀i ∈ [[1, m -1]] with (4.2) g 0 (X) = ∂ m v 0 ∂x m 2 (0) and g i (X) = 0, for 1 ≤ i ≤ m -1
Proof. With the expression of the A i given in Theorem 1.

1 for i ∈ [[1, m -1]
] for a straight crack, and by a Taylor expansion at 0 of

∂ k+l v0 ∂x k 1 ∂x l 2
, we get (4.1b). By using the expression of A 0 (see Remark 1) we deduce that :

A 0 (v 0 )(ǫX) = ∂ m v 0 ∂x m 2 (ǫX)
We conclude with a Taylor expansion of ∂ m v0 ∂x m

2

(ǫX) at 0.

Asymptotic expansion of w

ǫ in H m (Ω ǫ ) norm.
In this section we do the asymptotic expansion of w ǫ with respect to ǫ in the sense of the H m (Ω ǫ ) norm. We recall that

w ǫ = v ǫ -v 0 is solution of : (5.1) (Q c ǫ )          (-1) m ∆ m w ǫ + w ǫ = 0, in Ω ǫ A 0 (w ǫ ) = -A 0 (v 0 ), on σ ǫ A i (w ǫ ) = -A i (v 0 ) -B i , on σ ǫ , ∀i ∈ [[1, m -1]] A i (w ǫ ) = 0, on Γ, ∀i ∈ [[0, m -1]]
To estimate w ǫ we introduce the solution of the exterior problem R ∈ W m (Λ)/P m-1 :

(

5.2) (R c ext ) ∆ m R = 0, in Λ A i (R) = -g i , on σ, ∀i ∈ [[0, m -1]] where ∀i ∈ [[0, m -1]], g i ∈ H 1/2+i 00
(σ) ′ is given by (4.2). Thanks to Theorem 10.6 given in Appendix, we deduce that the problem (R c ext ) has a unique solution R ∈ W m (Λ)/P m-1 which writes as follows :

R(x) = m-1 i=0 σ λ i (y)A i,y (E(x -y))dσ y
where denotes the Cauchy principal value. Moreover we have :

(5.3) (-1) m+1 ∂ m-1-i R ∂ m-1-i n = λ i ∀i ∈ [[0, m -1]]
where (5.4)

     λ 0 (s) = (-1) m+1 2 2m-1 (2m -1)C m-1 2(m-1) β 1 -s 2 ∀(s, 0) ∈ σ λ i (s) = 0 ∀i ∈ [[1, m -1]] ∀(s, 0) ∈ σ with β = ∂ m v0
∂x m 2 (0). Thanks to Lemma 10.8 (see Appendix), we get (5.5)

w ǫ = ǫ 2 R x ǫ + e ǫ with e ǫ H m (Ωǫ) = O(φ m (ǫ))
where

(5.6) φ m (ǫ) = -ǫ 2 log(ǫ) for m ≥ 2 ǫ 2 -log(ǫ) for m = 1
In the sequel, we are showing that

I k ∼ o(ǫ 2 ) for k ∈ [[0, m -2]] and I m-1 ∼ O(ǫ 2 ).

Estimation of

I k for k ∈ [[0, m-1]].
The following lemma give an estimation in o(ǫ 2 ) of the quantity

I k for k ∈ [[0, m -1]]. Lemma 6.1. Let I k defined by (3.10) for k ∈ [[0, m -1]].
We have (6.1a)

I k = o(ǫ 2 ), ∀k ∈ [[0, m -2]] (6.1b) I m-1 = ǫ 2 ∂ m u 0 ∂x m 2 (0)(-1) m+1 σ λ m (y)dσ + o(ǫ 2 ) Proof. Let k ∈ [[0, m-2]],
thanks to Lemma 10.3 and Lemma 4.1 applied to u 0 , we get :

I k = ǫ 1-k σ A m-1-k (u 0 )(ǫX) ∂ k ∂n k (w ǫ (ǫX)) dσ ≤ Cǫ 1-k |w ǫ (ǫX)| m,Br\σ
. By using a change of variable and Lemma 10.8 we deduce that

I k ≤ Cǫ m-k |w ǫ | m,Ωǫ ≤ Cǫ m-k+1 = o(ǫ 2 )
Now, let us consider I m-1 ; thanks to Lemma 10.8, Lemma 4.1 applied to u 0 , and the jump relations (5.3), we get :

I m-1 = ǫ 2-m σ A 0 (u 0 (ǫX)) ∂ m-1 (w ǫ (ǫX)) ∂n m-1 dσ = ǫ 2-m ∂ m u 0 ∂x m 2 (0) σ ∂ m-1 (ǫ m R(X)) ∂n m-1 dσ + E 1 + E 2 = ǫ 2 ∂ m u 0 ∂x m 2 (0)(-1) m+1 σ λ m (y)dσ + E 1 + E 2
where

E 1 = ǫ 2-m σ A 0 (u 0 (ǫX)) - ∂ m u 0 ∂x m 2 (0) ∂ m-1 (w ǫ (ǫX)) ∂n m-1 dσ E 2 = ǫ 2-m ∂ m u 0 ∂x m 2 (0) σ ∂ m-1 (e ǫ (ǫX)) ∂n m-1 dσ
Now let us show that E 1 and E 2 are ∼ o(ǫ 2 ). By using Lemma 10.3, a change of variable, Lemma 4.1, a change of variable again and Lemma 10.8 we get

E 1 ≤ ǫ 2-m A 0 (u 0 (ǫX)) - ∂ m u 0 ∂x m 2 (0) H 1/2 00 (σ) ′ |w ǫ (ǫX))| m,Br\σ ≤ Cǫ 2 |w ǫ | m,Ωǫ ≤ Cǫ 3
Similarly we get :

E 2 ≤ ǫ 2-m |e ǫ (ǫX)| m,Br\σ ≤ Cǫ|e ǫ | m,Ωǫ ≤ Cǫφ m (ǫ)
where φ m is defined in (5.6) and is such that φ m (ǫ) = o(ǫ). Hence, the following estimation holds :

I m-1 = ǫ 2 ∂ m u 0 ∂x m 2 (0)(-1) m+1 σ λ m (y)dσ + o(ǫ 2 )
7. Computation of the topological gradient. From (3.9) and using estimations (6.1a) and (6.1b) we obtain :

J ǫ (u ǫ ) -J 0 (u 0 ) = ǫ 2 ∂ m u 0 ∂x m 2 (0)(-1) m σ λ m (y)dσ + J ǫ + o(ǫ 2 )
From the expression of λ m (5.4) and the definition of J ǫ (3.6) we have :

J ǫ (u ǫ ) -J 0 (u 0 ) = ǫ 2 ∂ m u 0 ∂x m 2 (0)(-1) m 1 -1 (-1) m+1 2 2m-1 (2m -1)C m-1 2(m-1) ∂ m v 0 ∂x m 2 (0) 1 -s 2 ds + ǫ 2 δJ + o(ǫ 2 ) = -ǫ 2 ∂ m u 0 ∂x m 2 (0) ∂ m v 0 ∂x m 2 (0) 2 2m-1 (2m -1)C m-1 2(m-1) π 2 + ǫ 2 δJ + o(ǫ 2 ) = -ǫ 2 π 2 2(m-1) (2m -1)C m-1 2(m-1) ∂ m u 0 ∂x m 2 (0) ∂ m v 0 ∂x m 2 (0) + ǫ 2 δJ + o(ǫ 2 )
Therefore, the topological gradient written in the local coordinate system of the crack is (7.1) 

I(0) = -π 2 2(m-1) (2m -1)C m-1 2(m-1) ∂ m u 0 ∂x m 2 (0) ∂ m v 0 ∂x m 2 (0) + δJ
I(x 0 , n) = -π 2 2(m-1) (2m -1)C m-1 2(m-1) ∇ m u 0 (x 0 )(n, ..., n)∇ m v 0 (x 0 )(n, ..., n) + δJ(x 0 , n)
Now we give some cost functions examples and we compute the function δJ(x 0 , n) in these cases.

Case of semi-norms

H p (Ω ǫ ) for p ∈ [[1, m]]. Let us define (8.2) J ǫ (u) = |u| 2 H p (Ωǫ) = Ωǫ |∇ p u| 2 with p ∈ [[1, m]].
(i) For p = m, by using the equation checked by u ǫ and Lemma 10.8 applied to u ǫu 0 , we get

(8.3) J ǫ (u ǫ ) -J 0 (u 0 ) = L ǫ (u ǫ -u 0 ) + J ǫ with L ǫ (u) = Ωǫ (f -2u 0 )u and J ǫ = -u ǫ -u 0 2 0,Ωǫ ≤ Cφ m (ǫ) 2 = o(ǫ 2 ). We deduce that δJ = 0. (ii) For p ∈ [[1, m -1]
], an integration by parts (Theorem 1.1) and Lemma 10.19 applied to u ǫu 0 lead to (8.3) with

L ǫ (u) = 2 Ωǫ ∇ p u 0 .∇ p u and J ǫ = |u ǫ -u 0 | 2 p,Ωǫ = o(ǫ 2 )
We deduce again that δJ = 0. Thanks to Theorem 1.1, we check that Hypotheses 1 are verified :

L ǫ (u) = Ωǫ 2(-1) p ∆ p u 0 u+ p-2 i=0 σǫ -2A p p-1-i (u 0 ) ∂ i u ∂n i + Γ 2A p p-1-i (u 0 ) ∂ i u ∂n i
where the operators

A p i (u) for i ∈ [[0, p -1]] stand for the p-Neumann condi- tions associated to the minimization in H p (Ω) of Ω |∇ p u| 2 .
Case of norm H m (Ω ǫ ). Thanks to Gagliardo-Niremberg inegality (see Introduction)

J ǫ (u) = |u| 2 H m (Ωǫ) + u 2 L 2 (Ωǫ)
is a norm on H m (Ω ǫ ). Remarking that J ǫ (u ǫ ) = Ωǫ f u ǫ where u ǫ is solution of (3.3) we can set L ǫ (u) = Ωǫ f u. We deduce that v ǫ = -u ǫ and δJ = 0. From (8.1) we deduce that I(x 0 , n) ≥ 0 and so the creation of a crack creates energy :

u ǫ 2 H m (Ωǫ) ≥ u 0 2 H m (Ωǫ) . Remark 2. (i)
We check that for p = m, m = 1 and m = 2 we retrieve the topological gradient expressions given respectively in [START_REF] Amstutz | Crack detection by the toplogical gradient method[END_REF] and [START_REF] Aubert | Topological gradient for a fourth order operator used in image analysis[END_REF]. (ii) In imaging, for edges and fine structures detection the reasoning is the following. Let ū a regularisation of an observed image. First we choose a regularization penalizing structure that we want to detect. More precisely, in our case, we choose a semi-norm |.| 2 H m (Ω) with m such that ∇ m ū be high in a neighbourhood of the structure we want to detect (see Table 1 for a reasoning on transverse cut). Then we choose the pde associated to the minimization problem (1.2) using as regularization |.| 2 H m (Ω) . It is easy to see that the pde is sensitive to creation of crack at point where ∇ m ū is high i.e. where there is a searched structure (edge, filament,...). Once the pde is fixed, it is possible to use different cost functions from |.| 2 H m (Ω) (see [START_REF] Amstutz | Edge detection using topological gradients: a scale-space approach[END_REF]) : typically, we can take as cost function the semi-norms |.| 2 H p (Ω) for p ∈ [[0, m]] measuring the sensitivity of the pde w.r.t to creation of crack (see section 9.2). (iii) Generally at each x 0 ∈ Ω, we introduce the following topological indicator associated to a cost function J ǫ (u) = J(Ω ǫ , u) verifying Hypothesis 1

I mlap = max n =1 |I(x 0 , n)|
what means that we search an orientation of the crack centered at x 0 which lead to a maximal variation of ǫ → J ǫ (u ǫ ).

Application in Imaging.

In this section we present two applications in imaging : edges detection and fine structures detection. The two first models presented here (m = 1 and m = 2) have already been introduced before [7, 9, 5], we briefly recall them. The third model (m = 3) is new, applied to edge detection and compared to the model (m = 1). All of the following models have been obtained by using Matlab code and the computation of the direct and the adjoint states (3.3) and (3.7) have been done by Fast Fourrier Transform (FFT). 9.1. Edge detection : m = 1 and m = 3. In the both following cases, we take as cost function

J ǫ (u) = |u| 2 H m (Ωǫ) . Case m = 1.
In this case we can extend the model to a more general model of deblurring where the observed image is f = Ku + b with u is the image to recover, b a gaussian noise identically distributed and K the blur modeled by a convolution such that K1 = 0. Hence, the data fidelity term used in (1.2) is replaced by Kuf 2 L 2 (Ω) . If K1 = 0 we can show (see [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF] chapter 3) that the problem is well-posed. The direct model (3.3) and the adjoint model (3.7) write as (9.1a)

(P 0 ) -γ∆u 0 + K ⋆ Ku 0 = K ⋆ f, in Ω ∂ n u 0 = 0, on ∂Ω (9.1b) (Q 0 ) -γ∆v 0 + K ⋆ Kv 0 = K ⋆ (2Ku 0 -f ), in Ω ∂ n v 0 = 0, on ∂Ω.
where f is the observed image and γ > 0. Since the 2D Lebesgue measure of the crack is zero, the topological gradient is unchanged w.r.t u 0 and v 0 which are now given respectively by (9.1a) and (9.1b). Numerically we observe that I(x 0 , n) is always negative on edges, hence we introduce the following topological indicator (see [START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF][START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF])

(9.
2)

I Lap = min n =1 I(x 0 , n)
We denote the edge indicator used by the famous Canny Algorithm by I Canny . More precisely I Canny is the norm of the Gradient of a regularization by Gaussian convolution at scale σ of the image. In Figure 4 we compare results obtained from I Lap and I Canny . Edges detected by I Lap are thinner than for I Canny and I Lap is qualitatively more robust. For more details on this model and more experimentations we refer the reader to [START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF][START_REF] Belaid | Application of the topological gradient to image restoration and edge detection[END_REF]. Remark 3.

(i) The model presented here is extendable to semi-linear problems adapted to another kind of noise like Poisson noise, and Speckle noise (see [START_REF] Drogoul | The topological gradient method for semi-linear problems and application to edge detection and noise removal[END_REF]). (ii) For the study of J ǫ (u) equal to the semi-norm |u| 2 H 1 (Ωǫ) or to the norm u 2 L 2 (Ωǫ) we refer the reader to [START_REF] Amstutz | Edge detection using topological gradients: a scale-space approach[END_REF]. In particular, it is shown that taking J ǫ (u) = u 2 L 2 (Ωǫ) avoids edge doubling for large γ. Case m = 3. We present this model to underline Remark 2-(ii) concerning the choice of the pde w.r.t the structure we want to detect. Since on edges, I(x 0 , n) is always negative, we defined the topological indicator . This fact explains that some parts of edges associated to law contrast are missed for m = 3. Besides the computation of the topological gradient which is of order 3 in derivatives, lead to instabilities as we could foresee and see on Figure 5 where some oscillations appear on I T rilap . After that, from Table 1, the cost function is sensitive to changing of curvature of intensity. Consequently, the topological gradient is sensitive to edges (inflection points) but also to variations of curvature at both side to edges. This prevision is confirmed on Figure 5 9.2. Fine structure detection : m = 2. We can do the same remark as for m = 1 concerning the extension to a deblurring model. More precisely (1.2) is wellposed if K is a convolution such that K1 = 0 and K.w = K.1w for all w ∈ P 1 . This is the case if Ω is a rectangle and the convolution is autoadjoint. Indeed assume that ∃a, b > 0 such that Ω = [0, a] × [0, b]. For f ∈ L ∞ (Ω) we denote by f ♯ its symmetrical and periodic extension over R 2 . For every w ∈ L ∞ (Ω), we define the convolution operator

K of kernel k ∈ L 1 (R 2 ) by (K.w)(x) = R 2 w ♯ (x -y)k(y)dy ∀x ∈ Ω
From this definition, if k is symmetrical we get easily that K.x 1 = x 1 and K.x 2 = x 2 . By using these properties, it is straightforward to adapt the proof of Theorem 3.2.1 of [START_REF] Aubert | Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[END_REF] by splitting the solution as u = v + P 1 (u) where P 1 is the L 2 (Ω) projection on the polynomial functions P 1 and by using Deny-Lions inequality ([8] Lemma 5.2). The direct model (3.3) and the adjoint model (3.7) write as

(9.4a) (P 0 ) γ∆ 2 u 0 + K ⋆ Ku 0 = K ⋆ f, in Ω B 1 (u 0 ) = B 2 (u 0 ) = 0, on ∂Ω (9.4b) (Q 0 ) γ∆ 2 v 0 + K ⋆ Kv 0 = L, in Ω B 1 (u 0 ) = g 1 and B 2 (u 0 ) = 0, on ∂Ω.
where f is the observed image, γ > 0, B 1 and B 2 are the natural boundary conditions associated to the Bilaplacian (see Remark 1, and chapter 8 of [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF]), g 1 and L are data related to the cost function that we use here. In the following table we give their value according to four cost functions (the norm and the three semi-norms) :

J ǫ (u) L g 1 |u| 2 H 2 (Ωǫ) K ⋆ (2Ku 0 -f ) 0 |u| 2 H 1 (Ωǫ) 2∆u 0 ∂ n u 0 u 2 L 2 (Ωǫ) -2u 0 0 u 2 H 2 (Ωǫ)
-f 0 The topological gradient associated to each cost function is the same w.r.t u 0 and v 0 . It is given by (8.1) with δJ = 0 (see section 8) and is denoted by I(x 0 , n). For each cost function, we introduce the following topological indicator (see [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF]) (9.5)

I Bilap = max n =1 |I(x 0 , n)|
and we denote by I 0 Bilap , I 1 Bilap , I 2 Bilap and I 0+1+2 Bilap the topological indicator associated to respectively the L 2 norm, the H 1 semi-norm, the H 2 semi-norm and the H 2 norm. We denote by G σ the Gaussian function of scale σ and For more details on this model and more experimentations we refer the reader to [START_REF] Drogoul | Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging[END_REF]. In the following, we keep the notations and conventions described in Figure 3 and we choose r > 0 and ǫ small enough such that ω B r ⊂ Ω ǫ (see Figure 3). We recall that we denote by B r for r > 0 the ball of center 0 and of radius r, and B = B 1 is the unit ball. For a bounded domain ω ⊂ R 2 , ω ′ stands for the unbounded domain R 2 \ω. Finally for a domain ω, we denote by D(ω) the set of functions C ∞ (ω) with compact support in ω. The following lemma is a consequence of the Hardy inequality (see [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF]) and is a generalization of the Deny-Lions inequality (see [START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF] Lemma 5.2).

H σ = ∇ 2 f * G σ = f * ∇ 2 G σ . If we
Lemma 10.1 (Generalization of the Deny-Lions inequality). Let ω ⊂ B, a regular subset of R 2 . We denote by O = R 2 \ω the exterior domain to ω. Let u ∈ W m (O), we have the following inequality

u W m (O)/Pm-1 ≤ C|u| m,Λ
where C is a constant which depends on O and where W m (O) is the space defined in (3.1).

Proof. Let ϕ ∈ C m ([0, +∞[), the cut-off function equal to 0 for 0 ≤ x ≤ 1 and equal to 1 for x ≥ 2. If ψ(x) = ϕ(|x|), then uψ ∈ W m 0 (B ′ ). On the space W m 0 (B ′ ), thanks to Hardy inequality [START_REF] Nédélec | Acoustic and electromagnetic equations : integral representations for harmonic problems[END_REF], we have uψ W m 0 (B ′ ) ≤ C|ψu| m,B ′ . By definition of ψ, we get u W m (B ′

2 ) ≤ ψu W m 0 (B ′ ) . We deduce that :

(10.1) u W m (B ′ 2 ) ≤ C|ψu| m,B ′ ≤ C|u| m,B ′ 2 + C u W m (B2\B) ≤ C|u| m,B ′ 2 + C u W m (B2\ω)
Then by using the definition of W m (B 2 \ω) and by bounding from below and from above the weights, we get the equivalence between the W m (B 2 \ω) and the H m (B 2 \ω) norms. By considering the quotient space and thanks to Deny-Lions inequality, we get :

(10.2) u W m (B2\ω)/Pm-1 ≤ C|u| m,B2\ω
From (10.1) and ( 10.2), we have u W m (O)/Pm-1 ≤ C|u| m,O which ends the proof of the lemma. Theorem 10.2 (Gagliardo-Nirenberg inequality [START_REF] Adams | Sobolev spaces. Pure and applied mathematics[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF]).

Let m ≥ 1, the map u → u 2 0,Ω + |u| 2 m,Ω 1 
2 from H m (Ω) to R is a norm on H m (Ω) and more precisely we have

u m,Ω ≤ C(m, Ω) u 2 0,Ω + |u| 2 m,Ω 1/2
where C(Ω, m) is a constant depending on m and Ω. Remark 4. The constant appearing in the Gagliardo-Nirenberg inequality depends on constants linked to the interior cone property (see [START_REF] Adams | Sobolev spaces. Pure and applied mathematics[END_REF] p 66 and pp 75-79). Let Ω ǫ = Ω\x 0 + ǫω, where ω is either a regular open manifold or a regular sub-domain of R 2 and ǫ small enough in order that the perturbation {x 0 + ǫω} does not touch the boundary of Ω. Then we can show that the Gagliardo-Nirenberg constant is bounded independently of ǫ when ǫ → 0.

Lemma 10.3. Let k ∈ [[0, m -1]], g k ∈ H 1/2+(m-1)-k 00 (σ) ′ and u ∈ H m (B r \σ), we have σ g k ∂ k u ∂n k dσ ≤ g k H 1/2+m-1-k 00 (σ) ′ |u| m,Br\σ
where the spaces H 1/2+i 00 (σ) for i ∈ N are defined in section 3 and where H 1/2+i 00 (σ) ′ are their dual spaces.

Proof. By using the definition of the norm . H 1/2+m-1-k 00 (σ) , by splitting the jump

∂ k u
∂n k and finally by using the trace Theorem on B r \ ω and on ω, we deduce that

σ g k ∂ k u ∂n k ≤ g k H 1/2+(m-1)-k 00 (σ) ′ ∂ k u ∂n k H 1/2+(m-1)-k 00 (σ) = g k H 1/2+(m-1)-k 00 (σ) ′ ∂ k u ∂n k 1/2+(m-1)-k, σ ≤ C g k H 1/2+(m-1)-k 00 (σ) ′ u + ψ m,Br\σ
where ψ is a regular function defined on R 2 . In particular, if we take ψ ∈ P m-1 , by using the Deny-Lions inequality, we get

σ g k ∂ k u ∂n k ≤ C g k H 1/2+(m-1)-k Lemma 10.4. Let u ∈ H m (B r \σ) such that ∆ m u ∈ L 2 (B r \σ) and q i ∈ H 1/2+i 00 (σ) où i ∈ [[0, m -1]].
Then we have the inequality :

m-1 i=0 σ q i A i (u) ≤ m-1 i=0 q i H 1/2+i 00 (σ) |u| Br \σ + ∆ m u Br\σ
Proof. We extend q i by 0 on σ\σ and we denote by q i ∈ H 1/2+i ( σ) these extensions. Let Q be a continuous extension of ( q 0 , q 1 , ..., q m-1 ) in ω. By integration by parts (see Theorem 1.1), we have :

b(Q, u) = (-1) m ω ∆ m uQ + σ m-1 i=0 A i (u)q i , ∀u ∈ H m ( ω) where b(u, v) = m k=0 C k m ω ∂ m u ∂x k 1 ∂x m-k 2 ∂ m v ∂x k 1 ∂x m-k 2 , ∀u, v ∈ H m ( ω)
Moreover, we have :

σ m-1 i=0 A i (u)q i ≤ |b(Q, u)| + ω ∆ m uQ ≤ C|u| 2, ω |Q| 2, ω + ∆ m u 0, ω Q 0, ω ≤ C (|u| 2, ω + ∆ m u 0, ω ) Q 2, ω
by using the continuity of the extension, the inclusion B r \σ ⊃ ω (see Figure 3), and by using the definitions of the H 1/2+i 00 (σ) norms for i ∈ [[0, m -1]], we get the result.

Lemma 10.5. Let E(x) given in (2.2). Let s ∈ N 2 , we have

∂ |s| E ∂x s = F s (x) + G s log(|x|), for 0 ≤ |s| ≤ 2m -2 H s , for |s| ≥ 2m -1
where F s , G s and H s are rational homogeneous functions of degree 2(m -1) -|s| and where for s = (s 1 , s 2 ), ∂x s = ∂x s1 1 ∂x s2 2 and |s| = s 1 + s 2 . Proof. E writes as the product

E(x) = C m g(x)h(x) where g(x) = (x 2 1 + x 2 2 ) m-1 and h(x) = log(x 2 1 + x 2 2
) and C m is a constant depending on m. g(x) is a polynomial homogeneous function of degree 2(m-1), hence For |s| ≥ 2m -1, ∂ s E ∂x s is a rational homogeneous function of degree 2(m -1) -|s| Theorem 10.6. Let R ∈ W m (Λ)/P m-1 be the solution of the following exterior problem :

(10.3) (R ext ) ∆ m R = 0, in Λ A i (R) = g i , on σ ∀i ∈ [[0, m -1]] with g i ∈ H 1/2+i 00 (σ) ′ . Then 1. R(x) is unique in W m (Λ)/P m-1
, and the map (g 0 , ..., g m-1 ) → R is contin-

uous from H 1/2 00 (σ) ′ × ... × H 1/2+m-1 00 (σ) ′ in W m (Λ)/P m-1 .
2. R(x) writes in W m (Λ)/P m-1 as a sum of multi-layer potentials :

R(x) = m-1 i=0 σ λ i (y)A i,y (E(x -y))dσ y , ∀x ∈ Λ with λ i ∈ H 1/2+i 00 (σ) for i ∈ [[0, m -1]]. 3.
We have the following jump relations across σ :

(-1) m+1 ∂ m-1-i R ∂n m-1-i = λ i , for i ∈ [[0, m -1]]
4. The densities λ i are given by a system of m boundary integral equations :

g j (x) = m-1 i=0 σ λ i (y)A j,x A i,y (E(x -y))dσ y , for j ∈ [[0, m -1]]
where stands for the main Cauchy value. 5. If σ = {(s, 0), -1 < s < 1}, g 0 (x) = V where V is a constant and g i (x) = 0

for i ∈ [[1, m -1]],
the densities λ i are given by

λ 0 (s) = (-1) m 2 2m-1 (2m -1)C m-1 2(m-1) V 1 -s 2 λ i (s) = 0, ∀i ∈ [[1, m -1]]
Proof. First point We keep the same notations and conventions as described in Figure 3. We introduce the two functional spaces

H m (∆ m , ω) = u ∈ H m ( ω), ∆ m u ∈ L 2 ( ω) W m (∆ m , ω ′ ) = u ∈ W m ( ω ′ ), (1 + r 2 ) m 2 log(2 + r 2 )∆ m u ∈ L 2 ( ω ′ )
where ω ′ = R 2 \ ω. We define the bilinear forms :

b(u, v) defined on H m ( ω) × H m ( ω) by b(u, v) = m k=0 C k m ω ∂ m u ∂x k 1 ∂x m-k 2 ∂ m v ∂x k 1 ∂x m-k 2 and b ′ (u, v) defined on W m ( ω ′ ) × W m ( ω ′ ) by b ′ (u, v) = m k=0 C k m ω ′ ∂ m u ∂x k 1 ∂x m-k 2 ∂ m v ∂x k 1 ∂x m-k 2 
An integration by parts on ω (see Theorem 1.1) gives :

b(u, v) = (-1) m ω ∆ m uv + m-1 i=0 ∂ ω A i (u) ∂ m-1-i v ∂n m-1-i , ∀v ∈ H m ( ω) Similarly b ′ (u, v) = (-1) m ω ′ ∆ m uv - m-1 i=0 ∂ ω A i (u) ∂ m-1-i v ∂n m-1-i ∀v ∈ W m ( ω ′ )
Then we introduce the functional space K defined by

K = u ∈ H m (∆ m , ω) × W m (∆ m , ω ′ )/P m-1 , supp(∆ m u) = σ, [A k (u)] σ = 0, ∂ k u ∂n k σ\σ = 0, k ∈ [[0, m -1]]
By bounding the weights used in the definition of W m (Λ) and using the regularity property of functions H m loc (Λ), we can rewrite K :

K = {u ∈ W m (∆ m , Λ)/P m-1 , supp(∆ m u) = σ, [A k (u)] σ = 0, k ∈ [[0, m -1]]}
Therefore, the variational formulation of (R ext ) writes :

find R ∈ K such that : b(R, v) = l(v), ∀v ∈ K, (R ext )
where l(v) and b(u, v) are respectively the linear and bilinear forms on K :

l(v) = m-1 i=0 σ g i ∂ m-1-i v ∂n m-1-i and b(u, v) = m k=0 C k m Λ ∂ m u ∂x k 1 ∂x m-k 2 ∂ m v ∂x k 1 ∂x m-k 2 
The problem (R ext ) has a unique solution in K. Indeed, the problem is coercive on K :

(10.4) b(u, u) ≥ |u| 2 W m (Λ)
and thanks to Lemma 10.1

(10.5) u K = u W m (Λ)/Pm-1 ≤ C(Λ)|u| W m (Λ)
which shows that b(u, v) is coercive on K. Thanks to Lemma 10.3, we have

(10.6) |l(v)| ≤ C m-1 i=0 g i H 1/2+i 00 (σ) ′ v W m (Λ)/Pm-1 ∀v ∈ K
which proves that linear form l(v) is continuous on K. As K is a closed sub-vector space of W m (Λ)/P m-1 which is an Hilbert space, we deduce that it is an Hilbert.

Thanks to Lax-Milgram lemma, we get the existence and the uniqueness of the solution of problem (R ext ). From the variational formulation of (R ext ), (10.4), (10.5) and (10.6) we get the continuity of the map (g 0 , ..., g m-1 ) → R for the associated topology and we define the isomorphism :

(10.7) J 0 :

(g 0 , g 1 , ... ..., g m-2 , g m-1 ) -→ R H 1/2 00 (σ) ′ × ... × H 1/2+m-1 00 (σ) ′ -→ K

Second and third points

We consider the following problem : for (q 0 , q 1 , ..., q m-1 ) ∈ H

1/2 00 (σ)×...×H 1/2+m-1 00 (σ) find Q ∈ K tel que ∂ m-1-i Q ∂n m-1-i = q i , ∀i ∈ [[0, m -1]] (Q ext ) Let u, v ∈ K, we have b(u, v) = (-1) m Λ ∆ m uv - m-1 i=0 σ A i (v) ∂ m-1-i u ∂n m-1-i
The variational formulation of (Q ext ) is :

find Q ∈ K such that : b(Q, v) = l ′ (v) , ∀v ∈ K, (Q ext ) where l ′ (v) = - m-1 i=0 σ q i A i (v).
To show that (Q ext ) is coercive we use the same reasoning as for (R ext ). Thanks to Lemma 10.4, we get l ′ (v) ≤ C m-1 i=0 q i H 1/2+i 00 (σ) |v| m,Br \σ . By using the equivalence between the norm and the semi-norm on W 2 (Λ)/P 1 , we deduce that the linear form l ′ (v) is continuous on K. Thanks to Lax-Milgram lemma, we deduce that there exists an unique solution Q of (Q ext ). From the variational formulation of (Q ext ), we show that the map (q 0 , ...q m-1 ) → Q is continuous for the associated topology and we define the isomorphism :

(10.8) J 1 : (q 0 , q 1 , ... ..., q m-2 , q m-1 ) -→ Q H 1/2 00 (σ) × ... ×H 1/2+m-1 00 (σ) -→ K
We denote by J = J -1 1 • J 0 with J 0 defined in (10.7), the isomorphism :

J : (g 0 , g 1 , ... ..., g m-2 , g m-1 ) -→ (q 0 , g 1 , ... ..., q m-2 , q m-1 ) H 1/2 00 (σ) ′ × ... × H 1/2+m-1 00 (σ) ′ -→ H 1/2 00 (σ) × ... ×H 1/2+m-1 00 (σ)
J is the map corresponding to the Neumann to Dirichlet problem (A 0 (u), ..., A m-1 (u)) → ∂ m-1 u ∂n m-1 , ..., [u] where u ∈ K. Let ū defined by :

ū(x) = m-1 i=0 σ λ i (y)A i,y (E(x -y))dσ(y) = m-1 i=0 ∂ ω λ i (y)A i,y (E(x -y))dσ(y)
where λ i ∈ H

1/2+i 00 (σ) and where λ i ∈ H 1/2+i ( σ) is the canonical extension of λ i by zeros on σ\σ.

Let us show that ∆ m ū = 0 on Λ. For y ∈ σ, the functions A i,y (E(.y)) belong to C ∞ (Λ). Moreover ∆ m

x A i,y (E(xy)) = A i,y (∆ m (E(xy))) = 0. By using the regularity of the functions A i,y E(.y) and the fact that their m-th Laplacian is null and so uniformly bounded with respect to x, we can switch the integral symbol and the ∆ m operator, which leads to : ∆ m ū(x) = 0, ∀x ∈ Λ. Thanks to a Taylor expansion of E(.y) at point x ∈ Λ for |x| → ∞, and by using the A i (u) expressions for a straight crack (Theorem 1.1) and Lemma 10.5 we have ū(x) = O |x| m-2 log(|x|) . We deduce that ū (1+r 2 ) m 2 log(2+r 2 ) ∈ L 2 (Λ). Similarly, by k ∈ [ [1, m]] derivations of ū, we get that

∇ k ū (1+r 2 ) m-k 2 log(2+r 2 )
∈ L 2 (Λ). We conclude that ū ∈ W m (Λ). By considering ū as an element of W m (Λ)/P 1 we get ū ∈ K. Thanks to Lemma 10.10, by considering the definition of ω and the definitions of λ i , we have ∀i ∈ [[0, m -1]] :

∂ m-1-i ū ∂n m-1-i ± (x) = ±(-1) m+1 2 λ i (x)+ m-1 j=0 σ λ j (y) ∂ m-1-i ∂n m-1-i (A j,y (E(x -y)) dσ y , ∀x ∈ σ
We deduce the jump relations across σ :

λ i = (-1) m+1 ∂ m-1-i ū ∂n m-1-i , for i ∈ [[0, m -1]]. By setting λ i = (-1) m+1 ∂ m-1-i R
∂n m-1-i , as J 1 is an isomorphism we get ū = R which ends the proof of points 2 and 3.

Fourth point

By applying A i,x to ū for i ∈ [[0, m -1]], by doing x → σ, thanks to Lemma 10.5 we get A i,x A j,y (E(xy)) = O 1 |x-y| 2+i+j , where i, j ≥ m. By using the regularity of such potentials across σ, (see Lemma 10.10), we obtain the m boundary integral equations which define J -1 : (10.9)

g i (x) = m-1 j=0 σ λ j (y)A i,x A j,y (E(x -y))dσ y , ∀i ∈ [[0, m -1]]
where stands for the main Cauchy value.

Last point

In the straight crack case σ = {(s, 0), -1 < s < 1}, by setting x = (s, 0) and y = (t, 0) and by using the expression of A i for a straight crack (Theorem 1.1) and Lemma 10.5, we have :

(10.10) A i,x A j,y (E(x -y)) = a i,j (s -t) 2+i+j
where a ij are some constants. (10.9) rewrites as : (10.11)

g i (s) = m-1 j=0 a ij 1 -1 λ j (t) (s -t) 2+i+j , pour i ∈ [[0, m -1]]
From Remark 1, we can explicit the operator A 0 and we get (10.16)

(-1) m ∂ 2m ∂x 2m 2 E(x -y) = a m,m (x 1 -y 1 ) 2 , for x, y ∈ σ
We show (see Lemma 10.9 with n = m -1) that

∂ 2m ∂x 2m 2 |x| 2(m-1) log(|x| 2 ) |x2=0 = 2(2m-1)! x 2 1
. Therefore, from (2.2) and (10.16) we deduce (10.17)

a 0,0 = (-1) m+1 (2m -1)! 2 2m-1 π((m -1)!) 2
The expressions of b 0,0 and λ 0 are

b 0,0 = (-1) m (2m -1) 2 2m-1 C m-1 2(m-1) and λ 0 (s) = (-1) m 2 2m-1 (2m -1)C m-1 2(m-1) V 1 -s 2
which ends the proof of the last point and of the theorem.

Lemma 10.7. Let R(x) the solution of the problem (10.3). For m ≥ 1, by using the convention [[0, -1]] = ∅, we have the following estimations for |x| → ∞ and ǫ → 0 :

|∇ k R(x)| ≤ C|x| m-2-k log(|x|), k ∈ [[0, m -2]] |∇ m-1 R(x)| ≤ C |x| , |∇ m R(x)| ≤ C |x| 2 ∇ k R x ǫ 0,Ωǫ = O -ǫ -(m-2-k) log(ǫ) , for k ∈ [[0, m -2]] ∇ m-1 R x ǫ 0,Ωǫ = O ǫ -log(ǫ) , ∇ m R x ǫ 0,Ωǫ = O (ǫ)
Proof. From Theorem 10.6, R(x) writes

(10.18) R(x) = m-1 i=0 σ λ i (y)A i,y (E(x -y))dσ y
Then a Taylor expansion at x for |x| -→ ∞ and standard computation lead to the result. For more details se [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF]. Lemma 10.8. Let w ǫ the solution of (Q c ǫ ) given in (5.1) for m ≥ 1, and R the solution of (R ext ) given in (5.2), we have the following asymptotic expansion (10.19)

w ǫ = ǫ m R x ǫ + e ǫ with e ǫ m,Ωǫ = O(φ m (ǫ)) , |w ǫ | k,Ωǫ = O(-ǫ 2 log(ǫ)) ∀k ∈ [[0, m -2]] |w ǫ | m-1,Ωǫ = O(ǫ 2 -log(ǫ)) , |w ǫ | m,Ωǫ = O(ǫ)
where

φ m (ǫ) = -ǫ 2 log(ǫ) for m ≥ 2 ǫ 2 -log(ǫ) for m = 1
Proof. e ǫ is defined by :

(10.20) (E ǫ )              (-1) m ∆ m e ǫ + e ǫ = -ǫ m R x ǫ , in Ω ǫ A 0 (e ǫ ) = ϕ 0 (x) = O(|x|), on σ ǫ A i (e ǫ ) = -A i (v 0 ) -B i , on σ ǫ for i ∈ [[1, m -1]] A i (e ǫ ) = ψ ǫ i (x) = O ǫ 2 on Γ for i ∈ [|0, m -1]]
where 1) on σ ǫ and B i is defined in (3.4).

ϕ 0 (x) = -A 0 (v 0 )(x)+A 0 (v 0 )(0) = O(|x|) (see (4.1a)), ψ ǫ i (x) = -ǫ m A 0 R x ǫ , A i (v 0 )(x) = O(

Proof of the estimation ψ

ǫ i (x) = O ǫ 2
By using Theorem 1.1, the A j (u) for j ∈ [[0, m -1]] writes as (10.21) A j,y (u) = m≤|p|≤j+m ϕ j p (y)

∂ |p| u ∂y p
From (10.21) and thanks to Lemma 10.5 for x ∈ Γ and y ∈ σ we get

A i,x A j,y E x ǫ -y = m≤|p|≤i+m m≤|q|≤j+m ϕ i p (x)ϕ j q (y) ∂ |p|+|q| ∂x p ∂x q E x ǫ -y = m≤|p|≤i+m m≤|q|≤j+m ϕ i p (x)ϕ j q (y)ǫ |q|-2m+2 G p+q (x -ǫy) = O ǫ 2-m
where G k is an homogeneous function of degree 2(m -1) -|k| and by using the fact that G p+q (xǫy) = O (1) when ǫ → 0 for x, y ∈ Γ.

Splitting of e ǫ m,Ωǫ

We split e ǫ into the sum e ǫ = e 1 ǫ + e 2 ǫ with e 1 ǫ ∈ H m (Ω ǫ )/P m-1 solution of the following problem

(E 1 ǫ )            (-1) m ∆ m e 1 ǫ = 0, in Ω ǫ A 0 (e 1 ǫ ) = ϕ 0 (x) = O(|x|), on σ ǫ A i (e 1 ǫ ) = -A i (v 0 ) -B i , on σ ǫ , for i ∈ [[1, m -1]] A i (e 1 ǫ ) = 0 on Γ, for i ∈ [[1, m -1]]
and e 2 ǫ ∈ H m (Ω ǫ ) solution of the problem :

(E 2 ǫ )        (-1) m ∆ m e 2 ǫ + e 2 ǫ = -e 1 ǫ -ǫ m R x ǫ , in Ω ǫ A i (e 2 ǫ ) = 0, on σ ǫ , for i ∈ [[0, m -1]] A i (e 2 ǫ ) = ψ ǫ i (x), on Γ Estimation of e 1 ǫ H m (Ωǫ)/P1
The variational formulation of (E 1 ǫ ) is : find e

1 ǫ ∈ H m (Ω ǫ )/P m-1 such that b ǫ (e 1 ǫ , v) = - σǫ ϕ 0 ∂ m-1 v ∂n m-1 + m-1 k=1 σǫ (A k (v 0 ) + B k ) ∂ m-1-k v ∂n m-1-k , ∀v ∈ H m (Ω ǫ )/P m-1 where b ǫ (u, v) = m k=0 C k m Ωǫ ∂ m u ∂x k 1 ∂x m-k 2 ∂ m v ∂x k 1 ∂x m-k 2 
. We take as function test v = e 1 ǫ and we set for k

∈ [[1, m-1]], J k = σǫ (A k (v 0 ) + B k ) ∂ m-1-k e 1 ǫ ∂n m-1-k , and J 0 = σǫ ϕ 0 ∂ m-1 e 1 ǫ
∂n m-1 . By using Lemma 10.3, the fact that b ǫ (u, v) is coercive and the Deny-Lions inequality we get

(10.22) e 1 ǫ 2 
H m (Ωǫ)/Pm-1 ≤ C|e 1 ǫ | m,Ωǫ ≤ m-1 k=0 J k Let k ∈ [[1, m -1]],
thanks to a change of variable, Lemma 10.3, Lemma 4.1 and a change of variable again we have

J k = ǫ σ (A k (v 0 )(ǫX) + B k (ǫX)) ∂ m-1-k e 1 ǫ (ǫX) ∂n m-1-k dσ ≤ Cǫ 1-(m-1-k) |e 1 ǫ (ǫX)| m,Br\σ ≤ Cǫ k+1 |e 1 ǫ | m,Ωǫ Since k ≥ 1 , we deduce that J k ≤ Cǫ 2 |e 1 ǫ | m,Ωǫ
Similarly by using the estimation ϕ 0 (ǫX) = O(ǫ), we have (10.23)

J 0 = ǫ σ ϕ 0 (ǫX) ∂ m-1 e 1 ǫ ∂n m-1 ≤ Cǫ ϕ 0 (ǫX) H 1/2 00 (σ) ′ ǫ -(m-1) |e 1 ǫ (ǫX)| m,Br\σ ≤ Cǫ 2-(m-1) |e 1 ǫ (ǫX)| m,Br\σ ≤ Cǫ 2 |e 1 ǫ | m,Ωǫ
From (10.22) and by using above estimations, we get

(10.24) e 1 ǫ H m (Ωǫ)/Pm-1 ≤ Cǫ 2
Estimation of e 2 ǫ m,Ωǫ

The variational formulation of (E 2 ǫ ) is : find

e 2 ǫ ∈ H m (Ω ǫ ) such that a ǫ (e 2 ǫ , v) = Ωǫ -ǫ m R x ǫ -e 1 ǫ v + m-1 i=0 Γ ψ ǫ i ∂ m-1-i v ∂n m-1-i ∀v ∈ H m (Ω ǫ )
We take as test function v = e 2 ǫ and we set

K ǫ = - Ωǫ ǫ m R x ǫ + e 1 ǫ e 2 ǫ L ǫ = m-1 i=0 Γ ψ ǫ i ∂ m-1-i e 2 ǫ ∂n m-1-i
By using the definition of a ǫ (u, v) (1. 

V k (f ) : H α (∂Ω) → H α+2m-k (∂Ω) for k ∈ [[1, 2m]] the multi-layer potentials : V k (f ) =        ∂Ω f (y) ∂ k-1 (E(x -y)) ∂n k-1 y dσ(y) for 1 ≤ k ≤ m ∂Ω f (y)A k-m-1,y (E(x -y))dσ(y) for m + 1 ≤ k ≤ 2m
where E(x) is the fundamental solution of -∆ m given in (2.2). We denote

V - k (f )(x) = V k (f )(x) for x ∈ Ω V + k (f )(x) = V k (f )(x) for x ∈ Ω c and for x ∈ ∂Ω : V + k (f )(x) = lim x→y x∈Ω c V + k (f )(y), V - k (f )(x) = lim x→y x∈Ω V - k (f )(y)
We have the following jump relations across ∂Ω and for x ∈ ∂Ω : where we have denoted respectively in H α+2m-k-j (∂Ω) and H α+m-k-j (∂Ω) the following potentials (when kernels are singular for x ∈ ∂Ω, these boundary integrals are defined in the sense of the main Cauchy value) for k ∈ [[0, m -1]] and j ∈ [ [1, 2m]] : 

(R 1 ) ∂ k ∂n k V + j (f )(x) = ∂ k ∂n k V - j (f )(x) = ∂ k ∂n k V j (f )(x), in H α+2m-k-j (∂Ω) for k ∈ [[0, m -1]] ∧ j = 2m -k ∂ k ∂n k V ± 2m-k (f )(x) = ± (-1) m+1 2 f (x) + V 2m-k (f ), in H α (∂Ω) for k ∈ [[0, m -1]] (R 2 )    A k V ± j (f )(x) = A k V j (f )(x), dans H α+m-k-j (∂Ω) for k ∈ [[0, m -1]] ∧ j = m -k A k V ± m-k (f )(x) = ± (-1) m 2 f (x) + A k V m-k (f )(x),
∂ k ∂n k x V j (f )(x) =          ∂Ω ∂ k ∂n k ∂ j-1
for k + j ≥ 2m ∂ k ∂n k V - j (x) = O 1 |x -y| k+j+1-2m
We deduce that : (a) For k + j < 2m kernels are integrable for x ∈ ∂Ω and we can switch the integral and the limit symbols ∂ k ∂n k V - j (x) = ∂ k ∂n k V j (x). (b) For k + j > 2m thanks to [[8], Lemma 6.4], we get the same equality in the sense of the main Cauchy value. By using (10.29), (10.31) is only possible if

       ∂ k ∂n k V - 2m-k (F 2m-k )(x) = (-1) m 2 F 2m-k (x) + ∂ k ∂n k V 2m-k (F 2m-k )(x) ∂ k ∂n k V - j (x) =
∂ k ∂n k V j (x), for 1 ≤ j ≤ 2m and j = 2mk For x ∈ B R \Ω, (10.30) is changed in

w(x) = - 2m i=1 V + i (F i )(x) + G(x)
with G(x) defined similarly by using multi-layer potentials on the boundary ∂B R and regular in a neighbourhood of ∂Ω. By the same reasoning we have

       ∂ k ∂n k V + 2m-k (F 2m-k )(x) = - (-1) m 2 F 2m-k (x) + ∂ k ∂n k V 2m-k (F 2m-k )(x) ∂ k ∂n k V + j (x) = ∂ k ∂n k V j (x)
, for 1 ≤ j ≤ 2m and j = 2mk which proves the relations (R 1 ).

(ii) Proof of relations (R 2 ) Consider 0 ≤ k ≤ m -1, similarly we get for x ∈ ∂Ω :

A k w(x) 2 = (-1) m 2m i=1 A k V i (F i )(x), x ∈ ∂Ω
And by the same reasoning used for (i), and by using (10.29), this equality is only possible if

   A k V - m-k (F m-k )(x) = - (-1) m 2 F m-k (x) + A k V m-k (F m-k )(x)
A k V - j (F j )(x) = A k V j (F j )(x), for 1 ≤ j ≤ 2m and j = mk

By the same way, we get

   A k V + m-k (F m-k )(x) = (-1) m 2 F m-k (x) + A k V m-k (F m-k )(x)
A k V + j (F j )(x) = A k V j (F j )(x), for 1 ≤ j ≤ 2m and j = mk which ends the proof of the relations (R 2 ) and the lemma's one.
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1 = 2 m
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  dans H α (∂Ω) for k ∈ [[0, m -1]] * Thanks to Arthur Vavasseur for the proof of this Lemma

∂n j- 1 yF

 1 (E(xy))f (y)dσ(y) for 1 ≤ j ≤ m ∂Ω ∂ k ∂n k x A j-m-1,y (E(xy))f (y)dσ(y) for m + 1 ≤ j ≤ 2m andA k V j (f )(x) = xy))f (y)dσ(y) for 1 ≤ j ≤ m ∂Ω A k,x A j-m-1,y (E(xy))f (y)dσ(y) for m + 1 ≤ j ≤ 2mProof. The proof of this lemma is in part heuristic and is inspired from [[START_REF] Chen | Boundary Element Methods with Applications to Nonlinear Problems[END_REF] pp 384-388]. We show the jump properties for particular densities which are in the following space (the image of the Calderòn projector associated to the operator ∆ m ) :P = (u |∂Ω , ∂ n u |∂Ω , ..., ∂ m-1 n u |∂Ω , A 0 u |∂Ω , ..., A m-1 u |∂Ω ), u ∈ H m (Ω) and ∆ m u = 0Moreover, we use in this proof the kernel expressions in the case of a straight manifold to discuss about the singularity of the kernels. From Theorem 1.1 we have the following equality : (10.28)u(x) = Ω δ(xy)u = -Ω ∆ m uE(xy)dy + m-1 i=0 ∂Ω A i,y (E(xy)) ∂ m-1-i u(y) ∂n m-1-i -A i,y (u) ∂ m-1-i E(xy) ∂n m-1-i dσ(y) Let w ∈ H 2m (Ω) such that ∆ m w = 0 in Ω and F k ∈ H α+2m-k (∂Ω) for 1 ≤ k ≤ 2m defined k = -A m-k (w), on ∂Ω for 1 ≤ k ≤ m F 2m-k = ∂ k w ∂n k , on ∂Ω for 0 ≤ k ≤ m -1For x ∈ Ω, thanks to (10.28), we have(10.30) w(x) = 2m i=1 V - i (F i )(x)First, we extend the vectors fields n(x) and τ (x) in C ∞ -vectors fields on a neighbourhood of ∂Ω that we denote respectively n(x) and τ (x). Then we extend the operators f → ∂ 2m-1-k f ∂n 2m-1-k and f → A k (f ) for k ∈ [[m, 2m -1]] by using the vectors fields n(x) and τ (x).

( i ) 10

 i10 Proof of the relations (R 1 ) Consider 0 ≤ k ≤ m -1, from (10.30), we get∂ k w ∂ n k = (-1) m 2m i=1 ∂ k ∂ n k V - i (F i )(x), x ∈ ΩLetting x tend nontangentially to ∂Ω in (10.28), we only have half of the contribution of the Dirac function δ(xy) at y = x ∈ ∂Ω so(k V i (F i )(x), x ∈ ∂ΩThanks to Lemma 10.5 and Theorem 1.1, we get the following singularities estimations in the case of a straight manifoldfor k + j < 2m ∂ k ∂n k V - j (x) = O |x -y| 2m-1-(k+j) log(|x -y|
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  ∂ |α| g ∂x α for |α| ≤ 2(m-1) is a polynomial homogeneous function of degree 2(m-1)-|α|. Similarly, ∂h ∂xi is homogeneous of degree -1, and ∂ |α| h ∂x α is homogeneous of degree -|α|. Thanks to Leibniz formula, we get
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(σ) ′ |u| m,Br\σ

We set f j (s) = 1 π 1 -1 λj (t) s-t dt, for -1 < s < 1 and j ∈ [[0, m -1]]. By derivation of f j we show for n ≥ 0 that (10.11) rewrites as : (10.12)

where we set

We rewrite (10.12) with the expressions of the g i 's given at the fifth point of the theorem :

To solve (S), we integrate i times the i-th row by taking as constants of integration 0 for the first i -2 integrations and

V bi,0 b0,0 for the i -1-th. The last constant is set to 0. In the sequel we will check that the constant b 0,0 is not null. The system (S) becomes :

The unknowns of (S ′ ) are the f

We get m uncoupled boundary integral equations. To solve the first one, we use [START_REF] Martin | Exact solution of a hypersingular integral equation[END_REF] and we get λ m (s

For more details we refer the reader to [START_REF] Drogoul | Topological gradient method applied to the detection of edges and fine structures in imaging[END_REF]. The other equations have the trivial solution

We check that λ i ∈ H

1/2+i 00 (σ) and by using that J is injective, this solution is unique. From (10.13), we have b 0,0 = -πa 0,0 and a 0,0 is given by (see (10.10)) :

A 0,x A 0,y (E(xy)) = a 0,0 (x 1y 1 ) 2 , for x, y ∈ σ