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Topological sensitivity of a shape functional defined from a solution of

a high order PDE

Audric DROGOUL

December 19, 2014

Abstract

The topological gradient is defined as the leading term in the asymptotic expansion of a shape
functional with respect to the size of a local perturbation. Introduced by Sokolowski [15] and Masmoudi
[12], this notion has been intensively developed in recent years. There are many applications such as in
mechanics of structures [3], in damage evolution modelling [2] and in image processing [6, 10, 5, 8]. This
paper deals with the topological sensitivity of a cost function of the form j(Ω) =

∫
Ω
|∇muΩ|2 where uΩ

solves a PDE of order 2m defined from the m-th Laplacian with Neumann boundary conditions. We
place us in 2D and we consider a domain perturbed by a small crack.

1 Introduction

The goal of this paper is to generalise the topological gradient method studied and applied in segmentation
of images [3, 6, 10, 5] to a more general and higher order problem adapted to object detection. Objects
can of Lebesgue measure different to zero. In this case, we are interested in the detection of the boundary
of the object commonly called edge. The discontinuity associated to an edge is a discontinuity with a
jump of intensity across the structure. Objects can also be of zero Lebesgue measure (filaments, points in
2D) and in this case we want to detect the whole object. Such object is called fine structure and there is
no jump of intensity across the structure (see Figure 1).

In [6, 10], the topological gradient has been applied to a problem of edge detection. It is well known that
the detection of edges by using differential operators needs first order derivatives. It is no more true for fine
structures which are discontinuities without jump of intensity across the structure. In [5, 8] authors justify
theoretically and verify numerically that the detection of fine structures by using differential operators
need second order derivatives. Hence they introduce a cost function involving second order derivatives of
a regularization of the data solution of a fourth order PDE. In this paper we wonder what does happen
for higher order problems with respect to these two kinds of structures ?
In 1D a contour can be modelled by the Heaviside functionH. We can approximateH by a regular function

Hη ∈ Cp(R) which writes Hη(x) = ϕ
(
x
η

)
1|x|<η + 1x≥η where ϕ(x) =

∑p
k=0 akx

2k+1 with (ak)1≤k≤p such

that ϕ(1) = 1 and ϕ(k)(1) = 0 for k ∈ [[1, p]]. Similarly, in 1D a fine structure can be modelled by f(x) = 0
for x 6= 0 and f(0) = 1. It can be approximated by fη(x) = e−x2/η2 . On Table 1, we study the m-th
derivatives of the functions fη and Hη with m ∈ [[0, p]] for p = 4 and η = 1. We see that derivatives
of odd order penalize more edges than fine structures, while derivatives of even orders are extremal on
fine structures and null on edges. We can generalize this reasoning in 2D by working on transverse cut.
Keeping these considerations in mind, in this paper we propose to develop a topological gradient method
based on m-th derivatives of a regularisation of the data. From a numerical point of view the high order of
the PDE may seem a source of instabilities. However, the generalisation may be interesting theoretically
to stand back from the two cases [m = 1] [3] and [m = 2] [5].
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(a) An edge γ1 (b) A filament γ2

(c) I across the edge (d) I across the filament

Figure 1: Difference between an edge and a fine structure

Roughly speaking, the topological gradient is performed as follows : let Ω a regular domain of R2, j(Ω) =
J(Ω, uΩ) be a shape functional with uΩ solution of a PDE defined on Ω and J(Ω, .) a cost function
depending on Ω. For small ǫ > 0, let Ωǫ = Ω\{x0 + ǫω} where x0 ∈ Ω and ω is a given subset of R2

(typically a crack or a ball). The topological sensitivity of j(Ω) is given by the leading term in the difference
j(Ωǫ)− j(Ω) and generally it takes the form : j(Ωǫ)− j(Ω) = ϕ(ǫ)I(x0, ω) + o (ϕ(ǫ)) with ϕ : R+ −→ R
such as |ϕ| ց 0 and I(x0, ω) is called the topological gradient associated to the cost function j(Ω). As
said before, in [3, 5] authors have studied the topological sensitivity of a shape functional of the form
j(Ω) = J(Ω, uΩ) =

∫
Ω F (uΩ,∇uΩ,∇2uΩ) where uΩ is solution of AuΩ + uΩ = f where A denotes either

the Laplacian or the bilaplacian with Neumann homogeneous boundary conditions and f stands for the
data. In this paper we consider a general cost function full filling Hypotheses 1 and defined from the
p-th derivatives (0 ≤ p ≤ m) of 2m order PDE solution. In particular, we apply our general study to
quadratic cost functions of the form Jp(Ω, u) =

∫
Ω |∇pu|2 with 1 ≤ p ≤ m. Let notice that the PDE

studied is (−1)m∆muΩ + uΩ = f with Neumann homogeneous boundary conditions and it is associated
to the minimization problem minHm(Ω) Jm(Ω, u) + ‖u − f‖20,Ω. In image processing, f is generally the
observed image eventually degraded by Gaussian noise and uΩ can be seen as a regularization of f . A
high order problem has already been studied in [4] but with homogeneous Dirichlet conditions of ∂Ω and
the result given is known in function of polarization tensors which are not known in general and hard
to evaluate. Here, we consider a cracked domain Ωǫ = Ω\{x0 + ǫσ(~n)}, where σ(~n) is a straight crack
centered, the origin and x0 ∈ Ω and ǫ small enough to avoid a possible contact between the perturbation
an the boundary of Ω. From these notations we have Ω0 = Ω.
The paper reads as follows. First we determine the Euler equations associated to the minimization in
Hm(Ω) of the energy function JΩ(u) =

∫
Ω |∇mu|2. Then we state the problem and we compute the

topological gradient associated to a shape functional full filling Hypotheses 1 an defined from uΩǫ the
solution of a 2m order PDE defined on Ωǫ. The final topological gradient expression is explicit in function
of m, uΩ and an adjoint state vΩ defined on the unperturbed domain Ω. For numerical illustrations and
applications in imaging we refer the reader to [6, 10] for m = 1 and to [8] for m = 2. In the sequel
we assume that the center of the perturbation is x0 = 0 and that the abscissa axe is given by the crack
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direction (we place us in the local coordinate system to the crack).

Values of m Contour Filament

m = 0

m = 1

m = 2

m = 3

m = 4

Table 1: 1D study of the m-th derivatives of a contour and a filament regularizations for m ∈ [[0, 4]]

We consider the function JΩ : Hm(Ω) −→ R :

JΩ(u) =

∫

Ω

m∑

k=0

Ck
m

(
∂mu

∂xk1∂x
m−k
2

)2

=

∫

Ωǫ

|∇mu|2
(1.1)
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Let uΩ ∈ H(Ω) defined by
uΩ = argmin

u∈H(Ω)
JΩ(u) + ‖u− f‖20,Ω (1.2)

where H(Ω) is the Hilbert space H(Ω) =
{
u ∈ L2(Ω),∇mu ∈ L2(Ω)

}
. Gagliardo-Nirenberg inequalities

(see [1] pp 75-79) lead to H(Ω) = Hm(Ω).
We define the bilinear form bΩ(u, v) =

1
2DJΩ(u).v : Hm(Ω)×Hm(Ω) −→ R defined by :

bΩ(u, v) =

∫

Ω

m∑

k=0

Ck
m

∂mu

∂xk1∂x
m−k
2

∂mv

∂xk1∂x
m−k
2

(1.3)

To shorten notations we denote uǫ = uΩǫ . We define on Hm(Ωǫ) the bilinear and linear forms aǫ(u, v) and
lǫ(v) :

aǫ(u, v) = bΩǫ(u, v) +

∫

Ωǫ

uv

lǫ(v) =

∫

Ωǫ

fv

(1.4)

We introduce the problem (Pǫ) and its solution uǫ ∈ Hm(Ωǫ) :

aǫ(uǫ, v) = lǫ(v) ∀v ∈ Hm(Ωǫ), (Pǫ) (1.5)

In the sequel we denote by uk,l =
∂k+lu
∂xk

1∂x
l
2

for u ∈ Hm(Ωǫ) and k, l ∈ N such that k + l ≤ m and we

show that the Euler equations associated to the minimization problem (1.2) in Hm(Ω) involve the m-th
iterate of the Laplace operator ∆m and m boundary operators that we explicit.

Théorème 1.1. Let bΩ(u, v) the bilinear form on Hm(Ω) defined by (1.3), we have

bΩ(u, v) = (−1)m
∫

Ω
∆muv +

m−1∑

i=0

∫

∂Ω
Ai(u)

∂m−1−iv

∂nm−1−i
dσ

where Ai : H
m(Ω) −→ H−i−1/2(∂Ω) for i ∈ [[0,m−1]] is the differential operator of order i+m defined by

Ai(u) =

m∑

k=0

Ck
m

k−1∑

j=0

(−1)j
∑

0≤p≤k−j−1
0≤q≤m−k
p+q=i−j

(−1)qCp
k−j−1C

q
m−k

∂p+q

∂τp+q

(
nk−j−p+q
1 nm−k−q+p

2 uk+j,m−k

)

+
∑

0≤k+l≤i

Ck
m(−1)iC

i−(k+l)
m−k−l−1

∂i−(k+l)

∂τ i−(k+l)

(
n
i−(k+l)
1 nm−i

2 u2k,m−k+l

)

with the convention
∑−1

k=0 = 0. In the case of a straight crack σ = {(s, 0),−1 < s < 1}, we have :

(i) For i ∈ [[0, ⌊m−1
2 ⌋]]

A2i =
i∑

k=0

(−1)i−kC2k
m




2k−1∑

j=0

Ck+i−j
2k−j−1C

i−k
m−2k


u2(k+i),m−2k +

2i∑

k=0

Ck
mu2k,m−2k+2i

(ii) For i ∈ [[0, ⌊m−2
2 ⌋]] :

A2i+1 =
i∑

k=0

(−1)i−k+1C2k+1
m




2k−1∑

j=0

Ck+i−j+1
2k−j Ci−k

m−2k−1


u2(k+i+1),m−(2k+1) −

2i+1∑

k=0

Ck
mu2k,m−2k+2i+1
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Remarque 1.2. For m = 1, with these statements A0 =
∂
∂n = ∂

∂x2
.

For m = 2, we have (see the Kirchhoff thin plate equation [7, 5] with the Poisson ration ν = 0), A0 = B2

and A1 = −B1.
In the case of the straight crack σ = {(s, 0),−1 < s < 1}, for m ≥ 1, we have A0 = ∂m

∂nm = ∂m

∂xm
2

, and Ai

are homogeneous differential operators of order m+ i.

Proof. Keeping the same notations of the statements of the theorem, bΩ(u, v) rewrites as :

bΩ(u, v) =
m∑

k=0

Ck
m

∫

Ω
uk,m−kvk,m−k (1.6)

Let k ≥ 1, by integrating k times with respect to x1 we get :

∫

Ω
uk,m−kvk,m−k =

k−1∑

j=0

∫

∂Ω
(−1)j

∫

∂Ω
n1uk+j,m−kvk−j,m−k + (−1)k

∫

Ω
u2k,m−kv0,m−k

Then by assuming that k ≤ m− 1, we integrate m− k times with respect to x2 :

∫

Ω
u2k,m−kv0,m−k =

m−k−1∑

l=0

(−1)l
∫

∂Ω
n2u2k,m−kv0,m−k−l−1 + (−1)m−k

∫

Ω
u2k,2(m−k)v

Hence for k ∈ [[0,m]] by using the convention
∑−1

0 = 0, we have :

∫

Ω
uk,m−kvk,m−k =

k−1∑

j=0

∫

∂Ω
(−1)j

∫

∂Ω
n1uk+j,m−kvk−j,m−k + (−1)k

m−k−1∑

l=0

(−1)l
∫

∂Ω
n2u2k,m−kv0,m−k−l−1

+ (−1)m
∫

Ω
u2k,2(m−k)v

(1.7)

We set ~τ = ~n⊥ such that (~n, ~τ) be an orthonormal basis. We express the ∂k+lu
∂xk

1∂x
l
2

in function of the ∂i+j

∂τ i∂nj

(where i+ j = k + l). The relations between ∂τ , ∂n, ∂x1 and ∂x2 are :

∂

∂x1
= n1

∂

∂n
− n2

∂

∂τ
∂

∂x2
= n2

∂

∂n
+ n1

∂

∂τ

Let p2, q2 ∈ N, we have :

vp2,q2 =

(
n1

∂

∂n
− n2

∂

∂τ

)p2 (
n2

∂

∂n
+ n1

∂

∂τ

)q2

v

=
∑

0≤p≤p2
0≤q≤q2

(−1)pCp
p2C

q
q2n

p2−p+q
1 nq2+p−q

2

∂p2+q2v

∂τp+q∂np2+q2−p−q

By using the integration by parts formula on a closed curve (
∫
∂Ω f

∂g
∂τ dσ = −

∫
∂Ω

∂f
∂τ gdσ), we get :

∫

∂Ω
n1up1,q1vp2,q2 =

∑

0≤p≤p2
0≤q≤q2

(−1)✁pCp
p2C

q
q2(−1)✁p+q

∫

∂Ω

∂p+q

∂τp+q

(
np2−p+q+1
1 nq2+p−q

2 up1,q1

) ∂p2+q2−p−qv

∂np2+q2−p−q
dσ

(1.8)
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Similarly

∫

∂Ω
n2up1,q1vp2,q2 =

∑

0≤p≤p2
0≤q≤q2

(−1)qCp
p2C

q
q2

∫

∂Ω

∂p+q

∂τp+q

(
np2−p+q
1 np+q2−q+1

2 up1,q1

) ∂p2+q2−p−qv

∂np2+q2−p−q
dσ (1.9)

From (1.8) with p1 = k + j, q1 = m− k, p2 = k − j − 1 and q2 = m− k we get :

∫

∂Ω
n1uk+j,m−kvk−j−1,m−k

=
∑

0≤p≤k−j−1
0≤q≤m−k

(−1)qCp
k−j−1C

q
m−k

∫

∂Ω

∂p+q

∂τp+q

(
nk−j−p+q
1 nm−k−q+p

2 uk+j,m−k

) ∂m−j−1−p−qv

∂nm−j−1−p−q
dσ

(1.10)

From (1.9) with p1 = 2k, q1 = m− k + l, p2 = 0 and q2 = m− k − l − 1 we have :

∫

∂Ω
n2u2k,m−k+lv0,m−k−l−1 =

∑

0≤q≤m−k−l−1

(−1)qCq
m−k−l−1

∫

∂Ω

∂q

∂τ q

(
nq1n

m−k−l−q
2 u2k,m−k+l

) ∂m−k−l−1−qv

∂nm−k−l−1−q
dσ

(1.11)
By using (1.7), (1.10) and (1.11), we deduce :

∫

Ω
uk,m−kvk,m−k

=
k−1∑

j=0

(−1)j
∑

0≤p≤k−j−1
0≤q≤m−k

(−1)qCp
k−j−1C

q
m−k

∫

∂Ω

∂p+q

∂τp+q

(
nk−j−p+q
1 nm−k−q+p

2 uk+j,m−k

) ∂m−j−1−p−qv

∂nm−j−1−p−q
dσ

+ (−1)k
m−k−1∑

l=0

(−1)l
∑

0≤q≤m−k−l−1

(−1)qCq
m−k−l−1

∫

∂Ω

∂q

∂τ q

(
nq1n

m−k−l−q
2 u2k,m−k+l

) ∂m−k−l−1−qv

∂nm−k−l−1−q
dσ

+ (−1)m
∫

Ω
u2k,2(m−k)v

(1.12)
From (1.6) and (1.12), we deduce the integration by parts formula of bΩ :

bΩ(u, v) = (−1)m
m∑

k=0

Ck
m

∫

Ω
u2k,2(m−k)v

+
m∑

k=0

Ck
m





k−1∑

j=0

(−1)j
∑

0≤p≤k−j−1
0≤q≤m−k

(−1)qCp
k−j−1C

q
m−k

∫

∂Ω

∂p+q

∂τp+q

(
nk−j−p+q
1 nm−k−q+p

2 uk+j,m−k

) ∂m−j−1−p−qv

∂nm−j−1−p−q
dσ

+(−1)k
m−k−1∑

l=0

(−1)l
∑

0≤q≤m−k−l−1

(−1)qCq
m−k−l−1

∫

∂Ω

∂q

∂τ q

(
nq1n

m−k−l−q
2 u2k,m−k+l

) ∂m−k−l−1−qv

∂nm−k−l−1−q
dσ




(1.13)

We recognize the m-th Laplacian expression and we can rewrite (1.13) :

bΩ(u, v) = (−1)m
∫

Ω
∆muv +

2m−1∑

i=1

∫

∂Ω
Ai(u)

∂2m−1−iv

∂n2m−1−i
dσ
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with Ai : H
m(Ω) −→ H−i−1/2(∂Ω) for i ∈ [[0,m− 1]], the differential operator of order i+m defined by :

Ai(u) =
m∑

k=0

Ck
m

k−1∑

j=0

(−1)j
∑

0≤p≤k−j−1
0≤q≤m−k
p+q=i−j

(−1)qCp
k−j−1C

q
m−k

∂p+q

∂τp+q

(
nk−j−p+q
1 nm−k−q+p

2 uk+j,m−k

)

+
∑

0≤k+l≤i

Ck
m(−1)✁k(−1)✄l(−1)i−(✁k+✄l)C

i−(k+l)
m−k−l−1

∂i−(k+l)

∂τ i−(k+l)

(
n
i−(k+l)
1 nm−i

2 u2k,m−k+l

)

We can simplify the expression of Ai in the case of a straight crack. We assume that the crack writes as
σ = {(s, 0),−1 < s < 1}. For x ∈ σ, we have n1 = 0, n2 = 1 and ∂τ = −∂x1 . The term of the first sum
over k is not null when k − j − p + q = 0 i.e. when p − q = k − j. By summing over subscripts p, q ∈ N
such that p+ q = i− j, we deduce that

p =
1

2
(k + i− 2j), (a)

q =
1

2
(i− k), (b)

By using that q ≥ 0 we deduce that 0 ≤ k ≤ i and (a) and (b) are full-filled if :

(a) i and k are even and i ≥ k

(b) i et k are odd and i ≥ k

Then the term of the second sum over k is not null when i = k + l i.e. l = i − k. Hence we get the
expressions of A2i and A2i+1 :

(i) For 2i ≤ m− 1 :

A2i =
i∑

k=0

C2k
m

2k−1∑

j=0

(−1)j+i−kCk+i−j
2k−j−1C

i−k
m−2k

∂2i−j

∂τ2i−j
(u2k+j,m−2k) + (−1)2i

2i∑

k=0

Ck
mu2k,m−2k+2i

=
i∑

k=0

(−1)i−kC2k
m




2k−1∑

j=0

Ck+i−j
2k−j−1C

i−k
m−2k


u2(k+i),m−2k +

2i∑

k=0

Ck
mu2k,m−2k+2i

(ii) For 2i+ 1 ≤ m− 1 :

A2i+1 =
i∑

k=0

(−1)i−k+1C2k+1
m




2k−1∑

j=0

Ck+i−j+1
2k−j Ci−k

m−2k−1


u2(k+i+1),m−(2k+1) −

2i+1∑

k=0

Ck
mu2k,m−2k+2i+1

which ends the proof of this lemma.

2 Fundamental solution associated to the m-th Laplacian in 2D

Many solutions of linear differential problems can be expressed by using the fundamental solution associ-
ated to the differential operator. In this section we compute the fundamental solution associated to the
m-th Laplacian ∆m.
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Théorème 2.1. We denote by Em(x) the fundamental solution of the m-Laplacian which is defined by

−∆mEm = δ0 in D′(R2) (2.1)

where δ0 is the Dirac distribution. The expression of this solution is

Em(x) = − 1

22m−1π((m− 1)!)2
|x|2(m−1)log(|x|) (2.2)

Proof. For m = 1, E1(x) = − 1
2π log(|x|).

For m = 2, E2(x) = − 1
8π |x|2log(|x|).

We search Em(x) as follows
Em(x) = am|x|pm log(|x|)

then ∆Em needs to check
∆m−1(∆Em) = δ0 (2.3)

We deduce that :
∆Em = Em−1 + P2m−3(x) = am−1|x|pm−1 log(|x|) + P2m−3(x)

where P2m−3(x) is a polynomial function of degree less or equal than 2m− 3. By standard computation :

∆(|x|pm log(|x|)) = |x|pm−2p2mlog(|x|) + 2pm|x|pm−2

Hence the following relations follow :




pm−1 = pm − 2 and p1 = 0

am−1 = amp
2
m and a1 = − 1

2π
pm − 2 ≤ 2m− 3

and we have 


pm = 2(m− 1) + p1

am =
am−1

p2m

with p1 = 0. First we get pm = 2(m− 1) and then

am = − 1

22m−1π((m− 1)!)2

We check that |x|pm−2 = |x|2(m−2) is a polynomial function of degree 2m− 4 ≤ 2m− 3 and we deduce the
expression (2.2). Reversely, if (2.3) is full-filled, then (2.1) is too.

3 Statements of the problem and notations

Let Σ ⊂ R2 a regular open manifold of dimension 1 and Σ̃ a closed and reg-
ular curve containing Σ (see Figure 2). We define the following functional
spaces :

H
1/2+i
00 (Σ) = {u|Σ, u ∈ H1/2+i(Σ̃), u

|Σ̃\Σ
= 0}, ∀i ∈ [[0,m− 1]]

We endow these spaces by the norms :

‖u|Σ‖H1/2+i
00 (Σ)

= ‖u‖
H1/2+i(Σ̃)

Figure 2: Σ and Σ̃
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Let σ ⊂ Ω a regular open manifold of dimension 1 containing the origin and of normal ~n. We denote by
~τ the vector such that (~n, ~τ) be orthonormal. ∂τ stands for the differentiation in the direction ~τ and along
σ. in this section we denote by Λ = R2\σ the exterior domain of the crack and we define the following
weighted Sobolev space (see [13]) :

Wm(Λ) =

{
u,

∇ku

(1 + r2)
m−k

2 log(2 + r2)
∈ L2(Λ), for k ∈ [[0,m− 1]],∇mu ∈ L2(Λ)

}
(3.1)

where r = |x|. Wm(Λ)/Pm−1 stands for the quotient space of functions Wm(Λ) defined up functions being
Pm−1. We assume that σǫ = {x, xǫ ∈ σ} does not touch ∂Ω; thus we have ∂Ωǫ = σǫ ∪ Γ. Let σ̃ a closed
and regular curve of same dimension of σ such that σ ⊂ σ̃, and let ω̃ be the bounded domain of R2 such
that ∂ω̃ = σ̃; we denote by ω̃ǫ = {x, xǫ ∈ ω̃}, Ω̃ǫ = Ω\ω̃ǫ and we choose r > 0 and ǫ small enough such
that ω̃ ( Br ⊂ Ω

ǫ (see Figure 3).

(a) σ̃ ⊃ σ and Br ) ω̃ (b) Cracked domain

Figure 3: Cracked domain and extension of the crack by a closed curve

For v ∈ Hm(Ωǫ) and u ∈ H2m(Ωǫ), by using the integration by parts formula given in Theorem 1.1 on
Ω\ω̃ǫ ∪ ω̃ǫ, we get

∫

Ωǫ

((−1)m∆mu+ u) v = aǫ(u, v) +

∫

σǫ

m−1∑

i=0

Ai(u)

[
∂m−1−iv

∂nm−1−i

]
(3.2)

where aǫ(u, v) is given in (1.4) and
[
∂kv
∂nk

]
=
(

∂kv
∂nk

)+
−
(

∂kv
∂nk

)−
denotes the jump of ∂kv

∂nk across σǫ, by

using notations described in Figure 3. From (1.5) and (3.2), and by assuming that uǫ ∈ H2m(Ωǫ), uǫ is
given by :

(Pǫ)

{
(−1)m∆muǫ + uǫ = f, in Ωǫ

Ai(uǫ) = 0, on σǫ ∪ Γ, ∀i ∈ [[0,m− 1]]
(3.3)

where f ∈ L2(Ωǫ).
We introduce the cost function J(Ω, u) : Hm(Ω) −→ R full-filling

Hypothèses 1. • There exists a continuous linear map Lǫ : Hm(Ωǫ) → R, δJ : Ω × S1 → R and
ǫ0 > 0 such that ∀ǫ0 ≥ ǫ > 0

J(Ωǫ, uǫ)− J(Ω, u0) = Lǫ(uǫ − u0) + ǫ2δJ(x0, ~n) + o(ǫ2)
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and we assume that Lǫ(u) writes

Lǫ(u) =

∫

Ωǫ

l0u+
∑

1≤i≤m−1

∫

σǫ

Bi

[
∂m−1−iu

∂nm−1−i

]
+

∑

0≤i≤m−1

∫

Γ
Di
∂m−1−iu

∂nm−1−i
(3.4)

with ‖l0‖0,Ωǫ ≤ C, Di ∈ H−i−1/2(Γ), Bi ∈ H
i+1/2
00 (σǫ)

′ and ‖Bi(ǫx)‖Hi+1/2
00 (σ)′

≤ C where C is a

constant not depending on ǫ.

To shorten notations, we denote Jǫ(u) = J(Ωǫ, u) and δJ instead of δJ(x0, ~n). In the sequel, to simplify
we assume that the crack σ is straight and we assume that σ = {(s, 0),−1 < s < 1} (we place us in the
local coordinate system associated to the crack). We compute the topological gradient by evaluating the
leading term with respect to ǫ of the difference Jǫ(uǫ)− J0(u0) when ǫ→ 0. By using the equations filled
by uǫ and u0 and Hypotheses 1, we have :

Jǫ(uǫ)− J0(u0) = Lǫ(uǫ − u0) + ǫ2δJ + o(ǫ2) (3.5)

where Lǫ(u) is given by (3.4) and we set

Jǫ = ǫ2δJ + o(ǫ2) (3.6)

To compute (3.5), we introduce vǫ ∈ Hm(Ωǫ) solution of the adjoint problem :

aǫ(u, vǫ) = −Lǫ(u), ∀u ∈ H(Ωǫ) (3.7)

From (3.7), (3.6) and (3.2), then (3.5) writes

Jǫ(uǫ)− J0(u0) = −aǫ(uǫ − u0, vǫ) + Jǫ

= −lǫ(vǫ) + aǫ(u0, vǫ) + Jǫ

= −
∫

Ωǫ

fvǫ +

∫

Ωǫ

((−1)m∆mu0 + u0) vǫ −
∫

σǫ

m−1∑

i=0

Ai(u0)

[
∂m−1−ivǫ
∂nm−1−i

]
+ Jǫ

= −
∫

σǫ

m−1∑

i=0

Ai(u0)

[
∂m−1−ivǫ
∂nm−1−i

]
+ Jǫ

By setting wǫ = vǫ − v0 with vǫ and v0 given by (3.7) for ǫ > 0 and ǫ = 0; we rewrite Jǫ(uǫ) − J0(u0) in
function of wǫ :

Jǫ(uǫ)− J0(u0) = −
∫

σǫ

2m−1∑

i=m

Ai(u0)

[
∂2m−1−iwǫ

∂n2m−1−i

]
+ Jǫ (3.8)

Then, changing of variables and subscripts give

Jǫ(uǫ)− J0(u0) = −
m−1∑

i=0

ǫ

∫

σ
Ai(u0)(ǫX)

[
∂m−1−iwǫ

∂nm−1−i
(ǫX)

]
dσ + Jǫ

= −
m−1∑

i=0

ǫ

∫

σ
Ai(u0)(ǫX)

1

ǫm−1−i

[
∂m−1−i (wǫ(ǫX))

∂nm−1−i

]
dσ + Jǫ

= −
m−1∑

k=0

ǫ1−k

∫

σ
Am−1−k(u0)(ǫX)

[
∂k

∂nk
(wǫ(ǫX))

]
dσ + Jǫ

= −
m−1∑

k=0

Ik + Jǫ

(3.9)
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where Ik for k ∈ [[0,m− 1]] are defined by :

Ik = ǫ1−k

∫

σ
Am−1−k(u0)(ǫX)

[
∂k

∂nk
(wǫ(ǫX))

]
dσ (3.10)

Now, we need to establish the asymptotic expansion of wǫ in Hm(Ωǫ) norm. To do this, first we find the
leading terms in wǫ which need to be compensated to have an asymptotic expansion in o(ǫ) in Hm(Ωǫ)
norm (see section 5).

4 Estimations of Ai(u0)(ǫX) for X ∈ σ

The following lemma gives the expansion with respect to ǫ at 0 of Ai(u0)(ǫX) for X ∈ σ.

Lemme 4.1. Let v0 solution of (3.7) with ǫ = 0. In the case of a straight crack, by assuming that v0 is
regular (or equivalently that f is regular) we have the following estimations :

A0(v0)(ǫX) = g0(X) +O(ǫ) (4.1a)

Ai(v0)(ǫX) = gi(X) +O(1), ∀i ∈ [[1,m− 1]] (4.1b)

with




g0(X) =

∂mv0
∂xm2

(0)

gi(X) = 0, for 1 ≤ i ≤ m− 1

(4.2)

Proof. With the expression of the Ai given in Theorem 1.1 for i ∈ [[1,m − 1]] and for a straight crack,

and by a Taylor expansion at 0 of the functions ∂k+lv0
∂xk

1∂x
l
2

we get (4.1b). By using the expression of A0 (see

Remark 9.31) we deduce that :

A0(v0)(ǫX) =
∂mv0
∂xm2

(ǫX)

We conclude with a Taylor expansion of ∂mv0
∂xm

2
(ǫX) at 0.

5 Asymptotic expansion of wǫ in Hm(Ωǫ) norm

In this section we do the asymptotic expansion of wǫ with respect to ǫ in the sense of the Hm(Ωǫ) norm.
We recall that wǫ = vǫ − v0 is solution of :

(Qc
ǫ)





(−1)m∆mwǫ + wǫ = 0, in Ωǫ

A0(wǫ) = −A0(v0), on σǫ

Ai(wǫ) = −Ai(v0)−Bi, on σǫ, ∀i ∈ [[1,m− 1]]

Ai(wǫ) = 0, on Γ, ∀i ∈ [[0,m− 1]]

(5.1)

To estimate wǫ we introduce the solution of the exterior problem R ∈Wm(Λ)/Pm−1 :

(Rc
ext)

{
∆mR = 0, in Λ

Ai(R) = gi, on σ, ∀i ∈ [[0,m− 1]]
(5.2)

where ∀i ∈ [[0,m − 1]], gi ∈ H
1/2+i
00 (σ)′ is given by (4.2). Thanks to Theorem 9.6 given in Appendix, we

deduce that the problem (Rc
ext) has a unique solution R ∈Wm(Λ)/Pm−1 which writes as follows :
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R(x) =

m−1∑

i=0

∮

σ
λi(y)Ai,y(E(x− y))dσy

where
∮

denotes the Cauchy principal value. Moreover we have :

(−1)m+1

[
∂m−1−iR

∂m−1−i
n

]
= λi ∀i ∈ [[0,m− 1]] (5.3)

where 



λ0(s) =
(−1)m+122m−1

(2m− 1)Cm−1
2(m−1)

β
√

1− s2 ∀(s, 0) ∈ σ

λi(s) = 0 ∀i ∈ [[1,m− 1]] ∀(s, 0) ∈ σ

(5.4)

with β = ∂mv0
∂xm

2
(0). Thanks to Lemma 9.8 (see Appendix), we get

wǫ = ǫ2R
(x
ǫ

)
+ eǫ with ‖eǫ‖Hm(Ωǫ) = O(φm(ǫ)) (5.5)

where

φm(ǫ) =

{ −ǫ2log(ǫ) for m ≥ 2

ǫ2
√
−log(ǫ) for m = 1

In the sequel, we are showing that Ik ∼ o(ǫ2) for k ∈ [[0,m− 2]] and Im−1 ∼ O(ǫ2).

6 Estimation of Ik for k ∈ [[0,m− 1]]

The following lemma give an estimation in o(ǫ2) of the quantity Ik for k ∈ [[0,m− 1]].

Lemme 6.1. Let Ik defined by (3.10) for k ∈ [[0,m− 1]]. We have

Ik = o(ǫ2), ∀k ∈ [[0,m− 2]] (6.1a)

Im−1 = ǫ2
∂mu0
∂xm2

(0)(−1)m+1

∫

σ
λm(y)dσ + o(ǫ2) (6.1b)

Proof. Let k ∈ [[0,m− 2]], thanks to Lemma 9.3 and Lemma 4.1 applied to u0, we get :

Ik = ǫ1−k

∫

σ
Am−1−k(u0)(ǫX)

[
∂k

∂nk
(wǫ(ǫX))

]
dσ

≤ Cǫ1−k|wǫ(ǫX)|m,Br\σ

By using a change of variable and Lemma 9.8 we deduce :

Ik ≤ Cǫm−k|wǫ|m,Ωǫ ≤ Cǫm−k+1 = o(ǫ2)

Now, let us consider Im−1; thanks to Lemma 9.8, Lemma 4.1 applied to u0, and jump relations (5.3), we
get :

Im−1 = ǫ2−m

∫

σ
A0(u0(ǫX))

[
∂m−1(wǫ(ǫX))

∂nm−1

]
dσ

= ǫ2−m∂
mu0
∂xm2

(0)

∫

σ

[
∂m−1(ǫmR(X))

∂nm−1

]
dσ + E1 + E2

= ǫ2
∂mu0
∂xm2

(0)(−1)m+1

∫

σ
λm(y)dσ + E1 + E2
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where

E1 = ǫ2−m

∫

σ

(
A0(u0(ǫX))− ∂mu0

∂xm2
(0)

)[
∂m−1(wǫ(ǫX))

∂nm−1

]
dσ

E2 = ǫ2−m∂
mu0
∂xm2

(0)

∫

σ

[
∂m−1(eǫ(ǫX))

∂nm−1

]
dσ

We will show that E1 and E2 are ∼ o(ǫ2). By using Lemma 9.3, a change of variable, Lemma 4.1, a change
of variable again and Lemma 9.8 we get

E1 ≤ ǫ2−m

∥∥∥∥A0(u0(ǫX))− ∂mu0
∂xm2

(0)

∥∥∥∥
H

1/2
00 (σ)′

|wǫ(ǫX))|m,Br\σ
≤ Cǫ2|wǫ|m,Ωǫ ≤ Cǫ3

Similarly we get :
E2 ≤ ǫ2−m|eǫ(ǫX)|m,Br\σ ≤ Cǫ|eǫ|m,Ωǫ ≤ Cǫφm(ǫ)

with φm(ǫ) = o(ǫ). Hence, the following estimation holds :

Im−1 = ǫ2
∂mu0
∂xm2

(0)(−1)m+1

∫

σ
λm(y)dσ + o(ǫ2)

7 Computation of the topological gradient

From (3.9) and by using estimations (6.1a) and (6.1b) we get :

Jǫ(uǫ)− J0(u0) = ǫ2
∂mu0
∂xm2

(0)(−1)m
∫

σ
λm(y)dσ + Jǫ + o(ǫ2)

By using the expression of λm (5.4) and the definition of Jǫ given in (3.6) we have :

Jǫ(uǫ)− J0(u0) = ǫ2
∂mu0
∂xm2

(0)(−1)m
∫ 1

−1

(−1)m+122m−1

(2m− 1)Cm−1
2(m−1)

∂mv0
∂xm2

(0)
√
1− s2ds+ ǫ2δJ + o(ǫ2)

= −ǫ2∂
mu0
∂xm2

(0)
∂mv0
∂xm2

(0)
22m−1

(2m− 1)Cm−1
2(m−1)

π

2
+ ǫ2δJ + o(ǫ2)

= −ǫ2π 22(m−1)

(2m− 1)Cm−1
2(m−1)

∂mu0
∂xm2

(0)
∂mv0
∂xm2

(0) + ǫ2δJ + o(ǫ2)

Therefore, the topological gradient written in the local coordinate system of the crack is

I(0) = −π 22(m−1)

(2m− 1)Cm−1
2(m−1)

∂mu0
∂xm2

(0)
∂mv0
∂xm2

(0) + δJ (7.1)

8 Conclusion : general expression and some examples of cost functions

From (7.1), by a changing of coordinated system we deduce easily the topological gradient associated to a
cost function J(Ω, u) full-filling Hypotheses 1 and to the PDE (3.3) for a domain perturbed by a straight
crack of normal ~n and of center x0 ∈ Ω :

I(x0, ~n) = −π 22(m−1)

(2m− 1)Cm−1
2(m−1)

∇mu0(x0)(~n, ..., ~n)∇mv0(x0)(~n, ..., ~n) + δJ(x0, ~n) (8.1)
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Now we give some cost functions examples and we compute the function δJ(x0, ~n) in these cases. To
detect edges or fine structures we can use

Jǫ(u) =

∫

Ωǫ

|∇pu|2 (8.2)

with p ∈ [[1,m]].

(i) For p = m, by using the equation checked by uǫ and Lemma 9.8 applied to uǫ − u0, we get

Jǫ(uǫ)− J0(u0) = Lǫ(uǫ − u0) + Jǫ (8.3)

with

Lǫ(u) =

∫

Ωǫ

(f − 2u0)u

Jǫ = −‖uǫ − u0‖20,Ωǫ
≤ Cφm(ǫ)2 = o(ǫ2)

We deduce that δJ = 0.

(ii) For p ∈ [[1,m− 1]], an integration by parts (Theorem 1.1) and Lemma 9.19 applied to uǫ − u0 lead
to (8.3) with

Lǫ(u) = 2

∫

Ωǫ

∇pu0.∇pu

Jǫ = |uǫ − u0|2p,Ωǫ
= o(ǫ2)

Thanks to Theorem 1.1, we check that Hypotheses 1 are full-filled :

Lǫ(u) =

∫

Ωǫ

2(−1)p∆pu0u+

p−2∑

i=0

∫

σǫ

−2Ap
p−1−i(u0)

[
∂iu

∂ni

]
+

∫

Γ
2Ap

p−1−i(u0)
∂iu

∂ni

where the operators Ap
i (u) for i ∈ [[0, p − 1]] stand for the p Neumann conditions associated to the

minimization in Hp(Ω) of IpΩ(u) =
∫
Ω |∇pu|2. For contours an fine structures detection, we define

the topological indicator at x0 by
I(x0) = max

|~n|=1
|I(x0, ~n)|

I(x0) is sensitive to discontinuities which make (8.2) very high (see Table 1).

Remarque 8.1. (i) We check that for p = m, m = 1 and m = 2 we retrieve the topological gradient
expressions given respectively in [3] and [5].

(ii) In imaging detection the most interesting cost function is J(Ω, u) =
∫
Ω |∇mu|2. Indeed, the more

the order of the PDE is high the more numerical instabilities occurs, hence we should take the PDE
of minimal order which lead to enough regular solutions to guarantee that J(Ω, uΩ) exists.

9 Annexe

In the following, we keep the notations and conventions described in Figure 3 and we choose r > 0 and ǫ
small enough such that ω̃ ( Br ⊂ Ω

ǫ (see Figure 3). We recall that we denote by Br for r > 0 the ball of
center 0 and of radius r, and B = B1 is the unit ball. For a bounded domain ω ⊂ R2, ω′ stands for the
unbounded domain R2\ω. Finally for a domain ω we denote by D(ω) the set of functions C∞(ω) with
compact support in ω. The following lemma is a consequence of Hardy (see [13]) and Deny-Lions (see [7]
Lemma 5.2) inequalities.
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Lemme 9.1 (Generalisation of Deny-Lions inequality). Let ω ⊂ B, a regular subset of R2. We denote by
O = R2\ω the exterior domain to ω. Let u ∈Wm(O), we have the following inequality

‖u‖Wm(O)/Pm−1
≤ C|u|m,Λ

where C is a constant which depends on O and where Wm(O) is a functional set defined in (3.1).

Proof. Let ϕ ∈ Cm([0,+∞[), the cut-off function :




ϕ = 0, for 0 ≤ t ≤ 1

0 ≤ ϕ ≤ 1 for 1 ≤ t ≤ 2

ϕ = 1 for t ≥ 2

Let ψ(x) = ϕ(|x|), then uψ ∈Wm
0 (B′). On Wm

0 (B′), thanks to Hardy inequality [13], we have

‖uψ‖Wm
0 (B′) ≤ C|ψu|m,B′

By definition of ψ :
‖u‖Wm(B′

2)
≤ ‖ψu‖Wm

0 (B′)

We deduce that :

‖u‖Wm(B′
2)

≤ C|ψu|m,B′ ≤ C|u|m,B′
2
+ C‖u‖Wm(B2\B) ≤ C|u|m,B′

2
+ C‖u‖Wm(B2\ω) (9.1)

Then by using the definition of Wm(B2\ω) and by bounding weights, we get the equivalence between
the Wm(B2\ω) and the Hm(B2\ω) norms. By considering the quotient space and thanks to Deny-Lions
inequality, we get :

‖u‖Wm(B2\ω)/Pm−1
≤ C|u|m,B2\ω (9.2)

From (9.1) and (9.2), we have
‖u‖Wm(O)/Pm−1

≤ C|u|m,O

which ends the proof of this lemma.

Théorème (Gagliardo-Nirenberg inequality [1, 14]). Let m ≥ 1, the map u 7→
(
‖u‖20,Ω + |u|2m,Ω

) 1
2

from

Hm(Ω) to R is a norm on Hm(Ω) and more precisely we have

‖u‖m,Ω ≤ C(m,Ω)
(
‖u‖20,Ω + |u|2m,Ω

)1/2

where C(Ω,m) is a constant depending on m and Ω.

Remarque 9.2. The constant appearing in the Gagliardo-Nirenberg inequality depends on a constants
which state the interior cone property (see [1] p 66 and pp 75-79). Let Ωǫ = Ω\x0 + ǫω, where ω is either
a regular open manifold or a regular sub-domain of R2 and ǫ small enough to the perturbation {x0 + ǫω}
does not contact the boundary of Ω. Then we can show that the Gagliardo-Nirenberg constant is bounded
from ǫ when ǫ→ 0.

Lemme 9.3. Let k ∈ [[0,m− 1]], gk ∈
(
H

1/2+(m−1)−k
00 (σ)

)′
and u ∈ Hm(Br\σ), we have

∣∣∣∣
∫

σ
gk

[
∂ku

∂nk

]∣∣∣∣ dσ ≤ ‖gk‖H1/2+m−1−k
00 (σ)′

|u|m,Br\σ

where the spaces H
1/2+i
00 (σ) for i ∈ N are defined in section 3 and where we denote H

1/2+i
00 (σ)′ the dual

spaces.
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Proof. By using the definition of the norm ‖.‖
H

1/2+m−1−k
00 (σ)

and by splitting the jump
[
∂ku
∂nk

]
; and finally

by using the trace Theorem on Br\ω̃ and on ω̃, we deduce that

∫

σ
gk

[
∂ku

∂nk

]
≤ ‖gk‖H1/2+(m−1)−k

00 (σ)′

∥∥∥∥
[
∂ku

∂nk

]∥∥∥∥
H

1/2+(m−1)−k
00 (σ)

= ‖gk‖H1/2+(m−1)−k
00 (σ)′

∥∥∥∥
[
∂ku

∂nk

]∥∥∥∥
1/2+(m−1)−k,σ̃

≤ C‖gk‖H1/2+(m−1)−k
00 (σ)′



∥∥∥∥∥
∂ku

∂nk

−

+ ψ

∥∥∥∥∥
1/2+m−1−k,σ̃

+

∥∥∥∥∥
∂ku

∂nk

+

+ ψ

∥∥∥∥∥
1/2+m−1−k,σ̃




≤ C‖gk‖H1/2+(m−1)−k
00 (σ)′

(
‖u+ ψ‖m,ω̃ + ‖u+ ψ‖m,Br\ω̃

)

= C‖gk‖H1/2+(m−1)−k
00 (σ)′

‖u+ ψ‖m,Br\σ

where ψ is a regular function defined on R2. Particularly, if we take ψ ∈ Pm−1, by using the Deny-Lions
inequality, we get ∫

σ
gk

[
∂ku

∂nk

]
≤ ‖gk‖H1/2+(m−1)−k

00 (σ)′
‖u‖Hm(Br\σ)/Pm−1

≤ C‖gk‖H1/2+(m−1)−k
00 (σ)′

|u|m,Br\σ

Lemme 9.4. Let u ∈ Hm(Br\σ) such that ∆mu ∈ L2(Br\σ) and qi ∈ H
1/2+i
00 (σ) où i ∈ [[0,m− 1]]. Then

we have the inequality :

m−1∑

i=0

∫

σ
qiAi(u) ≤

m−1∑

i=0

‖qi‖H1/2+i
00 (σ)

(
|u|Br\σ + ‖∆mu‖Br\σ

)

Proof. We extend the qi by 0 on σ̃\σ. We denote by q̃i ∈ H1/2+i(σ̃) these extensions. Let Q a continuous
extension of (q̃0, q̃1, ..., q̃m−1) in ω̃. By integration by parts (see Theorem 1.1), we have :

b̃(Q, u) = (−1)m
∫

ω̃
∆muQ+

∫

σ̃

m−1∑

i=0

Ai(u)qi, ∀u ∈ Hm(ω̃)

where

b̃(u, v) =

m∑

k=0

Ck
m

∫

ω̃

∂mu

∂xk1∂x
m−k
2

∂mv

∂xk1∂x
m−k
2

, ∀u, v ∈ Hm(ω̃)

Moreover, we have : ∣∣∣∣∣

∫

σ̃

m−1∑

i=0

Ai(u)qi

∣∣∣∣∣ ≤ |b(Q, u)|+
∣∣∣∣
∫

ω̃
∆muQ

∣∣∣∣

≤ C|u|2,ω̃|Q|2,ω̃ + ‖∆mu‖0,ω̃‖Q‖0,ω̃
≤ C

(
|u|2,ω̃ + ‖∆mu‖0,ω̃

)
‖Q‖2,ω̃

by using the continuity of the extension, the inclusion Br\σ ⊃ ω̃ (see Figure 3), and by using the definitions

of the H
1/2+i
00 (σ) norms for i ∈ [[0,m− 1]], we get the result.
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Lemme 9.5. Let E(x) given in (2.2). Let s ∈ N2, we have

∂|s|E

∂xs
=

{
Fs(x) +Gslog(|x|), for 0 ≤ |s| ≤ 2m− 2

Hs, for |s| ≥ 2m− 1

where Fs, Gs and Hs are rational functions homogeneous of degree 2(m − 1) − |s| and we where denote
for s = (s1, s2), ∂x

s = ∂xs11 ∂x
s2
2 and |s| = s1 + s2.

Proof. E writes as the product E(x) = Cmg(x)h(x) where

g(x) = (x21 + x22)
m−1

h(x) = log(x21 + x22)

and Cm is a constant depending on m. g(x) is a polynomial homogeneous function of degree 2(m − 1),

hence ∂|α|g
∂xα for |α| ≤ 2(m− 1) is a polynomial homogeneous function of degree 2(m− 1)− |α|. Similarly,

∂h
∂xi

is homogeneous of degree −1, then ∂|α|h
∂xα is homogeneous of degree −|α|. Thanks to Leibniz formula,

we get
∂|s|(gh)

∂xs

∑

0≤α≤s

Cα
s

∂|α|g

∂xα
∂|s−α|h

∂xs−α

where Cα
s =

∏
Cαi
si where α ≤ s⇐⇒ αi ≤ si, ∀i ∈ {1, 2}. By splitting the sum in two parts we get :

∂|s|(gh)

∂xs

∑

0≤α<s

Cα
s

∂|α|g

∂xα
∂|s−α|h

∂xs−α︸ ︷︷ ︸
homogeneous of degree 2(m−1)−|s|

+
∂|s|g

∂xs︸ ︷︷ ︸
homogeneous of degree 2(m−1)−|s| and null if |s|≥2m−1

h

For |s| ≥ 2m− 1, ∂sE
∂xs is a rational homogeneous function of degree 2(m− 1)− |s|

Théorème 9.6. Let R ∈Wm(Λ)/Pm−1 the solution of the following exterior problem :

(Rext)

{
∆mR = 0, in Λ

Ai(R) = gi, on σ ∀i ∈ [[0,m− 1]]
(9.3)

with gi ∈
(
H

1/2+i
00 (σ)

)′
. We have :

1. R(x) is unique in Wm(Λ)/Pm−1, and the map (g0, ..., gm−1) 7→ R is continuous from
(
H

1/2
00 (σ)

)′
×

...×
(
H

1/2+m−1
00 (σ)

)′
in Wm(Λ)/Pm−1.

2. R(x) writes in Wm(Λ)/Pm−1 as a sum of multi-layer potentials :

R(x) =
m−1∑

i=0

∫

σ
λi(y)Ai,y(E(x− y))dσy, ∀x ∈ Λ

with λi ∈ H
1/2+i
00 (σ) for i ∈ [[0,m− 1]].

3. We have the following jump relations across σ :

(−1)m+1

[
∂m−1−iR

∂nm−1−i

]
= λi, for i ∈ [[0,m− 1]]
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4. The densities λi are given by a system of m boundary integral equations :

gj(x) =
m−1∑

i=0

∮

σ
λi(y)Aj,xAi,y(E(x− y))dσy, for j ∈ [[0,m− 1]]

where
∮

stands for the main Cauchy value.

5. If σ = {(s, 0),−1 < s < 1}, g0(x) = V where V is a constant and gi(x) = 0 for i ∈ [[1,m − 1]], the
densities λi are given by

λ0(s) =
(−1)m22m−1

(2m− 1)Cm−1
2(m−1)

V
√

1− s2

λi(s) = 0, ∀i ∈ [[1,m− 1]]

Proof. First point

We keep the same notations and conventions as described in Figure 3. We introduce the two functional
spaces

Hm(∆m, ω̃) =
{
u ∈ Hm(ω̃),∆mu ∈ L2(ω̃)

}

Wm(∆m, ω̃′) =
{
u ∈Wm(ω̃′), (1 + r2)

m
2 log(2 + r2)∆mu ∈ L2(ω̃′)

}

where we recall that ω̃′ = R2\ω̃. We define the bilinear forms :
b̃(u, v) defined on Hm(ω̃)×Hm(ω̃) by

b̃(u, v) =

m∑

k=0

Ck
m

∫

ω̃

∂mu

∂xk1∂x
m−k
2

∂mv

∂xk1∂x
m−k
2

and b̃′(u, v) defined on Wm(ω̃′)×Wm(ω̃′) by

b̃′(u, v) =

m∑

k=0

Ck
m

∫

ω̃′

∂mu

∂xk1∂x
m−k
2

∂mv

∂xk1∂x
m−k
2

An integration by parts ω̃ (see Theorem 1.1) gives :

b̃(u, v) = (−1)m
∫

ω̃
∆muv +

m−1∑

i=0

∫

∂ω̃
Ai(u)

∂m−1−iv

∂nm−1−i
, ∀v ∈ Hm(ω̃)

Similarly

b̃′(u, v) = (−1)m
∫

ω̃′

∆muv −
m−1∑

i=0

∫

∂ω̃
Ai(u)

∂m−1−iv

∂nm−1−i
∀v ∈Wm(ω̃′)

We introduce the functional space K defined by

K =

{
u ∈ Hm(∆m, ω̃)×Wm(∆m, ω̃′)/Pm−1, supp(∆

mu) = σ, [Ak(u)]σ = 0,

[
∂ku

∂nk

]

σ̃\σ

= 0, k ∈ [[0,m− 1]]

}

By bounding the weights used in the definition of Wm(Λ) and by using the regularity property of functions
Hm

loc(Λ) we can rewrite K :

K = {u ∈Wm(∆m,Λ)/Pm−1, supp(∆
mu) = σ, [Ak(u)]σ = 0, k ∈ [[0,m− 1]]}

18



Therefore, the variational formulation of (Rext) writes :

find R ∈ K such that : b(R, v) = l(v), ∀v ∈ K, (Rext)

where l(v) and b(u, v) are respectively the linear and bilinear forms on K :

l(v) =

m−1∑

i=0

∫

σ
gi

[
∂m−1−iv

∂nm−1−i

]
and b(u, v) =

m∑

k=0

Ck
m

∫

Λ

∂mu

∂xk1∂x
m−k
2

∂mv

∂xk1∂x
m−k
2

The problem (Rext) has a unique solution in K. Indeed, the problem is coercive on K :

b(u, u) ≥ |u|2Wm(Λ) (9.4)

and thanks to Lemma 9.1
‖u‖K = ‖u‖Wm(Λ)/Pm−1

≤ C(Λ)|u|Wm(Λ) (9.5)

which shows that b(u, v) is coercive on K. Thanks to Lemma 9.3, we have

|l(v)| ≤ C

m−1∑

i=0

‖gi‖H1/2+i
00 (σ)′

‖v‖Wm(Λ)/Pm−1
∀v ∈ K (9.6)

which proves that linear form l(v) is continuous on K. As K is a closed subset of Wm(Λ)/Pm−1 which is
an Hilbert, we deduce that it is an Hilbert. Thanks to Lax-Milgram lemma, we get the existence and the
uniqueness of the solution of problem (Rext). From the variational formulation of (Rext), (9.4), (9.5) and
(9.6) we get the continuity of the map (g0, ..., gm−1) 7→ R for the topology associated with and we define
the isomorphism :

J0 :
(g0, g1, ... ..., gm−2, gm−1) 7−→ R

(
H

1/2
00 (σ)

)′
× ... ×

(
H

1/2+m−1
00 (σ)

)′
−→ K

(9.7)

Second and third points

We consider the following problem : for (q0, q1, ..., qm−1) ∈ H
1/2
00 (σ)× ...×H

1/2+m−1
00 (σ)

trouver Q ∈ K tel que

[
∂m−1−iQ

∂nm−1−i

]
= qi, ∀i ∈ [[0,m− 1]] (Qext)

Let u, v ∈ K, we have

b(u, v) = (−1)m
∫

Λ
∆muv −

m−1∑

i=0

∫

σ
Ai(v)

[
∂m−1−iu

∂nm−1−i

]

The variational formulation of (Qext) is :

find Q ∈ K such that : b(Q, v) = l′(v) , ∀v ∈ K, (Qext)

where we define

l′(v) = −
m−1∑

i=0

∫

σ
qiAi(v)

To show that (Qext) is coercive we use the same reasoning as for (Rext). Thanks to Lemma 9.4, we
get

l′(v) ≤ C

m−1∑

i=0

‖qi‖H1/2+i
00 (σ)

|v|m,Br\σ
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By using the equivalence between the norm and the semi-norm on W 2(Λ)/P1, we deduce that the linear
form l′(v) is continuous on K. Thanks to Lax-Milgram lemma, we deduce that there exists an unique
solution Q of (Qext). From the variational formulation of (Qext), we show that the map (q0, ...qm−1) 7→ Q
is continuous for the topology associated with and we define the isomorphism :

J1 :
(q0, q1, ... ..., qm−2, qm−1) 7−→ Q

H
1/2
00 (σ)× ... ×H1/2+m−1

00 (σ) −→ K
(9.8)

We denote by J = J−1
1 ◦ J0 with J0 defined in (9.7), the isomorphism :

J :
(g0, g1, ... ..., gm−2, gm−1) 7−→ (q0, g1, ... ..., qm−2, qm−1)(

H
1/2
00 (σ)

)′
× ... ×

(
H

1/2+m−1
00 (σ)

)′
−→ H

1/2
00 (σ)× ... ×H1/2+m−1

00 (σ)

J is the map corresponding to the Neumann to Dirichlet problem (A0(u), ..., Am−1(u)) →
([

∂m−1u
∂nm−1

]
, ..., [u]

)

where u ∈ K. Let ū defined by :

ū(x) =

m−1∑

i=0

∫

σ
λi(y)Ai,y(E(x− y))dσ(y)

=
m−1∑

i=0

∫

∂ω̃
λ̃i(y)Ai,y(E(x− y))dσ(y)

where λi ∈ H
1/2+i
00 (σ) and λ̃i ∈ H1/2+i(σ̃) are the following extensions

λ̃i =

{
λi, on σ

0, on σ̃\σ ∀i ∈ [[0,m− 1]]

Let us show that ∆mū = 0 on Λ. For y ∈ σ, the functions Ai,y(E(.− y)) are C∞(Λ). Moreover

∆m
x Ai,y(E(x− y)) = Ai,y(∆

m(E(x− y))) = 0

By using the regularity of the functions Ai,yE(. − y) and the fact that their m-th Laplacian is null and
so uniformly bounded with respect to x, we can switch the integral symbol and the ∆m operator, which
leads to :

∆mū(x) = 0, ∀x ∈ Λ

Thanks to a Taylor expansion of E(.− y) at point x ∈ Λ for |x| → ∞, and by using the Ai(u) expressions
for a straight crack (Theorem 1.1) and Lemma 9.5 we have ū(x) = O

(
|x|m−2log(|x|)

)
. We deduce that

ū

(1+r2)
m
2 log(2+r2)

∈ L2(Λ). Similarly, by k ∈ [[1,m]] derivations of ū, we get that ∇kū

(1+r2)
m−k

2 log(2+r2)
∈ L2(Λ).

We conclude that ū ∈ Wm(Λ). By considering ū as an element of Wm(Λ)/P1 we get ū ∈ K. Thanks to
Lemma 9.10, by considering the definition of ω̃ and the definitions of λ̃i, we have

∂m−1−iū

∂nm−1−i

±

(x) =
±(−1)m+1

2
λi(x) +

m−1∑

j=0

∫

σ
λj(y)

∂m−1−i

∂nm−1−i
(Aj,y(E(x− y)) dσy, ∀x ∈ σ ∀i ∈ [[0,m− 1]]

We deduce the jump relations across σ :

λi = (−1)m+1

[
∂m−1−iū

∂nm−1−i

]
, for i ∈ [[0,m− 1]]
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By setting λi = (−1)m+1
[
∂m−1−iR
∂nm−1−i

]
, as J1 is an isomorphism we get ū = R which ends the proof of points

2 and 3.

Fourth point

By applying the Ai,x operator to ū for i ∈ [[0,m − 1]], by doing x → σ, and thanks to Lemma 9.5
we get

Ai,xAj,y(E(x− y)) = O

(
1

|x− y|2+i+j

)

where i, j ≥ m. By using the regularity of such potentials across σ, (see Lemma 9.10), we get the m
boundary integral equations which define J−1 :

gi(x) =
m−1∑

j=0

∮

σ
λj(y)Ai,xAj,y(E(x− y))dσy, ∀i ∈ [[0,m− 1]] (9.9)

where
∮

stands for the main Cauchy value.

Last point

In the straight crack case σ = {(s, 0),−1 < s < 1}, by setting x = (s, 0) and y = (t, 0) and by using
the expression of operators Ai for a straight crack (Theorem 1.1) and Lemma 9.5, we have :

Ai,xAj,y(E(x− y)) =
ai,j

(s− t)2+i+j
(9.10)

where aij are some constants. (9.9) rewrites as :

gi(s) =

m−1∑

j=0

aij

∮ 1

−1

λj(t)

(s− t)2+i+j
, pour i ∈ [[0,m− 1]] (9.11)

We set

fj(s) =
1

π

∫ 1

−1

λj(t)

s− t
dt, for − 1 < s < 1 and j ∈ [[0,m− 1]]

By derivation of fj we show for n ≥ 0 that

dnfj
dsn

=
(−1)nn!

π

∫ 1

−1

λj(t)

(s− t)n+1
dt

By denoting
dnfj
dsn = f

(n)
j , (9.11) rewrites as :

gi(s) =
m−1∑

j=0

aij(−1)i+j+1π

(i+ j + 1)!
f
(i+j+1)
j (s)

=

m−1∑

j=0

bijf
(i+j+1)
j (s) for i ∈ [[0,m− 1]]

(9.12)

where we set

bij =
aij(−1)i+j+1π

(i+ j + 1)!
(9.13)
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We rewrite (9.12) with the expressions of the gi given at the fifth point of the theorem :

(S)





V = b0,0f
(1)
0 + b0,1f

(2)
1 + ... +b0,m−1f

(m)
m−1

0 = b1,0f
(2)
0 + b1,1f

(3)
1 + ... +b1,m−1f

(m+1)
m−1

...
...

0 = bm−1,0f
(m)
0 + bm−1,1f

(m+1)
1 + ... +bm−1,m−1f

(2m−1)
m−1

(9.14)

To solve (S), we integrate i times the i-th row by taking as constants of integration 0 for the first i − 2

integrations and
V bi,0
b0,0

for the i− 1-th. The last constant is set to 0. In the sequel we will check that the

constant b0,0 is not null. The system (S) becomes :

(S ′)





V s = b0,0f0 + b0,1f
(1)
1 + ... +b0,m−1f

(m−1)
m−1

V b1,0s

b0,0
= b1,0f0 + b1,mf

(1)
1 + ... +b1,m−1f

(m−1)
m−1

...
...

V b2m−1,ms

b0,0
= bm−1,0f0 + bm−1,1f

(1)
1 + ... +bm−1,m−1f

(m−1)
m−1

(9.15)

The unknowns of (S ′) are the f
(i)
i for i ∈ [[0,m− 1]]. A trivial solution is




f0 =

V s

b0,0

fi = 0, for i ∈ [[1,m− 1]]

We get m uncoupled boundary integral equations. To solve the first one, we use [11] and we get λm(s) =
V
b0,0

√
1− s2 for −1 < s < 1. For more details we refer the reader to [9]. The other equations have the

trivial solution λi = 0 for i ∈ [[1,m− 1]]. To sump up the λi are given by :




λ0 =

V

b0,0

√
1− s2, − 1 < s < 1

λi = 0, for − 1 < s < 1 and i ∈ [[1,m− 1]]

We check that λi ∈ H
1/2+i
00 (σ) and by using that J is injective, this solution is unique. From (9.13), we

have b0,0 = −πa0,0 and a0,0 is given by (see (9.10)) :

A0,xA0,y(E(x− y)) =
a0,0

(x1 − y1)2
, for x, y ∈ σ

From Remark 1.2, we can explicit the operator A0 and we get

(−1)m
∂2m

∂x2m2
E(x− y) =

am,m

(x1 − y1)2
, for x, y ∈ σ (9.16)

We show (see Lemma 9.9 with n = m− 1) that

∂2m

∂x2m2

(
|x|2(m−1)log(|x|2)

)
|x2=0

=
2(2m− 1)!

x21
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Therefore, from (2.2) and (9.16) we deduce

a0,0 =
(−1)m+1(2m− 1)!

22m−1π((m− 1)!)2
(9.17)

The expressions of b0,0 and λ0 are

b0,0 =
(−1)m(2m− 1)

22m−1
Cm−1
2(m−1)

λ0(s) =
(−1)m22m−1

(2m− 1)Cm−1
2(m−1)

V
√
1− s2

which ends the proof of the last point and of this theorem.

Lemme 9.7. Let R(x) the solution of the problem (9.3).
For m ≥ 1, by using the convention [[0,−1]] = ∅, we have the following estimations for |x| → ∞ and ǫ→ 0
:

|∇kR(x)| ≤ C|x|m−2−klog(|x|), k ∈ [[0,m− 2]]

|∇m−1R(x)| ≤ C

|x|

|∇mR(x)| ≤ C

|x|2∥∥∥∇kR
(x
ǫ

)∥∥∥
0,Ωǫ

= O
(
−ǫ−(m−2−k)log(ǫ)

)
, for k ∈ [[0,m− 2]]

∥∥∥∇m−1R
(x
ǫ

)∥∥∥
0,Ωǫ

= O
(
ǫ
√

−log(ǫ)
)

∥∥∥∇mR
(x
ǫ

)∥∥∥
0,Ωǫ

= O (ǫ)

Proof. From Theorem 9.6, R(x) writes

R(x) =
m−1∑

i=0

∫

σ
λi(y)Ai,y(E(x− y))dσy (9.18)

By using Theorem 1.1, the Ai,y(E(x− y)) writes as

Ai,y(E(x− y)) =
m−2∑

j=0

ϕi
j(y)|x− y|m−2−jlog(|x− y|) + ϕi

m−1(y)

|x− y|

Thanks to a Taylor expansion of order 1 at x for |x| −→ ∞ and to Lemma 9.5 we have

Ai,y(E(x− y)) = O
(
|x|m−2log(|x|)

)

By differentiating k times (9.18) and by using a Taylor expansion and Lemma 9.5 again we get the
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asymptotic behaviour of ∇kR for k ∈ [[0,m]]. Let r2 > 0 such that Ω ⊂ Br2 for 0 ≤ k ≤ m− 2 we have :

∥∥∥∇kR
(x
ǫ

)∥∥∥
2

0,Ωǫ

=

∫

Ωǫ

∥∥∥∇kR
(x
ǫ

)∥∥∥
2
dx = ǫ2

∫

1
ǫ
Ω\σ

∥∥∥∇kR(y)
∥∥∥
2
dy

= ǫ2
∫

Br\σ

∥∥∥∇kR(y)
∥∥∥
2
dy + ǫ2

∫

Ω
ǫ
\Br

∥∥∥∇kR(y)
∥∥∥
2
dy

≤ ǫ2

(
C +

∫
Br2
ǫ

\Br

∥∥∥∇kR(y)
∥∥∥
2
dy

)

≤ ǫ2

(
C +

∫ r2/ǫ

2
r2(m−2−k)log(r)2rdr

)

≤ ǫ2

(
C +

1

2(m− 1− k)

[
r2(m−1−k)

(
log(r)2 − 1

2(m− 1− k)
log(r) +

1

(2(m− 1))2

)]r2/ǫ

2

)

≤ Cǫ−2(m−2−k)log(ǫ)2

which shows the first estimation,

∥∥∥∇m−1R
(x
ǫ

)∥∥∥
2

0,Ωǫ

=

∫

Ωǫ

∥∥∥∇m−1R
(x
ǫ

)∥∥∥
2
dx = ǫ2

∫

1
ǫ
Ω\σ

∥∥∇m−1R(y)
∥∥2 dy

≤ ǫ2

(∫

Br\σ

∥∥∇m−1R(y)
∥∥2 dy +

∫

1
ǫ
Br2\Br

∥∥∇m−1R(y)
∥∥2 dy

)

≤ Cǫ2 + Cǫ2
∫ r2/ǫ

2

1

r2
rdr

= Cǫ2 + Cǫ2 [log(r)]
r2
ǫ
2

≤ −Cǫ2log(ǫ)

and the second estimation is proved.

∥∥∥∇mR
(x
ǫ

)∥∥∥
2

0,Ωǫ

=

∫

Ωǫ

∥∥∥∇mR
(x
ǫ

)∥∥∥
2
dx = ǫ2

∫

1
ǫ
Ω\σ

‖∇mR(y)‖2 dy

≤ ǫ2

(∫

Br\σ
‖∇mR(y)‖2 dy +

∫

1
ǫ
Br2\Br

‖∇mR(y)‖2 dy
)

≤ Cǫ2 + Cǫ2
∫ r2/ǫ

2

1

r4
rdr

= Cǫ2 + Cǫ2
[−2

r2

] r2
ǫ

2

≤ Cǫ2

which ends the proof.

Lemme 9.8. Let wǫ the solution of (Qc
ǫ) given in (5.1) for m ≥ 1, and R the solution of (Rext) given in

(5.2), we have the following asymptotic expansion

wǫ = ǫmR
(x
ǫ

)
+ eǫ (9.19)
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with
‖eǫ‖m,Ωǫ = O(φm(ǫ))

|wǫ|k,Ωǫ = O(−ǫ2log(ǫ)) ∀k ∈ [[0,m− 2]]

|wǫ|m−1,Ωǫ = O(ǫ2
√

−log(ǫ))
|wǫ|m,Ωǫ = O(ǫ)

where

φm(ǫ) =

{ −ǫ2log(ǫ) for m ≥ 2

ǫ2
√
−log(ǫ) for m = 1

Proof. eǫ is defined by :

(Eǫ)





(−1)m∆meǫ + eǫ = −ǫmR
(x
ǫ

)
, in Ωǫ

A0(eǫ) = ϕ0(x) = O(|x|), on σǫ

Ai(eǫ) = −Ai(v0)−Bi, on σǫ for i ∈ [[1,m− 1]]

Ai(eǫ) = ψǫ
i (x) = O

(
ǫ2
)

on Γ for i ∈ [|0,m− 1]]

(9.20)

where ϕ0(x) = −A0(v0)(x) + A0(v0)(0) = O(|x|) (see (4.1a)), ψǫ
i (x) = −ǫmA0

(
R
(
x
ǫ

))
, Ai(v0)(x) = O(1)

on σǫ and Bi is defined in (3.4).

Proof of the estimation ψǫ
i (x) = O

(
ǫ2
)

By using Theorem 1.1, the Aj(u) for j ∈ [[0,m− 1]] writes as

Aj,y(u) =
∑

m≤|p|≤j+m

ϕj
p(y)

∂|p|u

∂yp
(9.21)

From (9.21) and thanks to Lemma 9.5 for x ∈ Γ and y ∈ σ we get

Ai,xAj,y

(
E
(x
ǫ
− y
))

=
∑

m≤|p|≤i+m
m≤|q|≤j+m

ϕi
p(x)ϕ

j
q(y)

∂|p|+|q|

∂xp∂xq

(
E
(x
ǫ
− y
))

=
∑

m≤|p|≤i+m
m≤|q|≤j+m

ϕi
p(x)ϕ

j
q(y)

1

ǫ|p|
∂|p|+|q|E

∂xp∂xq

(x
ǫ
− y
)

=
∑

m≤|p|≤i+m
m≤|q|≤j+m

ϕi
p(x)ϕ

j
q(y)

1

ǫ|p|
Gp+q

(x
ǫ
− y
)

=
∑

m≤|p|≤i+m
m≤|q|≤j+m

ϕi
p(x)ϕ

j
q(y)

1

ǫ|p|
ǫ|p|+|q|−2m+2Gp+q (x− ǫy)

=
∑

m≤|p|≤i+m
m≤|q|≤j+m

ϕi
p(x)ϕ

j
q(y)ǫ

|q|−2m+2Gp+q (x− ǫy)

= O
(
ǫ2−m

)

where Gk is an homogeneous function of degree 2(m − 1) − |k| and by using that Gp+q (x− ǫy) = O (1)
when ǫ→ 0 for x, y ∈ Γ.
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Splitting of ‖eǫ‖m,Ωǫ

We split eǫ into the sum eǫ = e1ǫ + e2ǫ with e1ǫ ∈ Hm(Ωǫ)/Pm−1 solution of the following problem

(E1
ǫ )





(−1)m∆me1ǫ = 0, in Ωǫ

A0(e
1
ǫ ) = ϕ0(x) = O(|x|), on σǫ

Ai(e
1
ǫ ) = −Ai(v0)−Bi, on σǫ, for i ∈ [[1,m− 1]]

Ai(e
1
ǫ ) = 0 on Γ, for i ∈ [[1,m− 1]]

and e2ǫ ∈ Hm(Ωǫ) solution of the problem :

(E2
ǫ )





(−1)m∆me2ǫ + e2ǫ = −e1ǫ − ǫmR
(x
ǫ

)
, in Ωǫ

Ai(e
2
ǫ ) = 0, on σǫ, for i ∈ [[0,m− 1]]

Ai(e
2
ǫ ) = ψǫ

i (x), on Γ

Estimation of ‖e1ǫ‖Hm(Ωǫ)/P1

The variational formulation of (E1
ǫ ) is : find e1ǫ ∈ Hm(Ωǫ)/Pm−1 such that

bǫ(e
1
ǫ , v) = −

∫

σǫ

ϕ0

[
∂m−1v

∂nm−1

]
+

m−1∑

k=1

∫

σǫ

(Ak(v0) +Bk)

[
∂m−1−kv

∂nm−1−k

]
, ∀v ∈ Hm(Ωǫ)/Pm−1

where

bǫ(u, v) =
m∑

k=0

Ck
m

∫

Ωǫ

∂mu

∂xk1∂x
m−k
2

∂mv

∂xk1∂x
m−k
2

We take as function test v = e1ǫ and we set for k ∈ [[1,m− 1]]

Jk =

∫

σǫ

(Ak(v0) +Bk)

[
∂m−1−ke1ǫ
∂nm−1−k

]

and

J0 =

∫

σǫ

ϕ0

[
∂m−1e1ǫ
∂nm−1

]

By using Lemma 9.3, the fact that bǫ(u, v) is coercive and the Deny-Lions inequality we get

‖e1ǫ‖2Hm(Ωǫ)/Pm−1
≤ C|e1ǫ |m,Ωǫ ≤

m−1∑

k=0

Jk (9.22)

Let k ∈ [[1,m− 1]], thanks to a change of variable, Lemma 9.3, Lemma 4.1 and a change of variable again
we have

Jk = ǫ

∫

σ
(Ak(v0)(ǫX) +Bk(ǫX))

[
∂m−1−ke1ǫ (ǫX)

∂nm−1−k

]
dσ

≤ Cǫ1−(m−1−k)|e1ǫ (ǫX)|m,Br\σ

≤ Cǫk+1|e1ǫ |m,Ωǫ

Since k ≥ 1 , we deduce that
Jk ≤ Cǫ2|e1ǫ |m,Ωǫ (9.23)
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Similarly by using the estimation ϕ0(ǫX) = O(ǫ), we have

J0 = ǫ

∫

σ
ϕ0(ǫX)

[
∂m−1e1ǫ
∂nm−1

]

≤ Cǫ‖ϕ0(ǫX)‖
H

1/2
00 (σ)′

ǫ−(m−1)|e1ǫ (ǫX)|m,Br\σ

≤ Cǫ2−(m−1)|e1ǫ (ǫX)|m,Br\σ

≤ Cǫ2|e1ǫ |m,Ωǫ

(9.24)

From (9.22) and by using (9.23) and (9.24), we get

‖e1ǫ‖Hm(Ωǫ)/Pm−1
≤ Cǫ2 (9.25)

Estimation of ‖e2ǫ‖m,Ωǫ

The variational formulation of (E2
ǫ ) is : find e2ǫ ∈ Hm(Ωǫ) such that

aǫ(e
2
ǫ , v) =

∫

Ωǫ

(
−ǫmR

(x
ǫ

)
− e1ǫ

)
v +

m−1∑

i=0

∫

Γ
ψǫ
i

∂m−1−iv

∂nm−1−i
∀v ∈ Hm(Ωǫ)

We take as test function v = e2ǫ and we set

Kǫ = −
∫

Ωǫ

(
ǫmR

(x
ǫ

)
+ e1ǫ

)
e2ǫ Lǫ =

m−1∑

i=0

∫

Γ
ψǫ
i

∂m−1−ie2ǫ
∂nm−1−i

By using the definition of aǫ(u, v) (1.4), we deduce that

‖e2ǫ‖2m,Ωǫ
= Kǫ + Lǫ (9.26)

Lemma 9.7 and the estimation ‖e1ǫ‖Hm(Ωǫ)/Pm−1
= O(ǫ2) give

Kǫ ≤ Cφm(ǫ)‖e2ǫ‖0,Ωǫ (9.27)

Thanks to the estimation ψǫ
i (x) = O(ǫ2) and to the trace Theorem on Ω\B, we get

Lǫ ≤ Cǫ2‖e2ǫ‖m,Ω\B ≤ Cǫ2‖e2ǫ‖m,Ωǫ ≤ Cǫ2

From this last inequality (9.26) and (9.27) we have

‖e2ǫ‖m,Ωǫ ≤ Cφm(ǫ) (9.28)

By using (9.25) and (9.28) we get the first estimation :

‖eǫ‖m,Ωǫ ≤ ‖e1ǫ‖Hm(Ωǫ)/Pm−1
+ ‖e2ǫ‖m,Ωǫ

≤ Cφm(ǫ)

Finally, by differentiating m times (9.19) and by using Lemma 9.7 we get the second estimation :

|wǫ|m,Ωǫ ≤
∥∥∥∇mR

(x
ǫ

)∥∥∥
0,Ωǫ

+ |eǫ|m,Ωǫ

≤ Cǫ
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Lemme 9.9. We have the following equality 1 :

∂2n+2

∂x2n+2
2

(
|x|2nlog(|x|2)

)
|x2=0

=
2(2n+ 1)!

x21
for x1 6= 0

Proof. We set fn(x1, x2) = (x21 + x22)
nlog(x21 + x22) and ψn(r) = rnlog(r).

Step 1 : Let us show by recurrence :

ψ(k)
n =

n!

(n− k)!
ψn−k + C(k, n)rn−k ∀0 ≤ k ≤ n

where C(k, n) is a constant which depends on k and n.
For k = 0 the property is right.
Let us assume that the property is right for 0 < k < n then we have :

ψ(k+1)
n =

n!

(n− k)!

[
(n− k)ψn−k−1 + rn−k−1

]
+ (n− k)C(k, n)rn−k−1

=
n!

(n− (k + 1))!
ψn−(k+1) +

[
n!

(n− k)!
+ (n− k)C(k, n)

]
rn−(k+1)

The property is 0 ≤ k ≤ n and the constants C(k, n) are defined by the recurrence relation :

C(0, n) = 0

C(k + 1, n) =
n!

(n− k)!
+ (n− k)C(k, n) ∀k < n

For k = n, we have ψ
(n)
n (r) = n!log(r)+C(n, n). By recurrence we have ψ

(n+1)
n (r) = n!

r , ψ
(n+2)
n (r) = − n!

r2
,

ψ
(n+3)
n (r) = 2 n!

r3
, ... i.e. :

ψ(n+k)
n =

(−1)k+1n!(k − 1)!

rk

To conclude, we have

ψ(k)
n (r) =





n!

(n− k)!
ψn−k + C(k, n)rn−k si k ≤ n

(−1)k−n−1n!(k − n− 1)!

rk−n
si k > n

(9.29)

with 



C(0, n) = 0

C(k + 1, n) =
n!

(n− k)!
+ (n− k)C(k, n) ∀k < n

Step 2 : We set f(x) = ϕ
(
|x|2

2

)
, by recurrence we show :

∂kf

∂xk2
=

∑

0≤2i≤k

ai,kϕ
(k−i)

( |x|2
2

)
xk−2i
2 ∀k ≥ 0 (9.30)

1Thanks to Arthur Vavasseur for the proof of this Lemma
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For k = 0 : 0 ≤ 2i ≤ k ⇔ i = 0 and f(x) = ϕ(0)
(
|x|2

2

)
x02.

Let us suppose the equality right for k ∈ N, then at rank k + 1 we have

∂k+1f

∂xk+1
2

=
∑

0≤2i≤k

ai,k
∂

∂x2

[
ϕ(k−i)

( |x|2
2

)
xk−2i
2

]

=
∑

0≤2i≤k−1

ai,k

[
ϕ(k−i+1)

( |x|2
2

)
xk−2i+1
2 + ϕ(k−i)

( |x|2
2

)
(k − 2i)xk−2i−1

2

]

+ a k
2
,k

[
∂

∂x2

(
ϕ(k− k

2
)

( |x|2
2

)
x
k−2 k

2
2

)]
1{k∈2N}

=
∑

0≤2i≤k−1

ai,kϕ
(k−i+1)

( |x|2
2

)
xk+1−2i
2 +

∑

0≤2i≤k−1

aikϕ
(k−i)

( |x|2
2

)
(k − 2i)x

k+1−2(i+1)
2

+ a k
2
,k

[
ϕ( k

2
+1)

( |x|2
2

)
x2

]
1{k∈2N}

=
∑

0≤2i≤k−1

ai,kϕ
(k+1−i)

( |x|2
2

)
xk+1−2i
2 +

∑

2≤2i≤k+1

ai−1,kϕ
(k+1−i)

( |x|2
2

)
(k − 2i+ 2)xk+1−2i

2

+ a k
2
,k

[
ϕ(k+1− k

2
)

( |x|2
2

)
x2

]
1{k∈2N}

= a0,kϕ
(k+1)

( |x|2
2

)
xk+1
2 +

∑

2≤2i≤k−1

[ai,k + (k − 2i+ 2)ai−1,k]ϕ
(k+1−i)

( |x|2
2

)
xk+1−2i
2

+ aj(k)−1,k

[
ϕ(k+1−j(k))

( |x|2
2

)
x
k+1−2j(k)
2 (k − 2j(k) + 2)

]
+ a k

2
,k

[
ϕ(k+1− k

2
)

( |x|2
2

)
x2

]
1{k∈2N}

with j(k) = 1
2 {k, k + 1} ∩ 2N = ⌊k+1

2 ⌋. We set ai,k+1 =

{
a0,k = 1, if i = 0 by recurrence

ai,k + (k − 2i+ 2)ai−1,k if 2 ≤ 2i ≤ k − 1

We have :

∂k+1f

∂xk+1
2

=
∑

0≤2i≤k−1

ai,k+1ϕ
(k+1−i)

( |x|2
2

)
xk+1−2i
2

+ a⌊ k+1
2

⌋,kϕ
(k+1−⌊ k+1

2
⌋)

( |x|2
2

)
x
k+1−2⌊ k+1

2 ⌋
2

(
k − 2⌊k + 1

2
⌋+ 2

)

+ a k
2
,k

[
ϕ(k+1− k

2
)

( |x|2
2

)
x
k+1−2 k

2
2

]
1{k∈2N}





= g(x)

We discuss the two last terms with respect to the parity of k.

(i) If k ∈ 2N then ⌊k+1
2 ⌋ = k

2 and

g(x) = a k
2
−1,kϕ

k+1− k
2

( |x|2
2

)
x
k+1−2 k

2
2

(
k − 2

k

2
+ 2

)
+ a k

2
,kϕ

k+1− k
2

( |x|2
2

)
x
k+1−2 k

2
2

=
(
2a k

2
−1,k + a k

2
,k

)
ϕk+1− k

2

( |x|2
2

)
x
k+1−2 k

2
2

and {k, k + 1} ∩ 2N = k so with a k
2
,k+1 = 2a k

2
−1,k + a k

2
,k, we retrieve the equality at rank k + 1.
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(ii) If k ∈ 2N+ 1, ⌊k+1
2 ⌋ = k+1

2 and

g(x) = a k+1
2

−1,kϕ
k+1− k+1

2

( |x|2
2

)
x
k+1−2 k+1

2
2

(
k − 2

k + 1

2
+ 2

)

=
(
a k−1

2
,k + a k

2
,k

)
ϕk+1− k+1

2

( |x|2
2

)
x
k+1−2 k+1

2
2

and {k, k + 1}∩2N = k+1 so with a k+1
2

,k+1 = a k−1
2

,k, we retrieve the equality at rank k+1. Finally,

(9.30) is right and the ai,k are given by




a0,k = 1, ∀k ∈ N

ai,k+1 = ai,k + (k − 2i+ 2)ai−1,k, if 2 ≤ 2i ≤ k − 1

a k
2
,k+1 = a k

2
,k + 2a k

2
−1,k, if k ∈ 2N

a k+1
2

,k+1 = a k−1
2

,k if k ∈ 2N+ 1



 if k ≤ 2i ≤ k + 1

(9.31)

Step 3 We are going to use the two formula (9.29) and (9.31) by setting fn(x) = (x21+x
2
2)

nlog(x21+x
2
2) =

ϕn

(
|x|2

2

)
where ϕn(r) = ψn(2r) = (2r)nlog(2r). By using the two recurrence formula proved in the steps

1 and 2 we have :

(i) If k ≤ n

∂kfn

∂xk2
=

∑

0≤2i≤k

ai,kϕ
(k−i)
n

( |x|2
2

)
xk−2i
2

=
∑

0≤2i≤k

ai,k2
k−i

[
(k − i)!

(n− k + i)!
ϕn−k+i

( |x|2
2

)
+ C(k − i, n)|x|2(n−k+i)

]
xk−2i
2

with 0 ≤ k − i ≤ n. Particularly for x2 = 0 and x1 6= 0, the only non-zero term is obtained for
k = 2i :

∂kfn

∂xk2
= = a k

2
,k2

k
2

[
(k2 )!

(n− k
2 )!
ϕn− k

2

( |x|2
2

)
+ C(

k

2
, n)|x|2(n− k

2
)

]
1{k∈2N}

(ii) If n < k < 2n+ 2

∂kfn

∂xk2
=

∑

0≤2i≤k

ai,kϕ
(k−i)
n

( |x|2
2

)
xk−2i
2

=
∑

0≤2i≤k

ai,k2
k−i

[
(k − i)!

(n− k + i)!
ϕn−k+i

( |x|2
2

)
+ C(k − i, n)|x|2(n−k+i)

]
xk−2i
2 1{i≥k−n}

+
∑

0≤2i≤k

ai,k2
k−i (−1)k−i−n−1n!(k − i− n− 1)!

|x|2(k−i−n)
1{i<k−n}x

k−2i
2

with
(0 ≤ k − i < 2n+ 2) ∧ (k − i ≤ n) ⇐⇒ (i ≥ k − n)

and where we have used (9.29). Particularly for x2 = 0 and x1 6= 0 the only non-zero term is
obtained for k = 2i and in this case i ≤ k − n :

∂kfn

∂xk2
(x1, 0) = a k

2
,k2

k
2

[
(k2 )!

(n− k
2 )!
ϕn− k

2

( |x|2
2

)
+ C(

k

2
, n)|x|2(n− k

2
)

]
1{k∈2N}
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(iii) If k = 2n+ 2
∂2n+2fn

∂x2n+2
1

=
∑

0≤2i≤2n+2

ai,2n+2ϕ
(2n+2−i)
n

( |x|2
2

)
x2n+2−2i
2

=
∑

0≤i≤n+1

ai,2n+2ϕ
(2n+2−i)
n

( |x|2
2

)
x
2(n−i+1)
2

0 ≤ i ≤ n+ 1 so 2n− i+ 2 ≥ n+ 1 > n and from the recurrence formula (9.29) for k > n :

ϕ(2n+2−i)
n

( |x|2
2

)
=

22n+2−in!(n+ 1− i)!(−1)n+1−i

|x|2(n+2−i)

therefore
∂2n+2fn

∂x2n+2
1

=
∑

0≤i≤n+1

ai,2n+2
22n+2−in!(n+ 1− i)!(−1)n+1−i

|x|2(n+2−i)
x
2(n−i+1)
2

For x2 = 0 and x1 6= 0 the only-non zero term is obtained for i = n+ 1 :

∂2n+2fn

∂x2n+2
1

(x1, 0) =
2n+1n!an+1,2n+2

x21
(9.32)

Step 4 : We compute the coefficients ai,k defined by the recurrence formula (9.31). We conjecture
the following formula :

ai,k =
k!

2ii!(k − 2i)!
(9.33)

Let us prove this equality for (i, k) ∈
{
(i, k) ∈ N2, 2i ≤ k

}
. Let P(k) =

{
ai,k = k!

2ii!(k−2i)!
, ∀2i ≤ k

}
.

P(0) is easily checked.
Let us suppose P(k) and show P(k + 1). From (9.31) :

(i) for i = 0 we have a0,k+1 = 1 = (k+1)!
(k+1)!

(ii) for 2 ≤ 2i ≤ k − 1 we have :

ai,k+1 = ai,k + (k − 2i+ 2)ai−1,k =
k!

2ii!(k − 2i)!
+ (k − (2i− 2))

k!

2i−1(i− 1)!(k − (2i− 2))!

=
k!

2i−1(i− 1)!(k − 2i)!

(
1

2i
+

1

k − 2i+ 1

)

=
(k + 1)!

2ii!((k + 1)− 2i)!

(iii) for k ≤ 2i ≤ k + 1 we have :

(a) if k ∈ 2N :

a k
2
,k+1 = a k

2
,k + 2a k

2
−1,k =

k!

2
k
2
k
2 !0!

+ 2
k!

2
k
2
−1(k2 − 1)!2!

=
k!

2
k
2 (k2 − 1)!2!

(
2

k
+ 2

)

=
(k + 1)!

2
k
2
k
2 !
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(b) if k ∈ 2N+ 1 :

a k+1
2

,k+1 = a k−1
2

,k =
k!

2
k−1
2

(
k−1
2

)
!
(
k − 2k−1

2

)
!
=

k!

2
k−1
2

(
k−1
2

)
!
=
k + 1

2k+1
2

k!

2
k−1
2

(
k−1
2

)
!

=
(k + 1)!

2
k+1
2

(
k+1
2

)
!

Hence P(k + 1) is right and P(n) is right for all n ∈ N.
Now we come back to (9.32) and we apply (9.33) for (i, k) = (n+ 1, 2n+ 2) :

∂2n+2fn

∂x2n+2
1

(x1, 0) =
2n+1n!an+1,2n+2

x21
=

2(2n+ 1)!

x21

which ends the proof of this lemma.

Lemme 9.10. Let Ω a bounded domain of R2, f ∈ Hα(∂Ω) with α > 0, and let Vk(f) : Hα(∂Ω) →
Hα+2m−k(∂Ω) for k ∈ [[1, 2m]] the multi-layer potentials :

Vk(f) =





∫

∂Ω
f(y)

∂k−1(E(x− y))

∂nk−1
y

dσ(y) for 1 ≤ k ≤ m

∫

∂Ω
f(y)Ak−m−1,y(E(x− y))dσ(y) for m+ 1 ≤ k ≤ 2m

where E(x) is the fundamental solution of −∆m given in (2.2). By denoting

V −
k (f)(x) = Vk(f)(x) for x ∈ Ω

V +
k (f)(x) = Vk(f)(x) for x ∈ Ωc

and for x ∈ ∂Ω we set

V +
k (f)(x) = lim

x→y
x∈Ωc

V +
k (f)(y), V −

k (f)(x) = lim
x→y
x∈Ω

V −
k (f)(y)

We have the following jump relations across ∂Ω and for x ∈ ∂Ω :

(R1)

{
∂k

∂nkV
+
j (f)(x) = ∂k

∂nkV
−
j (f)(x) = ∂k

∂nkVj(f)(x), in Hα+2m−k−j(∂Ω) for k ∈ [[0,m− 1]] ∧ j 6= 2m− k
∂k

∂nkV
±
2m−k(f)(x) = ± (−1)m+1

2 f(x) + V2m−k(f), in Hα(∂Ω) for k ∈ [[0,m− 1]]

(R2)





AkV
±
j (f)(x) = AkVj(f)(x), dans Hα+m−k−j(∂Ω) for k ∈ [[0,m− 1]] ∧ j 6= m− k

AkV
±
m−k(f)(x) = ±(−1)m

2
f(x) +AkVm−k(f)(x), dans Hα(∂Ω) for k ∈ [[0,m− 1]]

where have denoted respectively in Hα+2m−k−j(∂Ω) and Hα+m−k−j(∂Ω) the following potentials (when
kernels are singular for x ∈ ∂Ω, these boundary integrals are defined in the sense of the main Cauchy value)
for k ∈ [[0,m− 1]] and j ∈ [[1, 2m]] :

∂k

∂nkx
Vj(f)(x) =





∫

∂Ω

∂k

∂nk
∂j−1

∂nj−1
y

(E(x− y))f(y)dσ(y) for 1 ≤ j ≤ m

∫

∂Ω

∂k

∂nkx
Aj−m−1,y(E(x− y))f(y)dσ(y) for m+ 1 ≤ j ≤ 2m
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and

AkVj(f)(x) =





∫

∂Ω
Ak,x

∂j−1

∂nj−1
y

(E(x− y))f(y)dσ(y) for 1 ≤ j ≤ m

∫

∂Ω
Ak,xAj−m−1,y(E(x− y))f(y)dσ(y) for m+ 1 ≤ j ≤ 2m

Proof. The proof of this lemma is in part heuristic and is inspired from [[7] pp 384-388]. We show the jump
properties for particular densities which are in the following space (the image of the Calderòn projector
associated to the operator ∆m) :

P =
{
(u|∂Ω, ∂nu|∂Ω, ..., ∂

m−1
n u|∂Ω, A0u|∂Ω, ..., Am−1u|∂Ω), u ∈ Hm(Ω) and ∆mu = 0

}

Moreover, we use in this proof the kernel expressions in the case of a straight manifold to discuss about
the singularity of the kernels. From Theorem 1.1 we have the following equality :

u(x) =

∫

Ω
δ(x− y)u

= −
∫

Ω
∆muE(x− y)dy +

m−1∑

i=0

∫

∂Ω

{
Ai,y(E(x− y))

∂m−1−iu(y)

∂nm−1−i
−Ai,y(u)

∂m−1−iE(x− y)

∂nm−1−i

}
dσ(y)

(9.34)
Let w ∈ H2m(Ω) such that ∆mw = 0 in Ω. Let Fk ∈ Hα+2m−k(∂Ω) for 1 ≤ k ≤ 2m such that





∆mw = 0, in Ω

Fk = −Am−k(w), on ∂Ω for 1 ≤ k ≤ m

F2m−k =
∂kw

∂nk
, on ∂Ω for 0 ≤ k ≤ m− 1

(9.35)

For x ∈ Ω, thanks to (9.34), we get

w(x) =
2m∑

i=1

V −
i (Fi)(x) (9.36)

First we extend the vectors fields ~n(x) and ~τ(x) in C∞ vectors fields on a neighbourhood of ∂Ω that

we denote respectively ñ(x) and τ̃(x). Thus we extend the operators f 7→ ∂2m−1−kf
∂n2m−1−k and f 7→ Ak(f) for

k ∈ [[m, 2m− 1]] by using the vectors fields ñ(x) and τ̃(x).

(i) Proof of the relations (R1)
Consider 0 ≤ k ≤ m− 1, from (9.36), we get

∂kw

∂ñk
= (−1)m

2m∑

i=1

∂k

∂ñk
V −
i (Fi)(x), x ∈ Ω

Letting x tend nontangentially to ∂Ω in (9.34), we have only half of the contribution of the Dirac
function δ(x− y) at y = x ∈ ∂Ω so

1

2

∂kw

∂nk
(x) = (−1)m

2m∑

i=1

∂k

∂nk
Vi(Fi)(x), x ∈ ∂Ω (9.37)
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Thanks to Lemma 9.5 and Theorem 1.1 we get the following singularities estimations in the case of
a straight manifold

for k + j < 2m
∂k

∂nk
V −
j (x) = O

(
|x− y|2m−1−(k+j)log(|x− y|

)

for k + j ≥ 2m
∂k

∂nk
V −
j (x) = O

(
1

|x− y|k+j+1−2m

)

We deduce that

(a) For k + j < 2m kernels are integrable for x ∈ ∂Ω and we can switch the integral and the limit
symbols

∂k

∂nk
V −
j (x) =

∂k

∂nk
Vj(x)

(b) For k + j > 2m thanks to [[7], Lemma 6.4], we get the same equality in the sense of the main
Cauchy value.

By using (9.35), (9.37) is only possible if





∂k

∂nk
V −
2m−k(F2m−k)(x) =

(−1)m

2
F2m−k(x) +

∂k

∂nk
V2m−k(F2m−k)(x)

∂k

∂nk
V −
j (x) =

∂k

∂nk
Vj(x), for 1 ≤ j ≤ 2m and j 6= 2m− k

For x ∈ BR\Ω, (9.36) is changed in

w(x) = −
2m∑

i=1

V +
i (Fi)(x) +G(x)

with G(x) defined similarly by using multi-layer potentials using the boundary ∂BR and regular in
a neighbourhood of ∂Ω. By the same reasoning we have





∂k

∂nk
V +
2m−k(F2m−k)(x) = −(−1)m

2
F2m−k(x) +

∂k

∂nk
V2m−k(F2m−k)(x)

∂k

∂nk
V +
j (x) =

∂k

∂nk
Vj(x), for 1 ≤ j ≤ 2m and j 6= 2m− k

which proves the relations (R1).

(ii) Proof of relations (R2)
Consider 0 ≤ k ≤ m− 1, similarly we get for x ∈ ∂Ω :

Akw(x)

2
= (−1)m

2m∑

i=1

AkVi(Fi)(x), x ∈ ∂Ω

And by the same reasoning used for (i), and by using (9.35), this equality is only possible if
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


AkV

−
m−k(Fm−k)(x) = −(−1)m

2
Fm−k(x) +AkVm−k(Fm−k)(x)

AkV
−
j (Fj)(x) = AkVj(Fj)(x), for 1 ≤ j ≤ 2m and j 6= m− k

By the same way we get




AkV

+
m−k(Fm−k)(x) =

(−1)m

2
Fm−k(x) +AkVm−k(Fm−k)(x)

AkV
+
j (Fj)(x) = AkVj(Fj)(x), for 1 ≤ j ≤ 2m and j 6= m− k

which ends the proof of the relations (R2) and the lemma’s one.

References

[1] R. A. Adams. Sobolev spaces. Pure and applied mathematics. Academic Press, New York, 1978.

[2] G. Allaire, F. Jouve, and N. Van Goethem. Damage and fracture evolution in brittle materials by
shape optimization methods. J. Comput. Phys., 230(12):5010–5044, June 2011.

[3] S. Amstutz, I. Horchani, and M. Masmoudi. Crack detection by the toplogical gradient method.
Control and Cybernetics, 34(1):81–101, 2005.

[4] S. Amstutz, A.A. Novotny, and N. Van Goethem. Topological sensitivity analysis for high order
elliptic operators. preprint, 2012.

[5] G. Aubert and A. Drogoul. Topological gradient for a fourth order operator used in image analysis
(to appear). Control, Optimization and Calculus of Variations.

[6] L. Jaafar Belaid, M. Jaoua, M. Masmoudi, and L. Siala. Application of the topological gradient to
image restoration and edge detection. Engineering Analysis with Boundary Elements, 32(11):891 –
899, 2008.

[7] G. Chen and J. Zhou. Boundary Element Methods with Applications to Nonlinear Problems. Artlantis
studies in Mathematics for Engineering and Science, 1992.

[8] A. Drogoul. Numerical analysis of the topological gradient method for fourth order models and
applications to the detection of fine structures in imaging (to appear). SIAM Journal on Imaging
Sciences (SIIMS).

[9] A. Drogoul. Topological gradient method applied to the detection of edges and fine structures in
imaging. Phd Thesis University of Nice Sophia Antipolis, 2014.

[10] A. Drogoul and G. Aubert. The topological gradient method for semi-linear problems and application
to edge detection and noise removal (submitted). Journal of Mathematical Imaging and Vision, 2014.

[11] P.A. Martin. Exact solution of a hypersingular integral equation. Journal of integral equations and
applications, 4(2):197–204, 1992.

[12] M. Masmoudi. The topological asymptotic. In Computational Methods for Control Applications,
volume 16 of GAKUTO Internat. Ser. Math. Appl., Tokyo, Japan, 2001.

35



[13] J-C. Nédélec. Acoustic and electromagnetic equations : integral representations for harmonic prob-
lems. Applied mathematical sciences. Springer, New York, 2001.

[14] L. Nirenberg. On elliptic partial differential equations. Annali della Scuola Normale Superiore di
Pisa - Classe di Scienze, 13(2):115–162, 1959.

[15] J. Sokolowski and A. Zochowski. On the topological derivative in shape optimization. SIAM J.
Control Optim., 37(4):1251–1272, April 1999.

36


