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Abstract

The topological gradient is defined as the leading term in the asymptotic expansion of a shape
functional with respect to the size of a local perturbation. Introduced by Sokolowski [15] and Masmoudi
[12], this notion has been intensively developed in recent years. There are many applications such as in
mechanics of structures [3], in damage evolution modelling [2] and in image processing [6, 10, 5, 8]. This
paper deals with the topological sensitivity of a cost function of the form j(€2) = [, [V™uq|* where ug
solves a PDE of order 2m defined from the m-th Laplacian with Neumann boundary conditions. We
place us in 2D and we consider a domain perturbed by a small crack.

1 Introduction

The goal of this paper is to generalise the topological gradient method studied and applied in segmentation
of images [3, 6, 10, 5] to a more general and higher order problem adapted to object detection. Objects
can of Lebesgue measure different to zero. In this case, we are interested in the detection of the boundary
of the object commonly called edge. The discontinuity associated to an edge is a discontinuity with a
jump of intensity across the structure. Objects can also be of zero Lebesgue measure (filaments, points in
2D) and in this case we want to detect the whole object. Such object is called fine structure and there is
no jump of intensity across the structure (see Figure 1).

In [6, 10], the topological gradient has been applied to a problem of edge detection. It is well known that
the detection of edges by using differential operators needs first order derivatives. It is no more true for fine
structures which are discontinuities without jump of intensity across the structure. In [5, 8] authors justify
theoretically and verify numerically that the detection of fine structures by using differential operators
need second order derivatives. Hence they introduce a cost function involving second order derivatives of
a regularization of the data solution of a fourth order PDE. In this paper we wonder what does happen
for higher order problems with respect to these two kinds of structures ?

In 1D a contour can be modelled by the Heaviside function H. We can approximate H by a regular function

H, € CP(R) which writes Hy,(z) = ¢ (%) Liyj<y + Loy Where o(x) =377 apr?F 1 with (k) <<y such
that ¢(1) = 1 and ¢¥)(1) = 0 for k € [1,p]. Similarly, in 1D a fine structure can be modelled by f(z) =0
for  # 0 and f(0) = 1. It can be approximated by f,(z) = e=@*/m7 . On Table 1, we study the m-th
derivatives of the functions f, and H, with m € [0,p] for p = 4 and n = 1. We see that derivatives
of odd order penalize more edges than fine structures, while derivatives of even orders are extremal on
fine structures and null on edges. We can generalize this reasoning in 2D by working on transverse cut.
Keeping these considerations in mind, in this paper we propose to develop a topological gradient method
based on m-th derivatives of a regularisation of the data. From a numerical point of view the high order of
the PDE may seem a source of instabilities. However, the generalisation may be interesting theoretically
to stand back from the two cases [m = 1] [3] and [m = 2] [5].
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Figure 1: Difference between an edge and a fine structure

Roughly speaking, the topological gradient is performed as follows : let  a regular domain of R?, j(Q) =
J(Q,uq) be a shape functional with ugq solution of a PDE defined on €2 and J(f2,.) a cost function
depending on Q. For small € > 0, let Q. = Q\{zo + ew} where 7y €  and w is a given subset of R?
(typically a crack or a ball). The topological sensitivity of j(€) is given by the leading term in the difference
7(Qe) — j(©2) and generally it takes the form : j(Q) — 5(Q) = v(€)Z(xg,w) + 0 (¢(€)) with ¢ : Rt — R
such as |¢| \( 0 and Z(xp,w) is called the topological gradient associated to the cost function j(€2). As
said before, in [3, 5] authors have studied the topological sensitivity of a shape functional of the form
J(Q) = J(Quq) = fQ F(uq, Vug, V?uq) where ugq is solution of Aug + ug = f where A denotes either
the Laplacian or the bilaplacian with Neumann homogeneous boundary conditions and f stands for the
data. In this paper we consider a general cost function full filling Hypotheses 1 and defined from the
p-th derivatives (0 < p < m) of 2m order PDE solution. In particular, we apply our general study to
quadratic cost functions of the form J,(Q,u) = [, |VPu|* with 1 < p < m. Let notice that the PDE
studied is (—1)""A™uq + ug = f with Neumann homogeneous boundary conditions and it is associated
to the minimization problem mingm q) In(Q,u) + ||[u— f ”%Q In image processing, f is generally the
observed image eventually degraded by Gaussian noise and ug can be seen as a regularization of f. A
high order problem has already been studied in [4] but with homogeneous Dirichlet conditions of 992 and
the result given is known in function of polarization tensors which are not known in general and hard
to evaluate. Here, we consider a cracked domain Q. = Q\{zo + eo(7)}, where o(i) is a straight crack
centered, the origin and zg € {2 and € small enough to avoid a possible contact between the perturbation
an the boundary of Q. From these notations we have Qg = 2.

The paper reads as follows. First we determine the Euler equations associated to the minimization in
H™(Q) of the energy function Jo(u) = [, |V™ul?>. Then we state the problem and we compute the
topological gradient associated to a shape functional full filling Hypotheses 1 an defined from ug, the
solution of a 2m order PDE defined on €).. The final topological gradient expression is explicit in function
of m, ug and an adjoint state v defined on the unperturbed domain 2. For numerical illustrations and
applications in imaging we refer the reader to |6, 10] for m = 1 and to [8] for m = 2. In the sequel
we assume that the center of the perturbation is xp = 0 and that the abscissa axe is given by the crack



direction (we place us in the local coordinate system to the crack).
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Table 1: 1D study of the m-th derivatives of a contour and a filament regularizations for m € [0, 4]

We consider the function Jgo : H™(2) — R :

2
/ 0"u
Q=0 8x’f6x
= [ v
Qe

3



Let ug € H(Q) defined by
ug = argmin Jo(u) + ||lu — f”%’ﬂ (1.2)
ueH ()
where H () is the Hilbert space H(Q) = {u € L?(Q), V™u € L*()}. Gagliardo-Nirenberg inequalities
(see [1] pp 75-79) lead to H(Q2) = H™(Q).
We define the bilinear form bo(u,v) = $DJg(u).v : H™(2) x H™(2) — R defined by :

om om
(u,v) / > Cnoy Zz—k K Trjn—k: (1.3)
Qi O0r{0ry ™" Orjox)

To shorten notations we denote ue = ug,. We define on H™(§2) the bilinear and linear forms a.(u, v) and

le(v) :
ac(u,v) = bq, (u,v) +/ uv
2 (1.4)
le(v) = fo
Qe
We introduce the problem (P¢) and its solution u. € H™ () :
e (Ue, ) =l(v) Yve H"(Q), (Pe) (1.5)

In the sequel we denote by uy; = a ka l for u € H™(Q¢) and k,l € N such that k +1 < m and we

show that the Euler equations associated to the minimization problem (1.2) in H™(2) involve the m-th
iterate of the Laplace operator A™ and m boundary operators that we explicit.

Théoréme 1.1. Let bg(u,v) the bilinear form on H™(Q) defined by (1.3), we have

amlz

boa(u, /Amuv—i—Z/ w5 do
o0

where A; : H™(Q) — H~=Y2(0Q) fori € [0,m —1] is the differential operator of order i +m defined by

m k—l 8p q
q P q k—j—p+q, m—k—q+p )
ZC Z (=1)Cy_ —j— 1O k§rpta (”1 N9 Uk+j,m—k
=0 ]:0 0<p<k—j—1
0<q<m=k
p+q=i—j
i—(k+1
Z im0 Dl
m k—Il— 187_2 (k+1) ny Ny Uk,m—k+l
+

with the convention Z/Z:lo = 0. In the case of a straight crack o = {(s,0),—1 < s < 1}, we have :
(i) Fori € [0,[™5+]]

i 2k—1 2i
_ i—k 2k k+i—j i—k k
Ag; = E (- C E Czk —j— 1Cm ok | Y2(k+i),m—2k + E Crn U2k, m—2k+2i
k=0 j=0 k=0

(ii) Fori€ [0, 252]] :

i 2%—1 2i+1
— i—k+12k+1 k+i—j+1 ~i—k k
Agir1 = E (-1) Cm 5 Cor—i” " O okt | U2(ktit1)m—(2k+1) — E C W2k m—2k+2i+1
k=0 =0 k=0



Remarque 1.2. For m = 1, with these statements Ay = 5% = 3%2.

For m = 2, we have (see the Kirchhoff thin plate equation [7, 5] with the Poisson ration v =0), Ay = Bs
and A1 = —Bl.

In the case of the straight crack o = {(s,0),—1 < s < 1}, for m > 1, we have Ay = gl—mm = %,
are homogeneous differential operators of order m + i.

and Az

Proof. Keeping the same notations of the statements of the theorem, bq(u, v) rewrites as :

ba(u,v) = chk@/ Uk, m—kVk;m—k (1.6)
— Q

k=0
Let k£ > 1, by integrating k times with respect to x; we get :

k-1

; k
/Uk,m—kvk,m—kzg / (—1)]/ N1 Ukt jm—kVk—jm—k + (—1) /u2k,m—kU0,m—k
0 = Jon 00

Q

Then by assuming that £ < m — 1, we integrate m — k times with respect to xs :

m—k—1

/Qu2kz,m—kv(),m—k: Z (—1)l/

—k
MUk, m—kV0,m—k—1—1 + (—=1)" / Uk 2(m—k)V
— o0 Q

Hence for k € [0,m] by using the convention Y 5" = 0, we have :

k-1 m—k—1
/ Ukm—kVk,m—k = Z/ (=1)/ / MUk jm—k Vk—jm—k + (—1)F Z (—1)1/ N2Uk m—kVO,m—k—1—1
Q = o G =0 oQ
+(_1)m/ﬂu2k,2(mk)v
(1.7)
We set 7 = i+ such that (7, 7) be an orthonormal basis. We express the ak,:rl“l in function of the 82“ -
Ok ozl ortonJ
(where i + j = k +1). The relations between 97, On, dx1 and Jxo are :
0 0 0
e
o0x1 Lon 2or
0 0 n 0
— = o—— 4y —
Oxo 2on Yor
Let p2,q2 € N, we have :
o 0 p2 o o q2
Upg,qa = <n18n - n28¢> <n28n + n18T> v
OP21a24,
= _1\p(P (9 ,,P2—Pt+q,q2+P—q
- Z (=1) Cp,Cg,m & OrP+a9np2+az—p—q
0<p<p2
0<q<qg
By using the integration by parts formula on a closed curve ( [, sl %da =—/ 90 % gdo), we get :

ap2+Q2 —P—4y
PE—— g
87‘[}32 +q2—p—q

opta
_ § : D (g +q p2—p+q+l_q2+p—q
/ N1Upy,q1 Vpa,ge = (_1)%0;020(12(_1)% 9rp+a (nl ny Upy,q1
oQ 0<p<p2 o0

0<g<gqg

(1.8)



Similarly

opta OP2Ta2—P—qy,

_ p2—p+q p+q2 q+1

NoU v = g 1nec? ca (n U ) ——————do 1.9
/8Q P1,91 ¥P2,92 ( ) P2 —q2 an-l—q P1,91 Bnl'f’?““D_P_q ( )

0<p<p2
0<q<qy

From (1.8) withpy =k+j,q =m—k,po=k—j—1and g2 = m — k we get :

/ N1Uk+j,m—kVk—j—1,m—k
oN

i 1—p—
- Z (—1)7C? ce orva (n]f_j_p+qn;n_k_q+puk+- k) gmTIT TPy do (1.10)
= _iq j,m— i 1—p—
R oI
0<g<m—k

From (1.9) with py =2k, n =m —k+1,po =0and gg =m — k — 1 — 1 we have :

_ 1404 91 q, m—k—l—q amikililiqu
. n2U2k,m—k+1Y0,m—k—1—-1 —0<q<mzkll(_ ) m—k—I—1 67"1 ning U2k, m—k+1 W o
o (1.11)
By using (1.7), (1.10) and (1.11), we deduce :
/uk,mkvk,mk
Q
S J qP ok O (ke j—pta, m—k—q+p am_j_l_p_qu
jzo( ) 0<p;j1( ) k—j—1"m—k 50 anJrq ny Us Uk+j,m—k onm—Ji—1-p—q d
0<q<m—k
km*kfl ; Z o4 kel gm—k—l—1—q,,
+(-1) (-1) (_1)q07(171—k:—l—1/ o (s g ) g do
1=0 0<g<m—k—I—1 o0 0T on™ !
+(_1)m/9u2k,2(mk)v
(1.12)
From (1.6) and (1.12), we deduce the integration by parts formula of bq :
g Y
m
bo(u, mzcm/u2k2m k)Y
k=0
P - J ald q OPre e jprq m—k—gtp gm-ImiTray
—I—ZCm : (—1) Z (—1) Ck’*j 1Cm k 50 87-P+q (nl n2 Uk+j7m_k) de
k=0 7=0 00<<p§<k J kl
g<m
km*kfl . o4 e gm—k—l—1—q,,
+(-1) L) D W G Ve A 1/ g (T T 1g0
=0 0<qg<m—k—I-1

We recognize the m-th Laplacian expression and we can rewrite (1.13) :

2m—1 82m11

=1



with A; : H™(Q) — H~"Y2(9Q) for i € [0,m — 1], the differential operator of order i +m defined by :

- k - i P q orta k—j—p+q, m—k—q+p
. — —1)J —1)¢ —J- —k— .
Ai(u) = E Cm Q) (1) E (=D)*Cy_; 1 Ci Py (”1 1y Ukﬂ,m—k)
k=0 j=0 0<p<k—j—1
0<q<m=—k
ptg=i—j

, (k)
k i (Hrfy i (kD) O i (k) mi
+O<Zk+l< Cm(_l)%(_l)l(_l) ¥ /)Cmfkflfl ri— (k) ("1 Ny u2k,m—k+l)

We can simplify the expression of A; in the case of a straight crack. We assume that the crack writes as
o ={(s,0),—1 < s < 1}. For z € 0, we have n; =0, ng = 1 and 9; = —0,,. The term of the first sum
over k is not null when k — j — p+ ¢ = 0 i.e. when p — ¢ =k — j. By summing over subscripts p,q € N
such that p + ¢ =i — j, we deduce that

1 . ‘
p= §(k+2 - 2])7 (a)
1
By using that ¢ > 0 we deduce that 0 < k < and (a) and (b) are full-filled if :
(a) 7 and k are even and i > k

(b) i et k are odd and i > k

Then the term of the second sum over k is not null when ¢ = k +1ie. [ =i — k. Hence we get the
expressions of Ag; and Ag;yq :

(i) For2i <m —1:

i 2k—1 §2i—i 2
_ 2k jHi—kokti—g ik % .
Agi = Z Cm Z (—].)J ¢ CQk—j—lchn—Qk’W (U2k+j7m_2k) + (_1) ' Z CmUQk,m—Qk—i—Qi
k=0 j=0 k=0
i 2k—1 2%
_ i—k 2k k+i—j ~i—k k
= Z(—l) Chn Z Cor—i21Cm "ok | Ua(kti)m—26 + Z CrmUk,m—2k+2i
k=0 3=0 k=0
(ii) For2i+1<m—1:
i 2%k—1 2i+1
_ i— k1 ~2k+1 kti—j+1 ~i—k k
Agip1 = Z(—l) Cr Z Cor—j” " OmZop—1 | W2(ktit1)m—(2k+1) — Z Com U2k m—2k+2i+1
k=0 =0 k=0

which ends the proof of this lemma.

2 Fundamental solution associated to the m-th Laplacian in 2D

Many solutions of linear differential problems can be expressed by using the fundamental solution associ-
ated to the differential operator. In this section we compute the fundamental solution associated to the
m-th Laplacian A™.



Théoréme 2.1. We denote by E,,(x) the fundamental solution of the m-Laplacian which is defined by
—A™E,, = §y in D'(R?) (2.1)

where 0y is the Dirac distribution. The expression of this solution is

1

Eﬁ@):_?mAWWn—nw

7|22 Diog(|]) (2.2)

Proof. For m =1, Ey(z) = —5=log(|z).
For m = 2, Fa(z) = — g&=|z|*log(|z]).
We search E,(z) as follows
Em(2) = am|z[P"log(|z|)
then AFE,, needs to check
AN AE,,) = (2.3)
We deduce that :
AEm = FEm—1+ Pgm_3(l’) = am_llaz\pm—llog(m) + sz_g(a?)

where Py,,,—3(x) is a polynomial function of degree less or equal than 2m — 3. By standard computation :
A (JzfPrlog(|2])) = |z [P *pilog(|2]) + 2pm |z 2
Hence the following relations follow :

Pm—1 :pm_2 andpl =0
1
2

1= dag = ——
Gm—1 = AmD;y, and a; o

Pm—2<2m—3
and we have
Pm = 2(777, - 1) + p1

m—1
P2,

Ay =

with p; = 0. First we get p,,, = 2(m — 1) and then
1
Ay = —
22m=lx((m —1)!)?

We check that |z[Pm~2 = |2|2(™~2) is a polynomial function of degree 2m —4 < 2m — 3 and we deduce the
expression (2.2). Reversely, if (2.3) is full-filled, then (2.1) is too. O

3 Statements of the problem and notations

Let ¥ C R? a regular open manifold of dimension 1 and 3 a closed and reg-
ular curve containing ¥ (see Figure 2). We define the following functional

spaces : ;- F\E
/2t '

0" T(E) = {uyp,u € HY*(E), ugsg =0}, Vie[0,m—1] ' '
We endow these spaces by the norms :

s oz gy = Mol gy | ~
Figure 2: ¥ and X



Let o C Q a regular open manifold of dimension 1 containing the origin and of normal 77. We denote by
7 the vector such that (77, 7) be orthonormal. 97 stands for the differentiation in the direction 7 and along
0. in this section we denote by A = R?\@ the exterior domain of the crack and we define the following
weighted Sobolev space (see [13]) :

VFu
(1+ r2)mTiklog(2 +72)
where r = |z|. W™ (A)/Py,—1 stands for the quotient space of functions W™ (A) defined up functions being
P,,—1. We assume that o, = {x,% € o} does not touch 99; thus we have 9Q, = o, UT". Let 7 a closed
and regular curve of same dimension of o such that ¢ C &, and let & be the bounded domain of R? such

that 0w = &; we denote by w. = {z, % € &}, Qe = Q\&. and we choose r > 0 and € small enough such
that w C B, C % (see Figure 3).

W™(A) = {u € L*(A), for k € [0,m — 1], V™u € L2(A)} (3.1)

Br

(a) c Doand B, QW (b) Cracked domain

Figure 3: Cracked domain and extension of the crack by a closed curve

Forve H™(Qe) and u € H 2m(Q),), by using the integration by parts formula given in Theorem 1.1 on
Q\w, Uwe, we get

/Qe (=1 A™u + 1) v = a,(u, v) + mZ_IAi(u) [‘Wl”] (3.2)

m—1—1
o = on
ok \ T ok, O\
where a¢(u,v) is given in (1.4) and [%] = (%) - (%) denotes the jump of % across o, by
using notations described in Figure 3. From (1.5) and (3.2), and by assuming that u. € H*™(€,), u, is

given by :

) { (=1)"A™ue + ue = f, in Q¢ (3:3)

Ai(ue) =0, on o, UT, Vi € [0,m — 1]

where f € L*(Q).
We introduce the cost function J(2,u) : H™(Q2) — R full-filling

Hypothéses 1. e There exists a continuous linear map Le : H™() — R, 6J : @ x S1 — R and
€o > 0 such that Veg > € > 0

J(Qe,u) — J(Q,ug) = Le(ue — ug) + €26.J (z0,7) + o(€?)



and we assume that Lc(u) writes

Lg(u):/lgu+ > / [gmmllll] > /Da:mllzl (3.4)

1<i<m—1 0<i<m-—1

with |lollo.o, < C, D; € H-=Y2(T), B; € Hyt"*(0.) and | Bilea)ll is1/2,y, < C where C s a
00
constant not depending on €.

To shorten notations, we denote Je(u) = J(€, u) and §.J instead of J(xg, 7). In the sequel, to simplify
we assume that the crack o is straight and we assume that o = {(s,0), —1 < s < 1} (we place us in the
local coordinate system associated to the crack). We compute the topological gradient by evaluating the
leading term with respect to € of the difference J(ue) — Jo(ug) when € — 0. By using the equations filled
by u. and ug and Hypotheses 1, we have :

Je(ue) — Jo(ug) = Le(ue — ug) + €267 4 o(€?) (3.5)
where Lc(u) is given by (3.4) and we set
Je = 250 + o(€%) (3.6)
To compute (3.5), we introduce ve € H™(€2) solution of the adjoint problem :
ac(u,ve) = —Le(u), Yu € H(L) (3.7)
From (3.7), (3.6) and (3.2), then (3.5) writes

Je(ue) — Jo(uo) = —ac(ue — uo, ve) + Je
= _l (UE) + Qe uOyve) + \.76

m—1 :
am—l—z .
/ foe + / mAmUo +UO) /U6 ; Ai<u0) [anm_li)’:| + Je
om— 1—Z,U
/0 ZA UQ |:8 m—1— z:| +"7€

€ =0

By setting we = ve — vg with v, and vg given by (3.7) for € > 0 and € = 0; we rewrite Je(ue) — Jo(ug) in
function of we :

2m—1 §rm—1—iy,
Je(ue) = Jo(ug) = / Z A;(up) [Wn—l—z} + Je (3.8)
Then, changing of variables and subscripts give
m—1 om 1 z,w
Je(ue) — Jo(up) = ;E/OAZ [%m“(x)]dawe
m—1
1 m—1—1 . X
[ A [P
- em—1—i onm—1—i
=0 (3.9)
m—1 ak
61 k’/AmlkU() )[ak(we(eX))]dU—i—jE
Ik+$
k=0

10



where 7j, for k € [0,m — 1] are defined by :

k
To= = [ A1 y(u)eX) [fnk (we<ex>>] do (3.10)

Now, we need to establish the asymptotic expansion of w, in H™(2¢) norm. To do this, first we find the
leading terms in we which need to be compensated to have an asymptotic expansion in o(e) in H™ ()
norm (see section 5).

4 Estimations of A;(ug)(eX) for X € o

The following lemma gives the expansion with respect to € at 0 of A;(up)(eX) for X € o.

Lemme 4.1. Let vy solution of (3.7) with e = 0. In the case of a straight crack, by assuming that vy is
reqular (or equivalently that f is reqular) we have the following estimations :

Ap(vo)(eX) = go(X) + O(e) (4.1a)
Ai(vo)(eX) = gi(X)+O(1), Vie[l,m—1] (4.1b)
with
0™y

w(X) = G ©

gi(X)=0, for1l1<i<m-—1

(4.2)

Proof. With the expression of the A; given in Theorem 1.1 for i € [1,m — 1] and for a straight crack,

and by a Taylor expansion at 0 of the functions g;:(;fﬁ we get (4.1b). By using the expression of Ag (see
1 2
Remark 9.31) we deduce that :
Ag(on)(eX) = L0 (ex)
vo)(eX) = €
o170 oz
We conclude with a Taylor expansion of %Zgﬁ? (eX) at 0. O

5 Asymptotic expansion of w. in H"({)) norm

In this section we do the asymptotic expansion of w. with respect to € in the sense of the H™(£)¢) norm.
We recall that w, = v — vg is solution of :

(=1)™A™we + we = 0, in Qe
Ap(we) = —Ap(vg), on o,

¢ 5.1
(QE) Ai(wg) = —Ai(vo) — B;,on o, Vi € [[1,m — 1]] ( )
Ai(we) =0,on T, Vie[0,m—1]
To estimate w, we introduce the solution of the exterior problem R € W™ (A) /P, :
AR =0, in A
(Reat) N ‘ (5.2)
A;(R) = gi, on o, Vi € [0,m — 1]

where Vi € [0,m — 1], ¢; € HééQH(J)’ is given by (4.2). Thanks to Theorem 9.6 given in Appendix, we
deduce that the problem (R¢,,) has a unique solution R € W™ (A)/P,,—1 which writes as follows :

c
ext
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m—1

R(0)= 3~ § M) iy (Bl — )i,

1=0

where ¢ denotes the Cauchy principal value. Moreover we have :

am—l—iR

agbflfz

(—1)m*! [ } =\ Vie[o,m—1] (5.3)

where
(_1)m+122m—1

BV1—s2 V(s,0) €0

(2m —1)Cyi (5.4)
Ai(s) =0 Vie[l,m—1] V(s,0) €0

)\0(8) =

with = %T;?,{’ (0). Thanks to Lemma 9.8 (see Appendix), we get
2

x .
we = &R (2) + ec with [lec]| gm (o) = O(dm(e€)) (5.5)

where
—c%log(e)  form >2

Pm(€) = { ¢2\/—log(e) form=1

In the sequel, we are showing that Zj, ~ o(e?) for k € [0,m — 2] and Z,,,_1 ~ O(€?).

6 Estimation of Z; for k € [0, m — 1]

The following lemma give an estimation in o(e?) of the quantity Z, for k € [0, m — 1].

Lemme 6.1. Let Zj, defined by (3.10) for k € [0,m — 1]. We have

T = o(€®), Yk € [0,m — 2] (6.1a)
Ty =& %mi? (0)(—1ym+! / An(y)do + o(e2) (6.1b)

Proof. Let k € [0,m — 2], thanks to Lemma 9.3 and Lemma 4.1 applied to ug, we get :
- o
Iy =€ /UAm—l—k(UO)(ﬁX) [W (wg(eX))} do
< Ce M we(€X) |, 5\

By using a change of variable and Lemma 9.8 we deduce :

I < C'em*k|w5]m@6 < CemhRH = 0(62)

Now, let us consider Z,,_1; thanks to Lemma 9.8, Lemma 4.1 applied to ug, and jump relations (5.3), we

get : T _a2m /J Ao(uo(eX)) [W} da

_m 0™ O (emR(X))
_ 2-m 0
=X 7(9I‘5n (0)/0 |: T :| do+ &1 + &
8mu0
oxh’

:62

(0)(—1)m+! / An(y)do + &1 + &

oz
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where

&= [ (antuotexy) - St ) [Z XD 4

oz onm—1
_m 0™ g 0" (e (eX))
2—m
E =€ oy (O)/(7 [ ST do

We will show that £ and & are ~ o(¢?). By using Lemma 9.3, a change of variable, Lemma 4.1, a change
of variable again and Lemma 9.8 we get
Gmuo

oy (O)H

& <em HA()(U()(GX)) - (we(€X)) |, B\ < C|welma, < Ce

Hyp* (o)

Similarly we get :
E2 < €7 ee(eX) 7 < Celeelm,a, < Cedmle)

with ¢,,(€) = o(€). Hence, the following estimation holds :

T = 22750 ) 1y / Am(¥)dor + o(€?)
Ox} -
O
7 Computation of the topological gradient
From (3.9) and by using estimations (6.1a) and (6.1b) we get :
ZamuO m 2
Je(ue) — Jo(ug) = € 5 (0)(—1) Am(y)do + TJe + o(€7)
2 o
By using the expression of A, (5.4) and the definition of 7, given in (3.6) we have :
om 1 -1 m+122m71 om
Je(ue) — Jo(ug) = € 4o (O)(—l)m/ (=1) — hal (0)V/1 — s2ds + €26 + o(€?)
oxy’ 1 (2m — 1)Cme—1) oxy’
0" 0Mv 22m—1 ™
2 0 0 2 2
=—€——(0) 5, (0) ——— +€0J +o(€)
oy oxh 7 (2m — 1)02(m£1) 2
22(m—1) amuO amvo
=— 0 0) + €26 + o(€?
“Tem oy, L, oay (0) Fzge (O + €9 +ole)
Therefore, the topological gradient written in the local coordinate system of the crack is
22(m—1) m m
7(0) = - S AT LA Y Y (7.1)
(2m — 1)02(m_1) 0z Oz}

8 Conclusion : general expression and some examples of cost functions

From (7.1), by a changing of coordinated system we deduce easily the topological gradient associated to a
cost function J(€2, u) full-filling Hypotheses 1 and to the PDE (3.3) for a domain perturbed by a straight
crack of normal 77 and of center xg € ) :

922(m—1)

(2m — 1)0;'(1;171)

I(xo, /) = —7 V™0 (20) (7, .oy B) V™00 (20) (7, ..y ) + 8] (0, 7) (8.1)

13



Now we give some cost functions examples and we compute the function §.J(xo,7) in these cases. To
detect edges or fine structures we can use

Je(u) = i |VPu? (8.2)

with p € [1,m].

(i) For p = m, by using the equation checked by u. and Lemma 9.8 applied to u. — ug, we get
Je(ue) = Jo(uo) = Le(ue —uo) + T (8.3)

with

Le(u) = /Q (f —2up)u

Je = —|lue — ug§ o, < Com(e)® = o(e?)
We deduce that §J = 0.

(ii) For p € [1,m — 1], an integration by parts (Theorem 1.1) and Lemma 9.19 applied to u. — ug lead
to (8.3) with

Le(u) = 2/Q VPuy.VPu

Te = |ue — uol} o, = o(€?)
Thanks to Theorem 1.1, we check that Hypotheses 1 are full-filled :

p—2 2 '
azu 8ZU
Le(u) :/Q 2(—1)7’Apuou+2/ —247 1 _;(uo) [(%z] +/F2Azli(u0)€)ni
¢ i=0 Y ¢

where the operators AY(u) for i € [0,p — 1] stand for the p Neumann conditions associated to the
minimization in HP(Q) of If (u) = [, |VPul®. For contours an fine structures detection, we define
the topological indicator at g by

Z(zo) = max |Z(z0, 1)

Z(xo) is sensitive to discontinuities which make (8.2) very high (see Table 1).

Remarque 8.1. (i) We check that for p = m, m = 1 and m = 2 we retrieve the topological gradient
expressions given respectively in [3] and [5].

(it) In imaging detection the most interesting cost function is J(Q,u) = [, |[V™ul®. Indeed, the more
the order of the PDE 1is high the more numerical instabilities occurs, hence we should take the PDE
of minimal order which lead to enough regular solutions to guarantee that J(,uq) exists.

9 Annexe

In the following, we keep the notations and conventions described in Figure 3 and we choose r > 0 and €
small enough such that w C B, C % (see Figure 3). We recall that we denote by B, for r > 0 the ball of
center 0 and of radius r, and B = By is the unit ball. For a bounded domain w C R2, ' stands for the
unbounded domain R?\w. Finally for a domain w we denote by D(w) the set of functions C°°(w) with
compact support in w. The following lemma is a consequence of Hardy (see [13]) and Deny-Lions (see |7]
Lemma 5.2) inequalities.

14



Lemme 9.1 (Generalisation of Deny-Lions inequality). Let w C B, a regular subset of R?. We denote by
O = R2\w the exterior domain to w. Let u € W™(O), we have the following inequality

ullwmo) /e,y < Clttlm,a
where C' is a constant which depends on O and where W™(O) is a functional set defined in (3.1).

Proof. Let ¢ € C™([0, +0o0]), the cut-off function :

p =0, for0<t<1
0<p<1l for1<t<2
p=1 fort>2

Let ¢(z) = ¢(|z]), then wip € WJ(B’). On Wi*(B'), thanks to Hardy inequality [13], we have

|wbllwam (Bry < Clopulm,

By definition of 1 :
ullwmsy) < lPullwe
We deduce that :

lullwm(py) < ClYulm,p < Clulym,y + Cllullympyg) < Clulm,p, + Cllullwns,\) (9.1)

Then by using the definition of W™ (By\w) and by bounding weights, we get the equivalence between
the W™ (By\w) and the H™(B2\w) norms. By considering the quotient space and thanks to Deny-Lions
inequality, we get :
[ullwm (Bo\@) /By < Cltlm, Bo\w (9.2)
From (9.1) and (9.2), we have
lullwmo)/Bm_1 < Clulm,o
which ends the proof of this lemma. O

1

Théoréme (Gagliardo-Nirenberg inequality |1, 14]). Let m > 1, the map u — <||u||% o+ ul? Q) ? from

H™(Q) to R is a norm on H™(Q2) and more precisely we have

1/2
e < Clm, Q) (Julq + [uf0) "

2
m,$)
where C(2,m) is a constant depending on m and €.

Remarque 9.2. The constant appearing in the Gagliardo-Nirenberg inequality depends on a constants
which state the interior cone property (see [1] p 66 and pp 75-79). Let Qe = Q\zo + ew, where w is either
a regular open manifold or a regular sub-domain of R? and e small enough to the perturbation {xo + ew}
does not contact the boundary of Q). Then we can show that the Gagliardo-Nirenberg constant is bounded
from € when ¢ — 0.

/

Lemme 9.3. Let k € [0,m — 1], gx € (H%H(m_l)_k(a)) and uw € H™(B,\7), we have

/ [6’%]

9k | 3%

o | Onk
1/24i . . . 1/2+44, \;

where the spaces Hy)™" (o) for i € N are defined in section 3 and where we denote Hy,"" (co)' the dual

spaces.

do < ||gk"|H362+m—1—k(0.)/‘u|m,Br\E
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Proof. By using the definition of the norm ||.|| ,,1/24+m-1-%, ., and by splitting the jump oy ; and finall
Hy (0) ank y

by using the trace Theorem on BT\E and on w, we deduce that

[ac] 5] <, 7]
9k | 77| = 19k 1/2+(m 1)— k
o onk (o) onk Héé2+(m—1)—k(o_)
el [8'“‘]
= |9kl jy1/24(m-1)=k,_\, ||| 3%
Hyg (o) onk L2 (me1)—k 5
OFu~ Fut
SCH%HH%%(mﬂ)f’C(J)' |3nk + + IE +
1/2+m717k,3 1/2+m717k,5

< Cllgill g 2s-1-t gy, (14 Bl + 1+ ¥l 5,15)

= Cllgrll a2eon-n—k o 1t + Pl B,\7

where 1) is a regular function defined on R?. Particularly, if we take ¢ € P,,,_1, by using the Deny-Lions
inequality, we get

oFu <
Jgk onk | = H9k||H352+(m—1)—k(g), HuHHm(BT\E)/]P’m_l
< CHgkHH01(<2+(’"L71)71‘:(0—)/’u‘myBT\E
O

Lemme 9.4. Let u € H™(B,\o) such that A™u € L?(B,\o) and g; € HééQ—H(O') ot i € [0,m—1]. Then
we have the inequality :

m—1
> [ it Zuqm oty (1ul.w + 187l 5,1)
i=0 V%

Proof. We extend the ¢; by 0 on a\a We denote by §; € HY/?1i(5) these extensions. Let Q a continuous
extension of (o, q1,.-.,dm_1) in @. By integration by parts (see Theorem 1.1), we have :

m—1
bQ,u) = (—1)m/~AmuQ+/~ > Ai(u)gi, Yu € H™(@)
w 7 =0

where

- u o™v
u v) = C’ , Yu,v e H™(w
kZ_O /&U’f@wg” FoxkoxyF @)

fora

< ClulaglQl2z + 1A ulloz [ Qllos

< C(lulzz + 1A ulloz) Q25
by using the continuity of the extension, the inclusion B,\@ D w (see Figure 3), and by using the definitions
of the H%QH(J) norms for ¢ € [0, m — 1], we get the result. O

Moreover, we have :

< [b(Q,u)| +

/ZA u)gi
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Lemme 9.5. Let E(z) given in (2.2). Let s € N?, we have

ol E | Fs(z) + Gslog(|z]), for 0 <|s| <2m —2
dz* | Hy, for|s|>2m —1

where Fs, G and Hg are rational functions homogeneous of degree 2(m — 1) — |s| and we where denote
for s = (s1,82), 0x® = 0z 0x5? and |s| = s1 + sa.

Proof. E writes as the product E(x) = Cp,g(x)h(z) where

g(x) = (a} + a3
() = log(a3 +3)

and C), is a constant depending on m. g(z) is a polynomial homogeneous function of degree 2(m — 1),

hence %‘:Lg for || <2(m — 1) is a polynomial homogeneous function of degree 2(m — 1) — |«|. Similarly,

% is homogeneous of degree —1, then %‘;Lh is homogeneous of degree —|a|. Thanks to Leibniz formula,

we get

dlsl (gh) Z N olelg pls—alp

oxs 5 Qx> Oxs—o

0<a<s

where C¢ = []C¢" where a < s <= «o; <54, Vi € {1,2}. By splitting the sum in two parts we get :

aIS\(gh) dlelg ls—elp olslg
S Z Cg @ S—a + s h
ox 0Eas ox® Ox ox

homogeneous of degree 2(m—1)—|s|  homogeneous of degree 2(m—1)—|s| and null if |s|>2m—1

For |s| > 2m — 1, %;];3 is a rational homogeneous function of degree 2(m — 1) — |s| O

Théoréme 9.6. Let R € W™(A)/P,,—1 the solution of the following exterior problem :

(Ront) A™MR =0, in A (9.3)
et Ai(R) =gi, ono Yie[0,m—1] .

. !/
with g; € (Hgfﬂ(a)) . We have :
/
1. R(x) is unique in W™(A)/Pm—1, and the map (go, ..., gm—1) — R is continuous from (Héf(a)) X
/
X (Hgg2+m—1<a)) in W™ (A)/Pp,_1.

2. R(x) writes in W™(A)/Pm—1 as a sum of multi-layer potentials :

m—1
R(z)=)_ / Xi(Y)Aiy(E(x — y))do,, Vo € A
i=0 V9

with \; € HééZH(U) fori e [0,m—1].
3. We have the following jump relations across o :

amflfiR
anm—l—i

(—1)m*t [ } =\, forie€ [0,m—1]
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4. The densities A\; are given by a system of m boundary integral equations :

Zj{ Y)AjAiy(E(x —y))doy, forj € [0,m—1]

where ¢ stands for the main Cauchy value.

5. If o ={(5,0),-1 <s <1}, go(x) =V where V is a constant and g;(x) = 0 for i € [1,m — 1], the

densities \; are given by
1 m22m 1
Ao(s) = (=1) —VV1-—s?
(2m — 1)C'”(‘m 1

Ai(s) =0,Vi e [1,m —1]

Proof. First point
We keep the same notations and conventions as described in Figure 3. We introduce the two functional

spaces
H™(A™ @) = {ue H"(@),A"u € L*(@)}

Wm(A™, &) = {u e W@, (1 +r2) % log(2 + r2)A™u ¢ LQ@')}

where we recall that &' = R?\@. We define the bilinear forms :

b(u,v) defined on H™(&) x H™ (@) by

= 0"u o™v
ZCW/ kg.m—k 9.k
—o Oxj0xy' ™" Oxjoxy ™

and b (u,v) defined on W™(@&') x W™(&') by

3

0™u o™

b' (u,v) ck
Z o 0xhox =% a0y~

An integration by parts w (see Theorem 1.1) gives :

_ m—1 m—1—i
b(u,v) = (—l)m/ A v + Z / A,;(u)gnm_l_z, Vv € H™(@)
Similarly
~ m—1 om— 1— z
Vu,v) = (=)™ | A"uv — / Ai(u )7 Yo € W™(&')
0
We introduce the functional space K defined by

an
K = {u € H™(A™ &) x WM (A™, &) /P _1, supp(A™u) = o, [Ar(u)]s = 0, [gn’f] s =0,k € [0,m— 1]]}

By bounding the weights used in the definition of W (A) and by using the regularity property of functions

H" (A) we can rewrite K :

K ={ue W"™(A™ A)/Pp_1, supp(A™u) = o, [Ar(u)]s = 0,k € [0,m — 1]}

18



Therefore, the variational formulation of (Rey:) writes :
find R € K such that :  b(R,v) =1(v), Vv € K, (Rext)

where [(v) and b(u,v) are respectively the linear and bilinear forms on K :

om 1— z m oMy
Z/gl [W" - ] and  Blw) Z /am'famg” F oghox

The problem (Rezt) has a unique solution in K. Indeed, the problem is coercive on K :

b, u) > [ulfyma) (9:4)

and thanks to Lemma 9.1
lullxe = [[ullwmay e, , < C(A)|ulwma) (9.5)

which shows that b(u,v) is coercive on K. Thanks to Lemma 9.3, we have

v)| <C Z lgill agosi gy IV lwmay e,y Vo € K (9.6)

which proves that linear form /(v) is continuous on K. As K is a closed subset of W™ (A)/P,,—1 which is
an Hilbert, we deduce that it is an Hilbert. Thanks to Lax-Milgram lemma, we get the existence and the
uniqueness of the solution of problem (Rezt). From the variational formulation of (Rezt), (9.4), (9.5) and
(9.6) we get the continuity of the map (go, ..., gm—1) — R for the topology associated with and we define
the isomorphism :

(90,91, - coes Gm—2, gm—1) — 1

o (@) % x (H " o) — K

(9.7)

Second and third points

We consider the following problem : for (qo,q1, .., gm-1) € HééQ( ) X o X H1/2+m 1(0)

m—1—1
trouver @) € K tel que [gmlcﬂ =qi, Vi € [0,m — 1] (Qext)
n

Let u,v € K, we have

b, 0) = (1) [ Ao~ Z / [g:ml l”j]

The variational formulation of (Qey¢) is :
find Q € K such that :  b(Q,v) =U'(v) , Vo€ K, (Qext)

where we define .
—- 3 [aaw)
i=0 Y9

To show that (Qey¢) is coercive we use the same reasoning as for (Rez¢). Thanks to Lemma 9.4, we
get

l/(U) <C : |‘Qi|’HééQ+i(o.)|U|m,Br\E
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By using the equivalence between the norm and the semi-norm on W2(A)/Py, we deduce that the linear
form !’(v) is continuous on K. Thanks to Lax-Milgram lemma, we deduce that there exists an unique
solution @ of (Qeyt). From the variational formulation of (Qe.t), we show that the map (qo, ...gm—1) — @
is continuous for the topology associated with and we define the isomorphism :

(QO7q17"° ooy @m—2, m— 1) — Q

Ji:
HY*(0) x . xHY*™ o) — K

(9.8)

We denote by J = J; ' o Jy with Jy defined in (9.7), the isomorphism :

(907917”' ey 9m—2, Im— 1) — (QO7917"' "‘7qm—27qm—1)

J
(Hgg2<a>)’x... X(Hggﬂm*l(g)) s HY(0) % .. xHYT()

J is the map corresponding to the Neumann to Dirichlet problem (Ag(u), ..., Apm—1(u)) — ( [g:,;iqf] oo [u])
where v € K. Let u defined by :

i) =3 / M) Aiy (B(z — ))do(y)
i=0 79
m—1
= Xi(y)Aiy(E(z —y))do(y)
=0 9w

where \; € H%HZ( ) and \; € HY/2+i(5) are the following extensions

~ Ai, on o ]
)\i:{ B Vi e [0,m — 1]

0, on o\
Let us show that A™u =0 on A. For y € o, the functions A; ,(E(. — y)) are C°°(A). Moreover
Ay Aiy(BE(z —y)) = Aiy(A™(E(z —y))) = 0

By using the regularity of the functions A; ,E(. — y) and the fact that their m-th Laplacian is null and
so uniformly bounded with respect to x, we can switch the integral symbol and the A™ operator, which

leads to :
AMu(x) =0, Vr € A

Thanks to a Taylor expansion of E(. —y) at point z € A for |z| — oo, and by using the A;(u) expressions
for a straight crack (Theorem 1.1) and Lemma 9.5 we have u(z) = O (|x|m_2log(|x|)). We deduce that

ek € L?(A). Similarly, by k € [1, m] derivations of @, we get that V u e L%(A).
1tz € W) s, by ke [lm] & o P E 1oz, < LW
We conclude that @ € W™(A). By considering @ as an element of W™ (A)/P; we get @ € K. Thanks to
Lemma 9.10, by considering the definition of w and the definitions of A;, we have

am—l—iai + 1 m+1 am 1—1 ‘
P (x) = ( ) +Z/ ST 1 (Ajy(E(z —y))doy, Vx €0 Vi€ [0,m—1]
We deduce the jump relations across o :
m—1—1:
)\i = (*1)m+1 |:gnTn1,U7j:| 5 for 7 € [[0, m — 1]]
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By setting \; = (—1)"*! [g:;:lff] , as Jp is an isomorphism we get 4 = R which ends the proof of points
2 and 3.

Fourth point

By applying the A;, operator to @ for i € [0,m — 1], by doing z — o, and thanks to Lemma 9.5
we get

1
AizAjy(E(x —y)) =0 <\:U—y\2+1+1)

where i,7 > m. By using the regularity of such potentials across o, (see Lemma 9.10), we get the m
boundary integral equations which define J~! :

m—1
g =3 7{ N () Ain Ay (B — y))doy, Vi € [0,m — 1] (9.9)
j=0 "9
where ¢ stands for the main Cauchy value.
Last point

In the straight crack case o = {(s,0),—1 < s < 1}, by setting x = (s,0) and y = (¢,0) and by using
the expression of operators A; for a straight crack (Theorem 1.1) and Lemma 9.5, we have :

@i

AizAjy(E(r —y)) = (s —1)2ritd (9.10)
where a;; are some constants. (9.9) rewrites as :
m—1 1
i (1) :
gl(S) = P Qi %_1 m, pour © € [[O,m - 1]] (911)
We set .
1 Ai(t
fj(s):/ J(1)5dt, for —1<s<1landje[0,m—1]
™)1 —
By derivation of f; we show for n > 0 that
a*f; _ (=0)"n! /1 A
dsn 7w 1 (s=t)ntl
. avf; _ ¢(n) . .
By denoting 77 = f;, (9.11) rewrites as :
= aig (=) G
gi(s) = NS (s)
‘= (+i+1)
- N (9.12)
= bij ;Zﬂﬂ)(s) for i€[0,m—1]
j=0
where we set ( )'+ -
a;;j(=1)""7
bij =~ 9.13
T+ 1) (9.13)
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We rewrite (9.12) with the expressions of the g; given at the fifth point of the theorem :

V= bo,ofél) + bo,1f1(2) + ... +b0,m— 1f,§1m)1
0= b1,of(§2) + bl,lfl(g) + .. +b1,m— 1f mH

&) . . (9.14)
L Ozbm—l,Of(g +bm 1,1 f1m+1 +bm 1,m—1 ,Sfml 2

To solve (S), we integrate i times the i-th row by taking as constants of integration 0 for the first i — 2
integrations and V =0 for the ¢ — 1-th. The last constant is set to 0. In the sequel we will check that the

constant by is not null The system (S) becomes :

( Vs =boofo+ bo,lfl(l) + ... +b0,m— 1f(m b
Vbios m—
bol’(;) =b1ofo + bl,mfl(l) + ... +b1,m— 1f( b
(S o . (9.15)
Vb m—1.m$S m—
% = bm—l,OfO + bm—l,lfl(l) + .. +bm 1,m— lf( b

The unknowns of (S’) are the fl-(i) for i € [0,m — 1]. A trivial solution is

fo=-—

bo,o
fi=0,forie[l,m—1]

We get m uncoupled boundary integral equations. To solve the first one, we use [11] and we get A\, (s) =
Bo, 0\/1 —s2 for —1 < s < 1. For more details we refer the reader to [9]. The other equations have the

trivial solution Ai =0 for i € [1,m — 1]. To sump up the \; are given by :

v
)\ozb—\/l—sz, —l<s<1
0,0

)

Ai=0,for —1<s<landie€[l,m—1]

We check that \; € H(%Hi(a) and by using that J is injective, this solution is unique. From (9.13), we
have bygo = —map,p and agp is given by (see (9.10)) :

a
A Aoy (E(x —y)) = ﬁ, forx,y € o

From Remark 1.2, we can explicit the operator Ag and we get

an Qymm

—1)"——FE(r—y) = ——, forz,y € 9.16
(—1) 2 (x —v) (@1 — 11)? or T,y €0 ( )
We show (see Lemma 9.9 with n = m — 1) that

0% (\ am-1) 2 _ !
57 (lePmDiog(a)) ==,
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Therefore, from (2.2) and (9.16) we deduce

(=)™ (2m —1)!

ap,0 = 21 ((m — 1)1)2 (9.17)
The expressions of by o and Ay are
boo = (_1);(,3”1 - 1)05'(1;11_1)
qols) = —E i
(2m — 1)C'gzm_1)
which ends the proof of the last point and of this theorem.
O

Lemme 9.7. Let R(x) the solution of the problem (9.3).
For m > 1, by using the convention [0, —1] = 0, we have the following estimations for |x| — oo and € — 0

IV*R(x)| < Cla|™ > Flog(|2]), k € [0,m — 2]

V"R (@) < ‘i'
V" R()| < ‘;
Hka (%) 0o, 0 (—ef(m 2 k)log(e)> , for k€ 0,m—2]
o122, = ()
vaR (%) 1o =0

Proof. From Theorem 9.6, R(x) writes

R@) = > [ M)Ay (B~ )i, (919)
i=0 “7
By using Theorem 1.1, the A; ,(E(x —y)) writes as
= i m—2—j Crn1(y)
Aiy(E(z —y)) = Z‘Pj(y)|35—y| log(lx—y\)+w
§=0

Thanks to a Taylor expansion of order 1 at x for || — oo and to Lemma 9.5 we have

Aiy(B(z —y)) = O (|| 2log(|z]))
By differentiating & times (9.18) and by using a Taylor expansion and Lemma 9.5 again we get the
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asymptotic behaviour of VAR for k € [0,m]. Let ro > 0 such that Q C B,, for 0 < k < m — 2 we have :

en (), - [ fen (-,
.y
B\
2 k 2
€ (C—l—/B:Q\BTHV R(y)” dy)
e (C + /m/e r2(m_2_k)log(r)2rdr>
2

1 - . 1 ro/e€
& (C g [ (90 0 ) : )
< Ce 227K og(e)?

V*R(y) H2 dy

VkR(y)H dy—l—EZA B ’VkR(y)szy
\Br

which shows the first estimation,

[o 8 (D) = [ TR () m= 9 R ay

<o ([ Imlla [ t)a)
Br\7 1B, \Br

2

ro /€
< Ce® + 062/ —rdr
2

= Cé® + Ce [log(r)),
< —Cé%log(e)

and the second estimation is proved.

|vr (% HOQ / [v7e (2] de = /1Q\U||V’”R(y)||2dy

sé(/ IV RO dy + / -
\T 1B,,\B

2 T

HV”"‘R(y)HQdy>

rg/e
<O+ 6’62/ —rdr
2 7'

r2

2
= Ce? + O []

< Cé?
which ends the proof. O

Lemme 9.8. Let we the solution of (QF) given in (5.1) for m > 1, and R the solution of (Rext) given in
(5.2), we have the following asymptotic expansion

we = "R (%) te (9.19)
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with

[€ellm,0. = O(dm(€))
|We k0. = O(—ezlog(e)) Vk € [0,m — 2]
|welm—1,0, = O(€\/—log(e))
|we|m,ﬂe = O(e)

where

Proof. e. is defined by :

(55) AO(eE) = 900($) = O(|J}’), on ge (9.20)
Ai(ec) = —Ai(vg) — B;, on o for i € [1,m — 1]

Ai(ec) =¢f(z) = O (€%) on I for i € [0,m — 1]

where o (2) = —Ao(vo)(z) + Ao(v0)(0) = O(Jz|) (see (4.1a)), ¥f(z) = —e™Ag (R (%)), Ai(vo)(z) = O(1)
on o, and B; is defined in (3.4).

Proof of the estimation ¢¢(z) = O (€?)

By using Theorem 1.1, the A;(u) for j € [0, m — 1] writes as

. ply,
Ajy(w) = > w%(y)a (9.21)

m<|p|<j+m
From (9.21) and thanks to Lemma 9.5 for x € I" and y € o we get

Aishiy (B(Z=y)) = X 902(%)%(2/)52;:2 (7 (¢ -v))

m<|p|<itm
m<|q|<j+m

4 1 gl S
o % J —_— | — —
= Z gop(w)SDq (y) Glp‘ OxPOxd ( € y)

= > P@)el )l G, (v — ey)
m<|p|<itm
m<|q|<j+m

-0

where G, is an homogeneous function of degree 2(m — 1) — |k| and by using that Gp1q (z — ey) = O (1)
when € — 0 for z,y € T'.
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Splitting of ||ec||m q.

We split e, into the sum e, = e! + €2 with e! € H™(Q.)/P,,_1 solution of the following problem

(—1)™A™el =0, in Q.
el A =) = Ol on
‘ Ai(el) = —A;(vg) — By, on o, for i € [1,m — 1]
Ai(ely=0onT, forie [1,m—1]

and e2 € H™(€2,) solution of the problem :

2 (—1)™A™e2 2 = —e! — ™R (%) ,in Q.
(&) Ai(e2) =0, on o, for i € [0,m — 1]
Ai(e?) = ¥f(x), on T

€ K3

Estimation of ||| zmq,)/p,

The variational formulation of (£}) is : find e! € H™(Q,)/Py,—1 such that

om— 1 gm— 1— k’U
bg(ei,v)z—/ %o [a — 1] Z/ (Ag(vo) + Bx) [a —— k} , Yo € H™(Q) /Py

where
m

o™y oM

=2 Cn
Q. 0xk0x % kol

We take as function test v = e! and we set for k € [1,m — 1]

am—l—k 1
N/ —/ (Ax(vo) + By) [amn_l_ekf]

amll
JOZ/ {aml]

By using Lemma 9.3, the fact that b.(u,v) is coercive and the Deny-Lions inequality we get

and

—_

mQe < N (9.22)
0

3

leclZrm () /e,n -, < Clee

B
Il

Let k € [1,m — 1], thanks to a change of variable, Lemma 9.3, Lemma 4.1 and a change of variable again
we have

mflfkel €
Te = 6/ (Ak(vo)(eX) + Br(eX)) [W] do

< Ce MR (eX) g5
< Cek+1]ei|m,gs
Since k£ > 1 , we deduce that
Te < Ce?lel|ma. (9.23)
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Similarly by using the estimation ¢y(eX) = O(e), we have

8m_161
7 :e/goo(eX) {Wn_;]
< CelpoeX) 12y Ve X1

< Ce el (eX) | p 5
< C€2|ei|m,ﬂe

From (9.22) and by using (9.23) and (9.24), we get

lecl zm o) /e, o < C€

Estimation of ||e2|,, 0.

The variational formulation of (£2) is : find e? € H™(§2,) such that

ae(ef,v):/ (—emR (—) —e! v+ Z/@Z)zanm“ Yo e H™ ()

€

We take as test function v = e? and we set

m—1 m—1—i .2
ICE:—/QE<emR<f>+ei>ef L. :'O/F ;?%m_lf;
By using the definition of a.(u,v) (1.4), we deduce that
leZ (17,0, = Ke + Le
Lemma 9.7 and the estimation ||e:€LHHm(Q€)/]P>m71 = O(€?) give
Ke < Com(e)lleZ o,
Thanks to the estimation ¥$(x) = O(¢?) and to the trace Theorem on Q\B, we get
L. < CeQHeszQ\B < CE||e |, < Cé
From this last inequality (9.26) and (9.27) we have
leZllm.e. < Cm(e)
By using (9.25) and (9.28) we get the first estimation :

lecllma. < lletllam@a/pm + €2 llmo.
< C¢m(5)

Finally, by differentiating m times (9.19) and by using Lemma 9.7 we get the second estimation :

T
[ We|m, 0, < vaR <*> H + [eelm. .
€ 0,9
< Ce
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Lemme 9.9. We have the following equality * :

H2n+2 . 22+ 1),
5,272 (Jz|? log(l:c!2))|$2:0 == for a1 #0
2 1

Proof. We set f,(x1,22) = (23 + 23)"log(z} + x3) and ¥, (r) = 7"log(r).
Step 1 : Let us show by recurrence :
n! _
Y = Ve O™ WO <k<n
where C(k,n) is a constant which depends on k and n.
For k = 0 the property is right.
Let us assume that the property is right for 0 < k < n then we have :

YD = C ﬁ! ol L r"*’H} + (n— k)C(k,n)r"

n!

- mwnf(kﬂ) + [(nﬁ'k)' + (n—k)C(k,n) prn—(k+1)

The property is 0 < k < n and the constants C'(k,n) are defined by the recurrence relation :

C(0,n) =0
|
Ck+1,n) = e i.k)' + (n—k)C(k,n) Vk<n
For k = n, we have %(ln) (r) = nllog(r) + C(n,n). By recurrence we have %(Lnﬂ)(r) = {n+2) (r) = —:}—2!,
) =21 e,
(k) _ (D)l — 1)
(o = rk
To conclude, we have
n! n—k :
7,1%—1@» + C(k,n)r sik<n
POy = § (=R (9.29)
" (=D Inl(k —n — 1)!
P sik>n
r
with
C(0,n)=0
|
C(k+1,n) = - f-k)' +(n—k)C(k,n) Vk<n
Step 2 : Weset f(z) =¢ <¥>, by recurrence we show :
o ) 2 .
83:{: = ) appe? <‘5‘;‘> ™ Yk >0 (9.30)
2

0<2i<k

!Thanks to Arthur Vavasseur for the proof of this Lemma

28



Fork=0:0<2 <k<i=0and f(z) = (@)x%
Let us suppose the equality right for k£ € N, then at rank k£ + 1 we have

akJrlf o ) ‘$|2 )
_ Y (k=) [ I k—21
8xé3+1 - Z @ik 81,2 |:S0 < 9 ) Ty :|

0<2i<k

_ , Uity (2P ke2ivr | ey (1217 o k—2i—1
= Z aig ¢ 5 ) T2 +p 5 (k — 2i)as

0<2¢<k—1

6 k_ﬁ ‘x’2 k— 2
+a§’k [(%2 <<P( 2) <2 Lo Likeony

—i |z —2i |95|2 k+1-2(i+1
= Z az’,k‘P(k ) (2 xé“ % Z aikSO( 9 (k — 2i)xy ()

0<2i<k—1 0<2i<k—1

+a%7k [go £41) (| | )sz} 1{peany

2 2
. €T o s €T . o
_ 2 ai,kQO(kH i) (’ 2‘ > :L,l2€+1 2 + § : ai_l,kso(k—l—l 1) <‘ 2’ ) (k’ — 2+ 2)x12c+1 2

0<2i<k—1 2<2i<k+1

_k JJ

. . :U 2 _ 9z
_ aO,kSO (k+1) <| ‘ >xl§+1 + Z [ai,k + (k‘ . 224_2)%71’]@] (p(k+1 %) (‘2|> w/2€+1 24

2<2i<k—1

_j x|? o) : _ky (|z]?
+ (k) —1,k |:@(k+1 J(k)) <|2’> .’L‘I;—H 2](k)(k — 2j(k) + 2):| +a§’k |:(p(k+1 3) (|2|> £2:| ]l{k€2N}

apr = 1,if ¢ =0 by recurrence

ith kk+1}N2N = We set a;
with j(k) = 2{ +1} L J eset a; 11 = {ai,k+(/€—2i+2)a¢1,k 2<% <k_1

We have :

8k+1f ) |:C‘2 )
_ . (k+1—17) k+1-2:
ET= D Giknd < >x2
Oy 0<2i<k—1 2
2 _o| k£l E+1
+a[%J,k¢(k+l_L%J) <‘2’ >$§+1 2| 52| <k‘— I + J+2)
ey (2P k1-2k

We discuss the two last terms with respect to the parity of k.

= g(z)

(i) If k € 2N then [*1| =% and
-t (122 kr1-2k k 1ok (122 kr1-2k
g(x) = agfl,kso oz <2> Lo 2k — 25 +2)+ a%,kgo +1=3 T Zo 2

2 k
_ 1k [ |2] k+1-25
- (2“2—1% + “%JC) L < 9 )2

and {k,k+ 1} N 2N = k so with ax ki1 = 20k, + ak g, we retrieve the equality at rank &k + 1.
2 275 2
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(ii) If k € 2N+ 1, AL | = & and

2 okl E+1
B py1—kr1 (|| k1-2 +
9(@) = arp_y 40 2 (2 >x2 2 <k:—22 +2

2 k1
_ ki1— kil (|| k+1-2k4L
= (et ag,) F ()

and {k,k + 1}N2N = k+1 so with axu1 pp1 = Qk-1 4, We retrieve the equality at rank k+1. Finally,
2 2
(9.30) is right and the a; j are given by

apr =1, VkeN

i k41 = Qi + (k—2i+ 2)az‘—1,k, if2<2i<k—1
Ak =0k, +2ak_ g, ifke2N (9.31)
i N4l k<2 <k+1
@it g = Gkt LR € 2N A

Step 3 We are going to use the two formula (9.29) and (9.31) by setting f,,(z) = (23 +23)"log(z? +23) =
©n, @ where (1) = ¥ (2r) = (2r)"log(2r). By using the two recurrence formula proved in the steps

1 and 2 we have :

(i) fk<n

0" fr ety (1217 i
Dk = Z ai,k@% )<2> T2

0<2i<k
v [ (k=) <|x|2> : 2n—k+i) | k—2i
= Z ai’kQ |:.'80n—k+i — | T O(k - Zvn)|$| Lo
oo (n—Fk+1)! 2

with 0 < k — i < n. Particularly for xo = 0 and x7 # 0, the only non-zero term is obtained for
k=2i:

0" fn s (5)! E& E oo ok
ok~ 4 [m ¥ <2>+C<2’”>|ﬂ” | ke

(i) fn<k<2n+2
0" fn iy (1212 k2
oz 2w ) o

i k—1 ! i 2 . ki —o
= D a2t [(n(_)-.wn_kﬂ <H> +C(k — i) )] 25 i)

0<2i<k k+7’) 2
_1Ye—tn—11( _ 5 _ » _ 1)
i (—1) nl(k—i—n—1)! Y
+ Z a; 2" | |2(k—i—n) Lick—nyzy "
0<2i<k

with
0<k—i<2n+2)AN(k—i<n)<=(i>k—n)

and where we have used (9.29). Particularly for xo = 0 and x; # 0 the only non-zero term is
obtained for £ = 27 and in this case i < k —n :

" fn s (5)! |2 E oo omet
g 10 = g2 [m—W (55) +eGmiere=)] ticm



(iii) If k = 2n + 2

2n4-2 2
9 fn , (2n+2—1) |z| 2n+2—2i
922 @i, 2n+2%n 9 ™2
1 0<2i<2n+2
2
_ 2n+2—i |z] 2(n—i+1)
= § ai,2n+2901(1 ) (2 Ty
0<i<n+1

0<i<n+1so2n—i+2>n+1>n and from the recurrence formula (9.29) for k > n :

niai (1) 222 nl(n 4 1 — d)l(—1)n
¥n 2 |2 [2(n+2=1)

therefore

o2t f, . 22n+2=ipl(n + 1 — i)!(—l)”H*ixQ(n—iH)
Smr = D 22 2nt2-i 2
Oy 0<i<n+1 220

For 9 = 0 and x; # 0 the only-non zero term is obtained for i =n 41 :

P2 f, 2"l a1, 0042
O n (g 0) = ’ (9.32)
027+ 22

Step 4 :  We compute the coefficients a; ;, defined by the recurrence formula (9.31). We conjecture

the following formula :
k!

~ 20l(k — 2i)! (9.33)

ik
Let us prove this equality for (i, k) € {(i,k) € N?,2i < k}. Let P(k) = {a@k = W,V% < k:}
P(0) is easily checked.
Let us suppose P (k) and show P(k + 1). From (9.31) :

(k+1)!
(1)

(i) for i =0 we have ag 41 =1 =
(i) for 2 <2i <k — 1 we have :

k! . k!
T T A e e Db Y T gy G O Y31

Qg1 = Qi+ (k—2i+2)a;_1p =

B k! 1 1
T 21 — 1)I(k — 20)! (21 T2y 1)
(k+1)!
20i1((k + 1) — 24)!

(iii) for k <2i < k+ 1 we have :

(a) if k € 2N :
K k! ! (2 )
ak =akr , + 2ax = +2 - w2
k1 = ALk 3Lk 2%%10! 2%‘1% —1)!12! 2§(§ — D2l \K
(k4 1)!
23 k|
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(b) if k € 2N+ 1 :
B B k! k! k+1 K
e T T R g 2t 2 () 250 (i)

o (k+1)!
255 (50)!

Hence P(k + 1) is right and P(n) is right for all n € N.
Now we come back to (9.32) and we apply (9.33) for (i,k) = (n+1,2n+2) :

ont2f, (21.0) 2" pla, 10042 2(2n 4 1)!
——\X s = =
dximt? ! z? x?
which ends the proof of this lemma. O

Lemme 9.10. Let  a bounded domain of R?, f € HY(0) with a > 0, and let Vi(f) : HY(0) —
Het2m=k(90) for k € [1,2m] the multi-layer potentials :

lgfl_ y))da(y) for1<k<m
y

f()
Vi(f) =14 799

" (E
on

o f@)Ag—m—14(E(x —y))do(y) form+1 <k <2m

where E(x) is the fundamental solution of —A™ given in (2.2). By denoting

Vi (f)(x) = Vi(f)(z) for x € Q
ViE(f)(@) = Vi(f) (@) for z € Q°

and for x € 0N we set

Vi (H(@) = lim V" (Hy), Vi (@)= lim V7 (f)(y)

zeN” €S

We have the following jump relations across 9S) and for x € 0} :

®2) { V@) = 22V (@) = Z2Vi(f) (@), in HO2m=E=3(0Q) for k€ [0,m — 1] Aj # 2m — k

Dy (@) = +EL @) 4 Vo i(f), in HY0Q) for k € [0,m — 1]

AVE Py ==

Aij:t(f)($) = A Vi(f)(x), dans HOT™R=3(9Q) for k € [0,m — 1] Aj #m —k
R
(52) f(@) + AVi—r(f)(x), dans H(O) for k € [0,m — 1]

where have denoted respectively in HOT2m=k=1(9Q) and H™F=1(0Q) the following potentials (when
kernels are singular for x € 02, these boundary integrals are defined in the sense of the main Cauchy value)
for k € [0,m —1] and j € [1,2m] :

o i |
" ok g1 E@ =) W)do(y) for 1< j<m
SV () = 4 7o o
) a0 WAj_m_lvy(E(x —y)f(y)do(y) form+1<j<2m
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and

i—1
/x%%?;(E@—)ﬁ@deﬁwléjém
ARVi(f)(x) = n

[ a1 (Bla = ) )do(w) form+1< 5 < 2m

Proof. The proof of this lemma is in part heuristic and is inspired from [[7] pp 384-388]. We show the jump
properties for particular densities which are in the following space (the image of the Calderon projector
associated to the operator A™) :

P = {(woq, Onujoq, - O ujaq, Aotjoq, - Am—1uj90),u € H™(Q) and A™u =0}

Moreover, we use in this proof the kernel expressions in the case of a straight manifold to discuss about
the singularity of the kernels. From Theorem 1.1 we have the following equality :

= /ch(x—y)u

m « o1 iu(y) OB —y)
- _ /Q A"uE(x — y)dy + ZZ:% /69 {A@y(E(:r - y))W — Ajy(u) =1 }da(y)

(9.34)
Let w € H?™(Q) such that A™w = 0 in Q. Let F}, € H*™?™=k(9Q) for 1 < k < 2m such that
Aw =0, in Q
F, = —kAm_k(w), on N for 1 <k<m (9.35)
Fopyh = =2 on 9Q for 0 < k <m — 1
onk
For z € Q, thanks to (9.34), we get
2m
=D Vi (F)(@) (9.36)
i=1

First we extend the vectors fields 7i(x) and 7(x) in C* vectors fields on a neighbourhood of 9 that

we denote respectively n(z) and 7(x). Thus we extend the operators f — % and f — Ag(f) for

k € [m,2m — 1] by using the vectors fields n(x) and 7(z).

(i) Proof of the relations (R;)
Consider 0 < k <m — 1, from (9.36), we get

OFw 2m
8n’f: Zank’ E)z), weQ

Letting x tend nontangentially to 9 in (9.34), we have only half of the contribution of the Dirac
function é(x —y) at y = x € 9 so

1 0%w
G Z 5 VilF) (@), e on (9.37)
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Thanks to Lemma 9.5 and Theorem 1.1 we get the following singularities estimations in the case of
a straight manifold

. ok — m—1— ]
fork+j<2m <V (2)=0 (1o =y~ =EDtog(fo — )
. o 1
for k+7>2m WVJ (z)=0 |z — y|Friti—2m

We deduce that

(a) For k + j < 2m kernels are integrable for z € 92 and we can switch the integral and the limit
symbols

o B
ok Vi (z) = ij(x)

(b) For k + j > 2m thanks to [|7], Lemma 6.4], we get the same equality in the sense of the main
Cauchy value.

By using (9.35), (9.37) is only possible if

6k B (_1)m 6k
W‘/mek(FZm—k)(x) = 9 F2m—k(x) + W‘/?m—k(FQm—k)(x)
ok oF

5% Vi (x)zmvj(x), for 1 <j<2mand j#2m—k

For z € BR\Q, (9.36) is changed in

2m
w(w) ==Y VT (F)(x) + G(x)
i=1

with G(z) defined similarly by using multi-layer potentials using the boundary 0Bpr and regular in
a neighbourhood of 92. By the same reasoning we have

8k
onk

— m k
S Boeckla) + Vi (Fo i) (@)

Vz—:nfk(FZm—k)(x) ==

", o

pmal (x):WV](a:), for 1 <j<2mandj#2m—k

which proves the relations (R1).

Proof of relations (R3)
Consider 0 < k < m — 1, similarly we get for x € 02 :

Apw(x)
2

2m
= (-1 AVi(F)(z), x€dQ
=1

And by the same reasoning used for (i), and by using (9.35), this equality is only possible if
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AV Fuoi)@) =~ B (0) + AV (B @)

ARV} (Fy)(x) = ApV;(Fy)(@), for 1< j < 2m and j # m — k

By the same way we get

AkV]Jr(F])(x) = A,V (Fj)(x), for 1 <j<2mand j #m—k

which ends the proof of the relations (R2) and the lemma’s one.
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