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Abstract. We consider the problem of minimizing
∫ �

0

√
ξ2 + K2(s) ds for a planar curve having fixed

initial and final positions and directions. The total length � is free. Here s is the arclength parameter,
K(s) is the curvature of the curve and ξ > 0 is a fixed constant. This problem comes from a model of
geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for
this problem. We prove that if for a certain choice of boundary conditions there is no global minimizer,
then there is neither a local minimizer nor a geodesic. We finally give properties of the set of boundary
conditions for which there exists a solution to the problem.
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1. Introduction

In this paper we are interested in the following variational problem:

(P) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R
2 × S1. On the space of (regular enough) planar curves,

parameterized by plane-arclength find the solutions of:

x(0) = (xin, yin), x(�) = (xfin, yfin),
ẋ(0) = (cos(θin), sin(θin)), ẋ(�) = (cos(θfin), sin(θfin)),∫ �

0

√
ξ2 + K2(s) ds → min (here � is free.) (1.1)

Keywords and phrases. Curve reconstruction, generalized pontryagin maximum principle.
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Figure 1. Minimizing sequence qn converging to a non-admissible curve q̄ (angles at the
beginning/end).

Notation. All along the paper, by S1 we mean R/ ∼ where θ ∼ θ′ if θ = θ′ + 2nπ, n ∈ Z. By P 1 we mean
R/ ≈ where θ ≈ θ′ if θ = θ′ + nπ, n ∈ Z. By plane-arclength we mean the arclength in R

2, for which we use the
variable s. Later on, we consider also parameterizations by arclength on R

2 × S1 or on R
2 × P 1, that we call

sub-Riemannian arclength (sR-arclength for short), for which we use the variable t. We also use the variable τ
for a general parametrization. Finally, we denote with K = ẋÿ−ẏẍ

(ẋ2+ẏ2)3/2 the geodesic curvature of the planar curve
x(·) = (x(·), y(·)).

Problem (P) comes from a model proposed by Petitot, Citti and Sarti (see [10, 22, 23, 28] and references
therein) for the mechanism of reconstruction of corrupted curves used by the visual cortex V1. The model is
explained in detail in Section 2.

It is convenient to formulate the problem (P) as a problem of optimal control, for which the functional spaces
are also more naturally specified.

(Pcurve) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R
2×S1. In the space of integrable controls v(·) : [0, �] → R,

find the solutions of:

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(�), y(�), θ(�)) = (xfin, yfin, θfin),⎛
⎜⎜⎜⎜⎜⎝

dx

ds
(s)

dy

ds
(s)

dθ

ds
(s)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎝ cos(θ(s))

sin(θ(s))
0

⎞
⎠ + v(s)

⎛
⎝ 0

0
1

⎞
⎠ (1.2)

∫ �

0

√
ξ2 + K(s)2 ds =

∫ �

0

√
ξ2 + v(s)2 ds → min (here � is free). (1.3)

Since in this problem we are taking v(·) ∈ L1([0, �], R), we have that the curve q(.) = (x(·), y(·), θ(·)) : [0, �] →
R

2 × S1 is absolutely continuous and the planar curve x(·) := (x(·), y(·)) : [0, �] → R
2 is in W 2,1([0, �], R2).

Remark 1.1. Notice that the function
√

ξ2 + K2 has the same asymptotic behaviour, for K → 0 and for
K → ∞ of the function φ(K) introduced by Mumford and Nitzberg in their functional for image segmentation
(see [21]).

The main issues we address in this paper are related to existence of minimizers for problem (Pcurve). More
precisely, for (Pcurve) the first question in which we are interested is the following:

Q1) Is it true that for every initial and final condition, the problem (Pcurve) admits a global minimum?

In [6] it was shown that there are initial and final conditions for which (Pcurve) does not admit a minimizer.
More precisely, it was shown that there exists a minimizing sequence for which the limit is a trajectory not
satisfying the boundary conditions. See Figure 1.

From the modeling point of view, the non-existence of global minimizers is not a crucial issue. It is very
natural to assume that the visual cortex looks only for local minimizers, since it seems reasonable to expect that
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it primarly compares nearby trajectories. Hence, a second problem we address in this paper is the existence of
local minimizers for the problem (Pcurve). More precisely, we answer the following question:

Q2) Is it true that for every initial and final condition the problem (Pcurve) admits a local minimum? If not,
what is the set of boundary conditions for which a local minimizer exists?

The main result of this paper is the following.

Theorem 1.2. Fix an initial and a final condition qin = (xin, yin, θin) and qfin = (xfin, yfin, θfin) in R
2×S1. The

only two following cases are possible.

1. There exists a solution (global minimizer) for (Pcurve) from qin to qfin.
2. The problem (Pcurve) from qin to qfin does not admit neither a global nor a local minimum nor a geodesic.

Both cases occur, depending on the boundary conditions.

We recall that a curve q(.) is a geodesic if for every sufficiently small interval [t1, t2] ⊂ Dom(q(.)), the curve
q(.)|[t1,t2] is a minimizer between q(t1) and q(t2).

One feature of (Pcurve) is that it admits minimizers that are in W 1,1 but that are not Lipschitz, as we show
in Section 5.2. As a consequence, there exist minimizing controls that are in L1 but not in L∞. This is an
interesting phenomenon for control theory, for the following reason. To find minimizers, one usually applies the
Pontryagin Maximum Principle (PMP in the following). But the standard formulation of the PMP holds for
L∞ controls only and does not permit to find L1 minimizing controls. This obliges us to use a generalization of
the PMP for (Pcurve), that we discuss in Section 5.1. See more details in Section 5.2.

The second sentence of Q2 has its practical interests, since one could compare the limit boundary conditions
for which a mathematical reconstruction occurs with the limit boundary conditions for which a reconstruction
in human perception experiments is observed. Indeed, it is well known from human perception experiments
that the visual cortex V1 does not connect all initial and final conditions, see e.g. [23]. With this goal, we
have computed numerically the configurations for which a solution exists, see Figure 2. For a more detailed
description, see [11].

The structure of the paper is as follows. In Section 2 we briefly describe the model by Petitot−Citti−Sarti for
the visual cortex V1. We state it as a problem of optimal control (more precisely a sub-Riemannian problem),
that we denote by (Pprojective). The problem (Pcurve) is indeed a modified version of (Pprojective). In Section 3
we recall definitions and main results in sub-Riemannian geometry, that is the main tool we use to prove our
results. In Section 4 we define an auxiliary mechanical problem (crucial for our study), that we denote with
(PMEC), and we study the structure of its geodesics. In Section 5 we describe in detail the relations between
problems (Pcurve), (Pprojective) and (PMEC), with an emphasis on the connections between the minimizers of
such problems. In Section 6 we prove the main results of the paper, i.e. Theorem 1.2.

2. The model by Petitot−Citti−Sarti for V1

In this section, we recall a model describing how the human visual cortex V1 reconstructs curves which are
partially hidden or corrupted. The goal is to explain the connection between reconstruction of curves and the
problem (Pcurve) studied in this paper.

The model we present here was initially due to Petitot [22, 23]. It is based on previous work by Hubel-
Wiesel [18] and Hoffman [16], then it was refined by Citti and Sarti [10, 28], and by the authors of the present
paper in [7, 8, 12, 13]. It was also studied by Hladky and Pauls in [15].

In a simplified model5 (see [23], p. 79), neurons of V1 are grouped into orientation columns, each of them
being sensitive to visual stimuli at a given point of the retina and for a given direction6 on it. The retina is

5For example, in this model we do not take into account the fact that the continuous space of stimuli is implemented via a
discrete set of neurons.

6Geometers call “directions” (angles modulo π) what neurophysiologists call “orientations”.
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Figure 2. Configurations for which we have existence of minimizers with ξ = 1. For other
ξ �= 1, one can recover the corresponding figure via dilations, as explained in Remark 4.1. Due
to invariance of the problem under rototranslations on the plane, one can always assume that
qin = (0, 0, 0). Left: we study the cases x2

fin + y2
fin = 1 and x2

fin + y2
fin = 4, with y ≥ 0. The case

y ≤ 0 can be recovered by symmetry. In the case x2
fin + y2

fin = 1 minimizing curves are also
shown. Right: for each point on the right half-plane, we give the set of configurations for which
we have existence of minimizers.

modeled by the real plane, i.e. each point is represented by (x, y) ∈ R
2, while the directions at a given point

are modeled by the projective line, i.e. θ ∈ P 1. Hence, the primary visual cortex V1 is modeled by the so called
projective tangent bundle PTR

2 := R
2 ×P 1. From a neurological point of view, orientation columns are in turn

grouped into hypercolumns, each of them being sensitive to stimuli at a given point (x, y) with any direction.
In the same hypercolumn, relative to a point (x, y) of the plane, we also find neurons that are sensitive to
other stimuli properties, like colors, displacement directions, etc... In this paper, we focus only on directions and
therefore each hypercolumn is represented by a fiber P 1 of the bundle PTR

2. Orientation columns are connected
between them in two different ways. The first kind is given by vertical (inhibitory) connections, which connect
orientation columns belonging to the same hypercolumn and sensible to similar directions. The second kind is
given by the horizontal (excitatory) connections, which connect orientation columns in different (but not too
far) hypercolumns and sensible to the same directions. See Figure 3.

In other words, when V1 detects a (regular enough) planar curve (x(·), y(·)) : [0, T ] → R
2 it computes a

“lifted curve” in PTR
2 by including a new variable θ(·) : [0, T ] → P 1, defined in W 1,1([0, T ]), which satisfies:

⎛
⎜⎜⎜⎜⎜⎜⎝

dx

dτ
(τ)

dy

dτ
(τ)

dθ

dτ
(τ)

⎞
⎟⎟⎟⎟⎟⎟⎠

= u(τ)

⎛
⎝ cos(θ(τ))

sin(θ(τ))
0

⎞
⎠ + v(τ)

⎛
⎝ 0

0
1

⎞
⎠ for some u, v : [0, T ] → R. (2.1)
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Figure 3. A scheme of the primary visual cortex V1.

The new variable θ(.) plays the role of the direction in P 1 of the tangent vector to the curve. Here it is natural
to require u(·), v(·) ∈ L1([0, T ]).

Observe that the lift is not unique in general: for example, in the case in which there exists an interval [τ1, τ2]
such that dx

dτ (τ) = dy
dτ (τ) = 0 for all τ ∈ [τ1, τ2], one has to choose u = 0 on the interval, while the choice of

v is not unique. Nevertheless, the lift is unique in many relevant cases, e.g. if dx
dτ (τ)2 + dy

dτ (τ)2 = 0 for a finite
number of times τ ∈ [0, T ] only.

In the following we call a planar curve a liftable curve if it is in W 1,1 and there exists a unique θ(.) ∈ W 1,1

such that (2.1) holds for some u(.), v(.) ∈ L1([0, T ]).
Consider now a liftable curve (x(·), y(·)) : [0, T ] → R

2 and delete a part of it in an interval (a, b) ⊂ [0, T ]. In
the following, we describe a method to reconstruct the deleted part, based on the model presented above.

Let us call (xin, yin) := (x(a), y(a)) and (xfin, yfin) := (x(b), y(b)). Notice that the limits θin := limτ↑a θ(τ)
and θfin := limτ↓b θ(τ) are well defined, since θ(.) is an absolutely continuous curve. In the model by Petitot
et al. [8,10,24], the visual cortex reconstructs the curve by minimizing the energy necessary to activate orientation
columns which are not activated by the curve itself. This is modeled by the minimization of the functional

J =
∫ b

a

(
ξ2u(τ)2 + v(τ)2

)
dτ → min, (here a and b are fixed). (2.2)

Indeed, ξ2u(τ)2 (resp. v(τ)2) represents the (infinitesimal) energy necessary to activate horizontal (resp. vertical)
connections. The parameter ξ > 0 is used to fix the relative weight of the horizontal and vertical connections,
which have different physical dimensions. The minimum is taken on the set of curves which are solution of (2.1)
for some u(·), v(·) ∈ L1([a, b]) and satisfying boundary conditions

(x(a), y(a), θ(a)) = (xin, yin, θin), (x(b), y(b), θ(b)) = (xfin, yfin, θfin).
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Minimizers of the cost (2.2) are minimizers of the cost (which is invariant by reparameterization)

L =
∫ b

a

√
ξ2u(τ)2 + v(τ)2 dτ =

∫ b

a

‖ẋ(τ)‖
√

ξ2 + K(τ)2 dτ, (2.3)

where x = (x, y) and with b > a fixed. For more details about the relations between minimizers of costs (2.2)
and (2.3), see [19].

We thus define the following problem:

(Pprojective) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R
2×P 1. In the space of integrable controls u(·), v(·) :

[0, T ] → R, find the solutions of:

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(T ), y(T ), θ(T )) = (xfin, yfin, θfin),⎛
⎜⎜⎜⎜⎜⎝

dx

dτ
(τ)

dy

dτ
(τ)

dθ

dτ
(τ)

⎞
⎟⎟⎟⎟⎟⎠

= u(τ)

⎛
⎝ cos(θ(τ))

sin(θ(τ))
0

⎞
⎠ + v(τ)

⎛
⎝ 0

0
1

⎞
⎠

L =
∫ T

0

√
ξ2u(τ)2 + v(τ)2 dτ =

∫ T

0

‖ẋ(τ)‖
√

ξ2 + K(τ)2 dτ → min (here T is free).

Observe that here θ ∈ P 1, i.e. angles are considered modulo π. Notice that the vector field (cos θ, sin θ, 0) is
not continuous on PTR

2. Indeed, a correct definition of (Pprojective) needs two charts, as explained in detail
in ([8], Rem. 12). In this paper, the use of two charts is implicit, since it plays no crucial role.

The optimal control problem (Pprojective) is well defined. Moreover, it is a sub-Riemmanian problem, see
Section 3. We have remarked in [8] that a solution always exists. We have also studied a related problem in [9],
when we deal with curves on the sphere S2 rather than on the plane R

2.
One the main interests of (Pprojective) is the possibility of associating to it a hypoelliptic diffusion equation

which can be used to reconstruct images (and not just curves), and for contour enhancement. This point of view
was developed in [8, 10, 12, 13].

However, its main drawback (at least for the problem of reconstruction of curves) is the existence of minimizers
with cusps, see e.g. [6]. Roughly speaking, cusps are singular points in which velocity changes its sign. More
formally, we say that a curve trajectory (q(.), (u(.), v(.))) has a cusp at τ̄ ∈ [0, T ] if u(τ) changes its sign in a
neighbourhood7 of τ̄ . Notice that in a neighborhood of a cusp point, the tangent direction (modulo π) is well
defined. A minimizer with cusps is represented in Figure 4.

However, to our knowledge, the presence of cusps has not been observed in human perception experiments,
see e.g. [23]. For this reason, people started looking for a way to require that no trajectories with cusps appear as
solutions of the minimization problem. In [10, 13] the authors proposed to require trajectories parameterizated
by spatial arclength, i.e. to impose ‖ẋ‖ = u = 1. In this way cusps cannot appear. Notice that assuming
u = 1, directions must be considered modulo 2π, since now the direction of ẋ is defined in S1. In fact, cusps
are precisely the points where the spatial arclength parameterization breaks down. By fixing u = 1 we get the
optimal control problem (Pcurve) on which this paper is focused.

Remark 2.1. We also define an “angular cusp” as follows: we say that a pair trajectory-control (q(.), (u(.), v(.)))
has an “angular cusp” at τ̄ ∈ [a, b] if there exist a neighbourhood B := (τ̄ − ε, τ̄ + ε) such that u(τ) ≡ 0 on B
and θ(τ̄ − ε) �= θ(τ̄ + ε). Angular cusps are of the kind q(τ) = (x0, y0, θ0 +

∫ τ

0
v(σ) dσ).

The minimum of the distance between (x0, y0, θ0) and (x0, y0, θ1) with arbitrary θ0, θ1 is realized by angular
cusps. For (Pprojective) (and later for (PMEC)), there exist no minimizers (or local minimizers or geodesics)

7More precisely, it exists ε > 0 such that u(a)u(b) < 0 for almost every a ∈ (τ̄ − ε, τ̄) , b ∈ (τ̄ , τ̄ + ε).
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Figure 4. A minimizer with two cusps.

containing angular cusps except trajectories that are angular cusps on the whole interval [0, T ]. Indeed, assume
that a solution q(.) of (Pprojective) satisfies u1 ≡ 0 on a neighbourhood of t̄ ∈ [0, T ]; then, analyticity of the
solution8 implies that u1 ≡ 0 on the whole [0, T ].

3. Optimal control

In this section, we give the fundamental definitions and results from optimal control and sub-Riemannian
geometry, that we will use in the following. For more details about sub-Riemannian geometry, see e.g. [5,14,20].

3.1. Minimizers, local minimizers, geodesics

In this section, we give main definitions of optimal control. Observe that we deal with curves in the space
W 1,1 to deal with the problem (Pcurve), see Section 5.2.

Definition 3.1. Let M be an n dimensional smooth manifold and fu : q → fu(q) ∈ TqM be a 1-parameter
family of smooth vector fields depending on the parameter u ∈ R

m. Let f0 : M × R
m → [0, +∞) be a smooth

function of its arguments. We call variational problem (denoted by (VP) for short) the following optimal control
problem

q̇(τ) = fu(τ)(q(τ)), (3.1)∫ T

0

f0(q(τ), u(τ)) dτ → min, T free (3.2)

q(0) = q0, q(T ) = q1, (3.3)

u(·) ∈ ∪T>0L
1([0, T ], Rm), q(·) ∈ ∪T>0W

1,1([0, T ], M) (3.4)

Following ([30], Chapt. 8), we endow ∪T>0W
1,1([0, T ], M) with a topology.

Definition 3.2. Let q1(.), q2(.) ∈ ∪T>0W
1,1([0, T ], M), with q1 defined on [0, T1] and q2 on [0, T2]. Extend q1

on the whole time-interval [0, max {T1, T2}] by defining q1(t) := q1(T1) for t > T1, and similarly for q2. We define
the distance between q1(.) and q2(.) as

‖q1(.) − q2(.)‖W 1,1 := |q1(0) − q2(0)| + ‖q̇1(.) − q̇2(.)‖L1 .

From now on, we endow ∪T>0W
1,1([0, T ], M) with the topology induced by this distance. For more details,

see Chapter 8 of [30].
We now give definitions of minimizers for (VP).

8Analyticity of the solution is proved below, see Remark 3.10.
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Definition 3.3. We say that a pair trajectory-control (q(·), u(·)) is a minimizer if it is a solution of (VP).
We say that it is a local minimizer if there exists an open neighborhood Bq(·) of q(·) in ∪T>0W

1,1([0, T ], Rm),
endowed with the topology defined above, such that all (q̄(·), ū(·)) satisfying (3.1)–(3.3), with q̄(·) ∈ Bq(·) satisfy∫ T

0
f0(q̄(τ), ū(τ)) ≥ ∫ T

0
f0(q(τ), u(τ)).

We say that it is a geodesic if for every sufficiently small interval [t1, t2] ⊂ Dom(q(·)), the pair (q(·), u(·))|[t1,t2]

is a minimizer of
∫ T

t1
f0(q(τ), u(τ)) dτ from q(t1) to q(t2) with T free.

Remark 3.4. It is interesting to observe that, in general, one can have the same trajectory q(.) realized by
two different controls u1(.), u2(.). For this reason, one has to specify the control to have the cost of a trajectory.
Nevertheless, for the problems (Pcurve), (PMEC) and (Pprojective) studied in this article, it is easy to prove
that, for a given trajectory q(.) ∈ W 1,1([0, T ], M) satisfying (3.1) for some control u(.), then such control is
unique.

In this paper we are interested in studying problems that are particular cases of (VP), see Section 5. In
particular, we study the problem (PMEC) defined in Section 4, that is a 3D contact problem (see the definition
below). For such problem we apply a standard tool of optimal control, namely the Pontryagin Maximum Principle
(described in the next section), and then derive properties for (Pcurve) from the solution of (PMEC).

3.2. Sub-Riemannian manifolds

In this section, we recall the definition of sub-Riemannian manifolds and some properties of the corresponding
Carnot–Caratheodory distance. We recall that sub-Riemannian problems are special cases of optimal control
problems.

Definition 3.5. A sub-Riemannian manifold is a triple (M, �,g), where

• M is a connected smooth manifold of dimension n;
• � is a Lie bracket generating smooth distribution of constant rank m < n; i.e., � is a smooth map that

associates to q ∈ M an m-dim subspace �(q) of TqM , and ∀ q ∈ M , we have

span {[X1, [. . . [Xk−1, Xk] . . .]](q) | Xi ∈ Vec(M) and Xi(p) ∈ �(p) ∀ p ∈ M} = TqM. (3.5)

Here Vec(M) denotes the set of smooth vector fields on M .
• gq is a Riemannian metric on �(q), that is, smooth as a function of q.

The Lie bracket generating condition (3.5) is also known as the Hörmander condition, see [17].

Definition 3.6. A Lipschitz continuous curve q(.) : [0, T ] → M is said to be horizontal if q̇(τ) ∈ �(q(τ)) for
almost every τ ∈ [0, T ]. Given a horizontal curve q(.) : [0, T ] → M , the length of q(.) is

l(q(.)) =
∫ T

0

√
gq(τ)(q̇(τ), q̇(τ)) dτ. (3.6)

The distance induced by the sub-Riemannian structure on M is the function

d(q0, q1) = inf {l(q(.)) | q(0) = q0, q(T ) = q1, q(.) horizontal Lipschitz continuous curve} . (3.7)

Notice that the length of a curve is invariant by time-reparametrization of the curve itself.
The hypothesis of connectedness of M and the Lie bracket generating assumption for the distribution guar-

antee the finiteness and the continuity of d(·, ·) with respect to the topology of M (Rashevsky−Chow’s theorem;
see, for instance [4]).

The function d(·, ·) is called the Carnot–Caratheodory distance. It gives to M the structure of a metric space
(see [5, 14]).
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Observe that (Pprojective) and (PMEC) defined in Section 4 are both sub-Riemannian problems. Indeed,
defining

X1 =

⎛
⎝ cos θ

sin θ
0

⎞
⎠ , X2 =

⎛
⎝0

0
1

⎞
⎠ ,

one has that (Pprojective) is sub-Riemannian with M = PTR
2, �q = span {X1(q), X2(q)} and g(q) such that

X1(q), X2(q) is an orthonormal basis. For (PMEC), consider M = SE(2), that is the group of rototranslations
on the plane, and �q and g(q) as before. Notice that SE(2) is a double covering of PTR

2, and in particular it
has the topology of R

2 × S1.

3.3. The Pontryagin Maximum Principle on 3D contact manifolds

In the following, we state some classical results from geometric control theory which hold for the 3D contact
case. For simplicity of notation, we only consider structures defined globally by a pair of vector fields.

Definition 3.7 (3D contact problem). Let M be a 3D manifold and let X1, X2 be two smooth vector fields
such that dim(Span{X1, X2, [X1, X2]}(q))=3 for every q ∈ M . The variational problem

q̇ = u1X1 + u2X2, q(0) = q0, q(T ) = q1,

∫ T

0

√
(u1(τ))2 + (u2(τ))2dτ → min (3.8)

is called a 3D contact problem.

Observe that a 3D contact manifold is a particular case of a sub-Riemannian manifold, with � = span {X1, X2}
and with gq(t) uniquely determined by the condition gq(τ)(Xi, Xj) = δij . In particular, each 3D contact manifold
is a metric space when endowed with the Carnot–Caratheodory distance.

When the manifold is analytic and the orthonormal frame can be assigned through m analytic vector fields,
we say that the sub-Riemannian manifold is analytic. This is the case of the problems studied in this article.

Remark 3.8. In the problem above the final time T can be free or fixed since the cost is invariant by time
reparameterization. As a consequence the spaces L1 and W 1,1 in (3.4) can be replaced with L∞ and Lip, since
we can always reparameterize trajectories in such a way that u1(τ)2 + u2(τ)2 = 1 for every τ ∈ [0, T ]. If
u1(τ)2 + u2(τ)2 = 1 for a.e. τ ∈ [0, T ] we say that the curve is parameterized by sR-arclength. See Section 2.1.1
of [6], for more details.

We now state first-order necessary conditions for our problem.

Proposition 3.9 (Pontryagin Maximum Principle for 3D contact problems). In the 3D contact case, a curve
parameterized by sR-arclength is a geodesic if and only if it is the projection of a solution of the Hamiltonian
system corresponding to the Hamiltonian

H(q, p) =
1
2
(〈p, X1(q)〉2 + 〈p, X2(q)〉2), q ∈ M, p ∈ T ∗

q M, (3.9)

lying on the level set H = 1/2.

This simple form of the Pontryagin Maximum Principle follows from the absence of nontrivial abnormal
extremals in 3D contact geometry, as a consequence of the condition dim(Span{X1, X2, [X1, X2]}(q)) = 3 for
every q ∈ M , see [2]. For the general formulation of the Pontryagin Maximum Principle, see [4].

Remark 3.10. As a consequence of Proposition 3.9, for 3D contact problems, geodesics and the corresponding
controls are always smooth and even analytic if M, X1, X2 are analytic, as it is the case for the problems studied
in this article. Analyticity of geodesics in sub-Riemannian geometry holds for general analytic sub-Riemannian
manifolds having no abnormal extremals. For more details about abnormal extremals, see e.g. [3, 20].

In general, geodesics are not optimal for all times. Instead, minimizers are geodesics by definition.
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For 3D contact problems, we have that local minimizers are geodesics. Indeed, first observe that the set of
local minimizers is the same if we consider the space W 1,1 or W 1,∞, see Remark 3.8. Observe now that a local
minimizer is a solution of the PMP (see [4]), and due to Proposition 3.9 a curve is a solution of the PMP if and
only if it is a geodesic. See more details in [3].

A 3D contact manifold is said to be “complete” if all geodesics are defined for all times. This is the case for
the sub-Riemannian problems (Pprojective) and (PMEC) studied in this article. In the following, for simplicity
of notation, we always deal with complete 3D contact manifolds.

In the following we denote by (q(t), p(t)) = etH(q0, p0) the unique solution at time t of the Hamiltonian
system

q̇ = ∂pH, ṗ = −∂qH,

with initial condition (q(0), p(0)) = (q0, p0). Moreover we denote by π : T ∗M → M the canonical projection
(q, p) → q.

Definition 3.11. Let (M, span{X1, X2}) be a 3D contact manifold and q0 ∈ M . Let Λq0 := {p0 ∈
T ∗

q0
M |H(q0, p0) = 1/2}. We define the exponential map starting from q0 as

Expq0
: Λq0 × R

+ → M, Expq0
(p0, t) = π

(
etH(q0, p0)

)
. (3.10)

Next, we recall the definition of cut and conjugate time.

Definition 3.12. Let q0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q0. The cut
time for q(.) is Tcut(q(.)) = sup{t > 0, | q(.)|[0,t] is optimal}. The cut locus from q0 is the set

Cut(q0) = {q(Tcut(q(.))) | q(.) geodesic parameterized by sR-arclength starting from q0}.
Definition 3.13. Let q0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q0 with initial
covector p0. The first conjugate time of q(.) is

Tconj(q(.)) = min
{
t > 0 | (p0, t) is a critical point of Expq0

}
.

The conjugate locus from q0 is the set Con(q0) = {q(Tconj(q(.))) | q(.) sR-arclength geodesic from q0}.
A geodesic loses its local optimality at its first conjugate time. However, a geodesic can lose optimality before
its first conjugate time for “global” reasons. Hence we introduce the following:

Definition 3.14. Let q0 ∈ M and q(.) be a geodesic parameterized by sR-arclength starting from q0. We say
that tmax > 0 is a Maxwell time for q(.) if there exists another geodesic q̄(.), parameterized by sR-arclength
starting from q0 such that q(tmax) = q̄(tmax)

It is well known that, for a geodesic q(.), the cut time Tcut(q(.)) is either equal to the first conjugate time or
to the first Maxwell time, see for instance [2]. Moreover, we have (see again [2]):

Theorem 3.15. Consider a 3D contact problem on a manifold M . Let γ be a geodesic starting from q0 and let
Tcut and Tconj be its cut and conjugate times (possibly +∞). Then

• Tcut ≤ Tconj;
• γ is globally optimal from t = 0 to Tcut and it is not globally optimal from t = 0 to Tcut + ε, for every ε > 0;
• γ is locally optimal from t = 0 to Tconj and it is not locally optimal from t = 0 to Tconj + ε, for every ε > 0.

Remark 3.16. In 3D contact geometry (and more in general in sub-Riemannian geometry) the exponential
map is never a local diffeomorphism in a neighborhood of a point. As a consequence, spheres are never smooth
and both the cut and the conjugate locus from q0 are adjacent to the point q0 itself, i.e. q0 is contained in their
closure (see [1]).
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4. Definition and study of (PMEC)

In this section we introduce the auxiliary mechanical problem (PMEC). The study of the solutions of such
problem is the main tool that we use to prove Theorem 1.2.

(PMEC) Fix ξ > 0 and (xin, yin, θin), (xfin, yfin, θfin) ∈ R
2×S1. In the space of L1 controls u(·), v(·) : [0, T ] → R,

find the solutions of:

(x(0), y(0), θ(0)) = (xin, yin, θin), (x(T ), y(T ), θ(T )) = (xfin, yfin, θfin),⎛
⎜⎜⎜⎜⎜⎝

dx

dτ
(τ)

dy

dτ
(τ)

dθ

dτ
(τ)

⎞
⎟⎟⎟⎟⎟⎠

= u(τ)

⎛
⎝ cos(θ(τ))

sin(θ(τ))
0

⎞
⎠ + v(τ)

⎛
⎝ 0

0
1

⎞
⎠

∫ T

0

√
ξ2u(τ)2 + v(τ)2 dτ → min (here T is free) (4.1)

This problem (which cannot be interpreted as a problem of reconstruction of planar curves, as explained
in [8]) has been completely solved in a series of papers by one of the authors (see [19, 25, 26]).

Remark 4.1. In the study of (PMEC),(Pcurve) and (Pprojective), the parameter ξ can be dropped. Indeed,
for any ξ > 0 the homothety (x′, y′) := (ξx, ξy) of the (x, y)-plane maps curves γ of the metric with the weight
parameter ξ to curves γ̃ of the metric with ξ = 1. Moreover, the value of the cost (4.1) of γ with the weight
parameter ξ coincides with the cost (4.1) of γ̃ with the weight parameter 1. For this reason, in the following we
consider ξ = 1 only.

Remark that (PMEC) is a 3D contact problem. Then, one can use the techniques given in Section 3 to
compute the minimizers. This is the goal of the next section.

4.1. Computation of geodesics for (PMEC)

In this section, we compute the geodesics for (PMEC) with ξ = 1, and prove some properties that will be
useful in the following. First observe that for (PMEC) there is existence of minimizers for every pair (qin, qfin)
of initial and final conditions, and minimizers are geodesics. See [19, 25, 26]. Moreover, geodesics are analytic,
see Remark 3.10.

Since (PMEC) is 3D contact, we can apply Proposition 3.9 to compute geodesics. We recall that we have

M = R
2 × S1, q = (x, y, θ), p = (p1, p2, p3), X1 =

⎛
⎝ cos(θ)

sin(θ)
0

⎞
⎠ , X2 =

⎛
⎝0

0
1

⎞
⎠ .

Hence, by Proposition 3.9, we have

H =
1
2

(
(p1 cos θ + p2 sin θ)2 + p2

3

)
,

and the Hamiltonian equations are:

ẋ =
∂H

∂p1
= h(q, p) cos θ, ṗ1 = −∂H

∂x
= 0,

ẏ =
∂H

∂p2
= h(q, p) sin θ, ṗ2 = −∂H

∂y
= 0,

θ̇ =
∂H

∂p3
= p3, ṗ3 = −∂H

∂θ
= −h(q, p)(−p1 sin θ + p2 cos θ),
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where h(q, p) = p1 cos θ + p2 sin θ. Notice that this Hamiltonian system is integrable in the sense of Liouville,
since we have enough constant of the motions in involution. Moreover, it can be solved easily in terms of elliptic
functions. Setting p1 = Pr cosPa, p2 = Pr sin Pa one has h(p, q) = Pr cos(θ − Pa) and θ(t) is solution of the
pendulum like equation θ̈ = 1

2P 2
r sin(2(θ − Pa)). Due to invariance by rototranslations, the initial condition on

the q variable can be fixed to be (xin, yin, θin) = (0, 0, 0), without loss of generality. The initial condition on the
p variable is such that H(0) = 1/2. Hence p(0) must belong to the cilinder

C = {(p1, p2, p3) | p2
1 + p2

3 = 1}. (4.2)

With the notation of [19, 25, 26], we use coordinates (x, y, θ, ν, c) on the level set
{
H = 1

2

} ⊂ T ∗M , where ν, c
are defined by

sin(ν/2) = p1 cos θ + p2 sin θ, cos(ν/2) = −p3, c = 2(p2 cos θ − p1 sin θ), (4.3)

with ν ∈ 2S1, where 2S1 = R/(4πZ) is the double covering of the standard circle S1 = R/(2πZ).

In these coordinates, the Hamiltonian system reads as follows:

ν̇ = c, ċ = − sin ν, (ν, c) ∈ (2S1
ν) × Rc, (4.4)

ẋ = sin ν
2 cos θ, ẏ = sin ν

2 sin θ, θ̇ = − cos ν
2 . (4.5)

Note that the curvature of the curve (x(.), y(.)) is equal to

K =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
= − cot(ν/2). (4.6)

We now define cusps for geodesics of (PMEC). Recall that both the geodesics and the corresponding controls
are analytic.

Definition 4.2. Let q(.) = (x(·), y(·), θ(·)) be a geodesic of (PMEC), parameterized by sR-arclength. We say
that Tcusp is a cusp time for q(.) (and q(Tcusp) a cusp point) if u(.) changes its sign at Tcusp. We say that the
restriction of q(·) to an interval [0, T ] has no internal cusps if no t ∈]0, T [ is a cusp time.

Given a curve q(.) with a cusp point at Tcusp, we have that its projection on the plane x(·), y(·) has a planar
cusp at Tcusp as well, see Figure 4. More precisely, we have the following lemma.

Lemma 4.3. A geodesic γ (without angular cusps) has a cusp at Tcusp if and only if limt→Tcusp |K(t)| = ∞.

Proof. First observe that γ has an internal cusp at Tcusp if, for t → Tcusp, it holds u(t) → 0 and v(t) �→ 0, i.e.
using (4.5) one has u(t) = sin(ν/2) → 0 and v(t) = − cos(ν/2) �→ 0. This is equivalent to K(t) = − cot(ν/2) →
∞, by using (4.6). �

Also observe that one can recover inflection points of the planar curve x(·), y(·) from the expression of q(.).
Indeed, at an inflection point of the planar curve, we have that the corresponding q(.) satisfies K = 0 and
ν = π + 2πn, with n ∈ Z.

4.2. Qualitative form of the geodesics

Equation (4.4) is the pendulum equation

ν̈ = − sin ν, ν ∈ 2S1 = R/(4πZ), (4.7)

whose phase portrait is shown in Figure 5.
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Figure 5. Phase portraits of the pendulum equation, with the 5 types of trajectories.

Figure 6.

Trajectory
of type R.

Figure 7.

Trajectory
of type O.

Figure 8.

Trajectory
of type Sep.

There exist 5 types of geodesics corresponding the different pendulum trajectories.

(1) Type S: stable equilibrium of the pendulum: ν ≡ 0. For the corresponding planar trajectory, in this case we
have (x(t), y(t)) ≡ (0, 0). These are the only geodesics with angular cusps.

(2) Type U: unstable equilibria of the pendulum: ν ≡ π or ν ≡ −π. For the corresponding planar trajectory, in
this case we have (x(t), y(t)) = (t, 0) or (x(t), y(t)) = (−t, 0), i.e. we get a straight line.

(3) Type R: rotating pendulum. For the corresponding planar trajectory, in this case we have that (x(t), y(t))
has infinite number of cusps and no inflection points (Fig. 6). Note that in this case θ is a monotone function.

(4) Type O: oscillating pendulum. For the corresponding planar trajectory, in this case we have that (x(t), y(t))
has infinite number of cusps and infinite number of inflection points (Fig. 7). Observe that between two
cusps we have an inflection point, and between two inflection points we have a cusp.

(5) Type Sep: separating trajectory of the pendulum. For the corresponding planar trajectory, in this case we
have that (x(t), y(t)) has one cusps and no inflection points (Fig. 8).

The explicit expression of geodesics in terms of elliptic functions are recalled in Appendix A.
Recall that, for trajectories of type R, O and Sep, the cusp occurs whenever ν(t) = 2πn, with n ∈ Z, since

in this case one has from Lemma 4.3 that K(t) → ∞ for t → Tcusp.
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Figure 9. Action of S on
t → (x(t), y(t)).

Figure 10. Action of T

on t → (x(t), y(t)).

4.3. Optimality of geodesics

Let q(.) = (x(.), y(.), θ(.)) be a geodesic parameterized by sub-Riemannian arclength t ∈ [0, T ]. Consider the
following two mappings of geodesics9:

S, T : q(.) → qS(.), qT(.), with q(.) : [0, T ] → R
2 × S1

where

θS(t) = θ(T ) − θ(T − t),
xS(t) = − cos θ(T )(x(T ) − x(T − t)) − sin θ(T )(y(T ) − y(T − t)),
yS(t) = − sin θ(T )(x(T ) − x(T − t)) + cos θ(T )(y(T ) − y(T − t)),

and

θT(t) = θ(T − t) − θ(T ),
xT(t) = cos θ(T )(x(T − t) − x(T )) + sin θ(T )(y(T − t) − y(T )),
yT(t) = − sin θ(T )(x(T − t) − x(T )) + cos θ(T )(y(T − t) − y(T )).

Modulo rotations of the plane (x, y), the mapping S acts as reflection of the curve (x(.), y(.)) in the middle
perpendicular to the segment that connects the points (x(0), y(0)) and (x(T ), y(T )); the mapping T acts as
reflection in the midpoint of this segment. See Figures 9 and 10. For more details, see [27].

A point q(t) of a trajectory q(.) is called a Maxwell point corresponding to the reflection S if q(t) = qS(t) and
q(·) �≡ qS(·). The same definition can be given for T. Examples of Maxwell points for the reflections S and T are
shown at Figures 11 and 12.

The following theorem proved in [19, 25, 26] describes optimality of geodesics.

Theorem 4.4. A geodesic q(.) on the interval [0, T ], is optimal if and only if each point q(t), t ∈ (0, T ), is
neither a Maxwell points corresponding to S or T, nor the limit of a sequence of Maxwell points.

Notice that if a point q(t) is a limit of Maxwell points then it is a Maxwell point or a conjugate point.
Denote by Tpend the period of motion of the pendulum (4.7). It was proved in [26] that the cut time satisfies

the following:

• Tcut = 1
2Tpend for geodesics of type R;

9Such mappings are denoted by ε2, ε5 in [19, 25, 26], respectively.



762 U. BOSCAIN ET AL.

Figure 11. Maxwell
point for reflection S.

Figure 12. Maxwell
point for reflection T.

• Tcut ∈ (1
2Tpend, Tpend) for geodesics of type O;

• Tcut = +∞ = Tpend for geodesics of types S, U and Sep.

Corollary 4.5. Let q(.) be a geodesic. Let Tcusp, and Tcut be the first cusp time and the cut time (possibly +∞).
Then Tcusp ≤ Tcut.

Proof. For geodesics of types R and O it follows from the phase portrait of pendulum (4.7) that there exists
t ∈ (0, 1

2Tpend) such that ν(t) = 2πn. This implies that K(t) → +∞, and, by Lemma 4.3, we have a cusp point
for such t. Then Tcusp ≤ 1

2Tpend ≤ Tcut.
For geodesics of types S, U and Sep, the inequality Tcusp ≤ Tcut is obvious since Tcut = +∞. �

Corollary 4.6. Let q(.) defined on [0, T ] be a minimizer having an internal cusp. Then any other minimizer
between q(0) and q(T ) has an internal cusp.

Proof. It was proved in [26] that for any points q0, q1 ∈ R
2 × S1, there exist either one or two minimizers

connecting q0 to q1. Moreover, if there are two such minimizers q(.) and q̃(·), then q̃(·) is obtained from q(.) by
a reflection S or T. So if q(.) has an internal cusp, then q̃(·) has an internal cusp as well. �

5. Equivalence of problems

In this section, we state precisely the connections between minimizers of problems (Pcurve), (Pprojective)
and (PMEC) defined above. The problems are recalled in Table 1 for the reader’s convenience. We also prove
that there exists minimizers of (Pcurve) that are absolutely continuous but not Lispchitz.

First notice that the problem (PMEC) admits a solution, as shown in [19,25,26]. The same arguments apply
to (Pprojective), for which existence of a solution is verified as well, see [6].

Also recall that the definitions of (Pprojective) and (PMEC) are very similar, with the only difference that
θ ∈ P 1 or θ ∈ S1, respectively. This is based on the fact that R

2×S1 is a double covering of R
2×P 1. Moreover,

both the dynamics and the infinitesimal cost in (PMEC) are compatible with the projection R
2×S1 → R

2×P 1.
Thus, the geodesics for (Pprojective) are the projection of the geodesics for (PMEC). Then, locally the two
problems are equivalent. If we look for the minimizer for (Pprojective) from (xin, yin, θin) to (xfin, yfin, θfin), then
it is the shortest minimizer between the minimizing geodesics for (PMEC):

minimizing geodesic q1(.): connecting (xin, yin, θin) to (xfin, yfin, θfin);
minimizing geodesic q2(.): connecting (xin, yin, θin + π) to (xfin, yfin, θfin);
minimizing geodesic q3(.): connecting (xin, yin, θin) to (xfin, yfin, θfin + π);

minimizing geodesic q4(.): connecting (xin, yin, θin + π) to (xfin, yfin, θfin + π);
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Table 1. The different problems we study in the paper.

Notation

q =

⎛
⎝ x

y
θ

⎞
⎠ , X1 =

⎛
⎝ cos θ

sin θ
0

⎞
⎠, X2 =

⎛
⎝ 0

0
1

⎞
⎠,

here x := (x, y) ∈ R
2 and θ ∈ S1 or P 1 as specified below. We denote with s the plane-arclength

parameter and with t the sR-arclength parameter. In all problems written below we have
the following:

• initial and final conditions (xin, yin, θin), (xfin, yfin, θfin) are given;
• the final time T (or length �) is free;
• ξ > 0 is a fixed parameter (see Rem. 4.1).
Problem (Pcurve):

q ∈ R
2 × S1 q̇ = X1 + vX2,

∫ �

0

√
ξ2 + v2 ds =

∫ �

0

√
ξ2 + K(s)2ds → min

Problem (PMEC):

q ∈ R
2 × S1 q̇ = uX1 + vX2,

∫ T

0

√
ξ2u2 + v2 dt → min

Problem (Pprojective):

q ∈ R
2 × P 1 q̇ = uX1 + vX2,

∫ T

0

√
ξ2u2 + v2 dt =

∫ T

0

‖ẋ‖
√

ξ2 + K(t)2 dt → min

(xin, yin)

θin

θin
+ π

(xfin, yfin)

θ
fin

θ
fin +

π

q1
(.)

� q4
(.)

q2(.) � q3(.)

Figure 13. Projection of minimizing geodesics for (Pprojective) from projection of minimizing
geodesics for (PMEC).

Actually, these four minizing geodesics are coupled two by two: indeed, the projections of q1 and q4 on the
plane (x, y) are the same curve, as well as the projections of q2 and q3. Indeed, take a curve q(.) = (x(.), y(.), θ(.))
in SE(2) satisfying the dynamics of (PMEC) with controls u(.), v(.), steering (xin, yin, θin) to (xfin, yfin, θfin).
Then, the curve q̃(.) = (x(.), y(.), θ(.) + π) satisfies the dynamics of (PMEC) with controls −u(.), v(.) and it
steers (xin, yin, θin + π) to (xfin, yfin, θfin + π). Clearly, the two curves q(.) and q̃(.) have the same projection on
the plane (x, y). From the mechanical point of view, this is equivalent to travel from a point to another either
driving forward or backward. See Figure 13.

It is also easy to prove that a minimizer of (PMEC) without cusps is also a minimizer of (Pcurve). Indeed, take
a minimizer q(.) of (PMEC) without cusps, thus with ‖ẋ(τ)‖ > 0 for τ ∈ [0, T ]. Then, reparametrize the time
to have a spatial arclength parametrization, i.e. u = ‖ẋ‖ ≡ 1 (this is possible exactly because it has no cusps).
This new parametrization of q(.) satisfies the dynamics for (Pcurve) and the boundary conditions. Assume now
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by contradiction that there exists a curve q̃(.) satisfying the dynamics for (Pcurve) and the boundary conditions
with a cost that is smaller that the cost for q(.). Then q̃(.) also satisfies the dynamics for (PMEC) and boundary
conditions, with a smaller cost, hence q(.) is not a minimizer. Contradiction.

5.1. Connection between curves of (Pcurve) and (PMEC)

In this section, we study in more detail the connection between curves of (Pcurve) and (PMEC). First of
all, observe that (Pcurve) and (PMEC) are defined on the same manifold SE(2). Moreover, each curve Γ (.) =
(x(.), y(.), θ(.)) satisfying the dynamics for (Pcurve) with a certain control v(.), also satisfies the dynammics for
(PMEC) with controls u(.) ≡ 1 and v(.). For simplicity of notation, we give the following definition.

Definition 5.1. Let Γ (.) = (x(.), y(.), θ(.)) be a curve in SE(2) satisfying the dynamics for (Pcurve) with
a certain control v(.). We define the corresponding curve q(.) for (PMEC) as the same parametrized curve
(x(.), y(.), θ(.)), and the corresponding pair as the pair trajectory-control (q(.), (u(.), v(.))) with u(.) ≡ 1.

We define the corresponding reparametrized pair (q1(.), (u1(.), v1(.))) for (PMEC) the time-reparametrization
of the corresponding pair (q(.), (u(.), v(.))) by sR-arclength, and the corresponding reparametrized curve as the
curve q1(.).

Recall that the time-reparametrization by sR-arclength of an admissible curve for (PMEC) is always possible.
A detailed explanation for time-reparametrization of a curve with controls in L1 to have controls in L∞ is given
in Section 2.1.1 of [6].

We now focus on solutions of the Pontryagin Maximum Principle (PMP). For (Pcurve), one cannot apply the
standard PMP since one cannot guarantee a priori that optimal controls are in L∞. For this reason, we apply a
generalized version of the PMP which holds for L1 controls (see [30], Thm. 8.2.1). We have the following result.

Theorem 5.2. Let Γ (.) be a solution of the generalized PMP for (Pcurve). Then the corresponding
reparametrized curve is a solution of the standard PMP for (PMEC).

The proof of this Theorem is given in Appendix 6.1. Here we recall the main steps of the proof:

Step 1. We prove that if (Γ (.), v(.)) is a solution of the generalized Pontryagin Maximum Principle for (Pcurve),
then, the corresponding pair (q(.), (u(.), v(.))) for (PMEC) is a solution of the generalized Pontryagin Maximum
Principle.

Step 2. We prove that the corresponding reparametrized pair is a solution of the standard PMP.
We are now ready to discuss the connection between geodesics for (Pcurve) and (PMEC).

Proposition 5.3. Let Γ (.) be a geodesic for (Pcurve). Then the corresponding reparametrized curve is a geodesic
for (PMEC).

Proof. Let Γ (.) be a geodesic for (Pcurve). By definition, for every sufficiently small interval its restriction is
a global minimizer. Then it is a solution of the generalized PMP for (Pcurve). Hence, applying the previous
Theorem 5.2, we have that the corresponding reparametrized trajectory is a solution of the standard PMP for
(PMEC). This implies that it is a geodesic for (PMEC), due to Proposition 3.9. �

5.2. (Pcurve) admits minimizers which are absolutely continuous but not Lipschitz

We now show that the problem (Pcurve) exhibits an interesting phenomenon: there exist absolutely continuous
minimizers that cannot be reparametrized to be Lipschitz. Other examples are given in [29].

Consider a geodesic of (PMEC) defined on [0, T ] having no internal cusp and corresponding to controls u(·)
and v(·). From Corollary 4.5 it follows that it is optimal. Assume now that this geodesic has a cusp at T .
Then, by Lemma 4.3, we have that for t → T it holds u(t) → 0 and K(t) → ∞. Notice that

√
u(τ)2 + v(τ)2

is integrable on [0, T ], since its integral is exactly the Carnot–Caratheodory distance (3.7), that is finite, see
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e.g. [19]. Since the cost of (PMEC) and (Pcurve) coincide, we have that
∫ �

0

√
1 + K2(s) ds is finite. In particular,

K(.) is a L1 function that is not L∞. Reparametrize time to have an admissible curve Γ (.) for (Pcurve), with
control ṽ(.). Since ṽ(s) coincides with K(s), then ṽ(.) is a L1 function that is not L∞. This means moreover
that the trajectory Γ (.) for (Pcurve) has unbounded control and it is not Lipschitz.

This phenomenon is extremely interesting in optimal control. Indeed, direct application of standard techniques
for the computation of local minimizers, such as the Pontryagin Maximum Principle, would provide local
minimizers in the “too small” set of controls L∞([0, T ], R). In other words, the absolutely continuous minimizers
that are not Lipschitz are not detected by the Pontryagin Maximum Principle. For this reason, we were obliged
to use the generalized PMP for (Pcurve) in Theorem 5.2.

Instead, the auxiliary problem (PMEC) does not present this phenomenon, since by re-parametrization one
can always reduce controls to the set L∞([0, T ], R).

6. Existence of minimizing curves

In this section we prove the main results of this paper, proving Theorem 1.2. We characterize the set of
boundary conditions for which a solution of (Pcurve) exists. We show that the set of boundary conditions
for which a solution exists coincides with the set of boundary conditions for which a local minimizer exists.
Moreover, such set coincides with the set of boundary conditions for which a geodesics joining them exists. We
also give some properties of such set.

After this theoretical result, we show explicitly the set of initial and final points for which a solution exists,
computed numerically. For more details on this subject, see [11].

From the following result, Theorem 1.2 follows.

Theorem 6.1 (main result). Fix an initial and a final condition qin = (xin, yin, θin) and qfin = (xfin, yfin, θfin)
in R

2 × S1. Let q(.) be a minimizer for the problem (PMEC) from qin to qfin. The only two possible cases are:

(1) q(.) has neither internal cusps nor angular cusps. Then q(.) is a solution for (Pcurve) from qin to qfin.
(2) q(.) has at least an internal cusp or an angular cusp. Then (Pcurve) from qin to qfin does not admit neither

a global nor a local minimum nor a geodesic.

Proof. We use the notation q(.) to denote trajectories for (PMEC), and Γ (.) for trajectories for (Pcurve). Recall
the results of Section 5. Given a Γ (.) = (x(.), y(.), θ(.)) trajectory of (Pcurve), this gives the corresponding curve
q(.) = (x(.), y(.), θ(.)) for (PMEC). On the converse, a q(.) = (x(.), y(.), θ(.)) trajectory of (PMEC) without cusps
gives naturally a Γ (.) trajectory of (Pcurve), after reparametrization.

Fix an initial and a final condition qin = (xin, yin, θin) and qfin = (xfin, yfin, θfin). Take a solution q(.) of
(PMEC). If q(.) has no cusps, then one can reparametrize time to have a curve Γ (.) solution of (Pcurve). If q(.)
has cusps at boundaries, then the same re-parametrization (that can be applied, as explained in Sect. 5.1) gives
the corresponding Γ (.), that is a solution of (Pcurve). The first part is now proved.

We prove the second part by contradiction. If q(.) has an internal cusp, then any other solution of (PMEC)
from qin to qfin has an internal cusp, as proved in Corollary 4.6. By contradiction, assume that there exists Γ̄ (.),
either a solution (i.e. a global minimizer) of (Pcurve) from qin to qfin, or a local minimizer, or a geodesic. In
the three cases, the corresponding reparametrized curve on SE(2) of (PMEC), that we denote by q̄1(.), has no
cusps.

We first study the case of geodesics. Let Γ̄ (.) be a geodesic of (Pcurve). Then q̄1(.) is a geodesic of (PMEC)
between the same boundary conditions of Γ̄ (.), due to Proposition 5.3. Then, two cases are possible:

• Let q̄1(.) be a solution, i.e. a global minimizer, for (PMEC). Then both q(.) and q̄(.) are minimizers, one
with cusps and the other without cusps. This yelds a contradiction with Corollary 4.6.

• Let q̄1(.) be a geodesic for (PMEC) that is not a global minimizer. We denote with [0, T ] the time-interval
of definition of q̄1(.). Then there exists a cut time tcut < T for q̄1(.). Then there exists a cusp time tcusp ≤
tcut < T for q̄1(.), see Corollary 4.5. Then q̄1(.) has a cusp. Contradiction.
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Figure 14. Non-existence of a solution of (Pcurve) for (xin, yin) = (xfin, yfin).

We have a contradiction in both cases. Thus, if q(.) has a internal cusp, there exists no geodesic of (Pcurve)
from qin to qfin.

We now study the case of local minimizers. Let Γ̄ (.) be a local minimizer for (Pcurve). Then, it is a solution
of the generalized Pontryagin Maximum Principle ([30], Thm. 8.2.1). Applying Theorem 5.2, we have that
the corresponding reparametrized curve q̄1(.) is a solution of the standard Pontryagin Maximum Principle for
(PMEC), and then it is a geodesic by Proposition 3.9. Since Γ̄ (.) has no cusps, then q̄1(.) has no cusps either,
thus it is a global minimizer. Then both q(.) and q̄1(.) are global minimizers, one with cusps and the other
without cusps. This yelds a contradiction with Corollary 4.6.

Since global minimizers are special cases of local minimizers, we have the result for global minimizers too.
If instead q(.) has an angular cusp, then (xin, yin) = (xfin, yfin), see Remark 2.1. In this case, assume that

there exists Γ̄ (.) either a solution of (Pcurve) (i.e. a global minimizer), or a local minimizer, or a geodesic. In
the three cases, the corresponding reparametrized trajectory of (PMEC) q̄1(.) must be of Type S, since there
are no other geodesics steering qin to qfin with (xin, yin) = (xfin, yfin). By construction, the solution of (Pcurve)
is Γ̄ (.) = (xin, yin, θ(.)). Observing the dynamics for (Pcurve) in (1.2), one has that x, y constant implies that
the planar length is � = 0, then we must have θin = θfin. �

Remark 6.2. Observe that, as a corollary, we have proved that global minimizers, local minimizers and
geodesics for (Pcurve) coincide.

Remark 6.3. The last part of the proof has its practical interest. It shows the non-existence of a solution of
(Pcurve) in the case of (xin, yin) = (xfin, yfin). This means that, under this condition, it is possible to construct
a sequence of planar curves γn(.), each steering (xin, yin, θin) to (xin, yin, θfin) and such that the sequence of the
costs of γn(.) converges to the infimum of the cost, but that the limit trajectory γ∗(.) is a curve reduced to a
point, for which the curvature K is not well-defined. See Figure 14.

6.1. Characterization of the existence set

In this section, we characterize the set of boundary conditions for which a solution of (Pcurve) exists, an-
swering the second part of question Q2. We recall that we just proved that the existence set does not change if
we consider global or local minimizers or geodesics.

We prove here some simple topological properties of such set, and give some related numerical results.
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Figure 15. Geodesics reaching x = 0, upper plane.

Proposition 6.4. Let S ⊆ R
2 × S1 be the set of final conditions qfin = (xfin, yfin, θfin) for which a solution of

(Pcurve) exists, starting from e := (0, 0, 0). We have that S is arc-connected and non-compact.

Proof. For arc-connectedness, let qa, qb ∈ S. This means that there exist two curves q1(.), q2(.) steering e to
qa, qb, respectively. Then the concatenation of curves (with reversed time for q1(.)) steers qa to e to qb. For
non-compactness, observe that all points on the half-line (t, 0, 0) are in S. �

Other properties of S (which are evident numerically10) are the following:

(1) all points of S satisfy xfin ≥ 0;
(2) if qfin ∈ S satisfies θfin = π, then it also satisfies xfin = 0; similarly, if qfin ∈ S satisfies xfin = 0, then it also

satisfies θfin = π. The solutions of a problem with qfin = (0, yfin, π) have a cusp in qfin.

Remark 6.5. The characterization of S is, in some sense, the continuation of the main results of the authors
in [6]. There, we proved that there exist boundary conditions such that (Pcurve) did not admit a minimizer,
i.e. that S is not the whole space SE(2). Here we have described in bigger detail the set of boundary conditions
S such that (Pcurve) admits a minimizer, together with proving that, given boundary conditions, the existence
of a minimizer is equivalent to the existence of a local minimizer or a geodesic.

Appendix A. Explicit expression of geodesics in terms of elliptic functions

In this section, we recall the explicit expressions of the geodesics for (PMEC). They were first computed
in [19].

The geodesics are expressed in sub-Riemannian arc-length t, and they are written in terms of Jacobian func-
tions cn , sn , dn , E . For more details, see e.g. [31]. Here (ν, c) are the variables for the pendulum equation (4.4)
and (ϕ, k) are the corresponding action-angle coordinates that rectify its flow: ϕ̇ = 1, k̇ = 0. See detailed
explanations in Section 4 of [19].

Since (PMEC) is invariant via rototranslations, we give geodesics starting from (0, 0, 0) only.
Recall that we have classified geodesics of (PMEC) via the classification of trajectories of the pendulum

equation (4.7), see Section 4.2. We have the following 5 cases.

10Formal proofs are given in [11].
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• The geodesic of type S has the simple expression q(t) = (0, 0, t). The projection on the plane gives the line
reduced to the point (0, 0).

• The geodesic of type U has the simple expression q(t) = (t, 0, 0). The projection on the plane is the straight
half-line (t, 0).

• Geodesics of type R have the following expression:

cos θ(t) = cn ϕcn (ϕ + t) + sn ϕsn (ϕ + t),
sin θ(t) = sgn (cos(ν/2))(sn ϕcn (ϕ + t) − cn ϕsn (ϕ + t)),

x(t) =
sgn (cos(ν/2))

k
[cn ϕ(dn ϕ − dn (ϕ + t)) + sn ϕ(t + E(ϕ) − E (ϕ + t))],

y(t) = (1/k)[snϕ(dn ϕ − dn (ϕ + t)) − cnϕ(t + E (ϕ) − E (ϕ + t))].

• Geodesics of type O have the following expression:

cos θ(t) = k2sn (ϕ/k)sn (ϕ + t)/k + dn (ϕ/k)dn (ϕ + t)/k,

sin θ(t) = k(sn (ϕ/k)dn (ϕ + t)/k − dn (ϕ/k)sn (ϕ + t)/k),
x(t) = sgn (c)k[dn (ϕ/k)(cn (ϕ/k) − cn (ϕ + t)/k) + sn (ϕ/k)(t/k + E(ϕ/k) − E ((ϕ + t)/k)],
y(t) = sgn (c)[k2sn (ϕ/k)(cn (ϕ/k) − cn (ϕ + t)/k) − dn (ϕ/k)(t/k + E(ϕ/k) − E (ϕ + t)/k)].

• Geodesics of type Sep have the following expression:

cos θ(t) = 1/(coshϕ cosh(ϕ + t)) + tanhϕ tanh(ϕ + t),
sin θ(t) = sgn (cos(ν/2))(tanh ϕ/ cosh(ϕ + t) − tanh(ϕ + t)/ coshϕ),
x(t) = sgn (cos(ν/2))sgn (c)[(1/ coshϕ)(1/ coshϕ − 1/ cosh(ϕ + t)) + tanhϕ(t + tanhϕ − tanh(ϕ + t))],
y(t) = sgn (c)[tanhϕ(1/ coshϕ − 1/ cosh(ϕ + t)) − (1/ coshϕ)(t + tanhϕ − tanh(ϕ + t))].

Pictures of geodesics of type R, O, Sep are given in Figures 6, 7 and 8, respectively.

Appendix B. Proof of Theorem 5.2

In this appendix, we prove Theorem 5.2. The structure of the proof is given in Section 5.1. We are left to
prove Step 1 and Step 2.

Step 1. If (Γ (.), v(.)) is a solution of the generalized Pontryagin Maximum Principle for (Pcurve), then, the
corresponding pair (q(.), (u(.), v(.))) is a solution of the generalized Pontryagin Maximum Principle for (PMEC).

Proof. Without loss of generality, we provide the proof for ξ = 1.
Apply the generalized PMP both to problems (Pcurve) and (PMEC). For (PMEC), the unmaximised Hamil-

tonian is HM := p1 cos(θ)u + p2 sin(θ)u + p3v + λ
√

u2 + v2. For (Pcurve), replace u with 1: we denote such
Hamiltonian with HC . We denote the maximised Hamiltonians with HM , HC , respectively. Recall that we study
free time problems, thus both the maximised Hamiltonians satisfy HM ≡ 0 and HC ≡ 0, see [4], Section 12.3.

We observe that for both problems there are no strictly abnormal extremals (i.e. solutions with λ = 0).
Indeed, for (Pcurve) abnormal extremals are straight lines, that can be realized as normal extremals too. The
same holds for (PMEC). Thus we fix from now on λ = −1 without loss of generality.

Let now (Γ̄ (.), p̄(.), v̄(.)) be a trajectory vector-covector-control satisfying the generalized PMP for (Pcurve).
We prove that the corresponding trajectory vector-covector-controls (q̄(.), p̄(.), (1, v̄(.))) satisfies the generalized
PMP for (PMEC). The main point here is that HM depends on two parameters (u, v), while HC depends on v
only. Thus, to maximise Hamiltonians, one has more degrees of freedom for HM than for HC . We need to prove
that such additional degree of freedom u does not improve maximisation of the Hamiltonian.
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We first prove that, if v̄(.) maximises11 HC(q̄(.), p̄(.), v(.)), then the choice u(.) ≡ 1, v(.) = v̄(.) maximises the
Hamiltonian HM (q̄(.), p̄(.), (u(.), v(.))). First observe that both HM and HC are C∞ (except for HM in (0, 0)),
and concave with respect to variables u, v and v, respectively. Moreover, we have no constraints on the controls.
Thus, maximisation of the Hamiltonian is equivalent to have ∇uH = 0.

We are reduced to prove that ∂HM

∂u = ∂HM

∂v = 0 when evaluated in (q̄(.), p̄(.), (1, v̄(.))). Observe that ∂HM

∂v =
∂HC

∂v for u = 1; thus, since v̄(.) maximises HC , then ∂HC

∂v = 0. Hence ∂HM

∂v = 0. A simple computation also
shows that ∂HM

∂u evaluated in u(.) ≡ 1, v(.) = v̄(.) is p̄1 cos(θ̄) + p̄2 sin(θ̄) − 1√
1+v̄2 , whose expression coincides

with HC when replacing p3 with its expression with respect to the optimal control, that is p3 = v̄√
1+v̄2 . Since

HC = 0, then ∂HM

∂u = 0, hence HM is maximised by u(.) ≡ 1, v(.) = v̄(.).
Thus we have that HM = HC on this trajectory. Then, since HC = 0, then it clearly holds

HM (q̄(.), p̄(.), (1, v̄(.))) ≡ 0

and it is also clear that (q̄(.), p̄(.)) is a solution of the Hamiltonian system with Hamiltonian HM . Then, (q̄(.), p̄(.))
is a solution of the generalized PMP for (PMEC). �

Step 2. Let (q(.), (u(.), v(.))) with u(.) ≡ 1 be a solution of the generalized Pontryagin Maximum Principle for
(PMEC). Then, the curve reparametrized by sR-arclength is a solution of the standard Pontryagin Maximum
Principle.

Proof. Recall that for (PMEC) one can always reparametrize curves by sR-arclength. This also transforms tra-
jectoires with L1 controls in trajectories with L∞ controls without changing the cost, as explained in Remark 3.8.
Choose such reparametrization.

As a consequence, a solution to the generalized PMP can be reparametrized to have controls in L∞. Since
the expression of the equations are the same for the standard and generalized PMP, then this reparametrized
curve is a solution to the standard PMP. �
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