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Input y(t) = ‘ggR(t,zo,. ..,2Zp)dzg - - - dz,

e Multiple integral
e of a rational function
e over a closed path.

e This is period of rational integral.

em(t)y ™ () + - - + co(D)y(2) = 0

e Linear differential equation for y

Output

e with polynomial coefficients.

e This is the Picard-Fuchs equation.

[Classical theorem — Such a differential equation
always exists. |

Computing a differential equation satisfied by a
function is computing this function.

A differential equation and initial condition:

e defines uniquely the function,
e allows numerical evaluation, fast and with arbitrary precision,
e allows to compute asymptotics and power series expansions,

e can prove identities.

MOTIVATIONS

e Multiple binomial sums can be computed as periods of rational
functions through integral representations of generating functions. For

(l+]) (4n2712—i2—i2j)
Zutn_ 1 (y— 1)y’
T @in)?2 T (- yiy - 1)) ((x - 1)t - xy?2(y? + x — 1))

n=0

example, with u, = 2317 217

The computation of the Picard-Fuchs equation gives a proof of the fol-
lowing identity:

ZZ(H_]) (4n—2i —'Zj) (2n+1)(2n)
=0 =0 2n — 21 n

This is end-to-end automated, cf. Bruno Salvy’s talk.

e In the context of mirror symmetry, topological invariants of a given
variety, like Gromov-Witten invariants, can be computed with a Picard-
Fuchs equation related to the mirror family.

~> Big integrals, hard to compute.

e And also combinatorics, number theory, physics.

ELEMENTARY RELATIONS

Integral of a derivative 95 Z 5 'dzg -+ - dzy = 0
Zj

0G

Integration by parts 95 F—dz, - - 95 —Gdzy - - dz,
0z 0z
0

Differentiation under 56 o7 ﬁ Fdz, - ‘é —dzg -+ - dz,,

EXAMPLE

Perimeter of an ellipse as a function of its excentricity:

1 dxdy
PO = 3= P —
(1-x%)y?

(Euler, 1733)

Then (e — e)p” + (1 —e*)p’ +ep =0
Proof.

the rational function

operator in e and 9, only, being integrated
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sum of derivatives, its integral over a closed path is zero

N\

QED.

NOTATIONS

e R(t,zp,...,2,) = a/ f arational function
e K = C(t), the base field
¢ 0; denotes the partial differentiation 9/0z;

eR — ﬁ Rdz denotes really the canonical KK-linear surjection

Klzo.. . .z
"0 0ilK[z0,. .. ,2n, %] '

K[zo,. .. ,zn,%]

HOMOGENEITY

Up to homogenization with a new variable, we can assume that R is
homogeneous of degree —n — 1, that is

R(t,Azo,. .., Azs) = A" R(¢, 20, . . ., Zn),
or equivalently,

R(t,\zg,. .., Azp)d(Az) - - - d(Az,) = R(t, 2, . . .

,Zp)dzg - - - dz,.

Confinement — For all polynomials f and all integers g, the space
of homogeneous fractions of degree —n — 1 of the form a/f? is finite
dimensional.

e New and fast algorithm.

e Uses only commutative Grobner basis and linear
algebra, rather than 9-module theory.

e Based on a extension of Griffiths-Dwork reduction
which handles singular cases.

e Implementation available in Magma.
https://github.com/lairez/periods.git

e Computes quickly integrals that were previously
out-of-reach.

REDUCTION OF POLE ORDER

X
Principle — Rewrite Eﬁ —dz as ﬁ Fa
How ? —1If a = bydy f + - -

9§—dz_9§Zbafdz_q19§qul

1ntegrat10n by parts

- b0, f, for some polynomials b; € K[z], then

2ibioif | X;0ib;
fa g1 fg-1

Rewriting rule

By contruction, if R rewrites into R’ by repeated application of the

rewriting rule, then
% Rdz = 95 R'dz.

Definition a/f1is reducible if there exists b such that
a b
fo o frr
Nota bene a/f?is reducible if and only if a is in the jacobian ideal

of f, which is (0o f,. .., 0nf).

Assume that f defines a smooth hypersurtace in the pro-
jective space P"(KK). Let a/ f? a homogeneous fraction of
degree —n — 1.

o If g > n, then a/ {1 is reducible.
In particular, there exists a polynomial b such that

b e = 9§—dz

o [f ﬁ dz = 0 then a/ f? is reducible.

ALGORITHM, SMOOTH CASE

1. For each k > 0, compute by such that
0" a b
—_—— H o o o
otk f A
[ Always possible, by Griffiths-Dwork theorem. |

2. Find a linear dependency relation over K = C(¢):

bo b
co(t)— + -+ + cp(t)— = 0.
fr fr
[ Exists for m large enough, by the confinement property. |
3. When found, return cm(t)y(m)(t) + -+ co(t)y(t) = 0.

What it f is not smooth?

Generically f is smooth. In practice, most interesting
integrals, if not all, have a singular f.
generic case # usual case

Without assumptions on f, let a/f? be a homogeneous
fraction of degree —n—1. Then there exists a polynomial b

such that ;
56 —dz = SE —dz

But how to compute b/ f" from a/ f9?
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COMPUTING PERIODS OF RATIONAL INTEGRALS

Reduction rules for general case

EXTENSION OF GRIFFITHS-DWORK REDUCTION

Consider again the rewriting rule
Zi biaif . 121’ aibi
fa+! "4 fq
The decomposition of a polynomial as )}; b;0; f is not unique: zero de-
composes non trivially. If }; b;0;f = 0, then what about

« 00— 121 Oib » 7
q f q
Not a reduction but indicates that

. 0;b;
Zl d

But it is possible that (}}; 9;b;) / f? is not reducible!

- 3 2. 0ib;
New rule If ZO bio;f = 0, then 71
Rank 1 rules def Griffiths-Dwork rules

def
Rank 2 rules = Rank 1 rules + New rules above

FURTHER EXTENSION

b
K1
Sometimes — — f2Y but b/ f?7! is not reducible at rank 2.
fa }‘
2
k1 b b
New rule If iq — 97" then = 0

f
Rank 3 rules ' Rank 2 rules + New rules above

And so on at rank 4, 5...

Definition a/f1is reducible at rank r if there exists b such that
a kr b

fo o

EXAMPLE

What do the new reduction rules bring?
f =2xyz(w—x)(w=1y)(w—2) —w(w —w’z+xyz) (n=23)

def
e(q,r) = # of independent rational homogeneous functions a/ ¢ which

are not reducible at rank r

q 0 1 2 3 4  g>4
e(q,0) 0 10 165 680 1771  ~ 36¢°
e(g,1) 0 10 8 102 120 ~ 18q
e(q,2) 0 10 7 6 6 6
e(q,3) 0 9 1 0 0 0

Interpretation of the reduction rules in terms of a spectral sequence.

Without assumptions on f, there exists an integer r de-
pending only on f such that for all homogeneous frac-
tion a/ f9 of degree —n — 1:

o If g > n, then a/f1is reducible at rank r.

o If ﬁ dz = 0 then a/f? is reducible at rank r.

[Compare with Griffiths-Dwork theorem. |

ALGORITHM, GENERAL CASE

1. Setr = 1.

2. For each k > 0, compute by, if possible, such that

0ka rk r rk r bk

— > e e —> —
otk f fr
If not possible, increase r and start over.
[ Always possible for r large enough, by the theorem above. |

3. Find a linear dependency relation over K = C(t):

bo b

co(t)— + - + cm(t)— = 0.
fr fr
[ Exists for m large enough, by the confinement property. |
4. When found, return cm(t)y(m)(t) + -+ co(t)y(t) = 0.

[No a priori bound on r. Conjecture: r stays < n + 1.]

FAST REDUCTION

Rank 1 — Grébner basis technology, applied to the ideal {0y f,...,0.f)
Rank 2 — With Grobner basis, computation of Koszul homology:

syzygies _ {(bO, R ,bn) S K[Zo, .« ,Zn]n+1 ‘ Z?:o biaif — O}
trivial syzygies '
K[Z(),...,Zn]<(..., a]f R .,—6,-f,...)>
—— N——
ith pos. jth pos.

Trivial syzygies do not bring new rules.
When f is generic, all syzygies are trivial.
Rank > 3 — Linear algebra
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