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Constrained Efficiency and Equilibrium Without Commitment1

V. Filipe Martins-da-Rochaa and Yiannis Vailakisb

We consider an infinite horizon economy where agents share income risks by trading

a complete set of contingent claims but cannot commit to their promises. Allocations

are restricted to be self-enforcing relative to autarchic reservation utilities. Under the

assumption of uniform gains to trade, we characterize constrained Pareto efficiency,

prove a constrained version of the Second Welfare Theorem and establish the existence

of a constrained competitive equilibrium as defined by Kehoe and Levine (1993). Our

results extend those in Bloise and Reichlin (2011) in several aspects.

1. Introduction

The paper studies infinite horizon exchange economies with complete contingent claims

markets when there is no commitment and default induces permanent exclusion from fu-

ture trading. As in Eaton and Gersovitz (1981) and Kehoe and Levine (1993), trade is

subject to participation constraints that restrict allocations to be self-enforcing relative

to autarchic reservation utilities.1 The presence of such constraints and the associated

imperfect risk-sharing imply that the economy cannot attain a social optimum. An im-

portant issue is then to explore under which conditions an allocation is constrained

optimal, that is, to identify necessary and sufficient conditions that rule out benefits

from redistributions given the participation constraints.

Following the classical approach in general equilibrium, Bloise and Reichlin (2011)

provide an interesting treatment of this matter by characterizing constrained efficiency

in terms of supporting linear functionals. They show that under uniform gains to trade,

support by a linear functional is a necessary and sufficient condition for interior (uni-

formly bounded away from zero) allocations to be constrained efficient.2 Furthermore,

they show that any supporting linear functional admits a sequential representation, in

1We would like to thank Gaetano Bloise for comments and suggestions. The financial support of CNPq

is gratefully acknowledged by V. Filipe Martins-da-Rocha. Yiannis Vailakis acknowledges the financial

support of an ERC starting grant (FP7, DCFM 240983) and of an ANR research grant (Project Novo

Tempus).
aCNRS, U. Paris-Dauphine and FGV/EESP, filipe.econ@gmail.com
bU. of Glasgow, Yiannis.Vailakis@glasgow.ac.uk
1Alvarez and Jermann (2000) propose a sequential formulation of this model where agents trade a

complete set of contingent bonds every period. The focus is on endogenously determined agent-specific

debt limits that correspond to participation constraints at autarchic reservation utilities. Such limits on

borrowing are referred in the literature as not-too-tight debt constraints.
2Bloise and Reichlin (2011) also provide an analysis of constrained efficiency in the absence of uniform

gains to trade (but still restricting attention to allocations that are uniformly bounded away from zero).

They identify a strong connection between constrained Pareto efficiency and a modified version of the Cass

criterion originally proposed by Cass (1972) and others for stochastic overlapping generations economies.

However, they only proved that the Modified Cass Criterion is a sufficient and necessary condition for

constrained Pareto inefficiency, under the assumption of uniform gains to trade.
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the sense that its purely additive part (bubble component) is null. This allows them

to compare their characterization result with that provided by Alvarez and Jermann

(2000) formulated in terms of high implied interest rates (i.e., finite present value of

intertemporal aggregate endowment).3

This paper aims at looking on constrained Pareto efficiency from a fresh perspective.

The main objective is to provide a complete characterization. More precisely, we show

that under uniform gains to trade, high implied interest rates are necessary and suffi-

cient for constrained Pareto efficiency, even if we dispense with the interiority restriction

imposed in Bloise and Reichlin (2011). The novel aspects of our approach are as follows.

First, to prove sufficiency, there is no need to assume uniform gains to trade. The proof

relies on a new decentralization result that explores the concavity of Bernoulli functions

and identifies sufficient conditions for state-contingent prices to belong to the constrained

sub-differential of expected utilities. Second, to prove necessity, we show that if a linear

functional supports a constrained Pareto efficient allocation, then it cannot have a bubble

component and must coincide with the process of implied Arrow–Debreu prices (which

turns out to display high interest rates).

Our contributions have direct implications for the validity of the Second Welfare

Theorem. Indeed, standard arguments can be applied to show that any constrained

Pareto optimal allocation is supported by some linear functional. Our analysis shows

that this linear functional has no bubble component, and must coincide with the implied

contingent-state prices. In particular, implied interest rates are high and our decentral-

ization result can be applied to deduce that any constrained Pareto efficient allocation

can be implemented as a constrained competitive equilibrium with high interest rates

and endogenous transfers.

We also strengthen the Second Welfare Theorem by characterizing the set of consump-

tion allocations implemented by constrained competitive equilibrium with high interest

rates and zero initial transfers. We first prove that such equilibria always exist. A pos-

sible way to tackle existence is to employ the standard Negishi approach. Following this

route one has to show that transfers are continuous functions of welfare weights. This is

not a straightforward task since individual transfers involve an infinite sum. Combining

the assumption of uniform gains to trade and our decentralization result, we show that

the continuity of transfers is always ensured. We are also able to identify the subset of

constrained Pareto efficient allocations that are implemented by constrained competitive

equilibria with zero initial transfers. Inspired by the work of Aliprantis et al. (1987) we

prove that this set coincides with the set of constrained Edgeworth equilibria.

The paper is organized as follows: Section 2 describes the environment and provides

the definitions of the various concepts used throughout the paper. Section 3 contains

our complete characterisation of constrained efficiency under uniform gains to trade.

3 Bloise and Reichlin (2011) show by means of an example that the assumption of uniform gains to

trade is indispensable. Without it, constrained efficiency does not necessarily lead to high implied interest

rates.
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Section 4 proves a constrained version of the Second Welfare Theorem and establishes

the existence of a constrained competitive equilibrium with zero initial transfers. One of

the crucial assumption imposed in this paper is that there are uniform gains to trade.

Bloise and Reichlin (2011) showed that this condition is always satisfied in stationary

Markovian environments. Section 5 provides an alternative and simpler proof of this

claim. Some technical results as well as a discussion on how our results differentiate from

those in Bloise and Reichlin (2011) are collected in the Appendix.

2. The Model

Here we present an infinite horizon general equilibrium model with lack of commitment

and self-enforcing participation constraints, along the lines of Kehoe and Levine (1993)

and Bloise and Reichlin (2011). Time and uncertainty are both discrete and there is a

single non-storable consumption good. The economy consists of a finite set I of infinitely

lived agents that share risks but cannot commit to future transfers.

2.1. Uncertainty

We use an event tree Σ to describe time, uncertainty and the revelation of information

over an infinite horizon. There is a unique initial date-0 event s0 ∈ Σ and for each

date t ∈ {0, 1, 2, . . .} there is a finite set St ⊂ Σ of date-t events st. Each st has a

unique predecessor σ(st) in St−1 and a finite number of successors st+1 in St+1 for which

σ(st+1) = st. We use the notation st+1 � st to specify that st+1 is a successor of st.

Event st+τ is said to follow event st, also denoted st+τ � st, if σ(τ)(st+τ ) = st. The set

St+τ (st) := {st+τ ∈ St+τ : st+τ � st} denotes the collection of all date-(t+τ) events

following st. Abusing notation, we let St(st) := {st}. The subtree of all events starting

from st is then

Σ(st) :=
⋃
τ≥0

St+τ (st).

We use the notation sτ � st when sτ � st or sτ = st. In particular, we have Σ(st) =

{sτ ∈ Σ : sτ � st}.

2.2. Endowments and Preferences

Agents’ endowments are subject to random shocks. We denote by ei = (ei(st))st∈Σ

agent i’s process of positive endowments ei(st) > 0 of the consumption good contingent

to event st. Preferences over (non-negative) consumption processes c = (c(st))st∈Σ are

represented by the lifetime expected and discounted utility functional

U(c) :=
∑
t≥0

βt
∑
st∈St

π(st)u(c(st))
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where β ∈ (0, 1) is the discount factor, π(st) is the unconditional probability of st and

u : R+ → [−∞,∞) is a Bernoulli function assumed to be strictly increasing, concave,

continuous on R+, differentiable on (0,∞), bounded from above and satisfying Inada’s

condition at the origin.4

Given a date-t event st, we denote by U(c|st) the lifetime continuation utility condi-

tional to event st, defined by

U(c|st) := u(c(st)) +
∑
τ≥1

βτ
∑

st+τ�st
π(st+τ |st)u(c(st+τ ))

where π(st+τ |st) := π(st+τ )/π(st) is the conditional probability of st+τ given st. We

assume that U(ei|s0) > −∞ for every agent i.5 Since the bernoulli function is bounded

from above, we then get that U(ei|st) > −∞ for all event st.

A collection (ci)i∈I of consumption processes is called an allocation. It is said to be

resource feasible if
∑

i∈I c
i =

∑
i∈I e

i.

2.3. Self-Enforcing Consumption

A consumption process ci may involve transfers contingent to an event st if ci(st) <

ei(st). We assume that agent i cannot commit to future transfers and has the option to

walk away from a contract. We follow Kehoe and Levine (1993) (see also Kocherlakota

(1996), Alvarez and Jermann (2000) and Bloise and Reichlin (2011)) and assume that

autarky is the outside option for not fulfilling promises. A consumption process ci is then

said to be self-enforcing, if it satisfies the following participation constraints

U(ci|st) ≥ U(ei|st), for all st � s0.

The set of consumption processes satisfying these constraints is denoted by PCi. When

the participation constraint is also satisfied at the initial event s0, i.e., U(ci|s0) ≥
U(ei|s0), then ci is said to be individually rational.

2.4. Implied Interest Rates

A consumption process ci is said to be strictly positive if ci(st) > 0 for every event st.

In that case, we can define agent i’s marginal rate of substitution at event st by posing

MRS(ci|st) := βπ(st|σ(st))
u′(ci(st))

u′(ci(σ(st))
.

4The function u is said to satisfy the Inada’s condition at the origin if limε→0[u(ε)−u(0)]/ε =∞. This

property is automatically satisfied if u(0) = −∞. We assume that agents’ preferences are homogenous.

This is only for the sake of simplicity. All arguments can be adapted to handle the heterogenous case

where the preference parameters (β, π, u) differ among agents.
5This assumption is automatically satisfied if either u(0) > −∞ or the allocation (ei)i∈I is uniformly

bounded away from zero, in the sense that there exists ε > 0 such that ei(st) ≥ ε for each agent i and

event st.
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Given a strictly positive allocation (ci)i∈I , we let p? = (p?(st))st∈Σ be the process defined

recursively by p?(s0) := 1 and

p?(st)

p?(σ(st))
:= max

i∈I
MRS(ci|st), for all st � s0.

Following Alvarez and Jermann (2000), p? is called the process of implied Arrow–

Debreu prices.

Given an arbitrary strictly positive process p = (p(st))st�s0 interpreted as Arrow–

Debreu prices, we use PV(p;x|st) to denote the present value at date-t event st of a

process x restricted to the subtree Σ(st) and defined by

PV(p;x|st) :=
1

p(st)

∑
st+τ∈Σ(st)

p(st+τ )x(st+τ ).

We say that p displays high interest rates when the present value of endowments under

the price process p is finite, i.e., PV(p; ei|s0) <∞, for all i. A strictly positive allocation

(ci)i∈I is said to have high implied interest rates when the implied Arrow–Debreu

prices p? display high interest rates.

2.5. Commodity and Price Space

Denote by `∞(e) the linear space of processes h ∈ RΣ satisfying

(2.1) ∃λ ≥ 0, ∀st ∈ Σ, |h(st)| ≤ λe(st)

where e :=
∑

i∈I e
i is the process of aggregate endowments. The linear space `∞(e) is the

natural commodity space since we necessarily have ci ∈ `∞(e) for any resource feasible

allocation (ci)i∈I .

Remark 2.1 Denote by `∞+ := `∞+ (1Σ) the space of non-negative processes that are

uniformly bounded from above.6 Kehoe and Levine (1993) and Bloise and Reichlin (2011)

assume that endowments belong to `∞+ and restrict each agent to choose a consumption

process in `∞+ . In addition, Bloise and Reichlin (2011) assume that the consumption

and endowment processes are uniformly bounded away from zero.7 In contrast to this

literature, we do not impose any boundedness condition neither on endowments nor on

consumption processes.

6For any subset A ⊆ Σ, we denote by 1A the process x = (x(st))st∈Σ defined by x(st) := 1 if st ∈ A
and x(st) := 0 elsewhere.

7A process x = (x(st))st∈Σ is said to be uniformly bounded away from zero whenever there exists

ε > 0 such that x(st) ≥ ε for every st ∈ Σ. Bloise and Reichlin (2011) use the term “interior” for

“uniformly bounded away from zero”. This is because a process x is uniformly bounded away from zero

if, and only if, it belongs to the ‖·‖1Σ
-interior of `∞+ , where ‖x‖1Σ

:= supst∈Σ |x(st)|.
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We endow the space `∞(e) with the norm ‖h‖e defined as the lowest λ ≥ 0 satisfy-

ing (2.1). Equivalently, we have ‖h‖e := supst∈Σ |h(st)/e(st)|. The cone of non-negative

processes in `∞(e) is denoted by `∞+ (e).

The ‖·‖e-topological dual of `∞(e) is denoted by ba(e), and the subset of non-negative

linear functionals in ba(e) is denoted by ba+(e).8 For any linear functional ϕ ∈ ba+(e),

there exists a non-negative charge νϕ of bounded variation on the σ-algebra 2Σ (or,

equivalently, νϕ is a finitely additive positive measure), such that

ϕ(h) =

∫
hedν

ϕ

where he is the process in `∞ defined by he(s
t) := h(st)/e(st). In particular, any ϕ ∈

ba+(e) can be decomposed as follows

ϕ(h) = PV(pϕ;h|s0) + ϕ0(h), for every h ∈ `∞(e)

for some non-negative process pϕ satisfying PV(pϕ; e|s0) < ∞ and some non-negative

purely finitely additive linear functional ϕ0.9

Remark 2.2 Any non-zero and non-negative linear functional defined on `∞(e) neces-

sarily belongs to ba+(e). Indeed, continuity follows from the fact that e belongs to the

‖·‖e-interior of `∞+ (e).

A linear functional ϕ : `∞(e)→ R is said to be strictly positive whenever ϕ(h) > 0 for

any non-zero h ∈ `∞+ (e). Observe that if ϕ is strictly positive then ϕ is ‖·‖e-continuous

(i.e., ϕ ∈ ba+(e)) and pϕ(st) > 0 for any event st.

A price system is any arbitrary strictly positive linear functional ϕ normalized by

the condition: pϕ(s0) = 1. A Bewley price process is a strictly positive process p =

(p(st))st∈Σ such that p(s0) = 1 and PV(p; e|s0) is finite.10 Observe that any process pϕ

associated to a price system ϕ is necessarily a Bewley price process. The purely finitely

additive part ϕ0 = ϕ − PV(pϕ; ·|s0) is also called the bubble component of the price

system ϕ.

2.6. Uniform Gains to Trade

Following Bloise and Reichlin (2011), we say that the economy exhibits uniform

gains to trade if there is an individually rational and self-enforcing allocation (di)i∈I

8A linear functional ϕ : `∞(e)→ R is said to be non-negative whenever ϕ(h) ≥ 0 for every h ∈ `∞+ (e).
9The purely finitely additive linear functional ϕ0 can be characterized as follows: it is a linear and

‖·‖e-continuous functional on `∞(e) such that ϕ0(h) = ϕ0(h[T ]) where h[T ] is the tailed process defined

by h[T ](st) = h(st) if t ≥ T and 0 elsewhere. Observe moreover that pϕ(st) = ϕ(1{st}) for any event st.
10Observe that any Bewley price process p is such that pe belongs to `1+–the set of convergent series

defined on Σ–where pe(st) := p(st)e(st).
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and γ > 0 such that

(2.2) ∀st ∈ Σ,
∑
i∈I

di(st) ≤ (1− γ)e(st)

where we recall that e(st) :=
∑

i∈I e
i(st).

This condition means that autarky can be Pareto improved, subject to participation

constraints, even though a constant fraction of aggregate endowments is destroyed. Bloise

and Reichlin (2011) prove that a stationary Markovian economy where autarky is not

constrained Pareto efficient (see Definition 3.1 below) always exhibits uniform gains to

trade. We propose in Section 5.1 an alternative proof of this result.

3. Constrained Efficiency

We consider the following definition of Pareto dominance: an allocation (c̃i)i∈I Pareto

dominates another allocation (ci)i∈I if U(c̃i|s0) ≥ U(ci|s0) for every agent i, with a

strict inequality for at least one agent. We first recall the concept of constrained Pareto

efficiency introduced in Kehoe and Levine (1993).

Definition 3.1 An allocation (ci)i∈I is constrained Pareto efficient if it is resource

feasible, self-enforcing, individually rational and if there is no other allocation (c̃i)i∈I that

is also resource feasible, self-enforcing and individually rational which Pareto dominates

(ci)i∈I .

We prove in Proposition A.1 (see the appendix) that if an allocation (ci)i∈I is con-

strained Pareto efficient then it must be strictly positive. In particular, the corresponding

process p? of implied Arrow–Debreu prices is well-defined. The objective of this section

is to provide a complete characterization of constrained Pareto efficiency in terms of

implied Arrow–Debreu prices under the assumption of uniform gains to trade.

3.1. Constrained Efficiency and Supporting Price Systems

We first characterize constrained efficiency in terms of supporting price systems.

Definition 3.2 A linear functional ϕ : `∞(e) → R supports a resource feasible, self-

enforcing and individually rational allocation (ci)i∈I if ϕ(c̃i) ≥ ϕ(ci) for any self-enforcing

and individually rational allocation (c̃i)i∈I that Pareto dominates (ci)i∈I .

Since preferences are strictly monotone, a supporting linear functional ϕ must be

non-negative and ‖·‖e-continuous, i.e., ϕ must belong to ba+(e). Under uniform gains
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to trade, the linear functional ϕ must be strictly positive.11 Observe that if ϕ supports

(ci)i∈I then for any λ > 0, the linear functional λϕ also supports (ci)i∈I . We can then,

without any loss of generality, choose the normalization ϕ(1{s0}) = pϕ(s0) = 1 and focus

on supporting linear functionals that are price systems.

If a price system ϕ supports an individually rational, self-enforcing and resource feasi-

ble allocation (ci), then we can replace the inequality ϕ(c̃i) ≥ ϕ(ci) by the strict inequality

ϕ(c̃i) > ϕ(ci) whenever U(c̃i|s0) > U(ci|s0).12 In particular, we obtain the following suf-

ficient condition for constrained Pareto efficiency. This result generalizes the sufficient

condition of the first part of Lemma 5 in Bloise and Reichlin (2011) since we do not need

to assume that there are uniform gains to trade.

Lemma 3.1 If a resource feasible, self-enforcing and individually rational allocation is

supported by a price system, then it is constrained Pareto efficient.

Proof of Lemma 3.1: Consider a price system ϕ and a self-enforcing and individu-

ally rational consumption process ci such that ϕ(c̃i) ≥ ϕ(ci) for any self-enforcing and

individually rational consumption process c̃i satisfying U(c̃i|s0) > U(ci|s0). We propose

to show that we must have ϕ(c̃i) > ϕ(ci).

We first analyze the simple case where ci(s0) > 0. By continuity of the Bernoulli func-

tion, there exists ε ∈ (0, ci(s0)) small enough such that U(c̃i− ε1{s0}|s0) > U(ci|s0). Ob-

serve that the consumption process c̃i− ε1{s0} is individually rational and self-enforcing.

This implies that ϕ(c̃i)− ε ≥ ϕ(ci) (recall that a price system is such that p(s0) = 1).

Assume now that ci(s0) = 0. We can apply Lemma A.2 in Appendix A to deduce that

there exists an event sτ � s0 such that

(a) c̃i(sτ ) > 0 and U(c̃i|sτ ) > U(ei|sτ );

(b) for every intermediate event sr satisfying s0 ≺ sr ≺ sτ , we have c̃i(sr) = 0 and

U(c̃i|sr) > U(ei|sr).
Define the consumption process ĉi as follows: ĉi(st) := c̃i(st) if st 6= sτ and ĉi(sτ ) :=

c̃i(sτ ) − ε, where ε ∈ (0, c̃i(sτ )). By continuity of the Bernoulli function, we can choose

ε small enough such that for every event sr,

s0 ≺ sr ≺ sτ =⇒ U(ĉi|sr) > U(ei|sr)

and such that U(ĉi|s0) > U(ci|s0). Observe that for any event st not satisfying s0 � st ≺
sτ , we have U(ĉi|st) = U(c̃i|st). It follows that ĉi is individually rational, self-enforcing

and satisfies U(ĉi|s0) > U(ci|s0). This implies that ϕ(c̃i) − εp(sτ ) = ϕ(ĉi) ≥ ϕ(ci). The

11See the proof of Lemma 5 in Bloise and Reichlin (2011). An alternative argument is as follows.

From a standard convex separation argument, we can show that for every i, there exists λi, µi ≥ 0 with

(λi, µi) 6= (0, 0) such that λi[U(c̃i|s0) − U(ci|s0)] ≤ µiϕ(c̃i − ci) for any self-enforcing and individually

rational consumption c̃i. Since ϕ(e) > 0, it follows from the assumption of uniform gains to trade that

there exists an agent k ∈ I such that ϕ(dk) < ϕ(ck). This, in turn, implies that λk > 0. Then, by strict

monotonicity of preferences, we get that µkϕ(v) > 0 for any non-zero v ∈ `∞+ (e).
12See the proof of Lemma 3.1 below.
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desired conclusion follows from the fact that p(sτ ) > 0 (recall that as a price system, ϕ

is strictly positive). Q.E.D.

We know from Bloise and Reichlin (2011) that a self-enforcing, individually rational

and resource feasible allocation is constrained Pareto efficient only if it is supported by

some price system. We show below that if a price system supports a constrained Pareto

efficient allocation, then it must coincide with the process of implied Arrow–Debreu

prices (which turns out to display high interest rates). This result generalizes Lemma 5

in Bloise and Reichlin (2011) since we prove that property (ii) is valid for all allocations,

not only those that are uniformly bounded away from zero. Moreover, we do not need to

assume that aggregate endowments are uniformly bounded away from zero.13

Lemma 3.2 Assume there are uniform gains to trade.

(i) A self-enforcing, individually rational and resource feasible allocation (ci)i∈I is con-

strained Pareto efficient if, and only if, it is supported by some price system ϕ.

(ii) Any price system ϕ supporting a constrained Pareto efficient allocation (ci)i∈I
involves no bubble component, i.e., ϕ = PV(pϕ; ·|s0). Moreover pϕ coincides with

p? the process of implied Arrow–Debreu prices.

Proof of Lemma 3.2: We first prove property (i).14 The sufficiency part follows from

Lemma 3.1. We only prove the necessity part. Fix a constrained Pareto optimal alloca-

tion (ci)i∈I . Let H be the set of all vectors h ∈ `∞(e) that can be written as

h =
∑
i∈I

(
c̃i − ci

)
where (c̃i)i∈I is a self-enforcing and individually rational allocation which Pareto domi-

nates (ci)i∈I . The set H is convex with a non-empty interior for the ‖·‖e-topology.15 The

constrained Pareto efficiency of (ci)i∈I implies that 0 does not belong to H. Applying

the Convex Separation Theorem, we get the existence of a non-zero and ‖·‖e-continuous

linear function ϕ : `∞(e)→ R separating H and {0} in the sense that ϕ(h) ≥ 0 for every

h ∈ H. This means that ϕ supports the allocation (ci)i∈I .

We now prove property (ii). Let ϕ be a price system supporting the allocation (ci)i∈I .

Recall that ϕ belongs to ba+(e), is strictly positive and is normalized such that ϕ(1{st}) =

pϕ(st) = 1.

13Bloise and Reichlin (2011) need these additional assumptions because their approach to prove prop-

erty (ii) requires that marginal utilities of consumption at constrained Pareto efficient allocations are

uniformly bounded from above and bounded away from zero.
14This corresponds to Proposition 5 in Kehoe and Levine (1993) and the first part of Lemma 5 in

Bloise and Reichlin (2011). Since our environment is slightly more general (we do not arbitrarily restrict

the commodity space to be `∞(1Σ)), we provide the details of the proof.
15To see why the set H has non-empty interior for the ‖·‖e-topology, we let c̃i := ci + e. Fix ε ∈ (0, 1)

and choose any process g in `∞(e) with ‖g‖e < 1. We have that u(c̃i(st)+g(st)) > u(ci(st)) which implies

that
∑
i∈I(c̃

i + g − ci) = #I(e+ g) belongs to H. Therefore, (#I)e belongs to the interior of H for the

‖·‖e-topology.
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Claim 3.1 The process pϕ dominates p?.

Proof: To prove the desired result, it is sufficient to show that for each agent i, we

have

MRS(ci|st) ≤ pϕ(st)

pϕ(σ(st))
, for all st � s0.

This property follows from a standard variational argument. Indeed, fix an arbitrary

event st and an arbitrary agent i. For some χ > 1/MRS(ci|st) and 0 < ε < ci(σ(st)), we

can define the process c̃i as follows

∀sτ ∈ Σ, c̃i(sτ ) :=


ci(σ(st))− ε if sτ = σ(st)

ci(st) + χε if sτ = st

ci(sτ ) otherwise.

Observe that the process c̃i − ci is different from zero only at the events σ(st) and st.

This implies that it belongs to `∞(e). Given the choice of χ, we can choose ε > 0 small

enough such that c̃i is self-enforcing and U(c̃i|s0) > U(ci|s0).16 This implies that

0 ≤ ϕ(c̃i − ci) = −pϕ(σ(st))ε+ pϕ(st)εχ.

Since χ can be chosen arbitrarily close to 1/MRSi(ci|st) we obtain the desired result.

Q.E.D.

If agent i’s participation constraint is not binding at event st, i.e., U(ci|st) > U(ei|st),
then we can replace ε > 0 by −ε in the arguments of Claim 3.1 to show that

pϕ(st)

pϕ(σ(st))
= MRS(ci|st) =

p?(st)

p?(σ(st))
.

If we show that for any event st, there exists at least one agent for which the participation

constraint is not binding, then we get the desired result: pϕ = p?. This property is

guaranteed by the assumption of uniform gains to trade.

Claim 3.2 At every event st ∈ Σ, there exists at least one agent with a non-binding

participation constraint.

Proof: Fix an event st and assume by way of contradiction that U(ci|st) = U(ei|st)
for every i. Let (di)i∈I be the individually rational and self-enforcing allocation in the

16Since u is concave, we have

π(σ(st))u(c̃i(σ(st))) + π(st)u(c̃i(st)) > π(σ(st))u(ci(σ(st))) + π(st)u(ci(st)).
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definition (2.2) of uniform gains to trade. We pose

xi(sτ ) :=

{
ci(sτ ) if sτ 6∈ Σ(st)

di(sτ ) + (γ/#I)e(sτ ) if sτ � st.

Since di and ci are self-enforcing, the consumption xi is also self-enforcing. Moreover,

(3.1) U(xi|s0) =
t−1∑
r=0

∑
sr∈Sr

βrπ(sr)u(ci(sr)) + βtπ(st)U(xi|st)

+
∑

σt∈St\{st}

βtπ(σt)U(ci|σt).

Since, U(xi|st) > U(ei|st) = U(ci|st), we get that that U(xi|s0) > U(ci|s0). This contra-

dicts the constrained Pareto efficiency of (ci)i∈I . Q.E.D.

At this point, we proved that pϕ = p?. We now show that ϕ cannot have a bubble

component, i.e., ϕ0(·) := ϕ(·)− PV(pϕ; ·|s0) = 0. Assume, by way of contradiction, that

there exists v ∈ `∞+ (e) such that ϕ0(v) > 0. Since v belongs to `∞(e), it follows from

the assumption of uniform gains to trade that there exists an individually rational and

self-enforcing allocation (f i)i∈I and µ > 0 such that17

(3.2)
∑
i∈I

f i = −µv +
∑
i∈I

ci.

Fix ε > 0 small enough such that ϕ0(v) > ε/µ. Since p? = pϕ displays high interest rates,

there exists a date τ large enough such that∑
sτ∈Sτ

p?(sτ ) PV(p?, e|sτ ) ≤ ε/2(#I).

For every event st such that t < τ , we pose xi(st) := ci(st). Choose r > τ and pose

xi(st) :=

{
e(st) if τ ≤ t < r

f i(st) if t ≥ r.

We have U(xi|st) ≥ U(f i|st) for any event st with t ≥ τ . Observe that e(st) > ci(st)

for any event st. We can then choose r sufficiently large to get that U(xi|sτ ) > U(ci|sτ )

for any sτ ∈ Sτ . This, in turn, implies U(xi|st) > U(ci|st) for any t < τ . We have

thus proved that the consumption process xi is self-enforcing, individually rational and

17Indeed, we have v ≤ ‖v‖e e. Choose µ := γ/ ‖v‖e and observe that∑
i∈i

di + γ(e− (1/ ‖v‖e)v) = −µv +
∑
i∈I

ci.

We can then pose f i := di + γi(e− (1/ ‖v‖e)v) where γi := γ/(#I).
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satisfies U(xi|s0) > U(ci|s0). It follows that h =
∑

i∈I
(
xi − ci

)
belongs to H in which

case we have

(3.3) 0 ≤ ϕ(h) = PV(p?;h) + ϕ0(h).

Observe that

PV(p?;h) ≤
∑
t≥τ

∑
st∈St

p?(st)|h(st)|

≤ (#I)
∑
t≥τ

∑
st∈St

p?(st)e(st)

≤ (#I)
∑
sτ∈Sτ

p?(sτ ) PV(p?; e|sτ ) ≤ ε

2
.(3.4)

Since ϕ0 is purely finitely additive, we have18

(3.5) ϕ0(h) = ϕ0(h[r]) = −µϕ0(v[r]) = −µϕ0(v) < −ε.

Combining (3.4) and (3.5) we get that ϕ(h) ≤ −ε/2 which contradicts (3.3). Q.E.D.

3.2. Constrained Efficiency and High Implied Interest Rates

The following lemma shows the necessity of high implied interest rates for constrained

Pareto efficiency. Its proof follows as a direct corollary of Lemma 3.2. This is because

the price process pϕ associated to a linear functional in ba+(e) automatically satisfies

PV(pϕ; e|s0) <∞.

Lemma 3.3 If there are uniform gains to trade, then every constrained Pareto efficient

allocation exhibits high implied interest rates.19

Constrained Pareto efficiency obtains when there are no mutual gains from trading,

including the trade opportunities involving transfers in the long run. Malinvaud efficiency,

instead, is a weaker notion that requires the absence of any feasible welfare improvement

subject to resource feasibility and participation constraints over any finite horizon.

Definition 3.3 An allocation (ci)i∈I is constrained Malinvaud efficient if it is

resource feasible, self-enforcing, individually rational and if there is no other allocation

(c̃i)i∈I that is also resource feasible, self-enforcing and individually rational which Pareto

dominates (ci)i∈I and differs from (ci)i∈I only on finitely many events.

18Recall that for any process h = (h(st))st∈Σ, we denote by h[r] the tailed process at date r > 0,

defined by h[r](st) = h(st) if t ≥ r and h[r](st) = 0 if t < r. In particular, for h =
∑
i∈I
(
xi − ci

)
, we

have that h[r] =
∑
i∈I(f

i,[r] − ci,[r]).
19This result is related to Lemma 2 in Bloise and Reichlin (2011). We refer to Appendix B for a

detailed discussion.
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Every constrained Pareto efficient allocation is constrained Malinvaud efficient. We

prove in Proposition A.1 (see the appendix) that if an allocation (ci)i∈I is Malinvaud

efficient then it must be strictly positive. In particular, the corresponding process p? of im-

plied Arrow–Debreu prices is well-defined. In addition, constrained Malinvaud efficiency

has a tractable characterization in terms of first order conditions: a resource feasible,

self-enforcing and individually rational allocation is constrained Malinvaud efficient if,

and only if,

(3.6) ∀st � s0, U(ci|st) > U(ei|st) =⇒ MRS(ci|st) =
p?(st)

p?(σ(st))
.

When the above property is satisfied at any strict successor event sτ � st, we say that

Euler equations are satisfied at event st.

We next show that when implied interest rates are high, Euler equations are sufficient

for constrained Pareto efficiency.

Lemma 3.4 Any constrained Malinvaud efficient allocation that exhibits high implied

interest rates is constrained Pareto efficient.20

Proof: Let (ci)i∈I be a constrained Malinvaud efficient allocation and assume that the

associated process p? of implied Arrow–Debreu prices exhibit high interest rates. Since

(ci)i∈I is constrained Malinvaud efficient, we know that MRS(ci|st) = p?(st)/p?(σ(st)) if

U(ci|st) > U(ei|st). We can then apply Proposition A.2 to get that

1

u′(ci(s0))

[
U(c̃i|s0)− U(ci|s0)

]
≤ PV(p?; c̃i − ci|s0)

for any resource feasible, self-enforcing and individually rational allocation (c̃i)i∈I .
21 Sum-

ming over i the above inequalities, we get that∑
i∈I

1

u′(ci(s0))

[
U(c̃i|s0)− U(ci|s0)

]
≤ 0.

It follows that (c̃i)i∈I cannot Pareto dominate (ci)i∈I . Therefore, we proved that (ci)i∈I
is constrained Pareto efficient. Q.E.D.

Combining Lemma 3.3 and Lemma 3.4, we get a complete characterization of con-

strained efficiency under uniform gains to trade.

Proposition 3.1 Assume there are uniform gains to trade. A constrained Malinvaud

efficient allocation is constrained Pareto efficient if, and only if, implied prices exhibit

high interest rates.

20This result is related to Lemma 3 in Bloise and Reichlin (2011). We refer to Appendix B for a

detailed discussion.
21If (c̃i)i∈I is a resource feasible allocation then each consumption process satisfies c̃i ≤ e, which

implies that PV(p?; c̃i|s0) is finite.
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Proposition 3.1 generalizes Proposition 3 in Bloise and Reichlin (2011). Indeed, they

only characterize the sub-class of allocations that are uniformly bounded away from

zero.22 Moreover, they assume that aggregate endowments are uniformly bounded from

above and uniformly bounded away from zero. We do not need to impose these restrictions

on allocations and endowments. We refer to Appendix B for a detailed comparison.

4. Constrained Competitive Equilibrium

We next introduce the concept of a constrained competitive equilibrium (as defined in

Kehoe and Levine (1993) and Alvarez and Jermann (2000)).

Recall that a price system is a linear functional ϕ : `∞(e) −→ R that is strictly positive

(and therefore ‖·‖e-continuous) and normalized by pϕ(s0) = 1. Given a price system ϕ

and a real number b representing an initial financial transfer, we denote by Bi
ad(ϕ; b) the

(unconstrained) Arrow–Debreu budget set of all consumption processes ci satisfying the

following budget restriction

ϕ(ci − ei) ≤ b.

The Kehoe–Levine budget set is then defined by

Bi
kl(ϕ; b) := Bi

ad(ϕ; b) ∩ PCi

where we recall that PCi is the set of all consumption processes ci satisfying the partic-

ipation constraints U(ci|st) ≥ U(ei|st) at every strict successor event st � s0. Denote by

dikl(ϕ; b) the demand set associated to the budget set Bi
kl(ϕ; b), i.e.,

dikl(ϕ; b) := argmax{U(ci|s0) : ci ∈ Bi
kl(ϕ; b)}.

Definition 4.1 A Kehoe–Levine competitive equilibrium (ϕ, (ci)i∈I) is a family

composed of a price system ϕ and a resource feasible and self-enforcing allocation (ci)i∈I
such that ci ∈ dikl(ϕ; ai(s0)) for every i, where (ai(s0))i∈I is an allocation of initial

transfers satisfying
∑

i∈I a
i(s0) = 0.

Remark 4.1 A Kehoe–Levine competitive equilibrium (ϕ, (ci)i∈I) with initial transfers

(ai(s0))i∈I need not be individually rational. If the allocation (ci)i∈I is individually ra-

tional, then we say that (ai(s0))i∈I is an allocation of individually rational transfers.

Observe that zero initial transfers are individually rational. This is because ei belongs to

Bi
kl(ϕ; 0).

22Recall that an allocation (ci)i∈i is said to be uniformly bounded away from zero when there exists

ε > 0 satisfying ci(st) ≥ ε for every i and st. To guarantee that feasible allocations are uniformly bounded

away from zero, Bloise et al. (2013) imposed an additional boundary condition on u and β. We refer to

Appendix B.4 where we discuss how restrictive this condition is.
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Consider a Kehoe–Levine competitive equilibrium (ϕ, (ci)i∈I). If ϕ has no bubble com-

ponent, in the sense that ϕ0 = 0, then we say that the family (pϕ, (ci)i∈I) is Kehoe–Levine

competitive equilibrium with a Bewley price process.

Remark 4.2 An Arrow–Debreu competitive equilibrium (ϕ, (ci)i∈I) is a family com-

posed of a price system ϕ and a resource feasible (not necessarily self-enforcing) alloca-

tion (ci)i∈I such that ci ∈ diad(ϕ; ai(s0)) for every i where (ai(s0))i∈I are market clearing

initial transfers and diad(ϕ; b) := argmax{U(ci|s0) : ci ∈ Bi
ad(ϕ; b)}. Following the argu-

ments in Bewley (1972) we can show that (1) there exists an Arrow–Debreu competitive

equilibrium with zero transfers; and (2) for any Arrow–Debreu competitive equilibrium

(ϕ, (ci)i∈I), the price system involves no bubble component. In particular, the family

(pϕ, (ci)i∈I) is an Arrow–Debreu competitive equilibrium with a Bewley price process.

We show below that both results (1) and (2) extend to Kehoe–Levine competitive equi-

libria, provided there are uniform gains to trade.

4.1. Welfare Theorems

It follows from standard arguments that a constrained version of the First Welfare

Theorem is valid, i.e., every individually rational consumption allocation of a Kehoe–

Levine competitive equilibrium is constrained Pareto efficient. As a direct corollary of

Lemma 3.4 and Lemma 3.2, we obtain a version of the Second Welfare Theorem that

is in the spirit of Proposition 5 in Kehoe and Levine (1993). On one hand, they do not

assume high implied interest rates, but, on the other hand, they only get existence of a

quasi-equilibrium with a price system that may involve a bubble component.

Proposition 4.1 Let (ci)i∈I be a constrained Malinvaud efficient allocation such that

the implied Arrow–Debreu prices p? display high interest rates. Then the family (p?, (ci)i∈I)

is a Kehoe–Levine competitive equilibrium with a Bewley price process and individually

rational initial transfers defined by ai(s0) := PV(p?; ci − ei|s0).

Proof of Proposition 4.1: Let (ci)i∈I be a constrained Malinvaud efficient alloca-

tion such that the implied prices p? display high interest rates.

Since (ci)i∈I is constrained Malinvaud efficient, we know that MRS(ci|st) = p?(st)/p?(σ(st))

if U(ci|st) > U(ei|st). Since implied prices p? display high interest rates, we have

PV(p?; ci|s0) ≤ PV(p?; e|s0) <∞.

We can then apply Proposition A.2 to get that

1

u′(ci(s0))

[
U(c̃i|s0)− U(ci|s0)

]
≤ PV(p?; c̃i − ci|s0)
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for any self-enforcing consumption process c̃i with PV(p?; c̃i|s0) finite. This implies that

if c̃i is a self-enforcing consumption process such that

PV(p?; c̃i|s0) ≤ PV(p?; ci|s0)

then we necessarily have U(c̃i|s0) ≤ U(ci|s0). We have thus proved that ci belongs to

dikl(p
?, ai(s0)).

Q.E.D.

Combining Lemma 3.2 and Proposition 4.1, we obtain the following characterization

of constrained Pareto optimality.

Proposition 4.2 Assume there are uniform gains to trade and consider an allocation

(ci)i∈I that is resource feasible, self-enforcing and individually rational. The allocation

(ci)i∈I is constrained Pareto optimal if, and only if, there exists a Kehoe–Levine com-

petitive equilibrium (p, (ci)i∈I) with a Bewley price process p and individually rational

initial transfers ai(s0) := PV(p; ci − ei|s0). Moreover, the Bewley price process p must

coincide with p?, the process of implied Arrow–Debreu prices.

4.2. Existence

We have seen that the set of constrained Pareto efficient allocations coincides with

the set of consumption allocations implemented by Kehoe–Levine competitive equilib-

ria with individually rational transfers. Since existence of a constrained Pareto efficient

allocation follows from standard continuity and compacity arguments, we derive the ex-

istence of Kehoe–Levine competitive equilibria with some initial transfers. We next show

the existence of a Kehoe–Levine competitive equilibrium with zero initial transfers.

Theorem 4.1 If there are uniform gains to trade, then there exists a Kehoe–Levine

competitive equilibrium with zero initial transfers and high implied interest rates.

Proof: We follow the standard Negishi approach. Let

Λ := {λ = (λi)i∈I ∈ RI+ :
∑
i∈I

λi = 1}

be the set of welfare weights. For each λ ∈ Λ we can maximize the social welfare function∑
i∈I

λiU(ci|s0)

among all feasible, self-enforcing and individually rational allocations. By strict con-

cavity of the Bernoulli function, there exists a unique solution c(λ) = (ci(λ))i∈I which
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is constrained Pareto efficient.23 Denote by p?(λ) the corresponding process of implied

Arrow–Debreu prices. Applying Proposition 4.1, we get that (p?(λ), c(λ)) is a Kehoe–

Levine competitive equilibrium with initial transfers

ai(λ, s0) := PV(p?(λ); ci(λ)− ei|s0).

The difficult step of the proof consists on proving that λ 7→ ai(λ, s0) is continuous. Ap-

plying Berge’s Maximum Theorem, we get that each function λ 7→ ci(λ) is continuous

for the product topology.24 Since the Bernoulli function is continuously differentiable on

(0,∞) and the consumption processes are strictly positive, we also get that the func-

tion λ 7→ p?(λ) is continuous for the product topology. The continuity (for the product

topology) of the mappings λ 7→ p?(λ) and λ 7→ ci(λ, s0) is not a priori sufficient to get

continuity of λ 7→ ai(λ, s0) since its definition involves an infinite sum. However, if we

prove that

(4.1) lim
τ→∞

sup
λ∈Λ

PV(p?(λ); e|sτ ) = 0

then we get continuity of the mapping λ 7→ ai(λ, s0). We show below that (4.1) is true.25

Claim 4.1 For any welfare weights λ ∈ Λ, we have

PV(p?(λ); e|st) ≤ 1

γu′(e(st))

∑
i∈I

[
U(e|st)− U(ei|st)

]
, for all st.

Proof: Fix an arbitrary vector λ ∈ Λ. Since p?(λ) displays high interest rates and

the Euler equations are satisfied at the allocation c(λ), we can apply Proposition A.2 to

deduce that

1

u′(ci(λ, st))

[
U(c̃i|st)− U(ci(λ)|st)

]
≤ PV(p?(λ); c̃i − ci(λ)|st)

for any self-enforcing consumption process c̃i satisfying PV(p?(λ); c̃i|s0) <∞. Let (di)i∈I
be defined by the uniform gains to trade condition (2.2). We can choose c̃i := di to get

PV(p?(λ); ci(λ)− di|st) ≤ 1

u′(ci(λ, st))

[
U(ci(λ)|st)− U(di|st)

]
≤ 1

u′(e(st))

[
U(e|st)− U(ei|st)

]
.

Summing over i and using (2.2), we get the desired result. Q.E.D.

23Uniqueness is straightforward if λi > 0 for each i. For the general case, we can follow the arguments

in the proof of Lemma 4 in Bloise et al. (2013).
24This is because the mapping c 7→ U(c|s0) is continuous for the product topology on the space of

self-enforcing and individually rational consumption processes. See Lemma A.1 for details.
25Claim 4.1 is related to Lemma 3 in Kehoe and Levine (1993).
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A direct consequence of Claim 4.1 is that each mapping λ 7→ ai(λ, s0) is continuous.

We can now follow the standard Negishi approach. Let G : Λ→ Λ be the correspondence

defined by

G(λ) := argmin{λ′ · a(λ, s0) : λ′ ∈ Λ}.

Applying Berge’s Maximum Theorem, we get that the correspondence G is upper semi-

continuous with non-empty convex values. By Kakutani’s Fixed-Point Theorem, it ad-

mits a fixed point λ?. We must have ai(λ?, s0) = 0 for each i. Indeed, assume by way

of contradiction, that ai(λ?, s0) > 0 for some agent i.26 Since λ? minimizes the map-

ping λ 7→ λ · a(λ?, s0), we must have λi,? = 0. Since c(λ?) maximizes the social welfare

function, we must have U(ci(λ?)|s0) = U(ei|s0). However, we proved in Proposition 4.1

that (p?(λ?), (ci(λ?))i∈I) is a Kehoe–Levine competitive equilibrium with initial trans-

fers a(λ?, s0). This means that

ci(λ?, s0) ∈ dikl(p?(λ?); ai(λ?, s0)).

Since ai(λ?, s0) > 0, we must have

U(ci(λ?)|s0)) = sup{U(ci|s0) : ci ∈ Bi
kl(p

?(λ?); ai(λ?, s0))}
> sup{U(ci|s0) : ci ∈ Bi

kl(p
?(λ?); 0)}

> U(ei|s0).

The above inequality leads to a contradiction. We have thus proved that there exists a

vector of welfare weights λ? such that (p?(λ?), (ci(λ?))i∈I) is a Kehoe–Levine competitive

equilibrium with zero initial transfers. Q.E.D.

4.3. Constrained Edgeworth Equilibria

We have proved the equivalence between constrained Pareto efficient allocations and

the consumption allocations implemented by Kehoe–Levine competitive equilibria with

individually rational transfers (see Proposition 4.2). The objective of this section is to

identify the subset of constrained Pareto efficient allocations implemented by Kehoe–

Levine competitive equilibria with zero initial transfers. We first adapt to our environ-

ment the concepts of core allocations and Edgeworth equilibria.

Definition 4.2 Consider a resource feasible, individually rational and self-enforcing

allocation (ci)i∈I . A coalition S ⊆ I is said to improve upon the allocation (ci)i∈I when-

ever there exists an individually rational and self-enforcing allocation (c̃i)i∈I satisfying

(4.2)
∑
i∈S

c̃i =
∑
i∈S

ei and U(c̃i|s0) > U(ci|s0), for all i ∈ S.

26Recall that
∑
i∈I a

i(λ?, s0) = 0. If not all initial transfers are zero, then one of them must be positive.
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The allocation (ci)i∈I that cannot be improved by any coalition is called a constrained

core allocation.

It is straightforward to see that any consumption allocation implemented by a Kehoe–

Levine competitive equilibrium with zero transfers is a constrained core allocation, and

that any constrained core allocation is constrained Pareto efficient.

The conditions in (4.2) can be written as follows

(4.3)
∑
i∈I

λic̃i =
∑
i∈I

λiei and λiU(c̃i|s0) > λiU(ci|s0), for all i ∈ I

where λi := 1 if i ∈ S and λi := 0 if i 6∈ S. We may then extend the notion of coalition

by saying that (λi)i∈I is a r-coalition whenever λi ∈ {0, 1/r, 2/r, . . . , (r − 1)/r, 1}. The

interpretation is as follows. Consider a r-replica of our economy, in the sense that for

each i, we have r identical agents with the same endowment process ei. The ratio λi

represents the rate of participation of type i’s agents in the r-coalition. We say that a

r-coalition (λi)i∈I improves upon the allocation (ci)i∈I when there exists an individually

rational and self-enforcing allocation (c̃i)i∈I satisfying (4.3). We are now reading to adapt

the concept of an Edgeworth equilibrium (see for instance Aliprantis et al. (1987)) to our

environment.

Definition 4.3 A resource feasible, individually rational and self-enforcing alloca-

tion (ci)i∈I is a constrained Edgeworth equilibrium whenever for any replica r ∈ N,

it cannot be improved upon by any r-coalition.

Obviously, a constrained Edgeworth equilibrium is constrained Pareto efficient. It

should also be noted that any consumption allocation implemented by a Kehoe–Levine

competitive equilibrium with zero transfers is a constrained Edgeworth equilibrium. The

contribution of this section is to prove that the converse is also true.

Theorem 4.2 Assume there are uniform gains to trade. A consumption allocation is

implemented by a Kehoe–Levine competitive equilibrium with zero transfers if, and only

if, it is a constrained Edgeworth equilibrium.

Proof: We only need to prove the sufficiency part. Consider a constrained Edgeworth

equilibrium (ci)i∈I . It is a resource feasible, individually rational and self-enforcing allo-

cation such that there does not exist a family (λi)i∈I of rational numbers in [0, 1] ∩ Q
and an individually rational and self-enforcing allocation (c̃i)i∈I satisfying (4.3).27 Using

the continuity of preferences and the density of the set of rational numbers in the set of

real number, we can show that

0 6∈ G(c) :=

{∑
i∈I

λi(xi − ei) : xi ∈ P i(ci), λi ≥ 0 for each i and
∑
i∈I

λi = 1

}
,

27Observe that
⋃
r∈N{0, 1/r, 2/r, . . . , (r − 1)/r, 1} = [0, 1] ∩Q.
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where P i(ci) is the set of all consumption processes xi ∈ `∞(e) that are self-enforcing

and satisfy U(xi|s0) > U(ci|s0).28 Since each set P i(ci) has non-empty ‖·‖e-interior, the

Convex Separation Theorem implies that there exists a non-zero and ‖·‖e-continuous

linear function ϕ : `∞(e) → R separating G(c) and {0}.29 Therefore, for every i, we

have ϕ(xi) ≥ ϕ(ei) for any xi ∈ P i(ci). Since Bernoulli functions are strictly increasing,

standard arguments show that ϕ(ci) = ϕ(ei).30 We have then proved that ϕ(xi) ≥
ϕ(ci) = ϕ(ei) for every xi ∈ P i(ci). In particular, the linear functional ϕ supports the

allocation (ci)i∈I . Applying Lemma 3.2, we get that ϕ is a price system without a bubble

component that coincides with PV(p?; ·|s0), where p? is the process of implied Arrow–

Debreu prices. In particular, p? displays high interest rates. Applying Proposition 4.1, we

deduce that (p?, (ci)i∈I) is a Kehoe–Levine competitive equilibrium with initial transfers

ai(s0) = PV(p?; ci − ei|s0) = ϕ(ci − ei) = 0

and we get the desired result. Q.E.D.

We can apply Proposition 5.2.2 in Florenzano (2003) to prove that a constrained

Edgeworth equilibrium always exists.31 Our existence result in Theorem 4.1 then follows

as a simple corollary of our equivalence result in Theorem 4.2.

5. About Uniform Gains to Trade

One of the crucial assumption imposed in this paper is that there are uniform gains to

trade. We propose to investigate two simple environments where this condition is always

satisfied.

5.1. Stationary Markovian Economies

Here, we restrict attention to stationary Markovian endowments. Uncertainty is as-

sumed to be represented by a simple Markov process on a finite state space S. An event st

is then a t + 1-vector (s0, s1, . . . , st) where each shock sτ ∈ S and s0 ∈ S is fixed. In

28The allocation (ci)i∈I satisfying the above property is called a fuzzy (or Aubin) core allocation of

an economy where consumption processes are restricted to be self-enforcing. Under our assumptions, any

Edgeworth equilibrium is a fuzzy core allocation. See the proof of Proposition 4.2.6 in Florenzano (2003)

for details.
29To see why the set P i(ci) has non-empty ‖·‖e-interior, we let xi := ci + e. Fix ε ∈ (0, 1) and choose

any process z in `∞(e) with ‖z‖e < 1. We have that u(xi(st) + z(st)) > u(ci(st)) which implies that

xi + z belongs to P i(ci). Therefore, xi belongs to the ‖·‖e-interior of P i(ci).
30Fix ε > 0. Observe that ci + εe ∈ P i(ci). It follows that ϕ(ci) + εϕ(e) ≥ ϕ(ei). Passing to the limit

when ε→ 0, we get that ϕ(ci) ≥ ϕ(ei). The desired result follows from market clearing.
31Apply Proposition 5.2.3 in Florenzano (2003) by choosing: the consumption set Xi = PCi, the

set P i(c) := {xi ∈ Xi : U(xi|s0) > U(ci|s0)}, the topology σ to be the product topology and the

null production sector Yj = Z = {0}. The assumptions in Proposition 5.2.2 follow from the following

properties: U(·|s0) is concave and upper semi-continuous, the set PCi is closed convex, and the set of

resource feasible allocations is compact.
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addition, the conditional probability π(st+1|st) is assumed to depend only on st and st+1.

We abuse notation and denote this conditional probability by π(st+1|st), implying that

π(st) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0).

A process z = (z(st))st∈Σ is said to be stationary Markovian if z(st) is a time invariant

function of the current shock st. We make a slight abuse of terminology and use the

notation z(st) for z(st−1, st).

We assume that agent i’s endowment process is stationary Markovian. For any event

st = (st−1, s), the endowment ei(st−1, s) is denoted by ei(s). It follows that the reservation

utility process is also stationary Markovian. Indeed, for every event st = (st−1, s) we have

U(ei|st) = V i(s) where V i = (V i(s))s∈S ∈ RS is the unique solution of the following

recursive equations

∀s ∈ S, Y (s) = u(ei(s)) + β
∑
s′∈S

π(s′|s)Y (s′).

When the process of endowments is stationary Markovian, the condition of uniform

gains to trade is satisfied if, and only if, the allocation (ei)i∈I is not constrained Pareto

efficient.32 This result corresponds to Proposition 4 in Bloise and Reichlin (2011). The

contribution of this section is to provide an alternative and simple proof that builds on

the following intuitive result.

Lemma 5.1 Assume that (ei)i∈I is stationary Markovian and not constrained Pareto

efficient. Then there exists an individually rational, self-enforcing and stationary Marko-

vian allocation (di)i∈I such that∑
i∈I

di(s) <
∑
i∈I

ei(s), for all s ∈ S.

Proof: Since (ei)i∈I is not constrained Pareto efficient, there exists a constrained

Pareto efficient allocation (ci)i∈I which Pareto dominates (ei)i∈I . This means that (ci)i∈I
is individually rational, self-enforcing, resource feasible and satisfies U(ci|s0) ≥ U(ei|s0)

for every agent i, with a strict inequality for at least one agent. The stationarity of the

endowment process implies that this Pareto dominance property is valid not only at the

initial event s0, but at any event s1 at date 1 (and actually at any event st).

Claim 5.1 For every s1 ∈ S1, we have U(ci|s1) ≥ U(ei|s1) for every agent i, with a

strict inequality for at least one agent.

Proof: Fix an arbitrary event s1 at date 1. Since (ci)i∈I is self-enforcing, we have

U(ci|s1) ≥ U(ei|s1) for every agent i. Assume, by way of contradiction, that U(ci|s1) =

32The Pareto dominating consumption allocation (ci)i∈I need not be stationary Markovian.
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U(ei|s1) for every agent i. Since the Bernoulli function is strictly concave, this implies

that ci(st) = ei(st) for every event st in the subtree Σ(s1). Otherwise, we would be able

to Pareto dominate the constrained Pareto efficient allocation (ci)i∈I .
33 Now choose the

date 2 event s2 := (s1, s0) which is the successor of s1 corresponding to the shock s0.

Observe that the subtree Σ(s2) is a copy of the whole tree Σ. In particular, any event

st ∈ Σ(s2) can be written st = (s1, σt−1) where σt−1 = (s0, σ1, . . . , σt−1) ∈ Σ. Consider

now the allocation (c̃i)i∈I defined by c̃i(st) := ci(st) if st 6∈ Σ(s2), and c̃i(st) := ci(σt−1)

for any event st = (s1, σt−1) where σt−1 ∈ Σ. Since U(ci|s1) = U(ei|s1) for every agent i,

we have that the allocation (c̃i)i∈I is individually rational, self-enforcing, resource feasible

and Pareto dominates (ci)i∈I . Q.E.D.

Fix an arbitrary state s ∈ S. It follows from Claim 5.1 that

(5.1) u(ci(s0, s)) + β
∑
s′∈S

π(s′|s)U(ci|(s0, s, s
′)) ≥ U(ei|(s0, s))

for every agent i, with a strict inequality for at least one agent. Recall that U(ei|(s0, s)) =

V i(s) and U(ci|(s0, s, s
′)) ≥ V i(s′). Therefore, for each i we can choose δi(s) ∈ [0, ci(s0, s)]

such that

(5.2) ∀i ∈ I, u(δi(s)) + β
∑
s′∈S

π(s′|s)V i(s′) ≥ V i(s)

together with34

(5.3)
∑
i∈I

δi(s) <
∑
i∈I

ci(s0, s) =
∑
i∈I

ei(s).

Denote by U the set of vectors U = (U i(s))(i,s)∈I×S in RI×S satisfying

V i(s) ≤ U i(s) ≤ supu(·)
1− β

, for every (i, s) ∈ I × S

and such that there exists xi(s) ∈ [0, δi(s)] satisfying

u(xi(s)) + β
∑
s′∈S

π(s′|s)U i(s′) ≥ V i(s), for every (i, s) ∈ I × S.

The set U is non-empty. Indeed, it follows from (5.2) that the family (V i(s))(i,s)∈I×S
belongs to U . It is straightforward to verify that U is a compact and convex subset of

33Indeed, let (c̃i)i∈I be the allocation defined by c̃i(st) := ci(st) if st 6∈ Σ(s1), and c̃i(st) :=

(1/2)ci(st) + (1/2)ei(st) for st ∈ Σ(s1). The allocation (c̃i)i∈I is individually rational, self-enforcing

and resource feasible. Moreover, if there exists one agent i such that ci and ei do not coincide on the

subtree Σ(s1), then (c̃i)i∈I Pareto dominates (ci)i∈I .
34If the inequality in (5.1) is strict, we can choose δi(s) < ci(s0, s), otherwise we take δi(s) = ci(s0, s).
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RI×S . Let Φ : U −→ U be the correspondence where Φ(U) is the set of all vectors Ũ in

U for which there exists yi(s) ∈ [0, δi(s)] satisfying

V i(s) ≤ Ũ i(s) ≤ u(yi(s)) + β
∑
s′∈S

π(s′|s)U i(s′), for every (i, s) ∈ I × S.

The set Φ(U) is a non-empty, convex and closed subset of U and the correspondence

Φ is upper semi-continuous.35 Applying Kakutani’s Fixed-Point Theorem, there exist a

vector (U i(s))(i,s)∈I×S in U and a vector (di(s))(i,s)∈I×S in RI×S such that

(5.4) V i(s) ≤ U i(s) ≤ u(di(s)) + β
∑
s′∈S

π(s′|s)U i(s′), for every (i, s) ∈ I × S

where di(s) ∈ [0, δi(s)]. Abusing notations, we let (di)i∈I be the consumption alloca-

tion associated to the vector (di(s))(i,s)∈I×S and defined by di(st) := di(st). Applying

recursively (5.4), we get

U(ei|st) = V i(st) ≤ U i(st) ≤ U(di|st).

Therefore, the allocation (di) is self-enforcing, individually rational and stationary Marko-

vian. Moreover, it follows from (5.3) that∑
i∈I

di(s) ≤
∑
i∈I

δi(s) <
∑
i∈I

ci(s0, s) =
∑
i∈I

ei(s).

Q.E.D.

It is straightforward to see that Lemma 5.1 implies that the economy exhibits uniform

gains to trade since the process (ei)i∈I of endowments is uniformly bounded from above

and uniformly bounded away from zero.

Proposition 5.1 If the process of endowments is stationary Markovian and not con-

strained Pareto efficient then there are uniform gains to trade.

Proof: Define z :=
∑

i∈I(e
i − di), where (di)i∈I is the individually rational, self-

enforcing and stationary Markovian allocation (di)i∈I of Lemma 5.1. The process z is

strictly positive and stationary Markovian. Moreover, if we let

γ := sup
s∈S

z(s)

e(s)
.

then γ ∈ (0, 1) and condition (2.2) is satisfied. Q.E.D.

35Since U belongs to U , the vector (V i(s))(i,s)∈I×S belongs to Φ(U).
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5.2. Seizable Assets

We discuss a simple extension of our environment. Following Kehoe and Levine (1993)

and Kocherlakota (2008), we assume now that there is a physical asset (also called tree)

in positive net supply delivering the dividend ξ(st) ≥ 0 at every event st. At the initial

event s0, each agent i holds a fraction θi(s0) ≥ 0 of the tree, with
∑

i∈I θ
i(s0) = 1. The

aggregate resources to be allocated between agents at event st is now

ω(st) := ξ(st) +
∑
i∈I

ei(st)

and an allocation (ci)i∈I is said to be resource feasible whenever

(5.5)
∑
i∈I

ci = ω = ξ +
∑
i∈I

ei.

Following the interpretation proposed by Kehoe and Levine (1993), the private endow-

ment ei(st) represents goods and services, such as labor, that cannot be physically dis-

associated from the agent. The shares of the physical asset (such as land) can change

hands, and therefore can be seized in case of breach of contract. Therefore, the default

option at event st is still represented by U(ei|st) and the definition of an individually

rational and self-enforcing allocation remains unchanged. In particular, the definition of

a constrained Pareto efficient allocation remains the same except for the resource feasi-

bility constraint that is now defined by (5.5). The commodity space `∞(e) is replaced by

`∞(ω) and the budget constraint ϕ(ci) ≤ ϕ(ei) is replaced by ϕ(ci) ≤ ϕ(ei + θiξ) in the

definition of a Kehoe–Levine competitive equilibrium.

All the results presented above remain valid under the uniform gains to trade assump-

tion which takes now the following form: the economy exhibits uniform gains to trade

if there is an individually rational and self-enforcing allocation (di)i∈I and γ > 0 such

that

(5.6) ∀st ∈ Σ,
∑
i∈I

di(st) ≤ (1− γ)ω(st).

The contribution of this section consists in showing that if dividends ξ of the tree is

large enough with respect to the private aggregate endowments e, then the assumption

of uniform gains to trade is automatically satisfied.

Proposition 5.2 If there exists a fraction α > 0 such that ξ ≥ αe, i.e.,

(5.7) ξ(st) ≥ α
∑
i∈I

ei(st), for all event st

then the economy exhibits uniform gains to trade.
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Proof: Observe that∑
i∈I

ei = e ≤ (1− γ)(ξ + e) = (1− γ)ω

where γ := α/(1 + α). We can then choose (di)i∈I such that
∑

i∈I d
i = (1 − γ)ω and

di ≥ ei for each i. Q.E.D.

Condition (5.7) is satisfied if dividends are uniformly bounded away from zero and

private endowments are uniformly bounded from above. This is in particular the case if

the economy is stationary Markovian and dividends are strictly positive. Therefore, the

existence result in Proposition 6 of Kehoe and Levine (1993) is a particular case of our

Theorem 4.1.
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Appendix A: Technical Results and Proofs

A.1. Continuity Properties of the Utility Function

Since the Bernoulli function is bounded from above, it follows from standard arguments

that the function U(·|s0) : c 7→ U(c|s0) is upper semi-continuous on RΣ
+ for the product

topology. It is also lower semi-continuous on the space of consumption processes that are

self-enforcing and individually rational.

Lemma A.1 The utility function U(·|s0) is continuous for the product topology on the

space of self-enforcing and individually rational consumption processes.

Proof: Fix x and y two consumption processes in RΣ
+. For every date τ ≥ 1, we have

(A.1) |U(x|s0)− U(y|s0)| ≤
τ−1∑
t=0

βt
∑
st∈St

π(st)|u(x(st))− u(y(st))|

+ βτ
∑
sτ∈Sτ

π(sτ )|∆(x, y|sτ )|

where ∆(x, y|sτ ) := U(x|sτ )− U(y|sτ ). Observe that for any self-enforcing and individ-

ually rational consumption process z, we have

U(ei|sτ ) ≤ U(z|sτ ) ≤
∑
sξ�sτ

βξ−τπ(sξ|sτ )u ≤ u

1− β

where u := supc≥0 u(c). This implies that

(A.2) lim sup
τ→∞

βτ
∑
sτ∈Sτ

π(sτ )U(z|sτ ) ≤ 0.

Since we assumed that U(ei|s0) > −∞ we must have

lim
τ→∞

βτ
∑
sτ∈Sτ

π(sτ )U(ei|sτ ) = 0.

This implies that

(A.3) lim inf
τ→∞

βτ
∑
sτ∈Sτ

π(sτ )U(z|sτ ) ≥ 0.

Combining (A.2) and (A.3), we can then conclude that

lim
τ→∞

βτ
∑
sτ∈Sτ

π(sτ )|∆(x, y|sτ )| = 0

and the continuity of U(·|s0) follows from the continuity of the Bernoulli function. Q.E.D.
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A.2. Strictly Positive Consumption

Lemma A.2 Consider a consumption process cj that is self-enforcing and individually

rational. Assume there is an event st � s0 such that cj(st) = 0. Then there must exist a

successor event sτ � st such that

(a) cj(sτ ) > 0 and U(cj |sτ ) > U(ej |sτ );

(b) for every intermediate event sr satisfying st ≺ sr ≺ sτ , we have cj(sr) = 0 and

U(cj |sr) > U(ej |sr).

Proof of Lemma A.2: Assume by way of contradiction that there does not exist

sτ � st satisfying (a) and (b). We let St+1
nb (st) be the set of date t+ 1 events successors

of st such that the participation constraint is non-binding. We must have cj(st+1) = 0

for every st+1 ∈ St+1
nb (st) (otherwise (a) and (b) are satisfied). We denote by St+2

nb (st) the

set defined by

St+2
nb (st) :=

⋃
st+1∈St+1

nb (st)

{st+2 ∈ St+2(st+1) : U(cj |st+2) > U(ej |st+2)}.

For every event sr we let ∆U(cj |sr) := U(cj |sr)−U(ej |sr). Observe that π(st)∆U(cj |st)
coincides with

π(st)[u(0)− u(ej(st))] + β
∑

st+1∈St+1
nb (st)

π(st+1)[u(0)− u(ej(st+1))]

+ β2
∑

st+2∈St+2
nb (st)

π(st+2)∆U(cj |st+2).

Since ∆U(cj |st) ≥ 0, the set St+2
nb (st) is non-empty. Again, we must have cj(st+2) = 0

for every st+2 ∈ St+2
nb (st). We can then define recursively a sequence (St+nnb (st))n≥1 such

that for every k ≥ 2

π(st)∆jU(st) =
k−1∑
n=1

βn
∑

st+n∈St+nnb (st)

π(st+n)[u(0)− u(ej(st+n))]+

∑
st+k∈St+knb (st)

βkπ(st+k)∆jU(st+k).

Passing to the limit when k goes to infinite, we get ∆U(cj |st) < 0 which contradicts the

fact that cj is individually rational and self-enforcing. Q.E.D.

Proposition A.1 If (ci)i∈I is a constrained Malinvaud efficient allocation, then it is

strictly positive.

Proof: Let (ci)i∈I be a constrained Malinvaud efficient allocation. Fix a date-t event

st and assume by way of contradiction that there exists an agent j with cj(st) = 0. From
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the resource feasibility there exists an agent k 6= j with ck(st) > 0. We propose to show

that there exists a bilateral trade between agents j and k that is Pareto improving.

There exists a successor event sτ � st satisfying conditions (a) and (b) of Lemma A.2.

Fix ε > 0 small enough such that ck(st) > ε and cj(sτ ) > γε where γ is arbitrarily chosen

to satisfy

γ >
βτπ(sτ )u′(ck(sτ ))

βtπ(st)u′(ck(st))
.

Define (ĉj , ĉk) as follows

ĉj(sr) :=

{
cj(st) + ε if sr = st

cj(sτ )− γε if sr = sτ
, ĉk(sr) :=

{
ck(st)− ε if sr = st

ck(sτ ) + γε if sr = sτ

and (ĉj(sr), ĉk(sr)) := (cj(sr), ck(sr)) for any sr 6∈ {st, sτ}. By construction the consump-

tion processes ĉj and ĉk satisfy participation constraints for every event sr � st that does

not satisfy sr � sτ since we have U(ĉi|sr) = U(ci|sr) for every i ∈ {j, k}.
The choice of γ is such that for ε > 0 small enough we have

π(st)βtu(ĉk(st)) + π(sτ )βτuk(ĉk(sτ )) > π(st)βtuk(ck(st)) + π(sτ )βτu(ck(sτ )).

It follows that U(ĉk|sr) > U(ck|sr) for any event sr satisfying st � sr � sτ . We have

thus proved that ĉk is still self-enforcing and individually rational. Moreover, we have

U(ĉk|st) > U(ck|st).
For every event sr satisfying st ≺ sr � sτ , agent j’s participation constraint is non-

binding, i.e., U(cj |sr) > U(ej |sr). This implies that we can choose ε > 0 small enough

such that U(ĉj |sr) ≥ U(ej |sr) for any sr satisfying st ≺ sr � sτ . To get a contradiction,

we only have to show that U(ĉj |st) > U(cj |st). Observe that

U(ĉj |st)− U(cj |st) = [u(ε)− u(0)] +
βτπ(sτ )

βtπ(st)
[u(cj(sτ )− γε)− u(cj(sτ ))].

Inada’s condition implies that for ε > 0 small enough we get the desired result. Q.E.D.

A.3. Finite Present Value under Personalized Prices

Lemma A.3 Consider an event st, a strictly positive consumption process ci and a

strictly positive process p = (p(st))st∈Σ such that PV(p; ei|s0) is finite. Assume that, for

every successor event sτ � st, the participation constraint is satisfied (i.e., U(ci|sτ ) ≥
U(ei|sτ )), and MRSi(ci|sτ ) ≤ p(sτ )/p(σ(sτ )).Then

PV(pi; ci|sτ ) <∞

where pi is the process of individual Arrow–Debreu prices defined recursively by pi(s0) :=

1 and pi(st)/pi(σ(st)) := MRSi(ci|st).36

36In particular, we have pi(st) = βtπ(st)u′(ci(st))/u′(ci(s0)).
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Proof: We provide a proof for st = s0. The general case obtains replacing the tree Σ

by the subtree Σ(st). By concavity of the Bernoulli function we have

U(ei|s0)− U(ci|s0)

u′(ci(s0))
≤

r−1∑
t=0

∑
st∈St

pi(st)[ei(st)− ci(st)]

+ βr
∑
sr∈Sr

π(sr)
U(ei|sr)− U(ci|sr)

u′(ci(s0))
.

Since U(ci|sr) ≥ U(ei|sr) we get that

r−1∑
t=0

∑
st∈St

pi(st)ci(st) ≤
r−1∑
t=0

∑
st∈St

pi(st)ei(st) +
U(ci|s0)− U(ei|s0)

u′(ci(s0))

≤
∞∑
t=0

∑
st∈St

p(st)ei(st) +
U(ci|s0)− U(ei|s0)

u′(ci(s0))

and the desired result follows from the assumption that PV(p; ei|s0) is finite. Q.E.D.

A.4. Decentralization Result

Proposition A.2 Consider an event st, a strictly positive consumption process ci and

strictly positive process p = (p(st))st∈Σ such that PV(p; ei|s0) is finite. Assume that, for

every successor event sτ � st, the participation constraint is satisfied (i.e., U(ci|sτ ) ≥
U(ei|sτ )), and MRSi(ci|sτ ) ≤ p(sτ )/p(σ(sτ )) with equality if U(ci|sτ ) > U(ei|sτ ). Then

ci has finite present value, in the sense that PV(p; ci|s0) <∞, and for every self-enforcing

consumption process c̃i with finite present value, we have

1

u′(ci(st))

[
U(c̃i|st)− U(ci|st)

]
≤ PV(p; c̃i − ci|st).

Proof: We provide a proof for st = s0. The general case obtains replacing the tree Σ

by the subtree Σ(st). For every event sτ � s0, we denote by qi(sτ ) the marginal rate of

substitution MRSi(ci|sτ ) and we let pi be the associated “personalized” Arrow–Debreu

price process defined by pi(s0) := 1 and pi(sτ ) = qi(sτ )pi(σ(sτ )).37 We first prove an

intermediate result.

Claim A.1 For every self-enforcing consumption process c̃i with finite present value,

i.e., PV(p; c̃i|s0) <∞, we have

(A.4) ∀ξ > 0, p(s0)bi(s0) ≤
ξ−1∑
τ=0

∑
sτ∈Sτ

p(sτ )(c̃i(sτ )− ci(sτ )) +
∑
sξ∈Sξ

p(sξ)bi(sξ)

37Or equivalently pi(sτ ) = βτπ(sτ )u′(ci(sτ ))/u′(ci(s0)).
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where bi(sτ ) := PV(pi; c̃i − ci|sτ ).38 Moreover, we have

(A.5) lim
ξ→∞

∑
sξ∈Sξ

p(sξ)bi(sξ) = 0.

Proof of Claim A.1: Concavity of the Bernoulli function implies that for every sτ ∈
Σ,

(A.6)
βτπ(sτ )

u′(ci(s0))

[
U(c̃i|sτ )− U(ci|sτ )

]
≤

∑
sr∈Σ(sτ )

pi(sr)(c̃i(sr)− ci(sr)) = pi(sτ )bi(sτ ).

By definition of the process bi, we get for every event sτ ,

bi(sτ ) = (c̃i(sτ )− ci(sτ )) +
∑

sτ+1�sτ
qi(sτ+1)bi(sτ+1).

If U(ci|sτ+1) > U(ei|sτ+1) then qi(sτ+1) = q(sτ+1). If U(ci|sτ+1) = U(ei|sτ+1) then we

have U(c̃i|sτ+1) ≥ U(ci|sτ+1) since c̃i is self-enforcing. It then follows from (A.6) that

bi(sτ+1) ≥ 0. In both cases we have qi(sτ+1)bi(sτ+1) ≤ q(sτ+1)bi(sτ+1), implying that

bi(sτ ) ≤ (c̃i(sτ )− ci(sτ )) +
∑

sτ+1�sτ
q(sτ+1)bi(sτ+1).

Multiplying by p(sτ ) and summing the inequalities over all events sτ up to date ξ, we

get Equation (A.4).

We now show that Equation (A.5) is satisfied. It is sufficient to prove that

lim
ξ→∞

∑
sξ∈Sξ

p(sξ) PV(pi;x|sξ) = 0

for any process x with finite present value under p, i.e., PV(p;x|s0) <∞. Observe that

p(sξ) PV(pi;x|sξ) = p(sξ)
∑

sr∈Σ(sξ)

pi(sr)

pi(sξ)
x(sr).

For every sr ∈ Σ(sξ) there exists a finite family of events (sξ+1, . . . , sr−1) such that

sξ ≺ sξ+1 ≺ sξ+2 ≺ . . . ≺ sr−1 ≺ sr.

In particular

pi(sr)

pi(sξ)
= qi(sξ+1) . . . qi(sr) ≤ p(sr)

p(sξ)
.

38To define bi(sτ ) we need to show that PV(pi; c̃i|s0) and PV(pi; ci|s0) are both finite. Since pi ≤ p

we have that PV(pi; c̃i|s0) is finite. The fact that PV(pi; ci|s0) is finite follows from standard arguments.

We refer to Appendix A.3 for details.
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It follows that p(sξ) PV(pi;x|sξ) ≤ p(sξ) PV(p;x|sξ) and consequently∑
sξ∈Sξ

p(sξ) PV(pi;x|sξ) ≤
∑
r≥ξ

∑
sr∈Sr

p(sr)x(sr).

The desired result follows from the fact that PV(p;x|s0) is finite. Q.E.D.

To prove that ci has finite present value, we apply Claim A.1 choosing c̃i := ei. Observe

that passing to the limit in (A.4) we get that

1

u′(ci(s0))

[
U(c̃i|s0)− U(ci|s0)

]
≤ PV(p; c̃i − ci|s0).

Q.E.D.

Appendix B: Comparing with the Literature

Recall that if (ci)i∈I is a strictly positive consumption process, then the implied Arrow–

Debreu price process p? is defined recursively by p?(s0) := 1 and

p?(st)

p?(σ(st))
:= max

i∈I
MRS(ci|st), for all st � s0.

Following Bloise and Reichlin (2011), we say that an allocation satisfies the Modified

Cass Criterion when there exists a non-null and uniformly bounded from above process

v satisfying, for some ρ ∈ (0, 1),

ρ
∑

st+1�st
p?(st+1)v(st+1) ≥ p?(st)v(st), for all st � s0.

When this condition holds true for ρ = 1, we say that the allocation satisfies the Weak

Modified Cass Criterion.

Bloise and Reichlin (2011) introduce a different concept of “high implied interest rates”

than the one we borrow from Alvarez and Jermann (2000). We say that implied interest

rates are BR-high when∑
st∈Σ

p?(st) <∞.

This concept coincides with the one we adopt if, and only if, the endowment process is

uniformly bounded from above and uniformly bounded away from zero.39

39In the sense that there exists ε > 0 such that 1/ε ≤ e(st) ≤ ε for any event st.
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B.1. Lemma 3.3

Lemma 3.3 is in the spirit of Lemma 2 in Bloise and Reichlin (2011) but cannot be

compared to it. To illustrate this we state below their result using our terminology.

Lemma B.1 (Lemma 2 in Bloise and Reichlin (2011)) Assume aggregate endowments

are uniformly bounded from above. Consider an allocation c = (ci)i∈I that is feasible, self-

enforcing, individually rational and uniformly bounded away from zero. If c is constrained

Pareto optimal then it does not satisfy the Modified Cass Criterion.

On one hand, we do not restrict attention to allocations that are uniformly bounded

away from zero. On the other hand, we have a stronger assumption (uniform gains to

trade) but their conclusion is weaker than ours.

B.2. Lemma 3.4

Lemma 3.4 is in the spirit of Lemma 3 in Bloise and Reichlin (2011) but cannot be

compared to it. To illustrate this we state below their result using our terminology.

Lemma B.2 (Lemma 3 in Bloise and Reichlin (2011)) Assume aggregate endowments

are uniformly bounded from above. Consider an allocation that is constrained Malinvaud

optimal and uniformly bounded away from zero. If it does not satisfy the Weak Modified

Cass Criterion then it is constrained Pareto optimal.

On one hand, the sufficient condition we proposed in Lemma 3.4 is valid for any con-

strained Malinvaud efficient allocations, not necessarily those that are uniformly bounded

away from zero. On the other hand, the sufficient condition of Lemma 3 in Bloise and

Reichlin (2011) is weaker than ours.

B.3. Proposition 3.1

Proposition 3.1 is in the spirit of Proposition 3 in Bloise and Reichlin (2011) that we

state below using our terminology.

Proposition B.1 (Proposition 3 in Bloise and Reichlin (2011)) Assume aggregate

endowments are uniformly bounded from above, uniformly bounded away from zero, and

there are uniform gains to trade. Consider an allocation that is constrained Malinvaud

efficient and uniformly bounded away from zero. It is constrained Pareto efficient if, and

only if, implied interest rates are high.

First, Bloise and Reichlin (2011) only characterize the sub-class of allocations that

are uniformly bounded away from zero. Second, they assume that aggregate endowments
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are uniformly bounded from above and uniformly bounded away from zero. They need

these additional assumptions because their approach to prove the necessity part (see

their Lemma 5) requires that marginal utilities of consumption at constrained Pareto

efficient allocations are uniformly bounded from above and bounded away from 0.

B.4. Boundary Condition of Bloise et al. (2013)

In Bloise et al. (2013) (see also Bidian and Bejan (2014)), the following extra-conditions

are imposed on primitives.

(B) The Bernoulli function is bounded from below (i.e., u(0) ∈ R) and there exists ε > 0

such that

B.1. ε ≤ ei(st) ≤ 1/(ε#I) for every i and st;

B.2. βu(0) + (1− β)u(1/ε) < u(ε).

In this paper, we only assume that the endowment process is strictly positive, i.e., ei(st) >

0. In particular, we allow for the possibility of successive negative (positive) shocks on

endowments such that ei converge to 0 (to infinite) along some path. Moreover, we

do not impose any consistency requirement between the subjective discount factor β,

the Bernoulli function u and endowments. Observe that for any given pair (β, u), we

can construct an endowment process (ei)I∈I satisfying (B.1) but such that (B.2) is not

satisfied. Indeed, (B.2) implies that

u(1/ε) <
β

1− β
[u(ε)− u(0)] + u(ε)

passing to the limit when ε tends to 0, we get the contradiction supx≥0 u(x) ≤ u(0).
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