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We show that the norm of the vector of Riesz transforms as operator in the weighted Lebesgue space L 2 ω is bounded by a constant multiple of the first power of the Poisson-A 2 characteristic of ω. The bound is free of dimension. We also show that for n > 1, the Poisson-A 2 class is properly included in the classical A 2 class.

Introduction

A weight is a positive L 1 loc function. Muckenhoupt proved in [START_REF] Muckenhoupt | Weighted norm inequalities for the Hardy maximal function[END_REF] that for 1 < p < ∞ the maximal function is bounded on L p (ω) iff the weight ω belongs to the class A p , where

ω ∈ A p iff Q p (ω) := sup B ω B ω -1/(p-1) p-1 B < ∞.
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Hf (x) = 1 π f (y)
xy dy in L p (ω). Coifman and Fefferman in [START_REF] Coifman | Weighted norm inequalities for maximal functions and singular integrals[END_REF] extended the theory to general Calderón-Zygmund operators.

The focus in this note is on the Riesz transforms in weighted spaces. The linear and optimal bound in terms of the classical A 2 characteristic has been established by one of the authors in [START_REF] Petermichl | The sharp weighted bound for the Riesz transforms[END_REF]. The same estimate holds for all Calderón-Zygmund operators by Hytonen's theorem [START_REF] Huković | Thesis: Singular integral operators in weighted spaces and Bellman functions[END_REF]. This remarkable result has been reproven by Lerner [START_REF] Lerner | A simple proof of the A 2 conjecture[END_REF]. The bound depends upon the dimension in all these proofs, as one should expect.

We are interested in a version of A 2 which is particularly well-suited for working with the Riesz transforms in R n , where we exploit the intimate connection of Riesz transforms and harmonic functions. We use the Poisson-A 2 class, which considers Poisson averages instead of box averages in the definition of A 2 and obtain a bound free of dimension for the Riesz vector. This way of measuring the characteristic of the weight arises naturally when working with Bellman functions, when convexity is replaced by harmonicity. This was also the approach in [START_REF] Nazarov | The weighted norm inequalities for Hilbert transform are now trivial[END_REF] as well as [START_REF] Petermichl | A sharp estimate for the weighted Hilbert transform via Bellman functions[END_REF] for the weighted Hilbert transform and [START_REF] Dragičević | Bellman Functions and Dimensionless Estimates Of Littlewood-Paley Type[END_REF] for unweighted Riesz transforms. From a probabilistic angle, the Poisson-A 2 characteristic also arises naturally as a consequence of the use of martingales driven by space-time Brownian motion as in Gundy-Varopoulos [START_REF] Gundy | Les transformations de Riesz et les intégrales stochastiques[END_REF].

An altered version of one-dimensional Poisson extensions of weights made a reappearance in the works concerned with the famous two-weight problem for the Hilbert transform, see [START_REF] Lacey | Two weight inequality for the Hilbert transform: A real variable characterization[END_REF] and [START_REF] Lacey | Two weight inequality for the Hilbert transform: A real variable characterization[END_REF]. It enjoys its interpretation as a 'tamed' Hilbert transform, a feature that appears to be lost in higher dimensions. In the one-dimensional case, we see a quadratic relation between the Poisson characteristic and the classical characteristic, but the classes themselves are the same. Interestingly, these different A 2 classes are not identical when the dimension is larger. We will show examples of A 2 weights whose Poisson integral diverges when the dimension is at least two. Such weights belong to A 2 but not to Poisson-A 2 . This shows that the Poisson characteristic used on a pair of weights such as for the two-weight problems, is not necessary in higher dimension. This is one of several obstacles when considering the two-weight question for the Riesz transforms, that is currently under investigation. We mention the recent advance [START_REF] Lacey | Two weight inequalities for Riesz transforms: Uniformly full dimension weights[END_REF] where the Poisson characteristic is modified.

Notation

The Riesz transforms R k in R n are the component operators of the Riesz vector R, defined on the Schwartz class by

(R k f )(ξ) = i ξ k ξ f (ξ).
We consider the space L 2 ω , where ω is a positive scalar valued L 1 loc function, called a weight. More specifically, the space L 2 ω (R n ; C) consists of all measurable functions f : R n → C so that the quantity

f ω := R n |f (x)| 2 ω(x)dx 1/2
is finite, where dx denotes the Lebesgue measure on R n . For the space of vector valued functions

L 2 ω (R n ; C n ), we replace | • | by the ℓ 2 norm • .
We are concerned with a special class of weights, called Poisson-A 2 . We say

ω ∈ Ã2 if Q2 (ω) := sup (x,t)∈R n ×R + P t (ω)(x)P t (ω -1 )(x) < ∞ (1) 
where P t denotes the Poisson extension operator into the upper half space defined by

P t = e -tA
where we define A := √ -∆ and ∆ be the Laplacian in R n . The scalar Riesz transforms can be written as

R k = ∂ k • A -1 .
The Poisson kernel has the form

P t (y) = c n t (t 2 + |y| 2 ) n+1 2
where c n is its normalizing factor. The extension operator becomes

P t f (x) = c n R n f (y)P t (x -y)dy.

Main results

The main purpose of this text is to provide the dimensionless estimate:

Theorem 3.1 There exists a constant c that does not depend on the dimension n or the weight ω so that for all weights ω ∈ Ã2 the Riesz vector as an operator in weighted space

L 2 ω → L 2 ω has operator norm R L 2 ω →L 2 ω ≤ c Q2 (ω).
We also investigate the relationship between different Muckenhoupt classes. Notably, their relation changes with dimension:

Theorem 3.2 Poisson-A 2 and classical A 2 only define the same classes of weights when the dimension is one: Ã2 = A 2 if and only if n = 1.

4 The dimension-free estimate

Since R L 2 ω (R n ;C)→L 2 ω (R n ;C n ) = ω 1/2 Rω -1/2 L 2 (R n ;C)→L 2 (R n ;C n )
where the outer multiplication by ω 1/2 is a scalar multiplication. We can estimate

R L 2 ω →L 2 ω via L 2 duality. It is sufficient to estimate |( g, ω 1/2 Rω -1/2 f )| ≤ c Q2 (ω) f g
for test functions (smooth and compactly supported) f, g, where f is scalar valued and g vector valued. Or (considering ω -1/2 f instead of f and ω 1/2 g instead of g):

|( g, Rf )| ≤ c Q2 (ω) g ω -1 f ω .
To prove this estimate, we prove the following theorem:

Theorem 4.1 For test functions f, g and ω ∈ Ã2 we have the following estimate:

|( g, Rf )| ≤ c Q2 (ω)( g 2 ω -1 + f 2 ω ); (2) 
here c does not depend on f, g, n, k or ω.

Considering λf and λ -1 g for appropriate λ, with the considerations above yields Theorem 3.1.

Before we turn to the proof of Theorem 4.1, let us formulate several useful lemmata.

Three useful Lemmata

The following is a well known fact. It is, for example, stated in [START_REF] Gundy | Les transformations de Riesz et les intégrales stochastiques[END_REF].

for all u ∈ R d .

We will be using this lemma for m = 2, l = 2n and k = 4.

Finally we crucially need the Lemma below, that has been proven in [START_REF] Petermichl | Heating of the Beurling operator: weakly quasiregular maps on the plane are quasiregular[END_REF]. It was deduced from the sharp weighted inequality for martingales from [START_REF] Wittwer | A sharp estimate on the norm of the martingale transform[END_REF].

Lemma 4.4 For any Q > 1 let D be a subset of R × R × C × C n × R × R D Q = {(X, Y, x, y, r, s) : |x| 2 < Xs, y 2 < Yr, 1 < rs < Q}.
For any compact K ⊂ D Q there exists an infinitely differentiable function B K,Q defined in a small neighborhood of K that still lies inside D Q so that the following estimates hold in K.

0 ≤ B K,Q ≤ 5Q(X + Y), (3) 
-d 2 B K,Q ≥ 2|dx| dy . (4) 
The last inequality describes an operator inequality where the left hand side is the negative Hessian of B. This function is a mollified version of the Bellman function one gets by knowing that the equivalent weighted estimate holds for a certain dyadic model operator.

Proof of the main theorem

Recall the inequality of theorem (4.1). We want to show for test functions f and g and ω ∈ Ã2 :

|( g, Rf )| ≤ c Q2 (ω)( g 2 ω -1 + f 2 ω ).
For a fixed weight ω we let Q = Q2 (ω). This gives rise to the set

D Q . We define b K,Q (x, t) = B K,Q (v(x, t)) where v(x, t) = P t (|f | 2 ω), P t ( g 2 ω -1 ), P t (f ), P t ( g), P t (ω), P t (ω -1 ) (x)
Here K is a compact subset of D Q to be chosen later.

Note that the vector v ∈ D Q for any choice of (x, t). This is ensured by Q = Q2 (ω) and several applications of Jensen's inequality. Notice also that the vector v takes compacts inside the interior of R n+1

+ to compacts K inside D Q
for fixed f, g, ω. By elementary application of the chain rule (using harmonicity of the components of v) one shows that

∆ x,t b(x, t) = n i=1 d 2 B(v) ∂ ∂x i v, ∂ ∂x i v + d 2 B(v) ∂ ∂t v, ∂ ∂t v .
Here ∆ x,t is the full Laplacian in the upper half space

∆ x,t = n i=1 ∂ 2 x i + ∂ 2 t .
Notice that condition 4 means that at any v = (X, Y, x, y, r, s) ∈ K ⊂ D Q we have the operator inequality for any

u ∈ R × R × C × C n × R × R -d 2 B K,Q (v)u, u ≥ 2(|dx| dy u, u) = 2|u 3 | u 4 .
In our situation, f, g, ω and Q are fixed, but we have varying K, x, t. So Lemma 4.3 guarantees us existence of τ x,t,K so that

-d 2 B(v) ∂ ∂x i v, ∂ ∂x i v ≥ τ x,t,K | ∂ ∂x i P t f | 2 + τ -1 x,t,K ∂ ∂x i P t g 2
for all i and

-d 2 B(v) ∂ ∂t v, ∂ ∂t v ≥ τ x,t,K | ∂ ∂t P t f | 2 + τ -1 x,t,K ∂ ∂t P t g 2 . So -∆ x,t b K,Q (x, t) ≥ τ x,t,K n i=1 | ∂ ∂x i P t f | 2 + | ∂ ∂t P t f | 2 +τ -1 x,t,K n i=1 ∂ ∂x i P t g 2 + ∂ ∂t P t g 2 ≥ 2 n i=1 | ∂ ∂x i P t f | 2 + | ∂ ∂t P t f | 2 1/2 n i=1 ∂ ∂x i P t g 2 + ∂ ∂t P t g 2 1/2 ≥ 2 n i=1 | ∂ ∂x i P t f | 2 1/2 ∂ ∂t P t g = 2 ∇P t f ∂ ∂t P t g
In what follows we first use formula 4.2, then the estimate for the Laplacian we just proved:

|( g, Rf )| ≤ 4 ∞ 0 | ∂ ∂t P t g, ∇P t f |tdt ≤ 4 ∞ 0 R n ∂ ∂t P t g ∇P t f dxtdt ≤ 2 ∞ 0 R n -∆ x,t b K,Q (x, t)dxtdt.
It remains to see that

- ∞ 0 R n ∆ x,t b K,Q (x, t)dxtdt ≤ C Q2 ( f 2 ω -1 + g 2 ω ) (5) 
with C independent of n. In order to obtain this last estimate, we will apply Green's formula as well as some properties of our Bellman function. We are going to pass through values of the function b.

Recall the statement of Green's formula:

Theorem 4.5 Ω f (x)∆g(x) -g(x)∆f (x)dA(x) = ∂Ω f (t) ∂g ∂n (t) -g(t) ∂f ∂n (t) dS(t)
where n is the outward normal and dS surface measure on ∂Ω.

In order to be accurate, we are obliged to take care of a few technicalities first.

Let T R be a cylinder with square base in upper half space [-R, R] n × [0, 2R].

For R not too small, the point (0, 1) lies inside T R . Let T R,ǫ = T R + (0, ǫ). For any interior point (ξ, τ ), let G R,ǫ [(x, t), (ξ, τ )] be its Green function, meaning that

∆ x,t G R,ǫ [(x, t), (ξ, τ )] = -δ (ξ,τ ) and G R,ǫ = 0 on ∂T R,ǫ .
Notice that RT 1,0 = T R,ǫ -(0, ǫ) and the Green's functions relate as follows:

Lemma 4.6 The Green's function has the following scaling property:

R n-1 G R,ǫ [(x, t), (ξ, τ )] = G 1,0 [(R -1 (x, t -ǫ), R -1 (ξ, τ -ǫ))]. (6) 
Proof. By uniqueness it suffices to see that

R -(n-1) G 1,0 [R -1 (x, t-ǫ), R -1 (ξ, τ - ǫ)
] is indeed the Green function for the region T R,ǫ at the point (ξ, τ ). It is clear that it equals zero on ∂T R,ǫ . Furthermore for test function f we have

T R,ǫ ∆ x,t R -(n-1) G 1,0 [R -1 (x, t -ǫ), R -1 (ξ, τ -ǫ)]f (x, t)dxdt = T 1,0 ∆ y,s G 1,0 [(y, s), R -1 (ξ, τ -ǫ)]f (Ry, Rs + ε)dyds = -f (ξ, τ )
We did a substitution (x, t) = (Ry, Rs+ǫ). Note that there is R -2 term arising from the switch of ∆ x,t to ∆ y,s and R n+1 from the determinant. QED

Recall that the vector v maps each T R,ǫ into a compact K = K R,ǫ ⊂ D Q . For technical reasons we have to exhaust the upper half space by compacts. We fix any compact set M in the open upper half space and consider R large enough and ǫ small enough so that M ⊂ T R,ǫ .

Let us start to use the size estimate of our Bellman function to obtain an estimate of the function value b K,Q (0, R + ǫ) from above:

b K,Q (0, R + ǫ) ≤ C Q2 (P R+ǫ |f | 2 ω -1 (0) + P R+ǫ g 2 ω(0)) = c n C Q2 R n |f | 2 (y)ω -1 (y) R + ǫ ((R + ǫ) 2 + |y| 2 ) n+1 2 dy + R n g 2 (y)ω(y) R + ǫ ((R + ǫ) 2 + |y| 2 ) n+1 2 dy ≤ c n (R + ǫ) -n C Q2 ( f 2 ω -1 + g 2 ω ).
For an estimate from below, Green's formula applied to our situation gives:

b K,Q (0, R + ǫ) = - T R,ǫ G R,ǫ ((x, t), (0, R + ǫ))∆ x,t b K,Q (x, t)dxdt - ∂T R,ǫ b K,Q (x, t) ∂G R,ǫ ((x, t), (0, R + ǫ)) ∂n dxdt + ∂T R,ǫ G R,ǫ ((x, t), (0, R + ǫ)) ∂b K,Q ((x, t)) ∂n dxdt
The first boundary term is negative because b is non-negative and the outward normal of the Green's function is negative on the boundary of T R,ǫ . The second boundary term vanishes because G R,ǫ = 0 on the boundary. So we have the following estimate:

b K,Q (0, R + ǫ) ≥ - T R,ǫ G R,ǫ ((x, t), (0, R + ǫ))∆ x,t b K,Q (x, t)dxdt. ≥ - M G R,ǫ ((x, t), (0, R + ǫ))∆ x,t b K,Q (x, t)dxdt.
since -∆b ≥ 0 and where we recall that M ⊂ T R,ǫ . We continue the estimate using the scaling properties of the Green functions [START_REF] Lacey | Two weight inequality for the Hilbert transform: A real variable characterization[END_REF].

b K,Q (0, R + ǫ) ≥ - M R -(n-1) G 1,0 (R -1 (x, t -ǫ), (0, 1))∆ x,t b(x, t)dxdt.
Since G 1,0 ((R -1 x, 0), (0, 1)) = 0 we have

b K,Q (0, R + ǫ) ≥ - M R -(n-1) G 1,0 ((R -1 x, R -1 (t -ǫ), (0, 1))- G 1,0 ((R -1 x, 0), (0, 1)) ∆ x,t b(x, t)dxdt = - M R -(n-1) ∂G 1,0 ∂t (R -1 x, τ )R -1 (t -ǫ)∆ x,t b K,Q (x, t)dxdt = - M R -n ∂G 1,0 ∂t (R -1 x, τ )∆ x,t b K,Q (x, t)dx(t -ǫ)dt, where 0 ≤ τ ≤ R -1 (t -ǫ).
Pulling this all together with the estimate from above,

- M R -n ∂G 1,0 ∂t (R -1 x, τ )∆ x,t b K,Q (x, t)dx(t -ε)dt ≤ b K,Q (0, R + ǫ) ≤ c n (R + ǫ) -n C Q2 ( f 2 ω -1 + g 2 ω ), hence - M ∂G 1,0 ∂t (R -1 x, τ )∆ x,t b K,Q (x, t)dx(t -ǫ)dt ≤ c n C Q2 ( f 2 ω -1 + g 2 ω )
uniformly with respect to R and ǫ, for all given M . When R goes to infinity, the normal derivative ∂G 1,0 ∂t (R -1 x, τ ) tends to ∂G 1,0 ∂t (0, 0) uniformly with respect to (x, t) ∈ M . But we know that the normal derivative ∂G 1,0 ∂t (0, 0) is exactly the normalizing factor c n of the Poisson kernel (see [START_REF] Dragičević | Bellman Functions and Dimensionless Estimates Of Littlewood-Paley Type[END_REF] and the references therein Couhlon-Duong). Letting R go to infinity and ε go to zero yields for all compact M of the upper half space:

- M ∆ x,t b K,Q (x, t)dxtdt ≤ C Q2 ( f 2 ω -1 + g 2 ω ).
Finally, letting M exhaust the upper half space establishes (5).

The comparison of classical and Poisson characteristic.

In this section we prove Theorem 3.2. We provide an example that demonstrates that Ã2 = A 2 if n > 1. For the case n = 1, it is known that the two classes are the same. Infact, for n = 1 the estimates Q2 (ω) Q 2 (ω) Q2 (ω) 2 are proven in [START_REF] Huković | Thesis: Singular integral operators in weighted spaces and Bellman functions[END_REF]. If n > 1 however, an easy example shows that the Poisson integral of a simple power weight diverges, although the weight belongs to classical A 2 . Consider ω α (x) = |x| α . It is well known and straightforward to check that ω α ∈ A 2 ↔ |α| < n. Also Q 2 (ω α ) ∼ 1 n 2 -α 2 . We show that the Poisson integral P t w α (0) diverges for α close to n.

P t (ω α )(0) ∼ R n t (t 2 + |x| 2 ) n+1 2 |x| α dx = |S| ∞ 0 t (t 2 + r 2 ) n+1 2 r α+n-1 dr = |S| ∞ k=1 2 k t 2 k-1 t t (t 2 + r 2 ) n+1 2 r α+n-1 dr |S| ∞ k=1 2 k-1 t t (t 2 + 2 2k t 2 ) n+1 2 
(2 k-1 t) α+n-1

t α |S|2 -α-n-1 ∞ k=1 2 (α-1)k
We see that this sum converges if and only if α -1 < 0. If n ≥ 2 we have w α ∈ A 2 if and only if |α| < n so we can easily pick a valid α for which the above sum diverges.

Thus not every weight in A 2 is in Ã2 . The converse is still true, though. Let w ∈ Ã2 , and let B be a ball with center a and radius r. Then for y ∈ B, |a -y| < r, and so 1 r n ≤ 2 

2 +

 2 |a -y| 2 ) n+1 2 dy ≤ C ′ P r (ω)(a),and similarly for ω -1 B . Thus Q 2 (ω) ≤ C Q2 (ω).

The proof using semigroups is very simple and concise, so we include it for the convenience of the reader. Instead of using semigroups, the same result can be obtained by the use of the Fourier transform.

Proof. Observe that F (0) = ∞ 0 F ′′ (t)tdt for sufficiently fast decaying F . So

The right hand side becomes

Now we use the fact that d dt P t = -AP t and d 2 dt 2 P t = A 2 P t and symmetry of A to see that the above equals

Using the fact that P t g is harmonic we can replace A by -∂ t in this expression. Furthermore, observe that A commutes with P t and ∂ k and that

For function f and vector function g this becomes

QED

We will need the following form of a Lemma that has been proven in [START_REF] Dragičević | Bellman Functions and Dimensionless Estimates Of Littlewood-Paley Type[END_REF] and generalised in [START_REF] Dragičević | A theorem about three quadratic forms[END_REF], the so-called 'ellipse lemma'.