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Abstract

We show that the norm of the vector of Riesz transforms as operator in the weighted
Lebesgue space L2

ω is bounded by a constant multiple of the first power of the
Poisson-A2 characteristic of ω. The bound is free of dimension. We also show that
for n > 1, the Poisson-A2 class is properly included in the classical A2 class.
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1 Introduction

A weight is a positive L1
loc function. Muckenhoupt proved in [11] that for

1 < p < ∞ the maximal function is bounded on Lp(ω) iff the weight ω

belongs to the class Ap, where

ω ∈ Ap iff Qp(ω) := sup
B

〈ω〉B〈ω−1/(p−1)〉p−1
B < ∞.
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Here the notation 〈·〉B denotes the average over the ball B and the supremum
runs over all balls B. Hunt, Muckenhoupt, Wheeden proved in [10] that the
Ap condition also characterizes the boundedness of the Hilbert transform

Hf(x) =
1

π

∫

f(y)

x− y
dy

in Lp(ω). Coifman and Fefferman in [1] extended the theory to general Calderón-
Zygmund operators.

The focus in this note is on the Riesz transforms in weighted spaces. The
linear and optimal bound in terms of the classical A2 characteristic has been
established by one of the authors in [13]. The same estimate holds for all
Calderón-Zygmund operators by Hytonen’s theorem [5]. This remarkable re-
sult has been reproven by Lerner [9]. The bound depends upon the dimension
in all these proofs, as one should expect.

We are interested in a version of A2 which is particularly well-suited for work-
ing with the Riesz transforms in R

n, where we exploit the intimate connection
of Riesz transforms and harmonic functions. We use the Poisson-A2 class,
which considers Poisson averages instead of box averages in the definition of
A2 and obtain a bound free of dimension for the Riesz vector. This way of
measuring the characteristic of the weight arises naturally when working with
Bellman functions, when convexity is replaced by harmonicity. This was also
the approach in [12] as well as [15] for the weighted Hilbert transform and [3]
for unweighted Riesz transforms. From a probabilistic angle, the Poisson-A2

characteristic also arises naturally as a consequence of the use of martingales
driven by space-time Brownian motion as in Gundy-Varopoulos [4].

An altered version of one-dimensional Poisson extensions of weights made a
reappearance in the works concerned with the famous two-weight problem for
the Hilbert transform, see [6] and [7]. It enjoys its interpretation as a ‘tamed’
Hilbert transform, a feature that appears to be lost in higher dimensions. In
the one-dimensional case, we see a quadratic relation between the Poisson
characteristic and the classical characteristic, but the classes themselves are
the same. Interestingly, these different A2 classes are not identical when the
dimension is larger. We will show examples of A2 weights whose Poisson inte-
gral diverges when the dimension is at least two. Such weights belong to A2

but not to Poisson-A2. This shows that the Poisson characteristic used on a
pair of weights such as for the two-weight problems, is not necessary in higher
dimension. This is one of several obstacles when considering the two-weight
question for the Riesz transforms, that is currently under investigation. We
mention the recent advance [8] where the Poisson characteristic is modified.
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2 Notation

The Riesz transforms Rk in R
n are the component operators of the Riesz

vector ~R, defined on the Schwartz class by

ˆ(Rkf)(ξ) = i
ξk

‖ξ‖ f̂(ξ).

We consider the space L2
ω, where ω is a positive scalar valued L1

loc function,
called a weight. More specifically, the space L2

ω(R
n;C) consists of all measur-

able functions f : Rn → C so that the quantity

‖f‖ω :=
(
∫

Rn
|f(x)|2ω(x)dx

)1/2

is finite, where dx denotes the Lebesgue measure on R
n. For the space of vector

valued functions L2
ω(R

n;Cn), we replace | · | by the ℓ2 norm ‖ · ‖.

We are concerned with a special class of weights, called Poisson-A2. We say
ω ∈ Ã2 if

Q̃2(ω) := sup
(x,t)∈Rn×R+

Pt(ω)(x)Pt(ω
−1)(x) < ∞ (1)

where Pt denotes the Poisson extension operator into the upper half space
defined by

Pt = e−tA

where we define A :=
√
−∆ and ∆ be the Laplacian in R

n. The scalar Riesz
transforms can be written as

Rk = ∂k ◦ A−1.

The Poisson kernel has the form

Pt(y) = cn
t

(t2 + |y|2)n+1
2

where cn is its normalizing factor. The extension operator becomes

Ptf(x) = cn

∫

Rn
f(y)Pt(x− y)dy.

3 Main results

The main purpose of this text is to provide the dimensionless estimate:
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Theorem 3.1 There exists a constant c that does not depend on the dimen-

sion n or the weight ω so that for all weights ω ∈ Ã2 the Riesz vector as an

operator in weighted space L2
ω → L2

ω has operator norm ‖~R‖L2
ω→L2

ω
≤ cQ̃2(ω).

We also investigate the relationship between different Muckenhoupt classes.
Notably, their relation changes with dimension:

Theorem 3.2 Poisson-A2 and classical A2 only define the same classes of

weights when the dimension is one: Ã2 = A2 if and only if n = 1.

4 The dimension-free estimate

Since

‖~R‖L2
ω(R

n;C)→L2
ω(R

n;Cn) = ‖ω1/2 ~Rω−1/2‖L2(Rn;C)→L2(Rn;Cn)

where the outer multiplication by ω1/2 is a scalar multiplication. We can esti-
mate ‖~R‖L2

ω→L2
ω
via L2 duality. It is sufficient to estimate

|(~g, ω1/2 ~Rω−1/2f)| ≤ cQ̃2(ω)‖f‖‖~g‖

for test functions (smooth and compactly supported) f,~g, where f is scalar
valued and ~g vector valued. Or (considering ω−1/2f instead of f and ω1/2~g

instead of ~g):

|(~g, ~Rf)| ≤ cQ̃2(ω)‖~g‖ω−1‖f‖ω.

To prove this estimate, we prove the following theorem:

Theorem 4.1 For test functions f,~g and ω ∈ Ã2 we have the following esti-

mate:

|(~g, ~Rf)| ≤ cQ̃2(ω)(‖~g‖2ω−1 + ‖f‖2ω); (2)

here c does not depend on f,~g, n, k or ω.

Considering λf and λ−1~g for appropriate λ, with the considerations above
yields Theorem 3.1.

Before we turn to the proof of Theorem 4.1, let us formulate several useful
lemmata.

4.1 Three useful Lemmata

The following is a well known fact. It is, for example, stated in [4].
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Lemma 4.2

(g,Rkf) = 4
∫

∞

0

(

d

dt
Ptg, ∂kPtf

)

tdt.

The proof using semigroups is very simple and concise, so we include it for the
convenience of the reader. Instead of using semigroups, the same result can be
obtained by the use of the Fourier transform.

Proof. Observe that F (0) =
∫

∞

0 F ′′(t)tdt for sufficiently fast decaying F . So

(g,Rkf) = (P0g, P0Rkf) =
∫

∞

0

d2

dt2
(Ptg, PtRkf) tdt.

The right hand side becomes

∫

∞

0

(

(
d2

dt2
Ptg, PtRkf) + 2(

d

dt
Ptg,

d

dt
PtRkf) + (Ptg,

d2

dt2
PtRkf)

)

tdt.

Now we use the fact that d
dt
Pt = −APt and

d2

dt2
Pt = A2Pt and symmetry of A

to see that the above equals

4
∫

∞

0
(APtg, APtRkf)tdt.

Using the fact that Ptg is harmonic we can replace A by −∂t in this expression.
Furthermore, observe that A commutes with Pt and ∂k and that Rk = ∂k◦A−1.
We obtain

(g, Rkf) = 4
∫

∞

0
(
d

dt
Ptg, ∂kPtf)tdt.

For function f and vector function ~g this becomes

(~g, ~Rf) = 4
∫

∞

0
(
d

dt
Pt~g,∇Ptf)tdt.

QED

We will need the following form of a Lemma that has been proven in [3] and
generalised in [2], the so-called ‘ellipse lemma’.

Lemma 4.3 Let m, l, k ∈ N. Denote d = m+ l+k. For arbitrary u ∈ R
m+l+k

write u = um⊕ul⊕uk, where ui ∈ R
i for i = m, l, k. Let rm = ‖um‖, rl = ‖ul‖.

Suppose the matrix A ∈ R
d×d is such that

(Au, u) ≥ 2rmrl

for all u ∈ R
d. Then there exists τ > 0 so that

(Au, u) ≥ τr2m + τ−1r2l
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for all u ∈ R
d.

We will be using this lemma for m = 2, l = 2n and k = 4.

Finally we crucially need the Lemma below, that has been proven in [14]. It
was deduced from the sharp weighted inequality for martingales from [16].

Lemma 4.4 For any Q > 1 let D be a subset of R× R× C× C
n × R× R

DQ = {(X,Y,x,y, r, s) : |x|2 < Xs, ‖y‖2 < Yr, 1 < rs < Q}.

For any compact K ⊂ DQ there exists an infinitely differentiable function

BK,Q defined in a small neighborhood of K that still lies inside DQ so that the

following estimates hold in K.

0 ≤ BK,Q ≤ 5Q(X+Y), (3)

−d2BK,Q ≥ 2|dx|‖dy‖. (4)

The last inequality describes an operator inequality where the left hand side is
the negative Hessian of B. This function is a mollified version of the Bellman
function one gets by knowing that the equivalent weighted estimate holds for
a certain dyadic model operator.

4.2 Proof of the main theorem

Recall the inequality of theorem (4.1). We want to show for test functions f
and g and ω ∈ Ã2:

|(~g, ~Rf)| ≤ cQ̃2(ω)(‖~g‖2ω−1 + ‖f‖2ω).

For a fixed weight ω we let Q = Q̃2(ω). This gives rise to the set DQ. We
define

bK,Q(x, t) = BK,Q(v(x, t))

where

v(x, t) =
(

Pt(|f |2ω), Pt(‖~g‖2ω−1), Pt(f), Pt(~g), Pt(ω), Pt(ω
−1)

)

(x)

Here K is a compact subset of DQ to be chosen later.

Note that the vector v ∈ DQ for any choice of (x, t). This is ensured by
Q = Q̃2(ω) and several applications of Jensen’s inequality. Notice also that the
vector v takes compacts inside the interior of Rn+1

+ to compacts K inside DQ
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for fixed f,~g, ω. By elementary application of the chain rule (using harmonicity
of the components of v) one shows that

∆x,tb(x, t) =
n
∑

i=1

(

d2B(v)
∂

∂xi

v,
∂

∂xi

v

)

+

(

d2B(v)
∂

∂t
v,

∂

∂t
v

)

.

Here ∆x,t is the full Laplacian in the upper half space

∆x,t =
n
∑

i=1

∂2
xi
+ ∂2

t .

Notice that condition 4 means that at any v = (X,Y,x,y, r, s) ∈ K ⊂ DQ we
have the operator inequality for any u ∈ R× R× C× C

n × R× R

(

−d2BK,Q(v)u, u
)

≥ 2(|dx|‖dy‖u, u) = 2|u3|‖u4‖.

In our situation, f,~g, ω and Q are fixed, but we have varyingK, x, t. So Lemma
4.3 guarantees us existence of τx,t,K so that

(

−d2B(v)
∂

∂xi

v,
∂

∂xi

v

)

≥ τx,t,K |
∂

∂xi

Ptf |2 + τ−1
x,t,K‖

∂

∂xi

Pt~g‖2

for all i and
(

−d2B(v)
∂

∂t
v,

∂

∂t
v

)

≥ τx,t,K |
∂

∂t
Ptf |2 + τ−1

x,t,K‖
∂

∂t
Pt~g‖2.

So

−∆x,tbK,Q(x, t)

≥ τx,t,K

(

n
∑

i=1

| ∂

∂xi

Ptf |2 + | ∂
∂t

Ptf |2
)

+τ−1
x,t,K

(

n
∑

i=1

‖ ∂

∂xi

Pt~g‖2 + ‖ ∂

∂t
Pt~g‖2

)

≥ 2

(

n
∑

i=1

| ∂

∂xi

Ptf |2 + | ∂
∂t

Ptf |2
)1/2 ( n

∑

i=1

‖ ∂

∂xi

Pt~g‖2 + ‖ ∂

∂t
Pt~g‖2

)1/2

≥ 2

(

n
∑

i=1

| ∂

∂xi

Ptf |2
)1/2

‖ ∂

∂t
Pt~g‖

=2‖∇Ptf‖‖
∂

∂t
Pt~g‖

In what follows we first use formula 4.2, then the estimate for the Laplacian
we just proved:
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|(~g, ~Rf)|

≤ 4
∫

∞

0
|
(

∂

∂t
Pt~g,∇Ptf

)

|tdt

≤ 4
∫

∞

0

∫

Rn
‖ ∂

∂t
Pt~g‖‖∇Ptf‖dxtdt

≤ 2
∫

∞

0

∫

Rn
−∆x,tbK,Q(x, t)dxtdt.

It remains to see that

−
∫

∞

0

∫

Rn
∆x,tbK,Q(x, t)dxtdt ≤ CQ̃2(‖f‖2ω−1 + ‖~g‖2ω) (5)

with C independent of n. In order to obtain this last estimate, we will apply
Green’s formula as well as some properties of our Bellman function. We are
going to pass through values of the function b.

Recall the statement of Green’s formula:

Theorem 4.5

∫

Ω
f(x)∆g(x)− g(x)∆f(x)dA(x) =

∫

∂Ω

(

f(t)
∂g

∂n
(t)− g(t)

∂f

∂n
(t)

)

dS(t)

where n is the outward normal and dS surface measure on ∂Ω.

In order to be accurate, we are obliged to take care of a few technicalities first.

Let TR be a cylinder with square base in upper half space [−R,R]n × [0, 2R].
For R not too small, the point (0, 1) lies inside TR. Let TR,ǫ = TR + (0, ǫ). For
any interior point (ξ, τ), let GR,ǫ[(x, t), (ξ, τ)] be its Green function, meaning
that

∆x,tG
R,ǫ[(x, t), (ξ, τ)] = −δ(ξ,τ) and GR,ǫ = 0 on ∂TR,ǫ.

Notice that RT1,0 = TR,ǫ − (0, ǫ) and the Green’s functions relate as follows:

Lemma 4.6 The Green’s function has the following scaling property:

Rn−1GR,ǫ[(x, t), (ξ, τ)] = G1,0[(R−1(x, t− ǫ), R−1(ξ, τ − ǫ))]. (6)

Proof. By uniqueness it suffices to see that R−(n−1)G1,0[R−1(x, t−ǫ), R−1(ξ, τ−
ǫ)] is indeed the Green function for the region TR,ǫ at the point (ξ, τ). It is
clear that it equals zero on ∂TR,ǫ. Furthermore for test function f we have
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∫ ∫

TR,ǫ

∆x,tR
−(n−1)G1,0[R−1(x, t− ǫ), R−1(ξ, τ − ǫ)]f(x, t)dxdt

=
∫ ∫

T1,0

∆y,sG
1,0[(y, s), R−1(ξ, τ − ǫ)]f(Ry,Rs+ ε)dyds

= −f(ξ, τ)

We did a substitution (x, t) = (Ry,Rs+ǫ). Note that there is R−2 term arising
from the switch of ∆x,t to ∆y,s and Rn+1 from the determinant. QED

Recall that the vector v maps each TR,ǫ into a compact K = KR,ǫ ⊂ DQ. For
technical reasons we have to exhaust the upper half space by compacts. We fix
any compact set M in the open upper half space and consider R large enough
and ǫ small enough so that M ⊂ TR,ǫ.

Let us start to use the size estimate of our Bellman function to obtain an
estimate of the function value bK,Q(0, R + ǫ) from above:

bK,Q(0, R + ǫ)

≤CQ̃2(PR+ǫ|f |2ω−1(0) + PR+ǫ‖~g‖2ω(0))

= cnCQ̃2

∫

Rn
|f |2(y)ω−1(y)

R + ǫ

((R + ǫ)2 + |y|2)n+1
2

dy

+
∫

Rn
‖~g‖2(y)ω(y) R + ǫ

((R + ǫ)2 + |y|2)n+1
2

dy

≤ cn(R + ǫ)−nCQ̃2(‖f‖2ω−1 + ‖~g‖2ω).

For an estimate from below, Green’s formula applied to our situation gives:

bK,Q(0, R + ǫ)

=−
∫ ∫

TR,ǫ

GR,ǫ((x, t), (0, R + ǫ))∆x,tbK,Q(x, t)dxdt

−
∫

∂TR,ǫ

bK,Q(x, t)
∂GR,ǫ((x, t), (0, R + ǫ))

∂n
dxdt

+
∫

∂TR,ǫ

GR,ǫ((x, t), (0, R + ǫ))
∂bK,Q((x, t))

∂n
dxdt

The first boundary term is negative because b is non-negative and the outward
normal of the Green’s function is negative on the boundary of TR,ǫ. The second
boundary term vanishes because GR,ǫ = 0 on the boundary. So we have the
following estimate:
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bK,Q(0, R + ǫ)

≥−
∫ ∫

TR,ǫ

GR,ǫ((x, t), (0, R + ǫ))∆x,tbK,Q(x, t)dxdt.

≥−
∫ ∫

M
GR,ǫ((x, t), (0, R + ǫ))∆x,tbK,Q(x, t)dxdt.

since −∆b ≥ 0 and where we recall that M ⊂ TR,ǫ. We continue the estimate
using the scaling properties of the Green functions (6).

bK,Q(0, R + ǫ)≥−
∫ ∫

M
R−(n−1)G1,0(R−1(x, t− ǫ), (0, 1))∆x,tb(x, t)dxdt.

Since G1,0((R−1x, 0), (0, 1)) = 0 we have

bK,Q(0, R + ǫ)

≥−
∫ ∫

M
R−(n−1)

{

G1,0((R−1x,R−1(t− ǫ), (0, 1))−

G1,0((R−1x, 0), (0, 1))
}

∆x,tb(x, t)dxdt

=−
∫ ∫

M
R−(n−1)∂G

1,0

∂t
(R−1x, τ)R−1(t− ǫ)∆x,tbK,Q(x, t)dxdt

=−
∫ ∫

M
R−n∂G

1,0

∂t
(R−1x, τ)∆x,tbK,Q(x, t)dx(t− ǫ)dt,

where 0 ≤ τ ≤ R−1(t − ǫ). Pulling this all together with the estimate from
above,

−
∫ ∫

M
R−n∂G

1,0

∂t
(R−1x, τ)∆x,tbK,Q(x, t)dx(t− ε)dt

≤ bK,Q(0, R + ǫ) ≤ cn(R + ǫ)−nCQ̃2(‖f‖2ω−1 + ‖~g‖2ω),

hence

−
∫ ∫

M

∂G1,0

∂t
(R−1x, τ)∆x,tbK,Q(x, t)dx(t− ǫ)dt ≤ cnCQ̃2(‖f‖2ω−1 + ‖~g‖2ω)

uniformly with respect to R and ǫ, for all given M . When R goes to infinity,
the normal derivative ∂G1,0

∂t
(R−1x, τ) tends to ∂G1,0

∂t
(0, 0) uniformly with respect

to (x, t) ∈ M . But we know that the normal derivative ∂G1,0

∂t
(0, 0) is exactly

the normalizing factor cn of the Poisson kernel (see [3] and the references
therein Couhlon-Duong). Letting R go to infinity and ε go to zero yields for
all compact M of the upper half space:

−
∫ ∫

M
∆x,tbK,Q(x, t)dxtdt ≤ CQ̃2(‖f‖2ω−1 + ‖~g‖2ω).

Finally, letting M exhaust the upper half space establishes (5).
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5 The comparison of classical and Poisson characteristic.

In this section we prove Theorem 3.2. We provide an example that demon-
strates that Ã2 6= A2 if n > 1. For the case n = 1, it is known that the two
classes are the same. Infact, for n = 1 the estimates

Q̃2(ω) . Q2(ω) . Q̃2(ω)
2

are proven in [5]. If n > 1 however, an easy example shows that the Poisson
integral of a simple power weight diverges, although the weight belongs to
classical A2. Consider ωα(x) = |x|α. It is well known and straightforward to
check that ωα ∈ A2 ↔ |α| < n. Also Q2(ωα) ∼ 1

n2−α2 . We show that the
Poisson integral Ptwα(0) diverges for α close to n.

Pt(ωα)(0)

∼
∫

Rn

t

(t2 + |x|2)n+1
2

|x|αdx

= |S|
∫

∞

0

t

(t2 + r2)
n+1
2

rα+n−1dr

= |S|
∞
∑

k=1

∫ 2kt

2k−1t

t

(t2 + r2)
n+1
2

rα+n−1dr

& |S|
∞
∑

k=1

2k−1t
t

(t2 + 22kt2)
n+1
2

(2k−1t)α+n−1

& tα|S|2−α−n−1
∞
∑

k=1

2(α−1)k

We see that this sum converges if and only if α − 1 < 0. If n ≥ 2 we have
wα ∈ A2 if and only if |α| < n so we can easily pick a valid α for which the
above sum diverges.

Thus not every weight in A2 is in Ã2. The converse is still true, though. Let
w ∈ Ã2, and let B be a ball with center a and radius r. Then for y ∈ B,
|a− y| < r, and so

1

rn
≤ 2

(n+1)
2

r

(r2 + |a− y|2)n+1
2

and so

〈ω〉B ≤ C

∫

B

r w(y)

(r2 + |a− y|2)n+1
2

dy ≤ C ′Pr(ω)(a),

and similarly for 〈ω−1〉B. Thus Q2(ω) ≤ C̃Q̃2(ω).
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