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A junction condition by specified homogenization
of a discrete model with a local perturbation

and application to traffic flow
N. Forcadel1, W. Salazar1

March 15, 2016

Abstract
In this paper, we focus on deriving traffic flow macroscopic models from microscopic models

containing a local perturbation. At the microscopic scale, we consider a first order model of
the form "follow the leader" i.e. the velocity of each vehicle depends on the distance to the
vehicle in front of it. We consider a local perturbation located at the origin that slows down
the vehicles. At the macroscopic scale, we obtain an explicit Hamilton-Jacobi equation left
and right of the origin and a junction condition at the origin (in the sense of [18]) which keeps
the memory of the local perturbation. As it turns out, the macroscopic model is equivalent
to a LWR model, with a flux limiting condition at the junction. Finally, we also present
qualitative properties concerning the flux limiter at the junction.

AMS Classification: 35D40, 90B20, 35B27, 35F20, 45K05.

Keywords: specified homogenization, Hamilton-Jacobi equations, integro-differential operators,
Slepčev formulation, viscosity solutions, traffic flow, microscopic models, macroscopic models.

1 Introduction
The goal of this paper is to derive a macroscopic model for traffic flow problems from a microscopic
model. The idea is to rescale the microscopic model, which describes the dynamics of each vehicle
individually, in order to get a macroscopic model which describes the dynamics of density of
vehicles.

The problem of deriving macroscopic models from microscopic ones has already been studied
for models of the type following the leader (i.e. the velocity or the acceleration of each vehicle
depends only on the distance to the vehicle in front of it). We refer for example to [5, 8, 16, 21]
where the authors rescaled the empirical measure and obtained a scalar conservation law (LWR
model [22, 25]). Recently, another approach has been introduced in [11] (see also [10, 12, 13])
where the authors work on the primitive of the empirical measure and, at the limit, obtain a
Hamilton-Jacobi equation which is the primitive of the LWR model.

The originality of our work is that we assume that there is a local perturbation that slows down
the vehicles and we want to understand how this local perturbation influences the macroscopic
dynamics. If the local perturbation is located around zero, at the macroscopic scale it is natural
to get an Hamilton-Jacobi equation with a junction condition at zero and an effective flux limiter,
the difficulty being to construct this effective flux limiter.

Recently, the theory of Hamilton-Jacobi equations with junction or more generally on networks
has known important developments in particular since the works of Achdou, Camilli, Cutri, and
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Tchou [1] and Imbert, Monneau, and Zidani [20]. In this direction, we would like to mention the
recent work of Imbert and Monneau [18] in which they give a suitable definition of (viscosity)
solutions at the junction which allows to prove comparison principle, stability and so on.

In this paper, we will use the ideas developed in [11] in order to pass from microscopic models to
macroscopic ones. In particular, we will show that this problem can be seen as an homogenization
result. The difficulty here is that, due to the local perturbation, we are not in a periodic setting
and so the construction of suitable correctors is more complicated. In particular, we will use the
idea developped by Achdou and Tchou in [2], by Galise, Imbert, and Monneau in [14] , and in
the lectures of Lions at the "College de France" [23], which consists in constructing correctors on
truncated domains.

2 Main results
2.1 General model: first order model with a single perturbation
In this paper, we are interested in a first order microscopic model of the form

U̇j(t) = V (Uj+1(t)− Uj(t)) · φ (Uj(t)) , (2.1)

where Uj : [0,+∞) → R denotes the position of the j−th vehicle and U̇j is its velocity. The
function φ : R → [0, 1] simulates the presence of a local perturbation around the origin. We
denote by r the radius of influence of the perturbation.

The function V is called the optimal velocity function and we make the following assumptions
on V and φ:

Assumption (A)

• (A1) V : R→ R+ is Lipschitz continuous, non-negative.

• (A2) V is non-decreasing on R.

• (A3) There exists a h0 ∈ (0,+∞) such that for all h ≤ h0, V (h) = 0.

• (A4) There exists hmax ∈ (h0,+∞) such that for all h ≥ hmax, V (h) = V (hmax) =: Vmax.

• (A5) There exists a real p0 ∈ [−1/h0, 0) such that the function p 7→ pV (−1/p) is decreasing
on [−1/h0, p0) and increasing on [p0, 0).

• (A6) The function φ : R→ [0, 1] is Lipschitz continuous and φ(x) = 1 for |x| ≥ r.

Remark 2.1. Assumptions (A1)-(A2)-(A3)-(A5) are satisfied by several classical optimal velocity
functions, we have added assumption (A4) to work with V ′ with a bounded support. But by
modifying slightly the classical optimal velocity functions, we obtain a function that satisfies all
the assumptions. For instance, in the case of the Greenshields based models [15](see also [6]):

V (h) =


0 for h ≤ h0,

Vmax

(
1−

(
h0

h

)n)
for h0 < h ≤ hmax,

Vmax

(
1−

(
h0

hmax

)n)
for h > hmax,

with n ∈ N\{0}. Another optimal velocity function, based on the Newell model [24](see also [9]),
is given by:

V (h) =


0 for h ≤ h0,

Vmax

(
1− exp

(
−
(
h− h0

b

)n))
for h0 < h ≤ hmax,

Vmax

(
1− exp

(
−
(
hmax − h0

b

)n))
for h > hmax,
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with n ∈ N\{0} and b ∈ [0,+∞). See Figure 1 for a schematic representation of an optimal
velocity function satisfying assumption (A).

h0 hmax h

Vmax

0

V

Figure 1: Schematic representation of the optimal velocity function V .

2.2 Injecting the system of ODEs into a single PDE
In this paper, we will study the traffic flow when the number of vehicles per unit length tends to
infinity by introducing the rescaled "cumulative distribution function" of vehicles, ρε, defined by

ρε(t, y) = −ε

∑
i≥0

H (y − εUi(t/ε)) +
∑
i<0

(−1 +H (y − εUi(t/ε)))

 , (2.2)

with

H(x) =
{

1 if x ≥ 0
0 if x < 0. (2.3)

Under assumption (A), the function ρε satisfies in the viscosity sense (see Definition 3.1 and
Theorem 8.1 for the proof of this result) the following non-local equation

uεt +Mε

[
uε(t, ·)
ε

]
(x) · φ

(x
ε

)
· |uεx| = 0 on (0,+∞)× R, (2.4)

where Mε is a non-local operator defined by

Mε[U ](x) =
∫ +∞

−∞
J(z)E (U(x+ εz)− U(x)) dz − 3

2Vmax (2.5)

and with

E(z) =

 0 if z ≥ 0
1/2 if − 1 ≤ z < 0
3/2 if z < −1,

and J = V ′ on R. (2.6)

In the rest of this paper, we couple equation (2.4) with the following initial condition

uε(0, x) = u0(x) on R. (2.7)

We also assume that the initial condition satisfies the following assumption:
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(A0) (Gradient bound) The function u0 is Lipschitz continuous and satisfies

−k0 ≤ (u0)x ≤ 0. (2.8)

Remark 2.2. This condition ensures that initially the vehicles have a security distance between
them and since we are working with a first order model, this security distance will be preserved.
We choose u0 a regular function such that for all ε,

ρε(0, x) = ε

⌊
u0(x)
ε

⌋
.

Remark 2.3 (Lagrangian formulation). Another way to treat this problem is to consider a La-
grangian formulation, like in [13], considering the function,

v : [0, T ]× R→ R, v(t, y) = Ubyc(t).

This function satisfies for all (t, y) ∈ [0, T ]× R{
vt(t, y) = V (u(t, y + 1)− u(t, y)) · φ (v(t, y)) ,
v(0, y) = v0(y). (2.9)

The difficulty with this formulation is that the function φ is evaluated at v(t, y) and not at a
physical point of the road. The notion of junction in this case is not well defined and this is why
we use the formulation (2.4) (where the perturbation function is evaluated at a point of the road)
instead of (2.9). This will allow us to use the results of Imbert and Monneau [18] concerning
quasi-convex Hamiltonians with a junction condition.

2.3 Convergence result
We define k0 = 1/h0 and H : R→ R, by

H(p) =


−p− k0 for p < −k0,

−V
(
−1
p

)
|p| for − k0 ≤ p ≤ 0,

p for p > 0.

(2.10)

Note that such a H is continuous, coercive
(

lim
|p|→+∞

H(p) = +∞
)

and because of (A5), there

exists a unique point p0 ∈ [−k0, 0] such that{
H is decreasing on (−∞, p0),
H is increasing on (p0,+∞). (2.11)

We denote by

H0 = min
p∈R

H(p) = H(p0) (2.12)

and we refer to Figure 2 for an schematic representation of H.

The main purpose of this article is to prove that the viscosity solution of (2.4)-(2.7) converges
uniformly on compact subsets of (0,+∞)×R as ε goes to 0 to the unique viscosity solution of the
following problem

u0
t +H(u0

x) = 0 for (t, x) ∈ (0,+∞)× (−∞, 0)
u0
t +H(u0

x) = 0 for (t, x) ∈ (0,+∞)× (0,+∞)
u0
t + FA

(
u0
x(t, 0−), u0

x(t, 0+)
)

= 0 for (t, x) ∈ (0,+∞)× {0}
u0(0, x) = u0(x) for x ∈ R,

(2.13)
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0

H0

p0−k0

H

p

Figure 2: Schematic representation of H̄.

where A has to be determined and FA is defined by

FA(p−, p+) = max
(
A,H

+(p−), H−(p+)
)
, (2.14)

with

H
−(p) =

{
H(p) if p ≤ p0,
H(p0) if p ≥ p0,

and H
+(p) =

{
H(p0) if p ≤ p0,
H(p) if p ≥ p0.

(2.15)

The following theorems are the main results of this paper, and their proof are postponed. The
proofs of Theorem 2.4 and Theorem 2.7 are done in Section 5 and the proof of Theorem 2.5 is
done in Section 8.

Theorem 2.4 (Junction condition by homogenisation). Assume (A) and (A0). For ε > 0, let
uε be the solution of (2.4)-(2.7). Then there exists A ∈ [H0, 0] such that uε converges locally
uniformly to the unique viscosity solution u0 of (2.13) (in the sense of Definition 3.4).

Theorem 2.5 (Junction condition by homogenisation: application to traffic flow). Assume (A)
and that at the initial time, we have, for all i ∈ Z,

Ui(0) ≤ Ui+1(0)− h0.

We define a function u0 satisfying (A0) such that for all ε > 0,

ρε(0, x) = ε

⌊
u0(x)
ε

⌋
.

Then there exists A ∈ [H0, 0] such that the function ρε defined by (2.2) converges towards the
unique solution u0 of (2.13).

Remark 2.6. We notice that in the case of traffic flow, (2.13) is equivalent (deriving in space) to
a LWR model (see [22, 25]) with a flux limiting condition at the origin. In fact, the fundamental
diagram of the model is pV (1/p) and u0

x corresponds to the density of vehicles.

The following theorem ensures that when we use (2.13) we only evaluate the function H in
[−k0, 0].

Theorem 2.7. Assume (A0)-(A). Let u0 be the unique solution of (2.13), then we have for all
(t, x) ∈ [0, T ]× R,

−k0 ≤ u0
x ≤ 0,

with k0 defined in (A0).
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Remark 2.8 (Extension of the effective Hamiltonian). This theorem implies in particular that
in the case of traffic flow, the effective Hamiltonian only needs to be computed for p ∈ [−k0, 0].
However, for the construction of the correctors it is necessary to work with a coercive Hamiltonian
in R that is why we extend the function H in (2.10).

2.4 Effective Hamiltonian and effective flux-limiter
We define the non-local operator Mp by

Mp[U ](x) =
∫ +∞

−∞
J(z)E (U(x+ z)− U(x) + p · z) dz − 3

2Vmax. (2.16)

We then have the following result

Proposition 2.9 (Homogenization left and right of the perturbation). Assume (A). Then for
every p ∈ [−k0, 0], there exists a unique λ ∈ R, such that there exists a bounded solution v of{

Mp[v](x) · |vx + p| = λ, x ∈ R,
v is Z−periodic, (2.17)

with Mp defined in (2.16). Moreover, for p ∈ [−k0, 0], we have λ = H(p).

Proof. To prove this proposition, it is only necessary to notice that v = 0 is an obvious solution of
(2.17) with λ = H(p). The uniqueness of λ is classical (see for instance [10, Proof of Proposition
4.6]) so we skip it.

To construct the effective flux-limiter A, we consider the following cell problem: find λ ∈ R
such that there exists a solution w of the following Hamilton-Jacobi equation

M [w](x) · φ(x) · |wx| = λ for x ∈ R. (2.18)

More precisely, we have the following result, which proof is postponed until Section 6.

Theorem 2.10 (Effective flux limiter). Assume (A). We define the following set of functions

S =
{
w s.t. ∃ a Lipschitz continuous function m and C ≥ 0 s.t. ||w −m||L∞(R) ≤ C

}
.

Then we have

A = inf {λ ∈ R : ∃ w ∈ S solution of (2.18) } .

Remark 2.11. This theorem allows us to characterize and give uniqueness to the flux limiter that
we present in Section 4 which construction is presented in Section 6.

2.5 Qualitative properties of the effective flux limiter
We have the following qualitative properties on the effective flux limiter A, the proof of this result
is postponed until Section 7.

Proposition 2.12 (Qualitative properties of the flux limiter). Assume (A). We have the following
qualitative properties on the flux limiter.

(i) (Monotonicity of the flux-limiter). Let φ1, φ2 : R → [0, 1] be two functions satisfying
(A6). Let A1 and A2 be their respective flux limiters given by Theorem 2.4. If, for all x ∈ R, we
have

φ1(x) ≤ φ2(x),

then

A1 ≥ A2.
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(ii) (Flux interruption) Let φ be a function satisfying (A6). If φ = 0 on an open interval,
then we have

A = 0.

2.6 Notations
We recall the definition of the non-local operators that we used in this paper,

M [U ](x) =
∫ +∞

−∞
J(z)E (U(x+ z)− U(x)) dz − 3

2Vmax, (2.19)

Mp[U ](x) =
∫ +∞

−∞
J(z)E (U(x+ z)− U(x) + p · z) dz − 3

2Vmax. (2.20)

To each operator M , we associate the operator M̃ which is defined in the same way except that
the function E is replaced by the function Ẽ, defined by

Ẽ(z) =

 0 if z > 0
1/2 if − 1 < z ≤ 0
3/2 if z ≤ −1.

(2.21)

Remark 2.13. Using the fact that E and V are bounded, we get that for every function U and
every x ∈ R, we have

−M0 = −3
2Vmax ≤M [U ](x) ≤ 0. (2.22)

We also use the following notations for the upper and lower semi-continuous envelopes of a
locally bounded function u:

u∗(t, x) = lim sup
s→t,y→x

u(s, y) and u∗(t, x) = lim inf
s→t,y→x

u(s, y).

2.7 Organization of the article
Section 3 contains the definition of the viscosity solutions for the problems we consider in the
entire article and it also contains some results for those problems. In Section 4 we present some
results on the correctors at the junction (Theorem 4.1) that will be used in Section 5 to prove
Theorem 2.4. Section 6 contains the proof of Theorem 4.1. In Section 7 we give the proof of the
qualitative properties of the flux-limiter. Finally, Section 8 details the link between the system of
ODEs (2.1) and the PDE (2.4) (with ε = 1).

3 Viscosity solutions for (2.4) and (2.13)
3.1 Definitions
In order to give a general definition for all the non-local problems we consider, we will give the
definition for the following equation, with p ∈ R, for all (t, x) ∈ (0,+∞)× R,{

ut + ψ(x) ·Mp[u(t, ·)](x) · φ(x) · |p+ ux|+ (1− ψ(x)) ·H(ux) = 0
u(0, x) = u0(x), (3.1)

with ψ : R→ [0, 1] a Lipschitz continuous function.
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Definition 3.1 (Viscosity solutions for (3.1)). Let T > 0. An upper semi-continuous function
(resp. lower semi-continuous) u : [0,+∞)×R→ R is a viscosity sub-solution (resp. super-solution)
of (3.1) on [0, T ]×R, if u(0, x) ≤ u0(x) (resp. u(0, x) ≥ u0(x)) and for all (t, x) ∈ (0, T )×R and
for all ϕ ∈ C2([0, T ] × R) such that u − ϕ reaches a maximum (resp. a minimum) at the point
(t, x), we have

ϕt(t, y) + ψ(x) · φ(x) ·Mp[u(t, ·)](x) · |p+ ϕx(t, x)|+ (1− ψ(x))H(ϕx(t, x)) ≤ 0(
resp. ϕt(t, x) + ψ(x) · φ(x) · M̃p[u(t, ·)](x) · |p+ ϕx(t, x)|+ (1− ψ(x))H(ϕx(t, x)) ≥ 0

)
.

We say that a function u is a viscosity solution of (3.1) if u∗ and u∗ are respectively a sub-solution
and a super-solution of (3.1).

Remark 3.2. We use this definition in order to have a stability result for the non-local term.
We refer to [7, 26] for such kind of definition and to [11, Proposition 4.2] for the corresponding
stability result.

Definition 3.3 (Class of test functions for (2.13)). We denote by J∞ := (0,+∞)× R,
J+
∞ := (0,+∞)× [0,+∞) and J−∞ := (0,∞)× (−∞, 0]. We define a class of test functions on J∞

by

C1(J∞) =
{
ϕ ∈ C(J∞), the restriction of ϕ to J+

∞ and to J−∞ is C1} .
Definition 3.4 (Viscosity solutions for (2.13)). Let H be given by (2.10) and A ∈ R. An upper
semi-continuous (resp. lower semi-continuous) function u : [0,+∞) × R → R is a viscosity sub-
solution (resp. super-solution) of (2.13) if u(0, x) ≤ u0(x) (resp. u(0, x) ≥ u0(x)) and for all
(t, x) ∈ J∞ and for all ϕ ∈ C1(J∞) such that

u ≤ ϕ (resp. u ≥ ϕ) in a neighbourhood of (t, x) ∈ J∞ and u(t, x) = ϕ(t, x),

we have

ϕt(t, x) +H(ϕx(t, x)) ≤ 0 (resp. ≥ 0) if x 6= 0,
ϕt(t, x) + FA(ϕx(t, 0−), ϕx(t, 0+)) ≤ 0 (resp. ≥ 0) if x = 0.

We say that a function u is a viscosity solution of (2.13) if u∗ and u∗ are respectively a sub-solution
and a super-solution of (2.13). We refer to this solution as A−flux limited solution.

3.2 Results for viscosity solutions of (3.1)
Proposition 3.5 (Comparison principle for (3.1)). Assume (A0) and (A). Let u be a sub-solution
of (3.1) and v be a super-solution of (3.1). Let us also assume that there exists a constant K > 0
such that for all (t, x) ∈ [0, T ]× R,

u(t, x) ≤ u0(x) +Kt and − v(t, x) ≤ −u0(x) +Kt. (3.2)

Then we have u(t, x) ≤ v(t, x) for all (t, x) ∈ [0, T ]× R.

Proof. The only difficulty in proving the comparison principle comes from the non-local term, but
in our case the proof is similar to the proof of [11, Theorem 4.4] and we skip it.

We now give a comparison principle on bounded sets, to do this, we define for a given point
(t0, x0) ∈ (0, T )× R and for r,R > 0, the set

Qr,R(t0, x0) = (t0 − r, t0 + r)× (x0 −R, x0 +R).
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Theorem 3.6 (Comparison principle on bounded sets for (3.1)). Assume (A). Let u be a sub-
solution of (3.1) and let v be a super-solution of (3.1) on the open set Qr,R ⊂ (0, T ) × R. Also
assume that

u ≤ v outside Qr,R,

then

u ≤ v on Qr,R.

Proof. The proof of this theorem is similar to the one of Proposition 3.5, so we skip it.

Lemma 3.7 (Existence of barriers for (3.1)). Assume (A0) and (A). There exists a constant
K1 > 0 such that

u+(t, x) = K1t+ u0(x) and u−(t, x) = u0(x),

are respectively super and sub-solutions of (3.1).

Proof. We define K1 = M0 · (|p| + k0) + |H0|. Let us prove that u+ is a super-solution of (3.1).
Using assumption (A0) and the form of the non-local operator and of H, we have

φ(x)ψ(x)Mp[u0](x) · |p+ (u0)x|+ (1− ψ(x)) ·H((u0)x) ≥ −M0 · |p+ (u0)x|+H0
≥ −M0(|p|+ k0)− |H0| = −K1,

where we used (2.22) and (2.12). The proof for u− is simpler, it uses (2.22) and (2.12),

φ(x)ψ(x)Mp[u0](x) · |p+ (u0)x|+ (1− ψ(x)) ·H((u0)x) ≤ 0.

Applying Perron’s method (see [19, Proof of Theorem 6], [4] or [17] to see how to apply
Perron’s method for problems with non-local terms), joint to the comparison principle, we obtain
the following result.

Theorem 3.8 (Existence and uniqueness of viscosity solutions for (3.1)). Assume (A0) and (A).
Then, there exists a unique solution u of (3.1). Moreover, the function u is continuous and there
exists a constant K1 such that

u0(x) ≤ u(t, x) ≤ u0(x) +K1t.

3.3 Results for viscosity solutions of (2.13)
Now we recall an equivalent definition (see [18, Theorem 2.5]) for sub and super solution at the
junction. We will also consider the following problem,

ut +H(ux) = 0 for t ∈ (0, T ) and x ∈ R\{0}. (3.3)

Theorem 3.9 (Equivalent definition for sub/super-solutions). Let H given by (2.10) and consider
A ∈ [H0,+∞) with H0 defined in (2.12). Given arbitrary solutions pA± ∈ R of

H
(
pA+
)

= H
+ (
pA+
)

= A = H
− (
pA−
)

= H
(
pA−
)
, (3.4)

let us fix any time independent test function φ0(x) satisfying

φ0
x(0±) = pA±.
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Given a function u : (0, T )× R→ R, the following properties hold true.
i) If u is an upper semi-continuous sub-solution of (3.3), then u is a H0-flux limited sub-

solution.
ii) Given A > H0 and t0 ∈ (0, T ), if u is an upper semi-continous sub-solution of (3.3) and if

for any test function ϕ touching u from above at (t0, 0) with

ϕ(t, x) = ψ(t) + φ0(x), (3.5)

for some ψ ∈ C1(0,+∞), we have

ϕt + FA (ϕx) ≤ 0 at (t0, 0),

then u is a A-flux limited sub-solution at (t0, 0).
iii) Given t0 ∈ (0, T ), if u is a lower semi-continuous super-solution of (3.3) and if for any

test function ϕ satisfying (3.5) touching u from above at (t0, 0) we have

ϕt + FA (ϕx) ≥ 0 at (t0, 0),

then u is a A-flux limited super-solution at (t0, 0).

Proof. The proof of Theorem 3.9 can be founded in [18, Theorem 2.5].

3.4 Control of the oscillations for (2.4)-(2.7)
Theorem 3.10 (Control of the oscillations). Let T > 0. Assume (A0)-(A) and let u be a solution
of (2.4)-(2.7), with ε = 1. Then there exists a constants C1 > 0 such that for all x, y ∈ R, x ≥ y
and for all t, s ∈ [0, T ], t ≥ s, we have

0 ≤ u(t, x)− u(s, x) ≤ C1(t− s) and − k0(x− y)− 1 ≤ u(t, x)− u(t, y) ≤ 0, (3.6)

with k0 defined in (2.8).

Proof. In this proof we used the barriers given by Lemma 3.7 (with p = 0 and ψ ≡ 1), which
means that the solution u of (2.4)-(2.7) with ε = 1 satisfies for all (t, x) ∈ [0,+∞)× R,

0 ≤ u(t, x)− u0(x) ≤M0k0t. (3.7)

In the rest of the proof we will use the following notation:

Ω =
{

(t, x, y) ∈ [0, T )× R2 s.t. x ≥ y
}
.

Proof of the bound on the time derivative. For all h ≥ 0, we have

u(0, x) ≤ u(h, x) ≤M0k0h+ u(0, x).

Using the fact that equation (2.4) is invariant by addition of constants to the solution and by
translations in time, we deduce by the comparison principle that, for all (t, x) ∈ [0,+∞)× R, we
have

u(t, x) ≤ u(t+ h, x) ≤M0k0h+ u(t, x).

We deduce the result by choosing C1 = M0k0.

Proof of the upper inequality for the control of the space oscillations. We introduce,

M = sup
(t,x,y)∈Ω

{u(t, x)− u(t, y)} .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.
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Step 1: the test function. For η, α > 0, small parameters, we define

ϕ(t, x, y) = u(t, x)− u(t, y)− η

T − t
− αx2 − αy2.

Using (3.7), we have that

ϕ(t, x, y) ≤ u0(x)− u0(y) + 2M0k0T − α(x2 + y2) ≤ −α(x2 + y2) + 2M0k0T,

where we used assumption (A0) for the second inequality. Therefore we have

lim
|x|,|y|→+∞

ϕ(t, x, y) = −∞.

Since ϕ is upper-semi continuous, it reaches a maximum at a point that we denote by (t̄, x̄, ȳ) ∈ Ω.
Classically we have for η and α small enough,{

0 < M

2 ≤ ϕ(t̄, x̄, ȳ),
α|x̄|, α|ȳ| → 0 as α→ 0.

Step 2: t̄ > 0 and x̄ > ȳ. By contradiction, assume first that t̄ = 0. Then we have
η

T
< u0(x̄)− u0(ȳ) ≤ 0,

where we used that u0 is non-increasing, and we get a contradiction. The fact that x̄ > ȳ, comes
directly from the fact that ϕ(t̄, x̄, ȳ) > 0.

Step 3: utilisation of the equation. By doing a duplication of the time variable and
passing to the limit we get that

η

(T − t̄)2 ≤ M̃ [u(t̄, ·)](ȳ) · |2αȳ| · φ(ȳ)−M [u(t, ·)](x̄) · φ(x̄) · |2αx̄| ≤ 2M0 · α(|x̄|+ |ȳ|),

passing to the limit as α goes to 0, we obtain a contradiction.

Proof of the lower inequality for the control of the space oscillations Let us introduce,

M = sup
(t,x,y)∈Ω

{u(t, y)− u(t, x)− 1− k0(x− y)} .

We want to prove that M ≤ 0. We argue by contradiction and assume that M > 0.

Step 1: the test function. For α, η > 0, small parameters we consider the function

ϕ(t, x, y) = u(t, y)− u(t, x)− 1− k0(x− y)− α(x2 + y2)− η

T − t
.

We have that
ϕ(t, x, y) ≤ u0(y)− u0(x)− α(x2 + y2) + 2M0k0T − k0(x− y)− 1

≤ −α(x2 + y2) + 2M0k0T.

Therefore, we have

lim
|x|,|y|→+∞

ϕ(t, x, y) = −∞.

Using the fact that ϕ is upper-semi continuous we deduce that ϕ reaches a maximum at a finite
point that we denote (t̄, x̄, ȳ) ∈ Ω. Classically we have for η and α small enough,{

0 < M

2 ≤ ϕ(t̄, x̄, ȳ),
α|x̄|, α|ȳ| → 0 as α→ 0.
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Step 2: t̄ > 0 and x̄ > ȳ. By contradiction, assume that t̄ = 0. Using the fact that
ϕ(t̄, x̄, ȳ) > 0 and (A0), we have

η

T
< u(0, ȳ)− u(0, x̄)− k0(x̄− ȳ)− 1 ≤ −1,

which is a contradiction. Hence t̄ > 0. Using that ϕ(t̄, x̄, ȳ) > 0, we also deduce that x̄ > ȳ.

Step 3: Utilisation of the equation By duplicating the time variable and passing to
the limit we have that there exists two real numbers a, b, such that (a,−k0 + 2αȳ) ∈ D+

u(t̄, ȳ),
(b,−k0 + 2αx̄) ∈ D−u(t̄, x̄) and

a− b = η

(T − t̄)2 . (3.8)

Using that u is a sub-solution of (2.4)-(2.7) (with ε = 1), we get

a+M [u(t̄, ·)](ȳ) · φ(ȳ) · | − k0 + 2αȳ| ≤ 0. (3.9)

We claim that

M [u(t̄, ·)](ȳ) =
∫
R
J(z)E(u(t̄, ȳ + z)− u(t̄, ȳ))dz − 3

2Vmax = 0.

Indeed, let z ∈ (h0, hmax]. If ȳ + z ≥ x̄, using that u is non-increasing in space, we get

u(t̄, ȳ + z)− u(t̄, ȳ) ≤ u(t̄, x̄)− u(t̄, ȳ) ≤ −k0(x̄− ȳ)− 1 < −1.

If y + z < x, using the fact that ϕ(t̄, x̄, ȳ + z) ≤ ϕ(t̄, x̄, ȳ) we obtain

u(t̄, ȳ + z)− u(t̄, ȳ) ≤ −k0z < −1.

This implies that we have for all z ∈ (h0, hmax],

E(u(t̄, ȳ + z)− u(t̄, ȳ)) = 3
2 .

Injecting this in the non-local term, we deduce the claim.
Finally, the fact that ut ≥ 0 implies that a, b ≥ 0. Therefore, inequality (3.9) implies

a = 0.

Finally, using (3.8), we obtain
η

T 2 ≤ 0,

which is a contradiction. This ends the proof.

4 Correctors for the junction
The key ingredient to prove the convergence result is to construct correctors for the junction. The
main result of this section is the existence of appropriate correctors. The proof of this theorem is
presented in Section 6. Given A ∈ R, A ≥ H0, we introduce two real numbers p+, p− ∈ R, such
that

H
(
p+
)

= H
+ (
p+
)

= H
(
p−
)

= H
− (
p−
)

= A. (4.1)

Due to the form of H (see (2.10)) this two real numbers exist and are unique.
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Theorem 4.1 (Existence of a global corrector for the junction). Assume (A).
i) (General properties) There exists a constant Ā ∈ [H0, 0] such that there exists a solution w

of (2.18) with λ = A and such that there exists a constant C and a globally Lipschitz continuous
function m such that for all x ∈ R,

|w(x)−m(x)| ≤ C. (4.2)

ii) (Bound from below at infinity) If Ā > H0, then there exists a γ0 such that for every
γ ∈ (0, γ0), we have{

w(x+ h)− w(x) ≥ (p+ − γ)h− C for x ≥ r and h ≥ 0,
w(x− h)− w(x) ≥ (−p− − γ)h− C for x ≤ −r and h ≥ 0. (4.3)

iii) (Rescaling w) For ε > 0, we set

wε(x) = εw
(x
ε

)
,

then (along a subsequence εn → 0) we have that wε converges locally uniformly towards a function
W = W (x) which satisfies{

|W (x)−W (y)| ≤ C|x− y| for all x, y ∈ R,
H(Wx) = A for all x ∈ R\{0}, (4.4)

In particular, we have (with W (0) = 0)

W (x) = p+x1{x>0} + p−x1{x<0}. (4.5)

5 Proof of convergence
This section contains the proof of the main homogenization result (Theorem 2.4). This proof relies
on the existences of correctors (Proposition 2.9 and Theorem 4.1).

We begin with two useful lemmas for the proof of Theorem 2.4. The first result is a direct
consequence of Perron’s method and Lemma 3.7.

Lemma 5.1 (Barriers uniform in ε). Assume (A0) and (A). There exists a constant C > 0
(depending only on M0 and k0) such that for all t > 0 and x ∈ R,

|uε(t, x)− u0(x)| ≤ Ct.

The following lemma is a direct result of Theorem 3.10.

Lemma 5.2 (Uniform gradient bound). Assume (A0) and (A). Then the solution uε of (2.4)-(2.7)
satisfies for all t > 0, for all x, y ∈ R, x ≥ y,

−k0(x− y)− ε ≤ uε(t, x)− uε(t, y) ≤ 0. (5.1)

Before passing to the proof of Theorem 2.4, let us show how it allows us to prove Theorem 2.7.

Proof of Theorem 2.7. We want to prove that for all t ∈ [0,+∞) and for all x, y ∈ R, x ≥ y,

−k0(x− y) ≤ u0(t, x)− u0(t, y) ≤ 0. (5.2)

Using Lemma 5.2, we have that the solution uε of (2.4)-(2.7), satisfies for all (t, x, y) ∈ [0,+∞)×
R× R, with x ≥ y,

−k0(x− y)− ε ≤ uε(t, x)− uε(t, y) ≤ 0.

Now using Theorem 2.4, passing to the limit as ε→ 0, we obtain the result.
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We now turn to the proof of Theorem 2.4.

Proof of Theorem 2.4. We introduce

u(t, x) = lim sup
ε→0

∗uε and u(t, x) = lim inf
ε→0 ∗

uε. (5.3)

Thanks to Lemma 5.1, we know that these functions are well defined. We want to prove that u
and u are respectively a sub-solution and a super-solution of (2.13). In this case, the comparison
principle will imply that u ≤ u. But, by construction, we have u ≤ u, hence we will get u = u = u0,
the unique solution of (2.13).

Let us prove that u is a sub-solution of (2.13) (the proof for u is similar and we skip it). We
argue by contradiction and assume that there exist a test function ϕ ∈ C1(J∞) (in the sense of
Definition 3.3), and a point (t̄, x̄) ∈ (0,+∞)× R such that

u(t̄, x̄) = ϕ(t̄, x̄)
u ≤ ϕ on Qr̄,r̄(t̄, x̄) with r̄ > 0
u ≤ ϕ− 2η outside Qr̄,r̄(t̄, x̄) with η > 0
ϕt(t̄, x̄) +H(x̄, ϕx(t̄, x̄)) = θ with θ > 0,

(5.4)

where

H(x̄, ϕx(t̄, x̄)) :=
{
H
(
ϕx(t̄, x̄)

)
if x̄ 6= 0,

FA
(
ϕx(t̄, 0−), ϕx(t̄, 0+)

)
if x̄ = 0.

Given Lemma 5.2 and (5.3), we can assume (up to changing ϕ at infinity) that for ε small enough,
we have

uε ≤ ϕ− η outside Qr̄,r̄(t̄, x̄).

Using the previous lemmas we get that the function u satisfies for all t > 0 and x, y ∈ R, x ≥ y,

|u(t, x)− u0(x)| ≤ Ct,
−k0(x− y) ≤ u(t, x)− u(t, y) ≤ 0. (5.5)

First case: x̄ 6= 0. We only consider x̄ > 0, since the other case (x̄ < 0) is treated in the same
way. We define p = ϕx(t̄, x̄) that according to (5.5) satisfies

−k0 ≤ p ≤ 0.

We choose r̄ small enough so that x̄ − 2r̄ > 0. Let us prove that the test function ϕ satisfies
in the viscosity sense, the inequality

ϕt + M̃ε
[ϕ
ε

(t, ·)
]

(x) · φ
(x
ε

)
· |ϕx| ≥

θ

2 for (t, x) ∈ Qr̄,r̄(t̄, x̄). (5.6)

Let us notice that for ε small enough we have

φ
(x
ε

)
= 1 for all (t, x) ∈ Qr̄,r̄(t̄, x̄).

For all (t, x) ∈ Qr̄,r̄(t̄, x̄), we have for r̄ small enough

ϕt(t, x) + M̃ε
[ϕ
ε

(t, ·)
]

(x) · |ϕx| = ϕt(t̄, x̄) + or̄(1) + M̃ε
[ϕ
ε

(t, ·)
]

(x) · |ϕx|

= θ + or̄(1) + M̃ε
[ϕ
ε

(t, ·)
]

(x) · |p| −H(p)
=: ∆,

(5.7)
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where we have used (5.4). We recall that for −k0 ≤ p ≤ 0,

H(p) = Mp[0](0)|p|.

Moreover, for all z ∈ [h0, hmax], and for ε and r̄ small enough we have that

ϕ(t, x+ εz)− ϕ(t, x)
ε

= zϕx(t, y) + εz2ϕxx(t, ξ(x, x+ εz))
≤ pz + or̄(1) + cε,

where we have used the fact that ϕ ∈ C2 and that z ∈ [h0, hmax]. Now using the fact that Ẽ is
decreasing we have

Ẽ(pz + cε+ or̄(1)) ≤ Ẽ
(
ϕ(t, x+ εz)− ϕ(t, x)

ε

)
.

Using this result and replacing the non-local operators in (5.7) by their definition (see 2.16), we
obtain

∆ ≥ θ + or̄(1) + |p|
∫ hmax

h0

J(z)Ẽ(pz + cε+ or̄(1))dz

− |p|
∫ hmax

h0

J(z)Ẽ(pz)dz. (5.8)

We can see that if we have p = 0, we obtain directly our result. However, if −k0 ≤ p < 0,∫
R
J(z)Ẽ(pz + cε+ or̄(1))dz =− V

(
−1− cε+ or̄(1)

p

)
− 1

2V
(
−cε+ or̄(1)

p

)
+ 3

2Vmax,∫
R
J(z)Ẽ(pz)dz =− V

(
−1
p

)
+ 3

2Vmax. (5.9)

Injecting (5.9) in (5.8) and choosing ε and r̄, we obtain

∆ ≥ θ + or̄(1) + |p| ·
[
−V

(
−1− cε+ or̄(1)

p

)
+ V

(
−1
p

)]
≥ θ + or̄(1)− ||V ′||∞ · (cε+ or̄(1))

≥ θ

2 ,

where we have used assumption (A1) for the second line.

Getting a contradiction. By definition, we have for ε small enough,

uε ≤ ϕ− η outside Qr̄,r̄(t̄, x̄).

Using the comparison principle on bounded subsets for (2.4)-(2.7), we get

uε ≤ ϕ− η on Qr̄,r̄(t̄, x̄).

Passing to the limit as ε → 0, we get u ≤ ϕ − η on Qr̄,r̄(t̄, x̄) and this contradicts the fact that
u(t̄, x̄) = ϕ(t̄, x̄).

Second case: x̄ = 0. Using Theorem 3.9, we may assume that the test function has the following
form

ϕ(t, x) = g(t) + p−x1{x<0} + p+x1{x>0} on Qr̄,2r̄(t̄, 0), (5.10)
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where g is a C1 function defined in (0,+∞). The last line in condition (5.4) becomes

g′(t) + FA(p−, p+) = g′(t) +A = θ at (t̄, 0). (5.11)

Let us consider w the solution of (2.18) provided by Theorem 4.1, and let us denote

ϕε(t, x) =
{
g(t) + wε(x) on Qr̄,2r̄(t̄, 0),
ϕ(t, x) outside Qr̄,2r̄(t̄, 0). (5.12)

We would like to prove that this function satisfies in the viscosity sense, for r̄ and ε small
enough,

ϕε(t, x) + M̃ε

[
ϕε

ε
(t, ·)

]
(x) · φ

(x
ε

)
· |ϕεx| ≥

θ

2 on Qr̄,r̄(t̄, 0).

Let h be a test function touching ϕε from below at (t1, x1) ∈ Qr̄,r̄(t̄, 0), so we have

w
(x1

ε

)
= 1
ε

(h(t1, x1)− g(t1)) ,

and

w(y) ≥ 1
ε

(h(t1, εy)− g(t1)) ,

for y in a neighbourhood of x1

ε
. Since w does not depend on time, we have

ht(t1, x1) = g′(t1).

Therefore, we have

ht(t1, x1)− g′(t1) + M̃ [w]
(x1

ε

)
· φ
(x1

ε

)
· |hx(t1, x1)| ≥ A.

This implies that (using (5.11) and taking r̄ small enough)

ht(t1, x1) + M̃ [w]
(x1

ε

)
· φ
(x1

ε

)
· |hx(t1, x1)| ≥ A+ g′(t1) ≥ θ

2 ,

i.e.

ht(t1, x1) + M̃ε

[
ϕε(t1, ·)

ε

]
(x1) · φ

(x1

ε

)
· |hx(t1, x1)| ≥ θ

2 .

Getting the contradiction. We have that for ε small enough

uε + η ≤ ϕ = g(t) + p−x1{x<0} + p+x1{x>0} on Qr̄,2r̄(t̄, 0)\Qr̄,r̄(t̄, 0).

Using the fact that wε →W , and using (4.5), we have for ε small enough

uε + η

2 ≤ ϕ
ε on Qr̄,2r̄(t̄, 0)\Qr̄,r̄(t̄, 0).

Combining this with (5.12), we get that

uε + η

2 ≤ ϕ
ε outside Qr̄,r̄(t̄, 0),

By the comparison principle on bounded subsets the previous inequality holds inQr̄,r̄(t̄, 0). Passing
to the limit as ε→ 0 and evaluating the inequality in (t̄, 0), we obtain

u(t̄, 0) + η

2 ≤ ϕ(t̄, 0) = u(t̄, 0),

which is a contradiction.
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6 Truncated cell problems
This section contains the proof of Theorem 4.1. To do this, we will construct correctors on
truncated domains and then pass to the limit as the size of the domain goes to infinity. This idea
comes from [2] and [14]. For l ∈ (r,+∞), r << l and r ≤ R << l, we want to find λl,R, such that
there exists a solution wl,R of

GR
(
x, [wl,R], wl,Rx

)
= λl,R if x ∈ (−l, l)

H
−(wl,Rx ) = λl,R if x = −l

H
+(wl,Rx ) = λl,R if x = l,

(6.1)

with

GR(x, [U ], q) = ψR(x)φ(x) ·M [U ](x) · |q|+ (1− ψR(x)) ·H(q), (6.2)

and ψR ∈ C∞, ψR : R→ [0, 1], with

ψR ≡
{

1 on [−R,R]
0 outside [−R− 1, R+ 1], and ψR(x) < 1 ∀x /∈ [−R,R]. (6.3)

To GR, we associate G̃R which is defined in the same way but the operator M is replaced by M̃ .

Remark 6.1. The operator GR is used to have a local operator near the boundary and then to
well define the boundary conditions.

6.1 Comparison principle for a truncated problem
Proposition 6.2 (Comparison principle on truncated domains). Let us consider the following
problem for r < l1 < l2 and λ ∈ R, with and l2 >> R.{

G̃R(x, [v], vx) ≥ λ for x ∈ (l1, l2)
H

+(vx) ≥ λ for x = l2,
(6.4)

and for ε0 > 0 {
GR(x, [u], ux) ≤ λ− ε0 for x ∈ (l1, l2)
H

+(ux) ≤ λ− ε0 for x = l2,
(6.5)

Then if u(l1) ≤ v(l1) we have u ≤ v in [l1, l2].

Proof. The only difficulty in proving this result is the comparison at the boundary {l2}. However,
for x close to l2, the function GR is actually the effective Hamiltonian H. Therefore, we can
proceed as in the proof of [14, Proposition 4.1] and so we skip the proof.

Remark 6.3. We have a similar result for l1 < l2 < −r and l2 << −R, if the Dirichlet condition
is placed at x = l2 and the following conditions are imposed at x = l1:{

H
−(vx) ≥ λ for x = l1,

H
−(ux) ≤ λ− ε0 for x = l1.
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6.2 Existence of correctors on a truncated domain
Proposition 6.4 (Existence of correctors on truncated domains). There exists a unique λl,R ∈ R
such that there exists a solutions wl,R of (6.1). Moreover, there exists a constant C (depending
only on k0), and a Lipschitz continuous function ml,R, such that

H0 ≤ λl,R ≤ 0,
|ml,R(x)−ml,R(y)| ≤ C|x− y| for x, y ∈ [−l, l],
|wl,R(x)−ml,R(x)| ≤ C for x ∈ [−l, l],

(6.6)

with H0 = minH.

Proof. Given that GR does not depend explicitly on the time variable, we will classically consider
the approximated problem

δvδ + ψR(x)M [vδ](x) · φ(x) · |vδx|+ (1− ψR(x))H(vδx) = 0 for x ∈ (−l, l)
δvδ +H

−(vδx) = 0 for x = −l
δvδ +H

+(vδx) = 0 for x = l

(6.7)

Step 1: construction of barriers. Using that 0 and δ−1C0 are respectively sub and super-
solution of (6.7) with C0 = |H0|, and that we have a comparison principle, we deduce that there
exists a continuous viscosity solution, vδ of (6.7) which satisfies

0 ≤ vδ ≤ C0

δ
. (6.8)

Step 2: control of the space oscillations of vδ.

Lemma 6.5. The function vδ satisfies for all x, y ∈ [−l, l], x ≥ y,

−k0(x− y)− 1 ≤ vδ(x)− vδ(y) ≤ 0,

with k0 defined in (A0).

Proof of Lemma 6.5. In the rest of the proof we will use the following notation,

Ω =
{

(x, y) ∈ [−l, l]2 such that x ≥ y
}
.

Step 2.1: proof of the upper inequality. We want to prove that

M = sup
(x,y)∈Ω

{
vδ(x)− vδ(y)

}
≤ 0.

We argue by contradiction and assume that M > 0. We can see that M is reached for a finite
point that we denote by (x̄, ȳ) ∈ Ω. Given that M > 0, we deduce that x̄ 6= ȳ. Therefore, we can
use the viscosity inequalities for (6.7).

-If (x̄, ȳ) ∈ (−l, l), we have

δvδ(x̄) +GR(x̄, [vδ], 0) ≤ 0
δvδ(ȳ) +GR(ȳ, [vδ], 0) ≥ 0,

combining these two inequalities with the fact that GR(x, [U ], 0) = 0, we obtain

δM ≤ 0.

-If x̄ = l and ȳ ∈ (−l, l), similarly we obtain

δM ≤ 0,
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where we have used the fact that H+(0) = 0.
-If x̄ ∈ (−l, l) and ȳ = −l, we obtain

δM ≤ H0 ≤ 0,

where we used the fact that H−(0) = H0.
-If x̄ = l and ȳ = −l, we obtain

δM ≤ H0 ≤ 0.

For every value of x̄ and ȳ we obtain a contradiction, therefore we have M ≤ 0.

Step 2.2: proof of the lower inequality. We want to prove that

M = sup
(x,y)∈Ω

{
vδ(y)− vδ(x)− k0(x− y)− 1

}
≤ 0.

We argue by contradiction and assume that M > 0. We can see that M is reached for a finite
point that we denote by (x̄, ȳ). Since M > 0, we deduce that x̄ 6= ȳ. Therefore, we can use the
viscosity inequalities for (6.7).

Case 1: ȳ ∈ (−l, l). If ȳ ∈ (−l, l), we have

δvδ(ȳ) + ψR(ȳ)M [vδ](ȳ) · φ(ȳ) · | − k0|+ (1− ψR(ȳ))H(−k0) ≤ 0. (6.9)

We claim that M [vδ](ȳ) = 0.
Indeed, for all z > h0, if x̄ > ȳ + z using the fact that the maximum is reached for (x̄, ȳ), we

deduce that

vδ(ȳ + z)− vδ(x̄)− k0(x̄− ȳ − z)− 1 ≤ vδ(ȳ)− vδ(x̄)− k0(x̄− ȳ)− 1

which implies that

vδ(ȳ + z)− vδ(ȳ) ≤ −k0z < −1.

On the contrary, if x̄ ≤ ȳ + z, using the fact that vδ is non-increasing in space, we have

vδ(ȳ + z)− vδ(ȳ) ≤ vδ(x̄)− vδ(ȳ) ≤ −k0(x̄− ȳ)− 1 < −1.

We can therefore, conclude that for all z ∈ (h0,+∞), E(vδ(ȳ + z) − vδ(ȳ)) = − 3
2 and so we get

M [vδ](ȳ) = 0. Using also that H(−k0) = 0, equation (6.9) becomes

δvδ(ȳ) ≤ 0.

However, using the fact that vδ ≥ 0 (see (6.8)), we get

δM ≤ δvδ(ȳ)− δvδ(x̄) ≤ 0,

which is a contradiction.
Case 2: ȳ = −l. In this situation, the viscosity inequality becomes

δvδ(ȳ) +H
−(−k0) ≤ 0.

Using the fact that H−(−k0) = H(−k0) = 0, we obtain

δvδ(ȳ) ≤ 0,

and as in the previous case, we obtain a contradiction. This ends the proof of the lemma.

19



Step 3: construction of a Lipschitz estimate.

Lemma 6.6. There exists a Lipschitz continuous function mδ, such that there exists a constant
C, (independent of l, R and δ) such that{

|mδ(x)−mδ(y)| ≤ C|x− y| for all x, y ∈ [−l, l],
|vδ(x)−mδ(x)| ≤ C for all x ∈ [−l, l]. (6.10)

Proof of Lemma 6.6. Let us define mδ as an affine function in each interval of the form
[ih0, (i+ 1)h0], with i ∈ Z, such that

mδ(ih0) = vδ(ih0) and mδ((i+ 1)h0) = vδ((i+ 1)h0).

Since mδ, vδ are non-increasing and |vδ((i + 1)h0) − vδ(ih0)| ≤ k0h0 + 1 = 2, we deduce that
∀x ∈ [ih0, (i+ 1)h0],

−2 ≤ vδ((i+ 1)h0)−mδ(ih0) ≤ vδ(x)−mδ(x) ≤ vδ(ih0)−mδ((i+ 1)h0) ≤ 2,

and for all x, y ∈ [−l, l],

|mδ(x)−mδ(y)| ≤ 2k0|x− y|.

Step 4: passing to the limit as δ goes to 0. Using (6.8) and (6.10), we deduce that there
exists δn → 0 such that

δnv
δn(0)→ −λl,R as n→ +∞,

mδn −mδn(0)→ ml,R as n→ +∞,

the second convergence being locally uniform. Let us consider,

wl,R(t, x) = lim sup
δn→0

∗(vδn − vδn(0)) and wl,R = lim inf
δn→0 ∗

(vδn − vδn(0)).

Therefore, we have that λl,R,ml,R, wl,R and wl,R satisfy

H0 ≤ λl,R ≤ 0,
|wl,R −ml,R| ≤ C,
|wl,R −ml,R| ≤ C,

|ml,R
x | ≤ C.

(6.11)

By stability of the solutions we have that wl,R − 2C and wl,R are respectively a sub-solution and
a super-solution of (6.1) and

wl,R − 2C ≤ wl,R.

By Perron’s method we can construct a solution wl,R of (6.1) and thanks to (6.8) and (6.11), ml,R,
λl,R and wl,R satisfy (6.6).

The uniqueness of λl,R is classical so we skip it. This ends the proof of Proposition 6.4.

Proposition 6.7 (First definition of the flux limiter). The following limits exist (up to a subse-
quence) 

AR = lim
l→+∞

λl,R

A = lim
R→+∞

AR.
(6.12)
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Moreover, we have

H0 ≤ AR, A ≤ 0.

Proof. This results comes from the fact that we have the following bound on λl,R which is inde-
pendent of l and R (see Proposition 6.4),

H0 ≤ λl,R ≤ 0.

Remark 6.8. This proposition does not ensure the uniqueness of the flux limiter A. However,
since we know that such a limit exists, we can obtain the converge result. The uniqueness of A is
given in Theorem 2.10.

Proposition 6.9 (Control of the slopes on a truncated domain). Assume that l and R are big
enough. Let wl,R be the solution of (6.1) given by Proposition 6.4. We also assume that up to a
sub-sequence A = lim

R→+∞
lim

l→+∞
λl,R > H0. Then there exits a γ0 > 0 such that for all γ ∈ (0, γ0),

there exists a constant C (independent of l and R) such that for all x ≥ r and h ≥ 0

wl,R(x+ h)− wl,R(x) ≥ (p+ − γ)h− C. (6.13)

Similarly, for all x ≤ −r and h ≥ 0,

wl,R(x− h)− wl,R(x) ≥ (−p− − γ)h− C. (6.14)

Proof. We only prove (6.13) since the proof for (6.14) is similar. For µ > 0 small enough, we
denote by pµ+ the real number such that

H(pµ+) = H
+(pµ+) = λl,R − µ.

Using that

H0 < λl,R ≤ 0,

we deduce that pµ+ exists, is unique and satisfies −k0 ≤ pµ+ ≤ 0 for µ small enough.
Let us now consider the function w+ = pµ+x that satisfies

H(w+
x ) = λl,R − µ for x ∈ R.

We also have

M [w+](x) =
∫
R
J(z)E(pµ+(x+ z)− pµ+x)dz − 3

2Vmax

=
∫ −1

p
µ
+

0

1
2J(z)dz +

∫ +∞

−1
p
µ
+

3
2J(z)dz − 3

2Vmax

=− V
(
−1
pµ+

)
.

For all x ∈ (r, l), using that φ(x) = 1, we deduce that

M [w+](x) · φ(x) · |w+
x | = −V

(
−1
pµ+

)
· |pµ+| = H(pµ+) = λl,R − µ,
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and so the restriction of w+ to (r, l] satisfies{
GR(x, [w+], w+

x ) = λl,R − µ for x ∈ (r, l)
H

+(w+
x ) = λl,R − µ for x = l.

Let us denote by g = wl,R − wl,R(x0) and u = w+ − w+(x0) − 2C, for some x0 ∈ (r, l) and C
defined as in Proposition 6.4. Then we have

g(x0) = 0 ≥ −2C = u(x0).

Using that g is a solution of (6.4) (with ε0 = µ) and u is a solution of (6.5) joint to the comparison
principle (Proposition 6.2) we get that

wl,R(x)− wl,R(x0) = g(x) ≥ u(x) = pµ+(x− x0)− 2C.

This implies that for all h ≥ 0 and for all x ∈ (r, l),

wl,R(x+ h)− wl,R(x) ≥ pµ+h− 2C.

Finally, if we choose γ0 < |p0 − p̄+| (with p0 defined in (2.12)), then

H(p̄+ − γ) = H
+(p̄+ − γ),

and we can choose µ > 0 such that

pµ+ = p+ − γ.

This implies inequality (6.13).

Proof of Theorem 4.1. The proof is performed two steps.

Step 1: proof of i) and ii). The goal is to pass to the limit as l→ +∞ and then as R→ +∞.
Using Proposition 6.4, there exists ln → +∞, such that

mln,R −mln,R(0)→ mR as n→ +∞,

the convergence being locally uniform. We also define

wR(x) = lim sup
ln→+∞

∗ (wln,R − wln,R(0)
)
,

wR(x) = lim inf
ln→+∞∗

(
wln,R − wln,R(0)

)
.

Thanks to (6.6), we know that wR and wR are finite and satisfy

mR − C ≤ wR ≤ wR ≤ mR + C.

By stability of viscosity solutions, wR− 2C and wR are respectively a sub and a super-solution of

GR(x, [wR], wRx ) = AR for x ∈ R (6.15)

Therefore, using Perron’s method, we can construct a solution wR of (6.15) with mR, A
R and wR

satisfying 
|mR(x)−mR(y)| ≤ C|x− y| for all x, y ∈ R,
|wR(x)−mR(x)| ≤ C for x ∈ R× R,
H0 ≤ AR ≤ 0.

(6.16)
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Using Proposition 6.9, if A > H0, we know that there exists a γ0 and a constant C, such that for
all γ ∈ (0, γ0),{

wR(x+ h)− wR(x) ≥ (p+ − γ)h− C for all x ≥ r, h ≥ 0,
wR(x− h)− wR(x) ≥ (−p− − γ)h− C for all x ≤ −r, h ≥ 0. (6.17)

We now pass to the limit as R→ +∞. We consider (up to some subsequence)



w(x) = lim sup
R→+∞

∗ (wR − wR(0)
)
,

w(x) = lim inf
R→+∞∗

(
wR − wR(0)

)
,

A = lim
R→+∞

AR,

m = lim
R→+∞

(mR −mR(0)).

The last convergence being locally uniform. Thanks to (6.16), we know that w and w are finite
and satisfy

m− C ≤ w ≤ w ≤ m+ C.

By stability of viscosity solutions, w − 2C and w are respectively a sub and a super-solution of
(2.18) with λ = A. Using Perron’s method, we can then construct a solution w of (2.18) with
λ = A that satisfies (4.2) and (4.3).

Step 2: proof of iii). We are now interested in the rescaled function wε(x) = εw
(x
ε

)
. Using

(4.3), we have that

wε(x) = εm
(x
ε

)
+O(ε).

Therefore, we can find a sequence εn → 0, such that

wεn →W locally uniformly as n→ +∞,

with W (0) = 0. Like in [18], arguing as in the proof of convergence away from the junction point,
we have that W satisfies

H(Wx) = A for x 6= 0.

For all γ ∈ (0, γ0), we have that if A > H0 and x > 0,

Wx ≥ p+ − γ,

where we have used (4.3). Therefore we get

Wx = p+ for x > 0,

this result remains valid even if A = H0 (in this particular case Wx = p0). Similarly, we get

Wx = p− for x < 0.

which implies (4.4) and (4.5). This ends the proof of Theorem 4.1.
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6.3 Proof of Theorem 2.10
Proof of Theorem 2.10. Up to a sub-sequence, we assume that A = lim

R→+∞
lim

l→+∞
λl,R. We want

to prove that A = inf E, where

E = {λ ∈ [h0, 0] : ∃ w ∈ S solution of (2.18)},

with

S = {w s.t. ∃ a Lipschitz continuous function m and a C > 0 s.t. |w(x)−m(x)| ≤ C} .

We argue by contradiction and assume that there exists a λ < A and a function wλ ∈ S solution
of (2.18). We assume that wλ(0) = 0 (if we are not in this situation, we do a translation since we
have wλ − wλ(0) ∈ S). Arguing as in the proof of Theorem 4.1, we deduce that the function

wελ(x) = εwλ
(x
ε

)
has a limit Wλ (with Wλ(0) = 0) which satisfies

H(Wλ
x ) = λ for x > 0,

which means that for all x > 0,

Wλ
x ≤ pλ+ < p+ with H(pλ+) = H

+(pλ+) = λ. (6.18)

Similarly we have for all x < 0,

Wλ
x ≥ pλ− > p− with H(pλ−) = H

−(pλ−) = λ. (6.19)

These inequalities imply that for all γ > 0, there exists a constant C̃γ > 0 such that

wλ(x) ≤
{

(pλ+ + γ)x+ C̃γ for x > 0,
(pλ− − γ)x+ C̃γ for x < 0, (6.20)

In fact, if wλ does not satisfies (6.20), we cannot have (6.18) and (6.19). Using Theorem 4.1, we
get

wλ < w for |x| ≥ R̃

if γ is small enough and R̃ big enough. This implies that there exists a constant CR̃ > 0 such that
for all x ∈ R, we have

wλ(x) < w(x) + CR̃.

Let us now introduce, u(t, x) = w(x) +CR̃ −At and uλ(t, x) = wλ(x)− λt both solutions of (2.4)
with ε = 1 and uλ(0, x) ≤ u(0, x). Therefore, the comparison principle implies

wλ(x)− λt ≤ w(x) + CR̃ −At

Dividing by t and passing to the limit as t goes to infinity, we get

A ≤ λ,

which is a contradiction.
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7 Qualitative properties of the flux limiter
This section is devoted to the proof of Proposition 2.12.

Proof of Proposition 2.12. We perform the proof of each item separately.

Proof of (i). In order to establish the monotonicity, we have to consider the approximated
truncated cell problem (6.7). Let us consider vδ1 and vδ2 viscosity solutions of (6.7), respectively
for φ1 and φ2, with 0 ≤ φ1 ≤ φ2. First, using the fact that the non-local operator is negative, we
have

G2
R(x, [U ], q) ≤ G1

R(x, [U ], q),

with

GiR(x, [U ], q) = φi(x) ·M [U ](x) · ψR(x) · |q|+ (1− ψR(x))H(q), for i = 1, 2.

Therefore, we have

0 = δvδ1 +G1
R(x, [vδ1], (vδ1)x) ≥ δvδ1 +G2

R(x, [vδ1], (vδ1)x),

meaning that vδ1 is a sub-solution of (6.7) with φ2. The comparison principle and (6.8) imply that

0 ≤ δvδ1 ≤ δvδ2 ≤ |H0|.

Passing to the limit as δ → 0, we obtain

0 ≥ λ1
l,R ≥ λ2

l,R ≥ H0.

Passing to the limit as l, R→ +∞, we get the result.

Proof of (ii). If φ = 0 on an open interval, then using [3, Lemme B.1], we can use the definition
of a viscosity solution of (6.7) at a point where φ = 0 and therefore, we have

A = 0.

8 Link between the system of ODEs and the PDE
This section is devoted to the proof of Theorem 2.5, which is a direct application of our convergence
result, Theorem 2.4.

Theorem 8.1. For ε = 1, the cumulative distribution function ρ defined by (2.2) is a discontinuous
viscosity solution of

ρt +M [ρ(t, ·)](x) · φ(x) · |ρx| = 0 for (t, x) ∈ [0,+∞)× R. (8.1)

Conversely, if u is a bounded and continuous viscosity solution of (8.1) satisfying for some time
T > 0, and for all t ∈ (0, T )

u(t, x) is decreasing in x,

then the points Uj(t), defined by u(t, Uj(t)) = −(j + 1) for j ∈ Z, satisfy the system (2.1) on
(0, T ).

Before giving the proof of Theorem 8.1, let us do the proof of Theorem 2.5.
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Proof of Theorem 2.5. We define a function u0 satisfying (A0) such that

ρε(0, x) = ρε0(x) = ε

⌊
u0(x)
ε

⌋
.

By construction we have

(ρε0)∗(x) = ρε0(x) ≤ u0(x) < (ρε0)∗(x) + ε.

Using the fact that ρε is a viscosity solution of (2.4) and the comparison principle (Proposition
3.5) we deduce that (with uε the continuous solution of (2.4))

ρε(t, x) ≤ uε(t, x) ≤ (ρε)∗(t, x) + ε

and therefore

uε(t, x)− ε ≤ ρε(t, x) ≤ uε(t, x).

Passing to the limit as ε→ 0, we get that ρε → u0, which ends the proof of Theorem 2.5.

Proof of Theorem 8.1. Theorem 8.1 is a consequence of the following lemma.

Lemma 8.2 (Link between the velocities). Assume (A). Let ((Uj)j) be the solution of (2.1) with

Uj+1(0)− Uj(0) > h0. (8.2)

Then we have

U̇j(t) = −M [u(t, ·)](Uj(t)) · φ(Uj(t)), (8.3)

where E and J are defined in (2.6) and u(t, x) is a continuous function such that{
u(t, x) = ρ∗(t, x) = ρ(t, x) for x = Uj(t), j ∈ Z,
u is decreasing in x, (8.4)

with ρ defined in (2.2) (with ε = 1).

Proof. We drop the time dependence to simplify the presentation. Let j ∈ Z. Using the fact that
u(Uj) = −(j + 1) and (8.4), we have for all z ∈ [0,+∞),{

0 ≥ u(Uj + z)− u(Uj) > u(Uj+1)− u(Uj) = −1 if z ∈ [0, Uj+1 − Uj)
−1 ≥ u(Uj + z)− u(Uj) if z ∈ [Uj+1 − Uj ,+∞).

Given that u is continuous, this implies that

M [u](Uj) =
∫ Uj+1−Uj

0

1
2J(z)dz +

∫ +∞

Uj+1−Uj

3
2J(z)dz − 3

2Vmax = −V (Uj+1 − Uj) .

Combining this result with (2.1), we obtain (8.3).

Noticing that because of (8.4), we have for x = Uj(t), j ∈ Z,

M̃ [ρ∗(t, ·)](x) = M̃ [u(t, ·)](x) = M [u(t, ·)](x),

and using Lemma 8.2, and Definition 3.1, we can see that ρ∗ is a discontinuous viscosity super-
solution of (8.1). We obtain a similar result for ρ∗, therefore, ρ is a discontinuous viscosity solution
of (8.1).

We prove the converse. For the readers convenience we recall Proposition 4.8 from [11] that
we will use later. The proof of this proposition remains almost the same in our case the only
difference being the definition of the functions E and Ẽ.
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Lemma 8.3. Assume that θ : R→ R is a non-decreasing and upper semi-continuous (resp. lower
semi-continuous). Assume also that

θ(v)− v is 1−periodic in v.

Assume that ε = 1 in (2.4). Consider also a sub-solution (resp. a super-solution) u of (2.4). Then
θ(u) is also a sub-solution (resp. a super-solution) of (2.4).

Using Lemma 8.3 we can conclude that ρ∗ = due (resp. ρ∗ = buc) is a viscosity super-solution
(resp. sub-solution) of

∂tρ− c̃(t, x)∂xρ = 0 with c̃(t, x) = M [u(t, ·)](x) · φ(x) = M̃ [u(t, ·)](x) · φ(x).

Using the fact that u is decreasing in space, we define

Ui(t) = inf{x, u(t, x) ≤ −(i+ 1)} = (u(t, ·))−1(−i− 1)

and we consider the functions t 7→ Ui(t). They are continuous because u is decreasing in x and is
continuous in (t, x).

We now prove that the functions Ui are viscosity solutions of (2.1). Let ϕ be a test function
such that ϕ(t) ≤ Ui(t) and ϕ(t0) = Ui(t0). Let us now define ϕ̂(t, x) = −(i + 1) + ϕ(t) − x. It
satisfies

ϕ̂(t0, Ui(t0)) = ρ∗(t0, Ui(t0)),

and

ϕ̂(t, x) ≤ ρ∗(t, x) for Ui(t)− 1 < x < Ui+1(t).

This implies that

ϕt(t0) + c̃(t0, Ui(t0)) ≥ 0
⇔ ϕt(t0) ≥ −c̃(t0, Ui(t0)) = −c̄i(t0) = V (Ui+1(t0)− Ui(t0)).φ(Ui(t0)).

This proves that Ui are viscosity super-solutions of (2.1). The proof for sub-solutions is similar
and we skip it. Moreover, since c̄i is continuous, we deduce that Ui ∈ C1 and it is therefore a
classical solution of (2.1).
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