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Abstract

The aim of this work is to study a class of nonsmooth dynamic

contact problem which model several surface interactions, including

relaxed unilateral contact conditions, adhesion and Coulomb friction

laws, between two viscoelastic bodies of Kelvin-Voigt type. An ab-

stract formulation which generalizes these problems is considered and

the existence of a solution is proved by using Ky Fan’s fixed point the-

orem, suitable approximation properties, several estimates and com-

pactness arguments.

1 Introduction

This paper is concerned with the study of a class of dynamic contact prob-
lems which describe various surface interactions between two Kelvin-Voigt
viscoelastic bodies. These interactions can include some relaxed unilateral
contact, pointwise friction or adhesion conditions.

Existence and approximation of solutions to the quasistatic elastic prob-
lems have been studied for different contact conditions. The quasistatic uni-
lateral contact problems with local Coulomb friction have been studied in
[1, 29, 30] and adhesion laws based on the evolution of intensity of adhesion
were analyzed in [28, 10]. The normal compliance models, which are partic-
ular regularizations of the Signorini’s conditions, have been investigated by
several authors, see e.g. [17, 15, 31] and references therein.
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A unified approach, which can be applied to various quasistatic problems,
including unilateral and bilateral contact with nonlocal friction, or normal
compliance conditions, has been considered recently in [2].

The corresponding dynamic contact problems are more difficult to solve
than the quasistatic ones, even in the viscoelastic case. Dynamic frictional
contact problems with normal compliance laws for a viscoelastic body have
been studied in [22, 17, 18, 5, 24]. Nonlocal friction laws, obtained by suitable
regularizations of the normal component of the stress vector appearing in
the Coulomb friction conditions, were considered for viscoelastic bodies in
[16, 19, 20, 13, 7, 11]. Dynamic frictionless problems with adhesion have been
studied in [6, 21, 33] and dynamic viscoelastic problems coupling unilateral
contact, recoverable adhesion and nonlocal friction have been analyzed in
[12, 9].

Note that, using the Clarke subdifferential, the variational formulations of
various contact problems can be given as hemivariational inequalities, which
represent a broad generalization of the variational inequalities to locally Lip-
schitz functions, see [24, 23, 25, 26] and references therein.

A static contact problem with relaxed unilateral conditions and pointwise
Coulomb friction was studied in [27], based on new abstract formulations
and on Ky Fan’s fixed point theorem. The extension to an elastic quasistatic
contact problem was investigated in [8].

This work extends the results in [27] to a new class of nonsmooth dynamic
contact problems in viscoelasticity, which constitutes a unified approach to
study some complex surface interactions.

The paper is organized as follows. In Section 2 the classical formulation
of the dynamic contact problem is presented and the variational formulation
is given as a two-field problem. Section 3 is devoted to the study of a more
general evolution variational inequality, which is written as an equivalent
fixed point problem, based on some existence and uniqueness results proved
in [11]. Using the Ky Fan’s theorem, the existence of a fixed point is proved.
In Section 4 this abstract result is used to prove the existence of a variational
solution of the dynamic contact problem.

2 Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt consti-
tutive law, which occupy the reference domains Ωα of Rd, d = 2 or 3, with
Lipschitz boundaries Γα = ∂Ωα, α = 1, 2.

Let Γα
U , Γ

α
F and Γα

C be three open disjoint sufficiently smooth parts of Γα

such that Γα = Γ
α

U ∪ Γ
α

F ∪ Γ
α

C and, to simplify the estimates, meas(Γα
U) >
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0, α = 1, 2. In this paper we assume the small deformation hypothesis and
we use Cartesian coordinate representations.

Let yα(xα, t) denote the position at time t ∈ [0, T ], where 0 < T <
+∞, of the material point represented by xα in the reference configuration,
and uα(xα, t) := yα(xα, t) − xα denote the displacement vector of xα at
time t, with the Cartesian coordinates uα = (uα1 , ..., u

α
d ) = (ūα, uαd ). Let εα,

with the Cartesian coordinates εα = (εij (u
α)), and σα, with the Cartesian

coordinates σα =
(

σα
ij

)

, be the infinitesimal strain tensor and the stress
tensor, respectively, corresponding to Ωα, α = 1, 2.

Assume that the displacement Uα = 0 on Γα
U × (0, T ), α = 1, 2, and

that the densities of both bodies are equal to 1. Let f 1 = (f 1
1,f

2
1) and

f 2 = (f 1
2,f

2
2) denote the given body forces in Ω1 ∪Ω2 and tractions on Γ1

F ∪
Γ2
F , respectively. The initial displacements and velocities of the bodies are

denoted by u0 = (u1
0,u

2
0), u1 = (u1

1,u
2
1). The usual summation convention

will be used for i, j, k, l = 1, . . . , d.
Suppose that the solids can be in contact between the potential contact

surfaces Γ1
C and Γ2

C which can be parametrized by two C1 functions, ϕ1, ϕ2,
defined on an open and bounded subset Ξ of Rd−1, such that ϕ1(ξ)−ϕ2(ξ) ≥
0 ∀ ξ ∈ Ξ and each Γα

C is the graph of ϕα on Ξ that is Γα
C = { (ξ, ϕα(ξ)) ∈

R
d ; ξ ∈ Ξ}, α = 1, 2. Define the initial normalized gap between the two

contact surfaces by

g0(ξ) =
ϕ1(ξ)− ϕ2(ξ)
√

1 + |∇ϕ1(ξ)|2
∀ ξ ∈ Ξ.

Let nα denote the unit outward normal vector to Γα, α = 1, 2. We shall
use the following notations for the normal and tangential components of a
displacement field vα, α = 1, 2, of the relative displacement corresponding
to v := (v1,v2) and of the stress vector σαnα on Γα

C :

vα(ξ, t) := vα(ξ, ϕα(ξ), t), vαN(ξ, t) := vα(ξ, t) · nα(ξ),

vN(ξ, t) := v1N(ξ, t) + v2N(ξ, t), [vN ](ξ, t) := vN(ξ, t)− g0(ξ),

vα
T (ξ, t) := vα(ξ, t)− vαN(ξ, t)n

α(ξ), vT (ξ, t) := v1
T (ξ, t)− v2

T (ξ, t),

σα
N(ξ, t) := (σα(ξ, t)nα(ξ)) · nα(ξ), σα

T (ξ, t) = σα(ξ, t)nα(ξ)− σα
N(ξ, t)n

α(ξ),

for all ξ ∈ Ξ and for all t ∈ [0, T ]. Let g := −[uN ] = g0 − u1N − u2N be the
gap corresponding to the solution u := (u1,u2). Since the displacements,
their derivatives and the gap are assumed small, by using a similar method
as the one presented in [3] (see also [11]) we obtain the following unilateral
contact condition at time t in the set Ξ: [uN ] (ξ, t) = −g(ξ, t) ≤ 0 ∀ ξ ∈ Ξ.
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2.1 Classical formulation

Let A
α, Bα denote two fourth-order tensors, the elasticity tensor and the

viscosity tensor corresponding to Ωα, with the components Aα = (Aα
ijkl) and

Bα = (Bα
ijkl), respectively. We assume that these components satisfy the

following classical symmetry and ellipticity conditions: Cα
ijkl = Cα

jikl = Cα
klij ∈

L∞(Ωα), ∀ i, j, k, l = 1, . . . , d, ∃αCα > 0 such that Cα
ijklτijτkl ≥ αCα τijτij

∀ τ = (τij) verifying τij = τji, ∀ i, j = 1, . . . , d, where Cα
ijkl = Aα

ijkl, C
α =

Aα or Cα
ijkl = Bα

ijkl, C
α = Bα ∀ i, j, k, l = 1, . . . , d, α = 1, 2.

We choose the following state variables: the infinitesimal strain tensor
(ε1, ε2) =(ε(u1), ε(u2)) in Ω1 ∪ Ω2, the relative normal displacement [uN ] =
u1N + u2N − g0, and the relative tangential displacement uT = u1

T −u2
T in Ξ.

Let κ, κ : R → R be two mappings with κ lower semicontinuous and κ
upper semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) and 0 /∈ (κ(s), κ(s)) ∀ s ∈ R, (1)

∃ r0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r0 ∀ s ∈ R. (2)

Consider the following dynamic viscoelastic contact problem with Coulomb
friction.
Problem Pc : Find u = (u1,u2) such that u(0) = u0, u̇(0) = u1 and, for
all t ∈ (0, T ),

üα − divσα(uα, u̇α) = fα
1 in Ωα, (3)

σα(uα, u̇α) = A
αε(uα) +B

αε(u̇α) in Ωα, (4)

uα = 0 on Γα
U , σ

αnα = fα
2 on Γα

F , α = 1, 2, (5)

σ1n1 + σ2n2 = 0 in Ξ, (6)

κ([uN ]) ≤ σN ≤ κ([uN ]) in Ξ, (7)

|σT | ≤ µ |σN | in Ξ and (8)

|σT | < µ |σN | ⇒ u̇T = 0,

|σT | = µ |σN | ⇒ ∃ θ̃ ≥ 0, u̇T = −θ̃σT ,

where σα = σα(uα, u̇α), α = 1, 2, σN := σ1
N , σT := σ1

T , and µ ∈ L∞(Ξ),
µ ≥ 0 a.e. in Ξ, is the coefficient of friction.

Different choices for κ, κ will give various contact and friction conditions
as can be seen in the following examples.
Example 1. (Adhesion and friction conditions)

Let s0 ≥ 0, M ≥ 0 be constants, k : R → R be a continuous function
such that k ≥ 0 with k(0) = 0 and define

κ(s) =







0 if s ≤ −s0,
k(s) if − s0 < s < 0,
−M if s ≥ 0,

κ(s) =







0 if s < −s0,
k(s) if − s0 ≤ s ≤ 0,
−M if s > 0.
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Example 2. (Friction condition)
In Example 1 we set k = s0 = 0 and define

κM(s) =

{

0 if s < 0,
−M if s ≥ 0,

κM(s) =

{

0 if s ≤ 0,
−M if s > 0.

The classical Signorini’s conditions correspond formally to M = +∞.
Example 3. (General normal compliance conditions)

Various normal compliance conditions, friction and adhesion laws can be
obtained from the previous general formulation if one considers κ = κ = κ,
where κ : R → R is some bounded Lipschitz continuous function with
κ(0) = 0, so that σN is given by the relation σN = κ([uN ]).

2.2 Variational formulations

We adopt the following notations:

Hs(Ωα) := Hs(Ωα;Rd), α = 1, 2, Hs := Hs(Ω1)×Hs(Ω2),

〈v,w〉−s,s = 〈v1,w1〉H−s(Ω1)×H
s(Ω1) + 〈v2,w2〉H−s(Ω2)×H

s(Ω2)

∀ v = (v1,v2) ∈ H−s, ∀w = (w1,w2) ∈ Hs, ∀ s ∈ R.

Define the Hilbert spaces (H , |.|) with the associated inner product denoted
by (. , .), (V , ‖.‖) with the associated inner product (ofH1) denoted by 〈. , .〉,
and the closed convex cones L2

+(Ξ), L
2
+(Ξ× (0, T )) as follows:

H := H0 = L2(Ω1;Rd)× L2(Ω2;Rd), V := V 1 × V 2, where

V α = {vα ∈ H1(Ωα); vα = 0 a.e. on Γα
U}, α = 1, 2,

L2
+(Ξ) := {δ ∈ L2(Ξ); δ ≥ 0 a.e. in Ξ},

L2
+(Ξ× (0, T )) := {η ∈ L2(0, T ;L2(Ξ)); η ≥ 0 a.e. in Ξ× (0, T )}.

Let a, b be two bilinear, continuous and symmetric mappings defined on
H1 ×H1 → R by

a(v,w) = a1(v1,w1) + a2(v2,w2), b(v,w) = b1(v1,w1) + b2(v2,w2)

∀v = (v1,v2), w = (w1,w2) ∈ H1, where, for α = 1, 2,

aα(vα,wα) =

∫

Ωα

A
αε(vα) ·ε(wα) dx, bα(vα,wα) =

∫

Ωα

B
αε(vα) ·ε(wα) dx.
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Assume fα
1 ∈ W 1,∞(0, T ;L2(Ωα;Rd)), fα

2 ∈ W 1,∞(0, T ;L2(Γα
F ;R

d)), α =
1, 2, u0, u1 ∈ V , g0 ∈ L2

+(Ξ), and define the following mappings:

J : L2(Ξ)×H1 → R, J(δ,v) =

∫

Ξ

µ |δ| |vT | dξ

∀ δ ∈ L2(Ξ), ∀v = (v1,v2) ∈ H1,

f ∈ W 1,∞(0, T ;H1), 〈f ,v〉 =
∑

α=1,2

∫

Ωα

fα
1 · vα dx+

∑

α=1,2

∫

Γα

F

fα
2 · vα ds

∀v = (v1,v2) ∈ H1, ∀ t ∈ [0, T ].

Assume the following compatibility conditions: [u0N ] ≤ 0, κ([u0N ]) = 0 a.e.
in Ξ and ∃p0 ∈ H such that

(p0,w) + a(u0,w) + b(u1,w) = 〈f(0),w〉 ∀w ∈ V . (9)

The following compactness theorem proved in [32] will be used several times
in this paper.

Theorem 2.1. Let X̂, Û and Ŷ be three Banach spaces such that X̂ ⊂ Û ⊂ Ŷ
with compact embedding from X̂ into Û .

(i) Let F be bounded in Lp(0, T ; X̂), where 1 ≤ p < ∞, and ∂F/∂t :=
{ḟ ; f ∈ F} be bounded in L1(0, T ; Ŷ ). Then F is relatively compact in
Lp(0, T ; Û).

(ii) Let F be bounded in L∞(0, T ; X̂) and ∂F/∂t be bounded in Lr(0, T ; Ŷ ),
where r > 1. Then F is relatively compact in C([0, T ]; Û).

For every ζ ∈ L2(0, T ;L2(Ξ)) = L2(Ξ× (0, T )), define the following sets:

Λ(ζ) = {η ∈ L2(0, T ;L2(Ξ));κ ◦ ζ ≤ η ≤ κ ◦ ζ a.e. in Ξ× (0, T ) },

Λ+(ζ) = {η ∈ L2
+(Ξ× (0, T ));κ+ ◦ ζ ≤ η ≤ κ+ ◦ ζ a.e. in Ξ× (0, T ) },

Λ−(ζ) = {η ∈ L2
+(Ξ× (0, T ));κ− ◦ ζ ≤ η ≤ κ− ◦ ζ a.e. in Ξ× (0, T ) },

where, for each r ∈ R, r+ := max(0, r) and r− := max(0,−r) denote the
positive and negative parts, respectively.

For each ζ ∈ L2(0, T ;L2(Ξ)) the sets Λ(ζ), Λ+(ζ) and Λ−(ζ) are clearly
nonempty, because the bounding functions belong to the respective set, closed
and convex.

Since meas(Ξ) < ∞ and κ, κ satisfy (2), it is also readily seen that
there exists a constant, denoted by R0 and depending on meas(Ξ), r0 and T ,
such that for all ζ ∈ L2(0, T ;L2(Ξ)) the sets Λ+(ζ) and Λ−(ζ) are bounded
in norm in L2(0, T ;L2(Ξ)) by R0. Moreover, these sets are bounded in
L∞(0, T ;L∞(Ξ)).
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A first variational formulation of the problem Pc is the following.
Problem P 1

v
: Find u ∈ C1([0, T ];H−ι)∩W 1,2(0, T ;V ), λ ∈ L2(0, T ;L2(Ξ))

such that u(0) = u0, u̇(0) = u1, λ ∈ Λ([uN ]) and

〈u̇(T ),v(T )− u(T )〉−ι, ι − (u1,v(0)− u0)−

∫ T

0

(u̇, v̇ − u̇) dt

+

∫ T

0

{

a(u,v − u) + b(u̇,v − u)− (λ, vN − uN)L2(Ξ)

}

dt (10)

+

∫ T

0

{J(λ,v + ku̇− u)− J(λ, ku̇)} dt ≥

∫ T

0

〈f ,v − u〉 dt

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H), where 1 > ι >
1

2
, k > 0.

The formal equivalence between the variational problem P 1
v and the classi-

cal problem (3)–(8) can be easily proved by using Green’s formula and an
integration by parts, where the Lagrange multiplier λ satisfies the relation
λ = σN .

Let φ : L2
+(Ξ)× L2

+(Ξ)× V → R be defined by

φ(δ1, δ2,v) = −(δ1 − δ2, vN)L2(Ξ) +

∫

Ξ

µ (δ1 + δ2) |vT | dξ

∀ (δ1, δ2) ∈ (L2
+(Ξ))

2, ∀v = (v1,v2) ∈ V .

(11)

Since η ∈ Λ(ζ) if and only if (η+, η−) ∈ Λ+(ζ) × Λ−(ζ), it follows that the
variational problem P 1

v is clearly equivalent with the following problem.
Problem P 2

v
: Find u ∈ C1([0, T ];H−ι)∩W 1,2(0, T ;V ), λ ∈ L2(0, T ;L2(Ξ))

such that u(0) = u0, u̇(0) = u1, (λ+, λ−) ∈ Λ+([uN ])× Λ−([uN ]) and

〈u̇(T ),v(T )− u(T )〉−ι, ι − (u1,v(0)− u0)

+

∫ T

0

{−(u̇, v̇ − u̇) + a(u,v − u) + b(u̇,v − u)} dt (12)

+

∫ T

0

{φ(λ+, λ−,v + ku̇− u)− φ(λ+, λ−, ku̇)} dt ≥

∫ T

0

〈f ,v − u〉 dt

∀v ∈ L∞(0, T ;V ) ∩W 1,2(0, T ;H).

The existence of variational solutions to problem Pc will be established by
using some abstract existence results that will be presented in the following
section.
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3 General existence results

Let U0, (V0, ‖.‖, 〈. , .〉), (U, ‖.‖U) and (H0, |.|, (. , .)) be four Hilbert spaces
such that U0 is a closed linear subspace of V0 dense in H0, V0 ⊂ U ⊆ H0 with
continuous embeddings and the embedding from V0 into U is compact.

To simplify the presentation and in view of the applications to contact
problems, L2(Ξ) will be preserved in the abstract formulation even if, more
generally, the space L2(Ξ̂) can be considered with (Ξ̂,m) a finite and complete
measure space, see [27] for a time-independent application. Also, we use the
notation ΞT := Ξ× (0, T ).

Let a0, b0 : V0 × V0 → R be two bilinear and symmetric forms such that

∃Ma, Mb > 0 a0(u, v) ≤Ma ‖u‖ ‖v‖, b0(u, v) ≤Mb ‖u‖ ‖v‖, (13)

∃ma, mb > 0 a0(v, v) ≥ ma ‖v‖
2, b0(v, v) ≥ mb ‖v‖

2 ∀ u, v ∈ V0. (14)

Let l : V0 → L2(Ξ) and φ0 : L2
+(Ξ) × L2

+(Ξ) × V0 → R be two mappings
satisfying the following conditions:

∃ k1 > 0 such that ∀ v1, v2 ∈ V0,
‖l(v1)− l(v2)‖L2(Ξ) ≤ k1‖v1 − v2‖U ,

(15)

∀ γ1, γ2 ∈ L2
+(Ξ), ∀ θ ≥ 0, ∀ v1, v2, v ∈ V0,

φ0(γ1, γ2, v1 + v2) ≤ φ0(γ1, γ2, v1) + φ0(γ1, γ2, v2), (16)

φ0(γ1, γ2, θv) = θ φ0(γ1, γ2, v), (17)

∀ v ∈ V0, φ0(0, 0, v) = 0, (18)

∀ γ1, γ2 ∈ L2
+(Ξ), ∀ v ∈ U0, φ0(γ1, γ2, v) = 0, (19)

∃ k2 > 0 such that ∀ γ1, γ2, δ1, δ2 ∈ L2
+(Ξ), ∀ v1, v2 ∈ V0,

|φ0(γ1, γ2, v1)− φ0(γ1, γ2, v2) + φ0(δ1, δ2, v2)− φ0(δ1, δ2, v1)|
≤ k2(‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ))‖v1 − v2‖U ,

(20)

if (γn1 , γ
n
2 ) ∈ (L2

+(ΞT ))
2 for all n ∈ N

and (γn1 , γ
n
2 )⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2, then

∫ T

0

φ0(γ
n
1 , γ

n
2 , v) ds→

∫ T

0

φ0(γ1, γ2, v) ds ∀ v ∈ L2(0, T ;V0).

(21)

Remark 3.1. i) Since by (17) φ0(·, ·, 0) = 0, from (20), for v2 = 0, v1 = v,
we have

∀ γ1, γ2, δ1, δ2 ∈ L2
+(Ξ), ∀ v ∈ V0,

|φ0(γ1, γ2, v)− φ0(δ1, δ2, v)| ≤ k2(‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ))‖v‖U .
(22)
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ii) From (18) and (20), for δ1 = δ2 = 0, we derive

∀ γ1, γ2 ∈ L2
+(Ξ), ∀ v1, v2 ∈ V0,

|φ0(γ1, γ2, v1)− φ0(γ1, γ2, v2)| ≤ k2(‖γ1‖L2(Ξ) + ‖γ2‖L2(Ξ))‖v1 − v2‖U .
(23)

iii) If (γn1 , γ
n
2 ) ∈ (L2

+(ΞT ))
2, for all n ∈ N, (γn1 , γ

n
2 )⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2,

and vm → v in L2(0, T ;U), then

lim
n,m→∞

∫ T

0

φ0(γ
n
1 , γ

n
2 , vm) ds→

∫ T

0

φ0(γ1, γ2, v) ds, (24)

which can be proved by taking into account (23) in the following relations:

|

∫ T

0

{φ0(γ
n
1 , γ

n
2 , vm)− φ0(γ1, γ2, v)} ds|

≤

∫ T

0

|φ0(γ
n
1 , γ

n
2 , vm)− φ0(γ

n
1 , γ

n
2 , v)| ds+ |

∫ T

0

{φ0(γ
n
1 , γ

n
2 , v)− φ0(γ1, γ2, v)} ds|

≤

∫ T

0

k2(‖γ
n
1 ‖L2(Ξ) + ‖γn2 ‖L2(Ξ))‖vm − v‖U ds

+|

∫ T

0

{φ0(γ
n
1 , γ

n
2 , v)− φ0(γ1, γ2, v)} ds|,

and passing to limits by using (21) and that (γn1,2)n are bounded in L2(0, T ;L2(Ξ)).

Assume that f0 ∈ W 1,∞(0, T ;V0), u
0, u1 ∈ V0 are given, and that the

following compatibility condition holds: κ(l(u0)) = 0 and ∃ p0 ∈ H0 such
that

(p0, w) + a0(u
0, w) + b0(u

1, w) = 〈f0(0), w〉 ∀w ∈ V0. (25)

Consider the following problem.
Problem Q1 : Find u ∈ W0, λ ∈ L2(0, T ;L2(Ξ)) such that u(0) = u0,
u̇(0) = u1, (λ+, λ−) ∈ Λ+(l(u))× Λ−(l(u)) and

〈u̇(T ), v(T )− u(T )〉U ′×U − (u1, v(0)− u0)

+

∫ T

0

{−(u̇, v̇ − u̇) + a0(u, v − u) + b0(u̇, v − u)} dt (26)

+

∫ T

0

{φ0(λ+, λ−, v + ku̇− u)− φ0(λ+, λ−, ku̇)} dt ≥

∫ T

0

〈f0, v − u〉 dt

∀ v ∈ L∞(0, T ;V0) ∩W
1,2(0, T ;H0),

where W0 := C1([0, T ];U ′) ∩W 1,2(0, T ;V0).
The sets Λ+(ζ), Λ−(ζ) and Λ(ζ) have the following useful properties, see

also [27].
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Lemma 3.1. Let ζ ∈ L2(0, T ;L2(Ξ)) and (η1, η2) ∈ Λ+(ζ) × Λ−(ζ). Then
η1η2 = 0 a.e. in ΞT and there exists η ∈ Λ(ζ) such that η+ = η1, η− = η2
a.e. in ΞT .

Proof. If κ+ ◦ ζ ≤ η1 ≤ κ+ ◦ ζ and κ− ◦ ζ ≤ η2 ≤ κ− ◦ ζ a.e. in ΞT , then

(κ+ ◦ ζ) (κ− ◦ ζ) ≤ η1η2 ≤ (κ+ ◦ ζ) (κ− ◦ ζ) a.e. in ΞT . (27)

Since by (1) 0 /∈ (κ(ζ(ξ, t)), κ(ζ(ξ, t))), it follows that for almost all (ξ, t) ∈ ΞT

the terms κ(ζ(ξ, t)) and κ(ζ(ξ, t)) have the same sign, or at least one term is
equal to zero. Thus, (κ+ ◦ ζ) (κ− ◦ ζ) = (κ+ ◦ ζ) (κ− ◦ ζ) = 0 a.e. in ΞT , so
that by (27) one obtains η1η2 = 0 a.e. in ΞT .

To complete the proof, it suffices to take η = η1 − η2 and, using the
relations η1 ≥ 0, η2 ≥ 0 and η1 η2 = 0 a.e. in ΞT , to see that η+ = η1,
η− = η2 a.e. in ΞT .

Based on the previous lemma, consider the following problem, which has
the same solution u as the problem Q1, and the solutions λ1, λ2 satisfy the
relation λ = λ1 − λ2, where λ is a solution of Q1 .
Problem Q2 : Find u ∈ W0, λ1, λ2 ∈ L2(0, T ;L2(Ξ)) such that u(0) = u0,
u̇(0) = u1, (λ1, λ2) ∈ Λ+(l(u))× Λ−(l(u)) and

〈u̇(T ), v(T )− u(T )〉U ′×U − (u1, v(0)− u0)

+

∫ T

0

{−(u̇, v̇ − u̇) + a0(u, v − u) + b0(u̇, v − u)} dt (28)

+

∫ T

0

{φ0(λ1, λ2, v + ku̇− u)− φ0(λ1, λ2, ku̇)} dt ≥

∫ T

0

〈f0, v − u〉 dt

∀ v ∈ L∞(0, T ;V0) ∩W
1,2(0, T ;H0).

3.1 Some auxiliary existence results

For the convenience of the reader, an existence and uniqueness result proved
in [11] will be restated here, under an adapted form.

Let β : V0 → R and φ1 : [0, T ] × V 3
0 → R be two sequentially weakly
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continuous mappings such that

β(0) = 0 and φ1(t, z, v, w1 + w2) ≤ φ1(t, z, v, w1) + φ1(t, z, v, w2), (29)

φ1(t, z, v, θw) = θ φ1(t, z, v, w), (30)

φ1(0, 0, 0, w) = 0 ∀ t ∈ [0, T ], ∀ z, v, w, w1,2 ∈ V0, ∀ θ ≥ 0, (31)

∃ k3 > 0 such that ∀ t1,2 ∈ [0, T ], ∀ u1,2, v1,2, w ∈ V0,
|φ1(t1, u1, v1, w)− φ1(t2, u2, v2, w)|
≤ k3(|t1 − t2|+ |β(u1 − u2)|+ |v1 − v2|) ‖w‖,

(32)

∃ k4 > 0 such that ∀ t1,2 ∈ [0, T ], ∀ u1,2, v1,2, w1,2 ∈ V0,
|φ1(t1, u1, v1, w1)− φ1(t1, u1, v1, w2) + φ1(t2, u2, v2, w2)
−φ1(t2, u2, v2, w1)| ≤ k4 ( |t1 − t2|+ ‖u1 − u2‖+ |v1 − v2|) ‖w1 − w2‖.

(33)

Let L ∈ W 1,∞(0, T ;V0) and assume the following compatibility condition on
the initial data: ∃ p1 ∈ H0 such that

(p1, w) + a0(u
0, w) + b0(u

1, w) + φ1(0, u
0, u1, w) = 〈L(0), w〉 ∀w ∈ V0. (34)

Consider the following problem.
Problem Q3 : Find u ∈ W 2,2(0, T ;H0)∩W

1,2(0, T ;V0) such that u(0) = u0,
u̇(0) = u1, and for almost all t ∈ (0, T )

(ü, v − u̇) + a0(u, v − u̇) + b0(u̇, v − u̇)

+φ1(t, u, u̇, v)− φ1(t, u, u̇, u̇) ≥ 〈L, v − u̇〉 ∀ v ∈ V0.
(35)

Under the assumptions (13), (14), (29), (30), (32)-(34) and the stronger
condition

φ1(t, 0, 0, w) = 0 ∀ t ∈ [0, T ], ∀w ∈ V0, (36)

an existence and uniqueness result for the problem Q3 was proved in [11]
but in its proof the relation (36) was only used to verify that the relation
(33) implies that φ1(t, z, v, ·) is Lipschitz continuous on V0. Since (31) and
(33) also imply that φ1(t, z, v, ·) is Lipschitz continuous, we clearly have the
following existence and uniqueness result.

Theorem 3.1. Under the assumptions (13), (14), (29)-(34), there exists a
unique solution to the problem Q3.

Lemma 3.2. Assume that (13), (14), (16)-(18), (20), and (25) hold. Then,
for each (γ1, γ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 ∩ (L2

+(ΞT ))
2 with γ1(0) = γ2(0) = 0,

there exists a unique solution u = u(γ1,γ2) of the following evolution varia-
tional inequality: find u ∈ W 2,2(0, T ;H0)∩W

1,2(0, T ;V0) such that u(0) = u0,
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u̇(0) = u1, and for almost all t ∈ (0, T )

(ü, v − u̇) + a0(u, v − u̇) + b0(u̇, v − u̇)

+φ0(γ1, γ2, v)− φ0(γ1, γ2, u̇) ≥ 〈f0, v − u̇〉 ∀ v ∈ V0.
(37)

Proof. We apply Theorem 3.1 to β = 0, L = f0 and

φ1(t, z, v, w) = φ0(γ1(t), γ2(t), w) ∀ t ∈ [0, T ], ∀ z, v, w ∈ V0.

Since φ0 satisfies (16)-(18) one can easily verify the properties (29)-(31).
Also, (25) and (31) imply the condition (34).
Using (20), we have

∀ t1,2 ∈ [0, T ], ∀ u1,2, v1,2, w1,2 ∈ V0,

|φ1(t1, u1, v1, w1)− φ1(t1, u1, v1, w2) + φ1(t2, u2, v2, w2)− φ1(t2, u2, v2, w1)|

= |φ0(γ1(t1), γ2(t1), w1)− φ0(γ1(t1), γ2(t1), w2)|

+φ0(γ1(t2), γ2(t2), w2)− φ0(γ1(t2), γ2(t2), w1)|

≤ k2(‖γ1(t1)− γ1(t2)‖L2(Ξ) + ‖γ2(t1)− γ2(t2)‖L2(Ξ))‖w1 − w2‖U

≤ k2(Cγ1 + Cγ2)|t1 − t2|‖w1 − w2‖U

≤ k5|t1 − t2|‖w1 − w2‖U ,

where Cγ1 , Cγ2 denote the Lipschitz constants of γ1, γ2, respectively, and
k5 = k2(Cγ1 + Cγ2).

Thus,

|φ1(t1, u1, v1, w1)− φ1(t1, u1, v1, w2) + φ1(t2, u2, v2, w2)− φ1(t2, u2, v2, w1)|

≤ k5|t1 − t2|‖w1 − w2‖U ∀ t1,2 ∈ [0, T ], ∀ u1,2, v1,2, w1,2 ∈ V0,
(38)

and, since by the continuous embedding V0 ⊂ U there exists CU > 0 such that
‖w‖U ≤ CU‖w‖ ∀w ∈ V0, it follows that φ1 satisfies (33) with k4 = k5CU .

Taking in (38) w1 = w, w2 = 0, by (30) with θ = 0, we obtain

|φ1(t1, u1, v1, w)− φ1(t2, u2, v2, w)| ≤ k5|t1 − t2|‖w‖U

∀ t1,2 ∈ [0, T ], ∀ u1,2, v1,2, w ∈ V0,
(39)

and using the continuous embedding V0 ⊂ U , it follows that φ1 satisfies (32)
with k3 = k5CU .
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Now, taking in (38) t1 = t, t2 = 0, u1 = z, v1 = v, u2 = v2 = 0, by (31)
we have

|φ1(t, z, v, w1)− φ1(t, z, v, w2)| ≤ k5 t ‖w1 − w2‖U

∀ t ∈ [0, T ], ∀ z, v, w1,2 ∈ V0.
(40)

As the embedding from V0 into U is compact, from (39) and (40) it is easily
seen that φ1, which is depending only on t and w, is weakly sequentially
continuous.

By Theorem 3.1 there exists a unique solution u = u(γ1,γ2) of the varia-
tional inequality (37).

Lemma 3.3. Let (γ1, γ2), (δ1, δ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 ∩ (L2
+(ΞT ))

2 such
that γ1(0) = γ2(0) = δ1(0) = δ2(0) = 0 and let u(γ1,γ2), u(δ1,δ2) be the corre-
sponding solutions of (37). Then there exists a constant C0 > 0, independent
of (γ1, γ2), (δ1, δ2), such that for all t ∈ [0, T ]

|u̇(γ1,γ2)(t)− u̇(δ1,δ2)(t)|
2 + ‖u(γ1,γ2)(t)− u(δ1,δ2)(t)‖

2

+

∫ t

0

‖u̇(γ1,γ2) − u̇(δ1,δ2)‖
2 ds

≤ C0

∫ t

0

{φ0(γ1, γ2, u̇(δ1,δ2))− φ0(γ1, γ2, u̇(γ1,γ2))

+φ0(δ1, δ2, u̇(γ1,γ2))− φ0(δ1, δ2, u̇(δ1,δ2))} ds.

(41)

Proof. Let (γ1, γ2), (δ1, δ2) ∈ (W 1,∞(0, T ;L2(Ξ)))2 ∩ (L2
+(ΞT ))

2 and u1 :=
u(γ1,γ2), u2 := u(δ1,δ2) be the corresponding solutions of (37), for which the ex-
istence and uniqueness are insured by Lemma 3.2. Taking in each inequality
v = u̇2 and v = u̇1, respectively, for a.e. s ∈ (0, T ) we have

(ü1 − ü2, u̇1 − u̇2) + a0(u1 − u2, u̇1 − u̇2) + b0(u̇1 − u̇2, u̇1 − u̇2)

≤ φ0(γ1, γ2, u̇2)− φ0(γ1, γ2, u̇1) + φ0(δ1, δ2, u̇1)− φ0(δ1, δ2, u̇2).

As the solutions u1, u2 verify the same initial conditions and a0 is symmetric,
by integrating over (0, t) it follows that for all t ∈ [0, T ]

1

2
|u̇1(t)− u̇2(t)|

2 +
1

2
a0(u1(t)− u2(t), u1(t)− u2(t))

+

∫ t

0

b0(u̇1 − u̇2, u̇1 − u̇2) ds

≤

∫ t

0

{φ0(γ1, γ2, u̇2)− φ0(γ1, γ2, u̇1) + φ0(δ1, δ2, u̇1)− φ0(δ1, δ2, u̇2)} ds.

Using the V0 - ellipticity conditions (14), the estimate (41) follows.
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3.2 A fixed point problem formulation

Since D(0, T ;L2(Ξ)) is dense in L2(0, T ;L2(Ξ)), which is classically proved by
using the convolution product with suitable mollifiers, it follows that for every
γ ∈ L2

+(ΞT ), there exists a sequence (γ
n)n inW

1,∞(0, T ;L2(Ξ))∩L2
+(ΞT ) such

that γn(0) = 0, for all n ∈ N, and γn → γ in L2(0, T ;L2(Ξ)).

Theorem 3.2. Assume that (13), (14), (16)-(21), and (25) hold. For each
(γ1, γ2) ∈ (L2

+(ΞT ))
2, let (γn1 , γ

n
2 )n be a sequence in (W 1,∞(0, T ;L2(Ξ)))2 ∩

(L2
+(ΞT ))

2 such that (γn1 , γ
n
2 )⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2, γn1 (0) = γn2 (0) =

0, and let u(γn

1
,γn

2
) be the solution of (37) corresponding to (γn1 , γ

n
2 ), for every

n ∈ N. Then (u(γn

1
,γn

2
))n is strongly convergent in W0, its limit, denoted by

u = u(γ1,γ2), is independent of the chosen sequence converging to (γ1, γ2) with
the same properties as (γn1 , γ

n
2 )n and is a solution of the following evolution

variational inequality: u(0) = u0, u̇(0) = u1,

〈u̇(T ), v(T )− u(T )〉U ′×U − (u1, v(0)− u0)

+

∫ T

0

{−(u̇, v̇ − u̇) + a0(u, v − u) + b0(u̇, v − u)} dt (42)

+

∫ T

0

{φ0(γ1, γ2, v − u+ ku̇)− φ0(γ1, γ2, ku̇)} dt ≥

∫ T

0

〈f0, v − u〉 dt

∀ v ∈ L∞(0, T ;V0) ∩W
1,2(0, T ;H0).

Proof. Assume (γ1, γ2) ∈ (L2
+(ΞT ))

2, γn1 , γ
n
2 ∈ W 1,∞(0, T ;L2(Ξ)) ∩ L2

+(ΞT )
such that γn1 (0) = γn2 (0) = 0, for all n ∈ N and (γn1 , γ

n
2 ) ⇀ (γ1, γ2) in

(L2(0, T ;L2(Ξ)))2. Then, by Lemma 3.2, for every n ∈ N there exists a
unique solution of the following variational inequality: find un := u(γn

1
,γn

2
) ∈

W 2,2(0, T ;H0) ∩ W 1,2(0, T ;V0) such that un(0) = u0, u̇n(0) = u1, and, for
almost all t ∈ (0, T ),

(ün, w − u̇n) + a0(un, w − u̇n) + b0(u̇n, w − u̇n)

+φ0(γ
n
1 , γ

n
2 , w)− φ0(γ

n
1 , γ

n
2 , u̇n) ≥ 〈f0, w − u̇n〉 ∀w ∈ V0.

(43)

From (43), for w = 0, w = 2u̇n, and integrating over (0, t) with t ∈ (0, T ),
we derive

∫ t

0

(ün, u̇n) ds+

∫ t

0

a0(un, u̇n) ds+

∫ t

0

b0(u̇n, u̇n) ds

+

∫ t

0

φ0(γ
n
1 , γ

n
2 , u̇n) ds =

∫ t

0

〈f0, u̇n〉 ds,
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and so for almost every t ∈ (0, T ) we have

1

2
|u̇n(t)|

2 +
1

2
a0(un(t), un(t)) +

∫ t

0

b0(u̇n, u̇n) ds

= −

∫ t

0

φ0(γ
n
1 , γ

n
2 , u̇n) ds+

∫ t

0

〈f0, u̇n〉 ds+
1

2
|u1|2 +

1

2
a0(u

0, u0).

By the relations (14), (23) for v2 = 0, and (13), we obtain

1

2
|u̇n(t)|

2 +
ma

2
‖un(t)‖

2 +mb

∫ t

0

‖u̇n‖
2 ds

≤

∫ t

0

k2(‖γ
n
1 ‖L2(Ξ) + ‖γn2 ‖L2(Ξ))‖u̇n‖U ds+

∫ t

0

‖f0‖‖u̇n‖ ds+
1

2
|u1|2 +

Ma

2
‖u0‖2.

Since the sequence (γn1 , γ
n
2 )n is bounded in (L2(0, T ;L2(Ξ)))2, by Young’s

inequality it follows that there exists a positive constant C1, depending only
on a0, b0, f0, u

0, u1, the bound of (γn1 , γ
n
2 )n, k2 and CU , such that the following

estimates hold:

∀n ∈ N, |u̇n(t)| ≤ C1, ‖un(t)‖ ≤ C1 a.e. t ∈ (0, T ), ‖u̇n‖L2(0,T ;V0) ≤ C1.
(44)

Using (43) for w = u̇n ± ψ and (19), we see that for all ψ ∈ L2(0, T ;U0),

∫ T

0

(ün, ψ) ds+

∫ T

0

a0(un, ψ) ds+

∫ T

0

b0(u̇n, ψ) ds =

∫ T

0

〈f0, ψ〉 ds.

This relation and the estimates (44) imply that there exists a positive con-
stant C2 having the same properties as C1 and satisfying the estimate

∀n ∈ N, ‖ün‖L2(0,T ;U ′

0
) ≤ C2. (45)

From (44), (45), it follows that there exist a subsequence (unk
)k and u such

that

u̇nk
⇀∗ u̇ in L∞(0, T ;H0), unk

⇀∗ u in L∞(0, T ;V0),

u̇nk
⇀ u̇ in L2(0, T ;V0), ünk

⇀ ü in L2(0, T ;U ′

0).
(46)

According to Theorem 2.1 with

F = (u̇nk
)k, X̂ = H0, Û = U ′, Ŷ = U ′

0, r = 2,

F = (unk
)k, X̂ = V0, Û = U, Ŷ = H0, r = 2,

F = (u̇nk
)k, X̂ = V0, Û = U, Ŷ = U ′

0, p = 2,
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we obtain

u̇nk
→ u̇ in C([0, T ];U ′), unk

→ u in C([0, T ];U), u̇nk
→ u̇ in L2(0, T ;U).

(47)
By Lemma 3.3, for all k, l ∈ N we have

∫ T

0

‖u̇nk
− u̇nl

‖2 ds ≤ C0

∫ T

0

{φ0(γ
nk

1 , γnk

2 , u̇nl
)− φ0(γ

nk

1 , γnk

2 , u̇nk
)

+φ0(γ
nl

1 , γ
nl

2 , u̇nk
)− φ0(γ

nl

1 , γ
nl

2 , u̇nl
)} ds.

(48)

and passing to limits by using (24), we find that (u̇nk
)k is a Cauchy sequence

in L2(0, T ;V0). Thus, (u̇nk
)k is strongly convergent to u̇ in this space and

since

for all t ∈ [0, T ], unk
(t) = u0 +

∫ t

0

u̇nk
(s) ds,

we deduce

unk
→ u in C([0, T ];V0), unk

→ u in W 1,2(0, T ;V0). (49)

The limit u is the same for all the convergent subsequences, satisfying con-
vergence properties similar to (47), corresponding to every sequence approx-
imating (γ1, γ2), as can be readily seen by passing to limits in the following
relation, obtained from (41) for γ1,2 = γn1,2, δ1,2 = δn1,2 and for all n ∈ N:

∫ T

0

‖u̇(γn

1
,γn

2
) − u̇(δn

1
,δn

2
)‖

2 ds

≤ C0

∫ T

0

{φ0(γ
n
1 , γ

n
2 , u̇(δn1 ,δn2 ))− φ0(γ

n
1 , γ

n
2 , u̇(γn

1
,γn

2
))

+φ0(δ
n
1 , δ

n
2 , u̇(γn

1
,γn

2
))− φ0(δ

n
1 , δ

n
2 , u̇(δn1 ,δn2 ))} ds,

(50)

where (δn1 , δ
n
2 )n is an arbitrary sequence in (W 1,∞(0, T ;L2(Ξ)))2∩ (L2

+(ΞT ))
2

such that δn1 (0) = δn2 (0) = 0 ∀n ∈ N, and (δn1 , δ
n
2 )⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2.

Now, for all v ∈ L∞(0, T ;V0) ∩W 1,2(0, T ;H0), we choose in (43) w =
u̇n +

1
k
(v − un), and so integrating over (0, T ) yields

∫ T

0

(ün, v − un) dt+

∫ T

0

{a0(un, v − un) + b0(u̇n, v − un)} dt

+

∫ T

0

{φ0(γ
n
1 , γ

n
2 , v − un + ku̇n)− φ0(γ

n
1 , γ

n
2 , ku̇n)} dt

≥

∫ T

0

〈f0, v − un〉 dt

(51)
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and integrating by parts the first term in (51) implies

(u̇n(T ), v(T )− un(T ))− (û1, v(0)− u0)

+

∫ T

0

{−(u̇n, v̇ − u̇n) + a0(un, v − un) + b0(u̇n, v − un)} dt (52)

+

∫ T

0

{φ0(γ
n
1 , γ

n
2 , v − un + ku̇n)− φ0(γ

n
1 , γ

n
2 , ku̇n)} dt ≥

∫ T

0

〈f0, v − un〉 dt.

Using e.g. (47), (13) and (24), it is clear that we can pass to the limit in
each term of (52) and so we obtain that u = u(γ1,γ2) is a solution of (42).

Let Φ : (L2
+(ΞT ))

2 → 2(L
2
+
(ΞT ))2 \ {∅} be the set-valued mapping defined

by

Φ(γ1, γ2) = Λ+(l(u(γ1,γ2)))× Λ−(l(u(γ1,γ2)))

for all (γ1, γ2) ∈ (L2
+(ΞT ))

2,
(53)

where u(γ1,γ2) is the solution of the variational inequality (42) which corre-
sponds to (γ1, γ2) by the procedure described in Theorem 3.2.

It is easily seen that if (λ1, λ2) is a fixed point of Φ, i.e. (λ1, λ2) ∈
Φ(λ1, λ2), then (u(λ1,λ2), λ1, λ2) is a solution of the Problem Q2.

We shall consider a new problem, which consists in finding a fixed point of
the set-valued mapping Φ, called also multivalued function or multifunction,
which will provide a solution of Problem Q1.

3.3 Existence of a fixed point

We shall prove the existence of a fixed point of the multifunction Φ by using
a corollary of the Ky Fan’s fixed point theorem [14], proved in [27] in the
particular case of a reflexive Banach space.

Definition 3.1. Let Y be a reflexive Banach space, D a weakly closed set in
Y , and F : D → 2Y \ {∅} be a multivalued function. F is called sequentially
weakly upper semicontinuous if zn ⇀ z, yn ∈ F (zn) and yn ⇀ y imply
y ∈ F (z).

Proposition 3.1. ([27]) Let Y be a reflexive Banach space, D a convex,
closed and bounded set in Y , and F : D → 2D \ {∅} a sequentially weakly
upper semicontinuous multivalued function such that F (z) is convex for every
z ∈ D. Then F has a fixed point.
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Note that since Y is a reflexive Banach space and D is convex, closed and
bounded, there is no assumption that Y is separable, see [27, 4].

Theorem 3.3. Assume that (1), (2), (13)-(21) and (25) hold. Then there
exists (λ1, λ2) ∈ (L2

+(ΞT ))
2 such that (λ1, λ2) ∈ Φ(λ1, λ2). For each fixed

point (λ1, λ2) of the multifunction Φ, (u(λ1,λ2), λ) with λ = λ1 − λ2 is a
solution of the Problem Q1.

Proof. By Lemma 3.1, if (λ1, λ2) ∈ Φ(λ1, λ2), then (u(λ1,λ2), λ) is clearly a
solution to the Problem Q1.

We apply Proposition 3.1 to Y = (L2(0, T ;L2(Ξ)))2, D = (L2
+(ΞT ))

2 ∩
{

ζ ∈ L2(0, T ;L2(Ξ)); ‖ζ‖L2(0,T ;L2(Ξ)) ≤ R0

}2
and F = Φ.

The set D ⊂ (L2(0, T ;L2(Ξ)))2 is clearly convex, closed and bounded.
Since for each ζ ∈ L2(0, T ;L2(Ξ)) the sets Λ+(ζ) and Λ−(ζ) are nonempty,
convex, closed, and bounded by R0, it follows that Φ(γ1, γ2) is a nonempty,
convex and closed subset of D for every (γ1, γ2) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper
semicontinuous, let (γn1 , γ

n
2 ) ⇀ (γ1, γ2), (γ

n
1 , γ

n
2 ) ∈ D, (ηn1 , η

n
2 ) ∈ Φ(γn1 , γ

n
2 )

∀n ∈ N, (ηn1 , η
n
2 )⇀ (η1, η2) and let us verify that (η1, η2) ∈ Φ(γ1, γ2).

Using the Theorem 3.2 for each n ∈ N, it follows that there exists a
sequence (γ̂n1 , γ̂

n
2 )n in (W 1,∞(0, T ;L2(Ξ)))2 ∩ (L2

+(ΞT ))
2 such that (γn1 , γ

n
2 )−

(γ̂n1 , γ̂
n
2 )⇀ 0, γ̂n1 (0) = γ̂n2 (0) = 0 and

‖u(γ̂n

1
,γ̂n

2
) − u(γn

1
,γn

2
)‖W0

≤
1

n
for all n ∈ N, (54)

where u(γ̂n

1
,γ̂n

2
) is the solution of (37) corresponding to (γ̂n1 , γ̂

n
2 ), u(γn

1
,γn

2
) is the

solution of (42) corresponding to (γn1 , γ
n
2 ) and to the procedure that enables

to define Φ(γn1 , γ
n
2 ).

As (γn1 , γ
n
2 )⇀ (γ1, γ2) in (L2(0, T ;L2(Ξ)))2, Theorem 3.2 implies u(γ̂n

1
,γ̂n

2
) →

u(γ1,γ2) in W0, and by (54) and the triangle inequality, we obtain

u(γn

1
,γn

2
) → u(γ1,γ2) in W0. (55)

Now, by Lemma 3.1, the relation (ηn1 , η
n
2 ) ∈ Φ(γn1 , γ

n
2 ) is equivalent to

ηn1 − ηn2 ∈ Λ(l(u(γn

1
,γn

2
))) (56)

which may be rewritten as

κ ◦ ln ≤ ηn1 − ηn2 ≤ κ ◦ ln a.e. in ΞT , (57)

for all n ∈ N, where ln := l(u(γn

1
,γn

2
)). The relations (57) are equivalent to

∫

ω

κ ◦ ln ≤

∫

ω

(ηn1 − ηn2 ) ≤

∫

ω

κ ◦ ln, (58)
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for every measurable subset ω ⊂ ΞT and for all n ∈ N.
Using (55), (15), the semi-continuity of κ and κ, the relation (2), the con-

vergence property

∫

ω

(ηn1 −η
n
2 ) →

∫

ω

(η1−η2), and passing to limits according

to Fatou’s lemma (see also [27]), we obtain

∫

ω

κ ◦ l(u(γ1,γ2)) ≤

∫

ω

(η1 − η2) ≤

∫

ω

κ ◦ l(u(γ1,γ2)), (59)

for every measurable subset ω ⊂ ΞT , which implies (η1, η2) ∈ Φ(γ1, γ2).

4 Existence of a solution to the contact prob-

lem

Theorem 4.1. Under the assumptions of Section 2 there exists a solution of
the Problem P 1

v .

Proof. We shall prove that there exists at least a solution (u, λ+, λ−) of the
Problem P 2

v which will provide a solution (u, λ) of the Problem P 1
v with

λ = λ+ − λ−.
We apply Theorem 3.3 to U0 = H1

0 = H1
0 (Ω

1;Rd)×H1
0 (Ω

2;Rd), V0 = V ,
U = H ι, H0 = H , a0 = a, b0 = b, u0 = u0, u

1 = u1, φ0 = φ, f0 = f and to
the mapping l : V → L2(Ξ) defined by l(v) = [vN ] ∀v ∈ V .

Since Aα
ijkl, Bα

ijkl ∈ L∞(Ωα) ∀ i, j, k, l = 1, . . . , d, α = 1, 2, we obtain
(13).

The condition meas(Γα
U) > 0, the ellipticity properties of the coefficients

Aα
ijkl, B

α
ijkl and the Korn’s inequality imply that there exist mα

a ,m
α
b > 0

such that

aα(vα,vα) ≥ mα
a ‖v

α‖2
V

α , bα(vα,vα) ≥ mα
b ‖v

α‖2
V

α ∀vα ∈ V α, α = 1, 2,

and we obtain

a(v,v) ≥ ma ‖v‖
2, b(v,v) ≥ mb ‖v‖

2 ∀v ∈ V , (60)

where ma = min(m1
a,m

2
a), mb = min(m1

b ,m
2
b).

Also, the properties (15)-(19), (21) and (25) can be easily verified.
Now, let Ctr be a positive constant such that ‖v‖(L2(Ξ))d ≤ Ctr‖v‖Hι for
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all v ∈ H ι. Using (11), the following estimates hold:

∀ γ1, γ2, δ1, δ2 ∈ L2
+(Ξ), ∀v1,v2 ∈ V ,

|φ(γ1, γ2,v1)− φ(γ1, γ2,v2) + φ(δ1, δ2,v2)− φ(δ1, δ2,v1)|

= | − (γ1 − γ2, v1N)L2(Ξ) +

∫

Ξ

µ (γ1 + γ2) |v1T | dξ

+(γ1 − γ2, v2N)L2(Ξ) −

∫

Ξ

µ (γ1 + γ2) |v2T | dξ

−(δ1 − δ2, v2N)L2(Ξ) +

∫

Ξ

µ (δ1 + δ2) |v2T | dξ

+(δ1 − δ2, v1N)L2(Ξ) −

∫

Ξ

µ (δ1 + δ2) |v1T | dξ|

≤ |(γ1 − γ2 − δ1 + δ2, v1N − v2N)L2(Ξ)|

+|

∫

Ξ

µ (γ1 + γ2 − δ1 − δ2) (|v1T | − |v2T |) dξ|

≤ (‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖v1N − v2N‖L2(Ξ)

+‖µ‖L∞(Ξ) (‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖v1T − v2T‖(L2(Ξ))d

≤ (1 + ‖µ‖L∞(Ξ)) (‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖v1 − v2‖(L2(Ξ))d

≤ Ctr(1 + ‖µ‖L∞(Ξ)) (‖γ1 − δ1‖L2(Ξ) + ‖γ2 − δ2‖L2(Ξ)) ‖v1 − v2‖Hι ,

and so (20) is satisfied with k2 = Ctr(1 + ‖µ‖L∞(Ξ)).
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