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The aim of this work is to study a class of nonsmooth dynamic contact problem which model several surface interactions, including relaxed unilateral contact conditions, adhesion and Coulomb friction laws, between two viscoelastic bodies of Kelvin-Voigt type. An abstract formulation which generalizes these problems is considered and the existence of a solution is proved by using Ky Fan's fixed point theorem, suitable approximation properties, several estimates and compactness arguments.

Introduction

This paper is concerned with the study of a class of dynamic contact problems which describe various surface interactions between two Kelvin-Voigt viscoelastic bodies. These interactions can include some relaxed unilateral contact, pointwise friction or adhesion conditions.

Existence and approximation of solutions to the quasistatic elastic problems have been studied for different contact conditions. The quasistatic unilateral contact problems with local Coulomb friction have been studied in [START_REF] Andersson | Existence results for quasistatic contact problems with Coulomb friction[END_REF][START_REF] Rocca | Existence and approximation of a solution to quasistatic Signorini problem with local friction[END_REF][START_REF] Rocca | Numerical analysis of quasistatic unilateral contact problems with local friction[END_REF] and adhesion laws based on the evolution of intensity of adhesion were analyzed in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Cocou | Existence results for unilateral quasistatic contact problems with friction and adhesion[END_REF]. The normal compliance models, which are particular regularizations of the Signorini's conditions, have been investigated by several authors, see e.g. [START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and references therein.
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A unified approach, which can be applied to various quasistatic problems, including unilateral and bilateral contact with nonlocal friction, or normal compliance conditions, has been considered recently in [START_REF] Badea | Internal and subspace correction approximations of implicit variational inequalities[END_REF].

The corresponding dynamic contact problems are more difficult to solve than the quasistatic ones, even in the viscoelastic case. Dynamic frictional contact problems with normal compliance laws for a viscoelastic body have been studied in [START_REF] Martins | Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws[END_REF][START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Kuttler | Dynamic friction contact problems for general normal and friction laws[END_REF][START_REF] Chau | A dynamic frictional contact problem with normal damped response[END_REF][START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF]. Nonlocal friction laws, obtained by suitable regularizations of the normal component of the stress vector appearing in the Coulomb friction conditions, were considered for viscoelastic bodies in [START_REF] Jarušek | Dynamic contact problems with given friction for viscoelastic bodies[END_REF][START_REF] Kuttler | Dynamic bilateral contact with discontinuous friction coefficient[END_REF][START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF][START_REF] Eck | Unilateral Contact Problems -Variational Methods and Existence Theorems[END_REF][START_REF] Cocou | Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity[END_REF][START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF]. Dynamic frictionless problems with adhesion have been studied in [START_REF] Chau | Dynamic frictionless contact with adhesion[END_REF][START_REF] Kuttler | Existence and regularity for dynamic viscoelastic adhesive contact with damage[END_REF][START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF] and dynamic viscoelastic problems coupling unilateral contact, recoverable adhesion and nonlocal friction have been analyzed in [START_REF] Cocou | A dynamic unilateral contact problem with adhesion and friction in viscoelasticity[END_REF][START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF].

Note that, using the Clarke subdifferential, the variational formulations of various contact problems can be given as hemivariational inequalities, which represent a broad generalization of the variational inequalities to locally Lipschitz functions, see [START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF][START_REF] Migorski | A unified approach to dynamic contact problems in viscoelasticity[END_REF][START_REF] Naniewicz | Mathematical Theory of Hemivariational Inequalities and Applications[END_REF][START_REF] Panagiotopoulos | Hemivariational Inequalities: Applications in Mechanics and Engineering[END_REF] and references therein.

A static contact problem with relaxed unilateral conditions and pointwise Coulomb friction was studied in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF], based on new abstract formulations and on Ky Fan's fixed point theorem. The extension to an elastic quasistatic contact problem was investigated in [START_REF] Cocou | Sur la modélisation mathématique de conditions unilatèrales en mécanique du contact[END_REF].

This work extends the results in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] to a new class of nonsmooth dynamic contact problems in viscoelasticity, which constitutes a unified approach to study some complex surface interactions.

The paper is organized as follows. In Section 2 the classical formulation of the dynamic contact problem is presented and the variational formulation is given as a two-field problem. Section 3 is devoted to the study of a more general evolution variational inequality, which is written as an equivalent fixed point problem, based on some existence and uniqueness results proved in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF]. Using the Ky Fan's theorem, the existence of a fixed point is proved. In Section 4 this abstract result is used to prove the existence of a variational solution of the dynamic contact problem.

Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt constitutive law, which occupy the reference domains

Ω α of R d , d = 2 or 3, with Lipschitz boundaries Γ α = ∂Ω α , α = 1, 2. Let Γ α U , Γ α F and Γ α C be three open disjoint sufficiently smooth parts of Γ α such that Γ α = Γ α U ∪ Γ α F ∪ Γ α C
and, to simplify the estimates, meas(Γ α U ) > 0, α = 1, 2. In this paper we assume the small deformation hypothesis and we use Cartesian coordinate representations. Let y α (x α , t) denote the position at time t ∈ [0, T ], where 0 < T < +∞, of the material point represented by x α in the reference configuration, and u α (x α , t) := y α (x α , t)x α denote the displacement vector of x α at time t, with the Cartesian coordinates u α = (u α 1 , ..., u α d ) = (ū α , u α d ). Let ε α , with the Cartesian coordinates ε α = (ε ij (u α )), and σ α , with the Cartesian coordinates σ α = σ α ij , be the infinitesimal strain tensor and the stress tensor, respectively, corresponding to Ω α , α = 1, 2.

Assume that the displacement U α = 0 on Γ α U × (0, T ), α = 1, 2, and that the densities of both bodies are equal to 1. Let

f 1 = (f 1 1 , f 2 1
) and

f 2 = (f 1 2 , f 2 
2 ) denote the given body forces in Ω 1 ∪ Ω 2 and tractions on Γ 1 F ∪ Γ 2 F , respectively. The initial displacements and velocities of the bodies are denoted by

u 0 = (u 1 0 , u 2 0 ), u 1 = (u 1 1 , u 2 1 
). The usual summation convention will be used for i, j, k, l = 1, . . . , d.

Suppose that the solids can be in contact between the potential contact surfaces Γ 1 C and Γ 2 C which can be parametrized by two C 1 functions, ϕ 1 , ϕ 2 , defined on an open and bounded subset Ξ of

R d-1 , such that ϕ 1 (ξ)-ϕ 2 (ξ) ≥ 0 ∀ ξ ∈ Ξ and each Γ α C is the graph of ϕ α on Ξ that is Γ α C = { (ξ, ϕ α (ξ)) ∈ R d ; ξ ∈ Ξ}, α = 1, 2.
Define the initial normalized gap between the two contact surfaces by

g 0 (ξ) = ϕ 1 (ξ) -ϕ 2 (ξ) 1 + |∇ϕ 1 (ξ)| 2 ∀ ξ ∈ Ξ.
Let n α denote the unit outward normal vector to Γ α , α = 1, 2. We shall use the following notations for the normal and tangential components of a displacement field v α , α = 1, 2, of the relative displacement corresponding to v := (v 1 , v 2 ) and of the stress vector σ α n α on Γ α C :

v α (ξ, t) := v α (ξ, ϕ α (ξ), t), v α N (ξ, t) := v α (ξ, t) • n α (ξ), v N (ξ, t) := v 1 N (ξ, t) + v 2 N (ξ, t), [v N ](ξ, t) := v N (ξ, t) -g 0 (ξ), v α T (ξ, t) := v α (ξ, t) -v α N (ξ, t)n α (ξ), v T (ξ, t) := v 1 T (ξ, t) -v 2 T (ξ, t), σ α N (ξ, t) := (σ α (ξ, t)n α (ξ)) • n α (ξ), σ α T (ξ, t) = σ α (ξ, t)n α (ξ) -σ α N (ξ, t)n α (ξ),
for all ξ ∈ Ξ and for all t ∈ [0, T ]. Let g := -[u N ] = g 0u 1 Nu 2 N be the gap corresponding to the solution u := (u 1 , u 2 ). Since the displacements, their derivatives and the gap are assumed small, by using a similar method as the one presented in [START_REF] Boieri | Existence, uniqueness, and regularity results for the two-body contact problem[END_REF] (see also [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF]) we obtain the following unilateral contact condition at time t in the set Ξ: [u N ] (ξ, t) = -g(ξ, t) ≤ 0 ∀ ξ ∈ Ξ.

Classical formulation

Let A α , B α denote two fourth-order tensors, the elasticity tensor and the viscosity tensor corresponding to Ω α , with the components A α = (A α ijkl ) and B α = (B α ijkl ), respectively. We assume that these components satisfy the following classical symmetry and ellipticity conditions:

C α ijkl = C α jikl = C α klij ∈ L ∞ (Ω α ), ∀ i, j, k, l = 1, . . . , d, ∃ α C α > 0 such that C α ijkl τ ij τ kl ≥ α C α τ ij τ ij ∀ τ = (τ ij ) verifying τ ij = τ ji , ∀ i, j = 1, . . . , d, where C α ijkl = A α ijkl , C α = A α or C α ijkl = B α ijkl , C α = B α ∀ i, j, k, l = 1, . . . , d, α = 1, 2.
We choose the following state variables: the infinitesimal strain tensor

(ε 1 , ε 2 ) =(ε(u 1 ), ε(u 2 )) in Ω 1 ∪ Ω 2 , the relative normal displacement [u N ] = u 1 N + u 2
Ng 0 , and the relative tangential displacement u T = u 1 Tu 2 T in Ξ. Let κ, κ : R → R be two mappings with κ lower semicontinuous and κ upper semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) and 0 / ∈ (κ(s), κ(s)) ∀ s ∈ R, (1) 
∃ r 0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r 0 ∀ s ∈ R. (2) 
Consider the following dynamic viscoelastic contact problem with Coulomb friction.

Problem P c : Find u = (u 1 , u 2 ) such that u(0) = u 0 , u(0) = u 1 and, for all t ∈ (0, T ), üα -div σ α (u α , uα ) = f α 1 in Ω α , (3) σ α (u α , uα ) = A α ε(u α ) + B α ε( uα ) in Ω α , (4) 
u α = 0 on Γ α U , σ α n α = f α 2 on Γ α F , α = 1, 2, ( 5 
) σ 1 n 1 + σ 2 n 2 = 0 in Ξ, (6) κ([u N ]) ≤ σ N ≤ κ([u N ]) in Ξ, (7) |σ T | ≤ µ |σ N | in Ξ and (8) 
|σ T | < µ |σ N | ⇒ uT = 0, |σ T | = µ |σ N | ⇒ ∃ θ ≥ 0, uT = -θσ T ,
where

σ α = σ α (u α , uα ), α = 1, 2, σ N := σ 1 N , σ T := σ 1 T , and µ ∈ L ∞ (Ξ), µ ≥ 0 a.e. in Ξ, is the coefficient of friction.
Different choices for κ, κ will give various contact and friction conditions as can be seen in the following examples.

Example 1. (Adhesion and friction conditions)

Let s 0 ≥ 0, M ≥ 0 be constants, k : R → R be a continuous function such that k ≥ 0 with k(0) = 0 and define

κ(s) =    0 if s ≤ -s 0 , k(s) if -s 0 < s < 0, -M if s ≥ 0, κ(s) =    0 if s < -s 0 , k(s) if -s 0 ≤ s ≤ 0, -M if s > 0.

Example 2. (Friction condition)

In Example 1 we set k = s 0 = 0 and define

κ M (s) = 0 if s < 0, -M if s ≥ 0, κ M (s) = 0 if s ≤ 0, -M if s > 0.
The classical Signorini's conditions correspond formally to M = +∞.

Example 3. (General normal compliance conditions)

Various normal compliance conditions, friction and adhesion laws can be obtained from the previous general formulation if one considers κ = κ = κ, where κ : R → R is some bounded Lipschitz continuous function with κ(0) = 0, so that σ N is given by the relation

σ N = κ([u N ]).

Variational formulations

We adopt the following notations:

H s (Ω α ) := H s (Ω α ; R d ), α = 1, 2, H s := H s (Ω 1 ) × H s (Ω 2 ), v, w -s,s = v 1 , w 1 H -s (Ω 1 )×H s (Ω 1 ) + v 2 , w 2 
H -s (Ω 2 )×H s (Ω 2 ) ∀ v = (v 1 , v 2 ) ∈ H -s , ∀ w = (w 1 , w 2 ) ∈ H s , ∀ s ∈ R.
Define the Hilbert spaces (H, |.|) with the associated inner product denoted by (. , .), (V , . ) with the associated inner product (of H 1 ) denoted by . , . , and the closed convex cones L 2 + (Ξ), L 2 + (Ξ × (0, T )) as follows:

H := H 0 = L 2 (Ω 1 ; R d ) × L 2 (Ω 2 ; R d ), V := V 1 × V 2 ,
where

V α = {v α ∈ H 1 (Ω α ); v α = 0 a.e. on Γ α U }, α = 1, 2, L 2 + (Ξ) := {δ ∈ L 2 (Ξ); δ ≥ 0 a.e. in Ξ}, L 2 + (Ξ × (0, T )) := {η ∈ L 2 (0, T ; L 2 (Ξ)); η ≥ 0 a.e. in Ξ × (0, T )}.
Let a, b be two bilinear, continuous and symmetric mappings defined on

H 1 × H 1 → R by a(v, w) = a 1 (v 1 , w 1 ) + a 2 (v 2 , w 2 ), b(v, w) = b 1 (v 1 , w 1 ) + b 2 (v 2 , w 2 ) ∀ v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ H 1 , where, for α = 1, 2, a α (v α , w α ) = Ω α A α ε(v α ) • ε(w α ) dx, b α (v α , w α ) = Ω α B α ε(v α ) • ε(w α ) dx. Assume f α 1 ∈ W 1,∞ (0, T ; L 2 (Ω α ; R d )), f α 2 ∈ W 1,∞ (0, T ; L 2 (Γ α F ; R d )), α = 1, 2, u 0 , u 1 ∈ V , g 0 ∈ L 2 + (Ξ)
, and define the following mappings:

J : L 2 (Ξ) × H 1 → R, J(δ, v) = Ξ µ |δ| |v T | dξ ∀ δ ∈ L 2 (Ξ), ∀ v = (v 1 , v 2 ) ∈ H 1 , f ∈ W 1,∞ (0, T ; H 1 ), f , v = α=1,2 Ω α f α 1 • v α dx + α=1,2 Γ α F f α 2 • v α ds ∀ v = (v 1 , v 2 ) ∈ H 1 , ∀ t ∈ [0, T ].
Assume the following compatibility conditions:

[u 0N ] ≤ 0, κ([u 0N ]) = 0 a.e. in Ξ and ∃ p 0 ∈ H such that (p 0 , w) + a(u 0 , w) + b(u 1 , w) = f (0), w ∀ w ∈ V . (9) 
The following compactness theorem proved in [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] will be used several times in this paper.

Theorem 2.1. Let X, Û and Ŷ be three Banach spaces such that X ⊂ Û ⊂ Ŷ with compact embedding from X into Û .

(i) Let F be bounded in L p (0, T ; X), where 1 ≤ p < ∞, and ∂F/∂t := { ḟ ; f ∈ F} be bounded in L 1 (0, T ; Ŷ ). Then F is relatively compact in L p (0, T ; Û ).

(ii) Let F be bounded in L ∞ (0, T ; X) and ∂F/∂t be bounded in L r (0, T ; Ŷ ), where r > 1. Then F is relatively compact in C([0, T ]; Û ).

For every ζ ∈ L 2 (0, T ; L 2 (Ξ)) = L 2 (Ξ × (0, T )), define the following sets:

Λ(ζ) = {η ∈ L 2 (0, T ; L 2 (Ξ)); κ • ζ ≤ η ≤ κ • ζ a.e. in Ξ × (0, T ) }, Λ + (ζ) = {η ∈ L 2 + (Ξ × (0, T )); κ + • ζ ≤ η ≤ κ + • ζ a.e. in Ξ × (0, T ) }, Λ -(ζ) = {η ∈ L 2 + (Ξ × (0, T )); κ -• ζ ≤ η ≤ κ -• ζ a.e. in Ξ × (0, T ) },
where, for each r ∈ R, r + := max(0, r) and r -:= max(0, -r) denote the positive and negative parts, respectively. Since meas(Ξ) < ∞ and κ, κ satisfy (2), it is also readily seen that there exists a constant, denoted by R 0 and depending on meas(Ξ), r 0 and T , such that for all ζ ∈ L 2 (0, T ; L 2 (Ξ)) the sets Λ + (ζ) and Λ -(ζ) are bounded in norm in L 2 (0, T ; L 2 (Ξ)) by R 0 . Moreover, these sets are bounded in L ∞ (0, T ; L ∞ (Ξ)).

A first variational formulation of the problem P c is the following.

Problem P 1 v : Find u ∈ C 1 ([0, T ]; H -ι )∩W 1,2 (0, T ; V ), λ ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , λ ∈ Λ([u N ]) and u(T ), v(T ) -u(T ) -ι, ι -(u 1 , v(0) -u 0 ) - T 0 ( u, v -u) dt + T 0 a(u, v -u) + b( u, v -u) -(λ, v N -u N ) L 2 (Ξ) dt (10) 
+ T 0 {J(λ, v + k u -u) -J(λ, k u)} dt ≥ T 0 f , v -u dt ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H), where 1 > ι > 1 2 , k > 0.
The formal equivalence between the variational problem P 1 v and the classical problem (3)-( 8) can be easily proved by using Green's formula and an integration by parts, where the Lagrange multiplier λ satisfies the relation

λ = σ N . Let φ : L 2 + (Ξ) × L 2 + (Ξ) × V → R be defined by φ(δ 1 , δ 2 , v) = -(δ 1 -δ 2 , v N ) L 2 (Ξ) + Ξ µ (δ 1 + δ 2 ) |v T | dξ ∀ (δ 1 , δ 2 ) ∈ (L 2 + (Ξ)) 2 , ∀ v = (v 1 , v 2 ) ∈ V . ( 11 
) Since η ∈ Λ(ζ) if and only if (η + , η -) ∈ Λ + (ζ) × Λ -(ζ)
, it follows that the variational problem P 1 v is clearly equivalent with the following problem.

Problem P 2 v : Find u ∈ C 1 ([0, T ]; H -ι )∩W 1,2 (0, T ; V ), λ ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , (λ + , λ -) ∈ Λ + ([u N ]) × Λ -([u N ]) and u(T ), v(T ) -u(T ) -ι, ι -(u 1 , v(0) -u 0 ) + T 0 {-( u, v -u) + a(u, v -u) + b( u, v -u)} dt (12) 
+ T 0 {φ(λ + , λ -, v + k u -u) -φ(λ + , λ -, k u)} dt ≥ T 0 f , v -u dt ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H).
The existence of variational solutions to problem P c will be established by using some abstract existence results that will be presented in the following section.

General existence results

Let U 0 , (V 0 , . , . , . ), (U, . U ) and (H 0 , |.|, (. , .)) be four Hilbert spaces such that U 0 is a closed linear subspace of V 0 dense in H 0 , V 0 ⊂ U ⊆ H 0 with continuous embeddings and the embedding from V 0 into U is compact.

To simplify the presentation and in view of the applications to contact problems, L 2 (Ξ) will be preserved in the abstract formulation even if, more generally, the space L 2 ( Ξ) can be considered with ( Ξ, m) a finite and complete measure space, see [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] for a time-independent application. Also, we use the notation Ξ T := Ξ × (0, T ).

Let a 0 , b 0 : V 0 × V 0 → R be two bilinear and symmetric forms such that

∃ M a , M b > 0 a 0 (u, v) ≤ M a u v , b 0 (u, v) ≤ M b u v , (13) 
∃ m a , m b > 0 a 0 (v, v) ≥ m a v 2 , b 0 (v, v) ≥ m b v 2 ∀ u, v ∈ V 0 . ( 14 
)
Let l : V 0 → L 2 (Ξ) and φ 0 :

L 2 + (Ξ) × L 2 + (Ξ) × V 0 →
R be two mappings satisfying the following conditions:

∃ k 1 > 0 such that ∀ v 1 , v 2 ∈ V 0 , l(v 1 ) -l(v 2 ) L 2 (Ξ) ≤ k 1 v 1 -v 2 U , (15) 
∀ γ 1 , γ 2 ∈ L 2 + (Ξ), ∀ θ ≥ 0, ∀ v 1 , v 2 , v ∈ V 0 , φ 0 (γ 1 , γ 2 , v 1 + v 2 ) ≤ φ 0 (γ 1 , γ 2 , v 1 ) + φ 0 (γ 1 , γ 2 , v 2 ), (16) 
φ 0 (γ 1 , γ 2 , θv) = θ φ 0 (γ 1 , γ 2 , v), (17) 
∀ v ∈ V 0 , φ 0 (0, 0, v) = 0, (18) 
∀ γ 1 , γ 2 ∈ L 2 + (Ξ), ∀ v ∈ U 0 , φ 0 (γ 1 , γ 2 , v) = 0, (19) 
∃ k 2 > 0 such that ∀ γ 1 , γ 2 , δ 1 , δ 2 ∈ L 2 + (Ξ), ∀ v 1 , v 2 ∈ V 0 , |φ 0 (γ 1 , γ 2 , v 1 ) -φ 0 (γ 1 , γ 2 , v 2 ) + φ 0 (δ 1 , δ 2 , v 2 ) -φ 0 (δ 1 , δ 2 , v 1 )| ≤ k 2 ( γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) ) v 1 -v 2 U , (20) if 
(γ n 1 , γ n 2 ) ∈ (L 2 + (Ξ T )) 2 for all n ∈ N and (γ n 1 , γ n 2 ) ⇀ (γ 1 , γ 2 ) in (L 2 (0, T ; L 2 (Ξ))) 2 , then T 0 φ 0 (γ n 1 , γ n 2 , v) ds → T 0 φ 0 (γ 1 , γ 2 , v) ds ∀ v ∈ L 2 (0, T ; V 0 ). ( 21 
)
Remark 3.1. i) Since by [START_REF] Kikuchi | Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods[END_REF] 

φ 0 (•, •, 0) = 0, from (20), for v 2 = 0, v 1 = v, we have ∀ γ 1 , γ 2 , δ 1 , δ 2 ∈ L 2 + (Ξ), ∀ v ∈ V 0 , |φ 0 (γ 1 , γ 2 , v) -φ 0 (δ 1 , δ 2 , v)| ≤ k 2 ( γ 1 -δ 1 L 2 (Ξ) + γ 2 -δ 2 L 2 (Ξ) ) v U . ( 22 
)
ii) From ( 18) and ( 20), for δ 1 = δ 2 = 0, we derive

∀ γ 1 , γ 2 ∈ L 2 + (Ξ), ∀ v 1 , v 2 ∈ V 0 , |φ 0 (γ 1 , γ 2 , v 1 ) -φ 0 (γ 1 , γ 2 , v 2 )| ≤ k 2 ( γ 1 L 2 (Ξ) + γ 2 L 2 (Ξ) ) v 1 -v 2 U . ( 23 
) iii) If (γ n 1 , γ n 2 ) ∈ (L 2 + (Ξ T )) 2 , for all n ∈ N, (γ n 1 , γ n 2 ) ⇀ (γ 1 , γ 2 ) in (L 2 (0, T ; L 2 (Ξ))) 2 , and v m → v in L 2 (0, T ; U ), then lim n,m→∞ T 0 φ 0 (γ n 1 , γ n 2 , v m ) ds → T 0 φ 0 (γ 1 , γ 2 , v) ds, ( 24 
)
which can be proved by taking into account [START_REF] Migorski | A unified approach to dynamic contact problems in viscoelasticity[END_REF] in the following relations:

| T 0 {φ 0 (γ n 1 , γ n 2 , v m ) -φ 0 (γ 1 , γ 2 , v)} ds| ≤ T 0 |φ 0 (γ n 1 , γ n 2 , v m ) -φ 0 (γ n 1 , γ n 2 , v)| ds + | T 0 {φ 0 (γ n 1 , γ n 2 , v) -φ 0 (γ 1 , γ 2 , v)} ds| ≤ T 0 k 2 ( γ n 1 L 2 (Ξ) + γ n 2 L 2 (Ξ) ) v m -v U ds +| T 0 {φ 0 (γ n 1 , γ n 2 , v) -φ 0 (γ 1 , γ 2 , v)} ds|,
and passing to limits by using [START_REF] Kuttler | Existence and regularity for dynamic viscoelastic adhesive contact with damage[END_REF] and that (γ n 1,2 ) n are bounded in L 2 (0, T ; L 2 (Ξ)). Assume that f 0 ∈ W 1,∞ (0, T ; V 0 ), u 0 , u 1 ∈ V 0 are given, and that the following compatibility condition holds: κ(l(u 0 )) = 0 and ∃ p 0 ∈ H 0 such that (p 0 , w) + a 0 (u 0 , w)

+ b 0 (u 1 , w) = f 0 (0), w ∀ w ∈ V 0 . ( 25 
)
Consider the following problem.

Problem Q 1 : Find u ∈ W 0 , λ ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , (λ + , λ -) ∈ Λ + (l(u)) × Λ -(l(u)) and u(T ), v(T ) -u(T ) U ′ × U -(u 1 , v(0) -u 0 ) + T 0 {-( u, v -u) + a 0 (u, v -u) + b 0 ( u, v -u)} dt (26) 
+ T 0 {φ 0 (λ + , λ -, v + k u -u) -φ 0 (λ + , λ -, k u)} dt ≥ T 0 f 0 , v -u dt ∀ v ∈ L ∞ (0, T ; V 0 ) ∩ W 1,2 (0, T ; H 0 ),
where

W 0 := C 1 ([0, T ]; U ′ ) ∩ W 1,2 (0, T ; V 0 ). The sets Λ + (ζ), Λ -(ζ)
and Λ(ζ) have the following useful properties, see also [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF].

Lemma 3.1. Let ζ ∈ L 2 (0, T ; L 2 (Ξ)) and (η 1 , η 2 ) ∈ Λ + (ζ) × Λ -(ζ). Then η 1 η 2 = 0 a.e. in Ξ T and there exists η ∈ Λ(ζ) such that η + = η 1 , η -= η 2 a.e. in Ξ T . Proof. If κ + • ζ ≤ η 1 ≤ κ + • ζ and κ -• ζ ≤ η 2 ≤ κ -• ζ a.e. in Ξ T , then (κ + • ζ) (κ -• ζ) ≤ η 1 η 2 ≤ (κ + • ζ) (κ -• ζ) a.e. in Ξ T . (27) 
Since by (1) 0 / ∈ (κ(ζ(ξ, t)), κ(ζ(ξ, t))), it follows that for almost all (ξ, t) ∈ Ξ T the terms κ(ζ(ξ, t)) and κ(ζ(ξ, t)) have the same sign, or at least one term is equal to zero. Thus, (κ

+ • ζ) (κ -• ζ) = (κ + • ζ) (κ -• ζ) = 0 a.e. in Ξ T ,
so that by [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] one obtains η 1 η 2 = 0 a.e. in Ξ T .

To complete the proof, it suffices to take η = η 1η 2 and, using the relations η 1 ≥ 0, η 2 ≥ 0 and η 1 η 2 = 0 a.e. in Ξ T , to see that

η + = η 1 , η -= η 2 a.e. in Ξ T .
Based on the previous lemma, consider the following problem, which has the same solution u as the problem Q 1 , and the solutions λ 1 , λ 2 satisfy the relation

λ = λ 1 -λ 2 , where λ is a solution of Q 1 . Problem Q 2 : Find u ∈ W 0 , λ 1 , λ 2 ∈ L 2 (0, T ; L 2 (Ξ)) such that u(0) = u 0 , u(0) = u 1 , (λ 1 , λ 2 ) ∈ Λ + (l(u)) × Λ -(l(u)) and u(T ), v(T ) -u(T ) U ′ × U -(u 1 , v(0) -u 0 ) + T 0 {-( u, v -u) + a 0 (u, v -u) + b 0 ( u, v -u)} dt (28) 
+ T 0 {φ 0 (λ 1 , λ 2 , v + k u -u) -φ 0 (λ 1 , λ 2 , k u)} dt ≥ T 0 f 0 , v -u dt ∀ v ∈ L ∞ (0, T ; V 0 ) ∩ W 1,2 (0, T ; H 0 ).

Some auxiliary existence results

For the convenience of the reader, an existence and uniqueness result proved in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF] will be restated here, under an adapted form. Let β : V 0 → R and φ 1 : [0, T ] × V 3 0 → R be two sequentially weakly continuous mappings such that

β(0) = 0 and φ 1 (t, z, v, w 1 + w 2 ) ≤ φ 1 (t, z, v, w 1 ) + φ 1 (t, z, v, w 2 ), (29) 
φ 1 (t, z, v, θw) = θ φ 1 (t, z, v, w), (30) 
φ 1 (0, 0, 0, w) = 0 ∀ t ∈ [0, T ], ∀ z, v, w, w 1,2 ∈ V 0 , ∀ θ ≥ 0, (31) 
∃ k 3 > 0 such that ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w ∈ V 0 , |φ 1 (t 1 , u 1 , v 1 , w) -φ 1 (t 2 , u 2 , v 2 , w)| ≤ k 3 (|t 1 -t 2 | + |β(u 1 -u 2 )| + |v 1 -v 2 |) w , (32) 
∃ k 4 > 0 such that ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w 1,2 ∈ V 0 , |φ 1 (t 1 , u 1 , v 1 , w 1 ) -φ 1 (t 1 , u 1 , v 1 , w 2 ) + φ 1 (t 2 , u 2 , v 2 , w 2 ) -φ 1 (t 2 , u 2 , v 2 , w 1 )| ≤ k 4 ( |t 1 -t 2 | + u 1 -u 2 + |v 1 -v 2 |) w 1 -w 2 . ( 33 
)
Let L ∈ W 1,∞ (0, T ; V 0 ) and assume the following compatibility condition on the initial data:

∃ p 1 ∈ H 0 such that (p 1 , w) + a 0 (u 0 , w) + b 0 (u 1 , w) + φ 1 (0, u 0 , u 1 , w) = L(0), w ∀ w ∈ V 0 . (34)
Consider the following problem. Problem Q 3 : Find u ∈ W 2,2 (0, T ; H 0 ) ∩ W 1,2 (0, T ; V 0 ) such that u(0) = u 0 , u(0) = u 1 , and for almost all t ∈ (0, T )

(ü, v -u) + a 0 (u, v -u) + b 0 ( u, v -u) +φ 1 (t, u, u, v) -φ 1 (t, u, u, u) ≥ L, v -u ∀ v ∈ V 0 . ( 35 
)
Under the assumptions ( 13), ( 14), ( 29), ( 30), ( 32)-(34) and the stronger condition

φ 1 (t, 0, 0, w) = 0 ∀ t ∈ [0, T ], ∀ w ∈ V 0 , (36) 
an existence and uniqueness result for the problem Q 3 was proved in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF] but in its proof the relation (36) was only used to verify that the relation [START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF] implies that φ 1 (t, z, v, •) is Lipschitz continuous on V 0 . Since ( 31) and ( 33) also imply that φ 1 (t, z, v, •) is Lipschitz continuous, we clearly have the following existence and uniqueness result.

Theorem 3.1. Under the assumptions ( 13), ( 14), ( 29)-( 34), there exists a unique solution to the problem Q 3 .

Lemma 3.2. Assume that ( 13), ( 14), ( 16)-( 18), [START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF], and (25) hold. Then, for each (γ 1 , γ 2 ) ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 2 ∩ (L 2 + (Ξ T )) 2 with γ 1 (0) = γ 2 (0) = 0, there exists a unique solution u = u (γ 1 ,γ 2 ) of the following evolution variational inequality: find u ∈ W 2,2 (0, T ; H 0 )∩W 1,2 (0, T ; V 0 ) such that u(0) = u 0 , u(0) = u 1 , and for almost all t ∈ (0, T )

(ü, v -u) + a 0 (u, v -u) + b 0 ( u, v -u) +φ 0 (γ 1 , γ 2 , v) -φ 0 (γ 1 , γ 2 , u) ≥ f 0 , v -u ∀ v ∈ V 0 . ( 37 
)
Proof. We apply Theorem 3.1 to β = 0, L = f 0 and

φ 1 (t, z, v, w) = φ 0 (γ 1 (t), γ 2 (t), w) ∀ t ∈ [0, T ], ∀ z, v, w ∈ V 0 .
Since φ 0 satisfies ( 16)-( 18) one can easily verify the properties ( 29)- [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF]. Also, ( 25) and ( 31) imply the condition (34). Using [START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF], we have

∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w 1,2 ∈ V 0 , |φ 1 (t 1 , u 1 , v 1 , w 1 ) -φ 1 (t 1 , u 1 , v 1 , w 2 ) + φ 1 (t 2 , u 2 , v 2 , w 2 ) -φ 1 (t 2 , u 2 , v 2 , w 1 )| = |φ 0 (γ 1 (t 1 ), γ 2 (t 1 ), w 1 ) -φ 0 (γ 1 (t 1 ), γ 2 (t 1 ), w 2 )| +φ 0 (γ 1 (t 2 ), γ 2 (t 2 ), w 2 ) -φ 0 (γ 1 (t 2 ), γ 2 (t 2 ), w 1 )| ≤ k 2 ( γ 1 (t 1 ) -γ 1 (t 2 ) L 2 (Ξ) + γ 2 (t 1 ) -γ 2 (t 2 ) L 2 (Ξ) ) w 1 -w 2 U ≤ k 2 (C γ 1 + C γ 2 )|t 1 -t 2 | w 1 -w 2 U ≤ k 5 |t 1 -t 2 | w 1 -w 2 U ,
where C γ 1 , C γ 2 denote the Lipschitz constants of γ 1 , γ 2 , respectively, and

k 5 = k 2 (C γ 1 + C γ 2 ). Thus, |φ 1 (t 1 , u 1 , v 1 , w 1 ) -φ 1 (t 1 , u 1 , v 1 , w 2 ) + φ 1 (t 2 , u 2 , v 2 , w 2 ) -φ 1 (t 2 , u 2 , v 2 , w 1 )| ≤ k 5 |t 1 -t 2 | w 1 -w 2 U ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w 1,2 ∈ V 0 , (38) 
and, since by the continuous embedding V 0 ⊂ U there exists

C U > 0 such that w U ≤ C U w ∀ w ∈ V 0 , it follows that φ 1 satisfies (33) with k 4 = k 5 C U .
Taking in (38) w 1 = w, w 2 = 0, by [START_REF] Rocca | Numerical analysis of quasistatic unilateral contact problems with local friction[END_REF] with θ = 0, we obtain

|φ 1 (t 1 , u 1 , v 1 , w) -φ 1 (t 2 , u 2 , v 2 , w)| ≤ k 5 |t 1 -t 2 | w U ∀ t 1,2 ∈ [0, T ], ∀ u 1,2 , v 1,2 , w ∈ V 0 , (39) 
and using the continuous embedding V 0 ⊂ U , it follows that φ 1 satisfies [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] with

k 3 = k 5 C U . Now, taking in (38) t 1 = t, t 2 = 0, u 1 = z, v 1 = v, u 2 = v 2 = 0, by (31) we have |φ 1 (t, z, v, w 1 ) -φ 1 (t, z, v, w 2 )| ≤ k 5 t w 1 -w 2 U ∀ t ∈ [0, T ], ∀ z, v, w 1,2 ∈ V 0 . (40) 
As the embedding from V 0 into U is compact, from (39) and (40) it is easily seen that φ 1 , which is depending only on t and w, is weakly sequentially continuous. By Theorem 3.1 there exists a unique solution u = u (γ 1 ,γ 2 ) of the variational inequality (37).

Lemma 3.3. Let (γ 1 , γ 2 ), (δ 1 , δ 2 ) ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 2 ∩ (L 2 + (Ξ T )) 2 such that γ 1 (0) = γ 2 (0) = δ 1 (0) = δ 2 (0) = 0 and let u (γ 1 ,γ 2 ) , u (δ 1 ,δ 2 )
be the corresponding solutions of (37). Then there exists a constant C 0 > 0, independent of (γ 1 , γ 2 ), (δ 1 , δ 2 ), such that for all t ∈ [0, T ]

| u(γ 1 ,γ 2 ) (t) -u(δ 1 ,δ 2 ) (t)| 2 + u (γ 1 ,γ 2 ) (t) -u (δ 1 ,δ 2 ) (t) 2 + t 0 u(γ 1 ,γ 2 ) -u(δ 1 ,δ 2 ) 2 ds ≤ C 0 t 0 {φ 0 (γ 1 , γ 2 , u(δ 1 ,δ 2 ) ) -φ 0 (γ 1 , γ 2 , u(γ 1 ,γ 2 ) ) +φ 0 (δ 1 , δ 2 , u(γ 1 ,γ 2 ) ) -φ 0 (δ 1 , δ 2 , u(δ 1 ,δ 2 ) )} ds. (41) 
Proof. Let (γ 1 , γ 2 ), (δ 1 , δ 2 ) ∈ (W 1,∞ (0, T ; L 2 (Ξ))) 2 ∩ (L 2 + (Ξ T )) 2 and u 1 := u (γ 1 ,γ 2 ) , u 2 := u (δ 1 ,δ 2 ) be the corresponding solutions of (37), for which the existence and uniqueness are insured by Lemma 3.2. Taking in each inequality v = u2 and v = u1 , respectively, for a.e. s ∈ (0, T ) we have

(ü 1 -ü2 , u1 -u2 ) + a 0 (u 1 -u 2 , u1 -u2 ) + b 0 ( u1 -u2 , u1 -u2 )
≤ φ 0 (γ 1 , γ 2 , u2 )φ 0 (γ 1 , γ 2 , u1 ) + φ 0 (δ 1 , δ 2 , u1 )φ 0 (δ 1 , δ 2 , u2 ).

As the solutions u 1 , u 2 verify the same initial conditions and a 0 is symmetric, by integrating over (0, t) it follows that for all t ∈ [0, T ] Using the V 0 -ellipticity conditions [START_REF] Fan | Fixed points and minimax theorems in locally convex topological linear spaces[END_REF], the estimate (41) follows.

and so for almost every t ∈ (0, T ) we have By the relations ( 14), ( 23) for v 2 = 0, and (13), we obtain Since the sequence (γ n 1 , γ n 2 ) n is bounded in (L 2 (0, T ; L 2 (Ξ))) 2 , by Young's inequality it follows that there exists a positive constant C 1 , depending only on a 0 , b 0 , f 0 , u 0 , u 1 , the bound of (γ n 1 , γ n 2 ) n , k 2 and C U , such that the following estimates hold: This relation and the estimates (44) imply that there exists a positive constant C 2 having the same properties as C 1 and satisfying the estimate

∀ n ∈ N, | un (t)| ≤ C 1 , u n (t) ≤ C
∀ n ∈ N, ün L 2 (0,T ;U ′ 0 ) ≤ C 2 . (45) 
From ( 44), (45), it follows that there exist a subsequence (u n k ) k and u such that

un k ⇀ * u in L ∞ (0, T ; H 0 ), u n k ⇀ * u in L ∞ (0, T ; V 0 ), un k ⇀ u in L 2 (0, T ; V 0 ), ün k ⇀ ü in L 2 (0, T ; U ′ 0 ). ( 46 
)
According to Theorem 2.1 with

F = ( un k ) k , X = H 0 , Û = U ′ , Ŷ = U ′ 0 , r = 2, F = (u n k ) k , X = V 0 , Û = U, Ŷ = H 0 , r = 2, F = ( un k ) k , X = V 0 , Û = U, Ŷ = U ′ 0 , p = 2,

For each ζ ∈ L 2

 2 (0, T ; L 2 (Ξ)) the sets Λ(ζ), Λ + (ζ) and Λ -(ζ) are clearly nonempty, because the bounding functions belong to the respective set, closed and convex.

1 2 | 0 b 0 0 {φ 0 (γ 1 , γ 2 ,

 2000012 u1 (t) -u2 (t)| 2 + 1 2 a 0 (u 1 (t)u 2 (t), u 1 (t)u 2 (t)) + t ( u1 -u2 , u1 -u2 ) ds ≤ t u2 )φ 0 (γ 1 , γ 2 , u1 ) + φ 0 (δ 1 , δ 2 , u1 )φ 0 (δ 1 , δ 2 , u2 )} ds.

  u 0 , u 0 ).

  1 a.e. t ∈ (0, T ), un L 2 (0,T ;V 0 ) ≤ C 1 . (44) Using (43) for w = un ± ψ and (19), we see that for all ψ ∈ L 2 (0, T ; U 0 ), T 0 (ü n , ψ) ds + T 0 a 0 (u n , ψ) ds + T 0 b 0 ( un , ψ) ds = T 0 f 0 , ψ ds.

  ( γ n 1 L 2 (Ξ) + γ n 2 L 2 (Ξ) ) un U ds +

	≤	0	t	1 2 k 2 t | un (t)| 2 + m a u n (t) 2 + m b 2 0 f 0 un ds + t un 2 ds 0	1 2	|u 1 | 2 +	M a 2	u 0 2 .

Acknowledgments

The partial support of this work by "Laboratoire Européen Associé CNRS Franco-Roumain de Mathématiques et Modélisation" is gratefully acknowledged.

A fixed point problem formulation

Since D(0, T ; L 2 (Ξ)) is dense in L 2 (0, T ; L 2 (Ξ)), which is classically proved by using the convolution product with suitable mollifiers, it follows that for every γ ∈ L 2 + (Ξ T ), there exists a sequence (γ n ) n in W 1,∞ (0, T ; L 2 (Ξ))∩L 2 + (Ξ T ) such that γ n (0) = 0, for all n ∈ N, and γ n → γ in L 2 (0, T ; L 2 (Ξ)).

Theorem 3.2. Assume that [START_REF] Eck | Unilateral Contact Problems -Variational Methods and Existence Theorems[END_REF], [START_REF] Fan | Fixed points and minimax theorems in locally convex topological linear spaces[END_REF], ( 16)- [START_REF] Kuttler | Existence and regularity for dynamic viscoelastic adhesive contact with damage[END_REF], and [START_REF] Naniewicz | Mathematical Theory of Hemivariational Inequalities and Applications[END_REF] hold. For each (γ 1 , γ 2 ) ∈ (L 2 + (Ξ T )) 2 , let (γ n 1 , γ n 2 ) n be a sequence in (W 1,∞ (0, T ; L 2 (Ξ))) 2 ∩ (L 2 + (Ξ T )) 2 such that (γ n 1 , γ n 2 ) ⇀ (γ 1 , γ 2 ) in (L 2 (0, T ; L 2 (Ξ))) 2 , γ n 1 (0) = γ n 2 (0) = 0, and let u (γ n 1 ,γ n 2 ) be the solution of (37) corresponding to (γ n 1 , γ n 2 ), for every n ∈ N. Then (u (γ n 1 ,γ n 2 ) ) n is strongly convergent in W 0 , its limit, denoted by u = u (γ 1 ,γ 2 ) , is independent of the chosen sequence converging to (γ 1 , γ 2 ) with the same properties as (γ n 1 , γ n 2 ) n and is a solution of the following evolution variational inequality: 2 . Then, by Lemma 3.2, for every n ∈ N there exists a unique solution of the following variational inequality: find

From (43), for w = 0, w = 2 un , and integrating over (0, t) with t ∈ (0, T ), we derive 

(47) By Lemma 3.3, for all k, l ∈ N we have

and passing to limits by using [START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF], we find that ( un k ) k is a Cauchy sequence in L 2 (0, T ; V 0 ). Thus, ( un k ) k is strongly convergent to u in this space and since

we deduce

The limit u is the same for all the convergent subsequences, satisfying convergence properties similar to (47), corresponding to every sequence approximating (γ 1 , γ 2 ), as can be readily seen by passing to limits in the following relation, obtained from (41) for γ 1,2 = γ n 1,2 , δ 1,2 = δ n 1,2 and for all n ∈ N:

where

, and so integrating over (0, T ) yields

and integrating by parts the first term in (51) implies

Using e.g. ( 47), ( 13) and [START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF], it is clear that we can pass to the limit in each term of (52) and so we obtain that u = u (γ 1 ,γ 2 ) is a solution of (42).

where u (γ 1 ,γ 2 ) is the solution of the variational inequality (42) which corresponds to (γ 1 , γ 2 ) by the procedure described in Theorem 3.2.

We shall consider a new problem, which consists in finding a fixed point of the set-valued mapping Φ, called also multivalued function or multifunction, which will provide a solution of Problem Q 1 .

Existence of a fixed point

We shall prove the existence of a fixed point of the multifunction Φ by using a corollary of the Ky Fan's fixed point theorem [START_REF] Fan | Fixed points and minimax theorems in locally convex topological linear spaces[END_REF], proved in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] in the particular case of a reflexive Banach space. Note that since Y is a reflexive Banach space and D is convex, closed and bounded, there is no assumption that Y is separable, see [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF][START_REF] Browder | Nonlinear operators and nonlinear equations of eyolution in Banach spaces[END_REF]. Theorem 3.3. Assume that ( 1), ( 2), ( 13)-( 21) and ( 25) hold. Then there exists

We apply Proposition 3.

The set D ⊂ (L 2 (0, T ; L 2 (Ξ))) 2 is clearly convex, closed and bounded. Since for each ζ ∈ L 2 (0, T ; L 2 (Ξ)) the sets Λ + (ζ) and Λ -(ζ) are nonempty, convex, closed, and bounded by R 0 , it follows that Φ(γ 1 , γ 2 ) is a nonempty, convex and closed subset of D for every (γ 1 , γ 2 ) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper semicontinuous, let (

) and let us verify that (η 1 , η 2 ) ∈ Φ(γ 1 , γ 2 ). Using the Theorem 3.2 for each n ∈ N, it follows that there exists a sequence

where

is the solution of (37

is the solution of (42) corresponding to (γ n 1 , γ n 2 ) and to the procedure that enables to define Φ

and by (54) and the triangle inequality, we obtain

Now, by Lemma 3.1, the relation (

which may be rewritten as

for all n ∈ N, where l n := l(u (γ n

). The relations (57) are equivalent to

for every measurable subset ω ⊂ Ξ T and for all n ∈ N. Using (55), [START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF], the semi-continuity of κ and κ, the relation ( 2), the convergence property

, and passing to limits according to Fatou's lemma (see also [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF]), we obtain

for every measurable subset ω ⊂ Ξ T , which implies (η 1 , η 2 ) ∈ Φ(γ 1 , γ 2 ).

4 Existence of a solution to the contact problem Theorem 4.1. Under the assumptions of Section 2 there exists a solution of the Problem P 1 v .

Proof. We shall prove that there exists at least a solution (u, λ + , λ -) of the Problem P 2 v which will provide a solution (u, λ) of the Problem P 1 v with λ = λ +λ -.

We apply Theorem 3.3 to

, we obtain [START_REF] Eck | Unilateral Contact Problems -Variational Methods and Existence Theorems[END_REF].

The condition meas(Γ α U ) > 0, the ellipticity properties of the coefficients A α ijkl , B α ijkl and the Korn's inequality imply that there exist m α a , m α b > 0 such that

and we obtain

where

b ). Also, the properties ( 15)-( 19), ( 21) and ( 25) can be easily verified. Now, let C tr be a positive constant such that v (L 2 (Ξ)) d ≤ C tr v H ι for all v ∈ H ι . Using [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF], the following estimates hold:

and so ( 20) is satisfied with k 2 = C tr (1 + µ L ∞ (Ξ) ).