
HAL Id: hal-01097004
https://hal.science/hal-01097004v9

Preprint submitted on 27 Jul 2017 (v9), last revised 21 Dec 2022 (v11)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Slowing time by stretching the waves in special relativity
Denis Michel

To cite this version:
Denis Michel. Slowing time by stretching the waves in special relativity: The elusive transverse
Doppler effect. 2014. �hal-01097004v9�

https://hal.science/hal-01097004v9
https://hal.archives-ouvertes.fr


Slowing time by stretching the waves in special relativity

Denis Michel

Universite de Rennes1-IRSET. Campus de Villejean. 35000 Rennes France. E.mail: denis.michel@live.fr

Abstract

The correction of the classical Doppler formula by the
time dilation factor gives the currently admitted rela-
tivistic Doppler equation. When the source path is not
collinear to that of the receiver, this correction gives a
transverse wave dilation whose possible detection was
considered by Einstein as an ideal mean to prove the
time dilation of special relativity. It is suggested here
that this elusive effect whose measurement remains con-
troversial, could in fact be absent from relativistic as well
as classical contexts, but that this absence paradoxically
proves the time-dilation of special relativity. An intuitive
reasoning using parallel Doppler effects is first proposed
to conceive why the absence of a wave carrier medium
imposes time dilation for electomagnetic waves. A ra-
tional reconstruction of the non-collinear Doppler effect
is then presented using only reciprocal quantities such
as the source-receiver distance. This rigorous analysis
reveals a virtual equation whose transverse contraction
effect is exactly cancelled by the relativistic time dila-
tion. The candidate Doppler equation emerging from
this treatment is remarkably elegant, geometrically sym-
metrical and centered on the closest point between the
source and the receiver.

Keywords: Time dilation; Relativistic Doppler equa-
tion; Transverse contraction.

1 Introduction

The wave dilation of special relativity is a general phe-
nomenon which gives, when surimposed to the classi-
cal Doppler effect, the relativistic Doppler formula. A
Doppler effect is caused by the velocity of a wave source
relatively to an observer. The classical doppler effect
shortens the apparent wavelength λmov of an object ap-
proaching at speed v such that λmov = cT − vT where
T is the period, giving λmov/λ = 1 − v

c . Conversely it
stretches the apparent wavelength of a receding object
such that λmov/λ = 1 + v

c . In the general case, when
the velocity vector is not strictly collinear with the line
of sight, these equations should be modified by replacing
v by a smaller value. When using radial velocities which
are the orthogonal projection of the velocity vector on

the source-observer line (v cos θ), there is no transverse
effect because when the source is at the closest point from
the observer (θ = π/2), the radial speed is zero. But this
intuitive reasoning using radial velocities makes uses of
angles which are not equivalent between the source and
the receiver. A new equation is built using only parame-
ters symmetrical between the source and the receiver and
where the non-reciprocal cosine velocities will be replaced
by the reciprocal rate of source-receiver distance change.
But let us start with thought experiments enlighting the
importance of a wave-carrier medium in Doppler effects.

2 Medium-dependent and inde-
pendent wave propagation

The classical Doppler effect holds for waves carried by
the medium, like sound, whereas the relativistic Doppler
effect applies to electromagnetic waves propagating in
vaccuum.

2.1 Longitudinal Doppler effect

A source and a receiver can move relative to one another
and in addition, can move relative to an hypothetical
static medium supporting wave propagation at speed c.
The source and the receiver recede form each other at
speed v. At time tE, when spaced from the receiver by
DE, the source emits a wave pulse towards the receiver.
Different results are expected depending on whether this
is the source or the receiver which moves relatively to
the background medium (Fig.1).

The source is considered immobile relative to the back-
ground medium

In this case, the wave is expected to reach the receiver
after crossing a distance DR (middle line of Fig.1). The
duration of the wave travel is

tR − tE = DR/c (1a)

At tR, the new spacing between the source and the re-
ceiver has become

DR = DE + v(tR − tE) (1b)
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Replacing the duration in Eq.(1b) by the value given
by Eq.(1a), yields a distance ratio corresponding to a
classical Doppler effect

DR

DE

=
1

1− v

c

(1c)

In case of collinear approach, the same reasoning gives

DR

DE

=
1

1 +
v

c

(1d)

Figure 1. A wave pulse is emitted by a source (S) when

spaced from a receiver (R) by DE. Just like a ball thrown be-

tween two players, the wave travels through a static medium

relatively to which either S (middle line) or R (bottom line),

is considered immobile.

The receiver is considered immobile relative to the
background medium

The wave reaches the receiver at time tR after cross-
ing a distance DE (bottom line of Fig.1). Hence, the
duration of the wave travel is

tR − tE = DE/c (2a)

Replacing the duration in Eq.(1b) by its value given
by Eq.(2a), yields

DR

DE

= 1 +
v

c
(2b)

Distance increases in the same ratio that the classical
Doppler effect. In case of collinear approach, the same
reasoning gives

DR

DE

= 1− v

c
(2c)

These Doppler effects are suitable for the sound that
is carried by physical supports, but not for light travel-
ling in vaccuum. Since it is impossible in vaccuum to

assign the relative movement to either the source or the
observer, it seems natural to take the geometric mean of
the two extreme situations of Fig.1 (Eqs (1c)/(2b) and
Eqs (1d)/(2c)). This gives the relativistic Doppler effect.
For the recession:

〈
DR

DE

〉
=

√
c+ v

c− v
(3a)

and for the approach

〈
DR

DE

〉
=

√
c− v
c+ v

(3b)

Such a correspondence between wavelength distortion
and source-receiver distance changes during light travel
has also been formulated by Lemâıtre in the context of
the cosmological redshift [1].

2.2 Parallel Doppler effect

The classical transverse Doppler effect is inexisting for a
sound wave emitted by a moving source located at the
closest point from an immobile receiver. But if the source
and the receiver move in parallel and in the same direc-
tion, the wavelength appears shortened as represented
in Fig.2, with a contraction between S and R precisely
corresponding to the inverse of the relativistic dilation
factor. The source and receiver do not move relative to
each other, but both move relative to the medium which
works as an apparent wind shifting back the wave crests.
The second step of the reasoning is to switch from sound
waves to electromagnetic waves propagating in vaccuum.
Once the medium is removed, it is no longer possible to
assert that the source and the receiver have an abso-
lute movement. Relativistically speaking, they belong to
same reference frame, so that the previous apparent wind
is inexisting. It is therefore necessary to cancel the wave
contraction between S and R.
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Figure 2. Classical Doppler effect predicted when the source

(S) and the receiver (R) run in parallel at the same speed v.

There is no relative movement of S and R, but both move

relatively to the medium. The wave between S and R ap-

pears stably contracted by
√

1 − v2

c2
. Now let us remove the

medium and imagine that the wave self propagates in vac-

cuum. The source and receiver then clearly belong to the

same inertial frame and as a consequence, the previous wave

distortion orthogonal to velocity vectors and now correspond-

ing to the light path should be cancelled by multiplcation by

1/
√

1 − v2

c2
.

3 A new reciprocal Doppler treat-
ment

The Doppler effect will be recalculated using as a speed
the rate of distance change between the source and the re-
ceiver, that is completely summetrical. Classical Doppler
effects mix longitudinal and transverse effects and range
between the two asymptotes 1 − v

c and 1 + v
c . The in-

termediate values are currently defined using the angle θ
between the motion line and the receiver. In fact, since θ
varies with time and generates certain problems such as
aberration effects, it seems more rational to skip it and
to calculate the Doppler effect directly as a function of
variation of distance between a source and an observer
that are unique and reciprocal. A Doppler-generating
speed will be defined using the Pythagorean theorem,
which remains valid in the Euclidean relativistic space.
Let us define virtual rates of simultaneous shortening of
the hypothenuse (rate h) and of one side (rate v), while
maintaining the other side constant and the triangle rect-
angle. h and v are related to each other with a couple
of simple equations. If denoting H0 the starting lengh of

the hypothenuse, L0 that of the shortening side and D
the constant side,

H2
0 = D2 + L2

0 (4a)

and
(H0 − ht)2 = D2 + (L0 − vt)2 (4b)

whose substraction allows to eliminate D and yields

ht = H0 −
√
H2

0 + (vt)2 − 2L0vt (4c)

Figure 3. A source moving at constant speed v starts from

a distance H0 from the immobile observer. The shortest dis-

tance between the source and the observer is D.

Now let us apply this general result, which does not
correspond to a specific physical situation, to the par-
ticular case represented in Fig.3, of a the source mov-
ing non-collinearly relative to an observer and reaches at
speed v the closest point from this observer. The triangle
of Fig.3 evolves such that the hypotenuse reduces from
H0 to D while the source path reduces from L0 to 0. H0

and L0 are precisely adjusted such that the wave front
reaches the receiver when the source reaches the closest
point, following a time delay ∆t. In this case, H0 and L0

can be replaced by c∆t and v∆t respectively and Eq.(4c)
becomes

h =
(
c∆t−

√
(c∆t)2 + (vt)2 − 2v2t∆t

)
/t (5)

When inserted in the classical Doppler formula, this
speed gives the results presented in Fig.4. The signal
received when the observer is at right angle to the mo-
tion line was emitted at h = v2/c. This value, giving

a Doppler effect of λmov/λ = 1 − v2

c2 is not defined and
calculated as a series expansion limit. More interest-
ingly, The signal is emitted at right angle to the ob-
server at h = c −

√
c2 − v2, giving a Doppler effect of

λmov/λ =
√

1− v2

c2 .

The speed h may reflect the transverse contraction factor√
1− v2

c2 of Voigt’s transformations, but the Doppler ef-

fect generated by this speed will be called virtual Doppler
effect (VD), because on the one hand, it is not relativistic
since it does not take into account the relativistic time
dilation, but on the other hand it is not more classical as
it is calculated without taking into account a reference
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medium. When applied to the classical Doppler effect
with a reference medium (CD), the time dilation factor
gives the traditional relativistic Doppler formula (TRD).
Application of the same Lorentz factor to the new vir-

tual Doppler effect (VD), turns to exactly compensates
its transverse contraction effect and gives an interesting
candidate relativistic Doppler effect (CRD).

Figure 4. Evolution of the Doppler-generating speed h given by Eq.(5). The time unit ∆t is the travel time of the signal

reaching the receiver when the source is the closest to it. The origin of time t = 0 is centered at this closest position. The

Doppler effect generated by light emitted at this position (at right angle to the receiver) is shifted blue by
√

1 − (v/c)2.

4 Comparison of the different
Doppler approaches

4.1 Normalization of the different
Doppler formulas with respect to
distances

To compare the different Doppler formulas, they should
be comparable for any relative configuration of the source
and the observer. The comparison with the relativistic
equation described with angles [2] is delicate because sev-
eral equations are possible depending on the angle used:
either the original angle between the velocity vector and
the source-observer connection line (θ) or the reception
angle (θ′).

λmov

λ
=

1 +
v

c
cos θ√

1− v2

c2

=

√
1− v2

c2

1− v

c
cos θ′

, (6a)

the two angles of this identity are related to each other
through the so-called aberration formula [2]

cos θ =
cos θ′ − v

c

1− v

c
cos θ′

(6b)

Table 1: The aberration effect in special relativity is re-
lated to the time points of wave emission.

t cos θ cos θ′ λmov/λ

−∆t −v
c

0

√
1− v2

c2

0 0
v

c
1/

√
1− v2

c2
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Approaches using angles are confusing because if
one assumes that the transverse effect is obtained when
the cosinus is 0, the first formula of Eq.(6a) predicts
a wave dilation, whereas the second formula gives the
inverse wave contraction, because θ and θ′ cannot be
simultaneously equal to π/2 [3]. This subtlety is a mat-
ter of delay of wave travel ∆t (Table.1). The non-
collinear Doppler formulas contain two variables: the
speed v and an angle. This angle varies along the

wave path and can be expressed as a function of time,
such that θ(t) = tan−1(D/vt). Hence, on the one hand
cos θ(t) = 1/

√
1 + (D/vt)2, and on the other hand the

distance D can itself be defined as a function of ∆t
(D = ∆t

√
c2 − v2), thereby allowing to make the formu-

las functions of distances only. There are other ambigu-
ities in the literature about the sign of the velocity (−v
and +v) in Doppler equations.

Table 2: Doppler effects generated by a wave emitted at the normalized distance d̄ from the closest point and
calculated using the different formulas. CD= Classical doppler effect; TRD= traditional relativistic Doppler effect,
VD= virtual doppler formula based on the rate h; CRD= candidate relativistic formula. The new formulas are
built using the classical Doppler framework 1 − v/c, in which v is replaced by the speed h given by Eq.(5). The
unit of distance is v∆t where ∆t is the time-of-flight of the wave reaching the observer when located at the closest
point from the source. The circled 1 indicate the inversion points where the Doppler effects cancel. The distance σ
corresponds to the inversion point for the TRD, but has no particular meaning for the other equations.

Doppler.
λmov

λ
d̄ = −∞ d̄ = −1 d̄ = σ d̄ = 0 d̄ = +1 d̄ = +∞

CD 1 +
v2

c2
d̄

Φ
1− v

c
1− v2

c2
1© 1 +

v2

c2
1 +

v

c

TRD
CD√
1− v2

c2

√√√√√1− v

c

1 +
v

c

√
1− v2

c2
1© 1√

1− v2

c2

1 +
v2

c2√
1− v2

c2

√√√√√1 +
v

c

1− v

c

VD
Φ + d̄

1 + d̄
1− v

c
1− v2

c2

√
1− v2

c2
1© 1 +

v

c

CRD
VD√
1− v2

c2

√√√√√1− v

c

1 +
v

c

√
1− v2

c2
1© 1√

1− v2

c2

√√√√√1 +
v

c

1− v

c

with d̄ =
t

∆t
, Φ =

√
1− v2

c2
(1− d̄2) and σ = − c

v
√

2

√√
1− v2

c2
− 1 +

v2

c2

To eliminate all these sources of confusion, the equa-
tions are composed here without referring to angles and
using speeds always positive, irrespective of the relative
location of the observer, by transferring the sign to the
time t ranging from −∞ and +∞. To ”synchronize” the
formulas at the time points of wave emission, in the new
formula, t should be replaced by t+∆t. Finally, a dimen-
sionless normalized distance is defined for all source paths
relatively to the closest point (d̄ = vt/v∆t = t/∆t). A
little algebra satisfying all these requirements gives the

equations compiled in Table.2. For d̄ = −1 where the
virtual function is not defined, the Doppler effect takes

the limit value 1 − v2

c2 . These different Doppler equa-
tions describe general combinations of longitudinal and
transverse Doppler effects for any relative position of the
source and the observer. As these normalized equations
can now be compared, their profiles as functions of d̄ are
superposed for visualization in Fig.5.
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Figure 5. Comparative profiles of Doppler effects predicted for v/c = 1/3, by the different formulas. The switch between

the contraction and the dilation occurs at the closest point for the CD and CRD, just before the closest point for the TRD

(between -1 and 0, see the text) and at d̄ = +1 for the VD.

Table 3: Arithmetic and geometric means of Doppler effects expressed using either wavelengths or frequencies. d̄ and
Φ are defined in Table.2. Note that for each type of averaging of CRD, the same result is obtained for wavelengths
and frequencies.

Mean λ vs ν CD TRD VD CRD

Arithmetic λ 1
1√

1− v2

c2

Φ− d̄2

1− d̄2
Φ− d̄2

(1− d̄2)

√
1− v2

c2

ν
Φ2(

1− v2

c2

)(
1 +

v2

c2
d̄2
) Φ2√

1− v2

c2

(
1 +

v2

c2
d̄2
) Φ− d̄2

Φ2 − d̄2
Φ− d̄2

(1− d̄2)

√
1− v2

c2

Geometric λ
1

Φ

√(
1− v2

c2

)(
1 +

v2

c2
d̄2
)

1

Φ

√
1 +

v2

c2
d̄2

√
1− v2

c2
1

ν
Φ√(

1− v2

c2

)(
1 +

v2

c2
d̄2
) Φ√

1 +
v2

c2
d̄2

1√
1− v2

c2

1
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5 Properties of the new Doppler
equations

5.1 Comparative symmetry

The mean values of the Doppler effects generated at sym-
metrical distances from the closest point, depend on the
modes of averaging, which are, when expressed using
wavelengths,

• the arithmetic mean:
1

2

(
λmov
(−d)

λ
+
λmov
(+d)

λ

)

• and the geometric mean:

(
λmov
(−d)

λ

λmov
(+d)

λ

) 1
2

.

The appropriate tool is logically the geometric mean, be-
cause it is expected to hold both for periods and fre-
quencies such that

〈
T(−d), T(+d)

〉
= 1/

〈
ν(−d), ν(+d)

〉
and

satisfies the rule of color reflectance fusion. The new for-
mulas display a perfect geometric symmetry, in such a
way that the geometric mean of the Doppler effects be-
fore and after the midpoint are independent of time and

always
√

1− v2

c2 for the VD and 1 for the CRD (Table

3).

5.2 Switching points

The four different Doppler equations compared in Fig.5,
have different switching points between contracted and
dilated waves:

• for the CD, at d̄ = 0,

• for the VD at d̄ = 1 (or t = +∆t),

• for the TRD, the traditional relativistic formula
yields the most complicated result, close to the
transverse line

d̄ = − c

v
√

2

√√√√√1− v2

c2

(
1−

√
1− v2

c2

)
(7)

• for the CRD, at the clostest point d̄ = 0. We get
rid of the weird result of the TRD.

5.3 Comparative angle-dependence

The time-dependent profiles of the different formulas
have been compared in Fig.5. It is also interesting to
compare their shape using an angular representation.
The angle θ of Fig.6 will be used while keeping the speed
v always positive, such that

cot(π − θ) =
t

∆t

v

c√
1− v2

c2

• The TRD is

λmov

λ
=

√
1 + cot2 θ − v

c
cot θ√

1− v2

c2

√
1 + cot2 θ

(8a)

multiplying by sin θ allows to recover the tradi-
tional, but no longer modulo-π, formula

λmov

λ
=

1− v

c
cos θ√

1− v2

c2

(8b)

• and the CRD becomes

λmov

λ
=

v

c

√
1 + cot2 θ − cot θ

v

c
−
√

1− v2

c2
cot θ

(9a)

multiplying by sin θ ,

λmov

λ
=

v

c
− cos θ

v

c
sin θ −

√
1− v2

c2
cos θ

(9b)

As shown in Fig.6, the profiles drawn to Eqs.(8a) and
(9a) strikingly differ by their slopes, those of the new
formula being closer to the tangent function.
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Figure 6. Comparative profiles of Doppler effects predicted for v/c = 1/3, by the classical (dotted lines), and relativis-

tic (plain lines) Doppler equations, either traditional or modified here, as functions of the emission angle θ shown in the inset.

6 Correspondence between time
and wave distortion effects.

Several experiments have been conducted to test the the-
ory of special relativity through the relativistic Doppler
formula of Einstein [4], following a suggestion of Ein-
stein himself [5]. But the present analysis suggests that
the time dilation is in fact responsible for the absence
of transverse Doppler effect. Time and wave distortions
are two facets of the same principle, illustrated in Ap-
pendix A and evidenced by a remarkable observation of
supernovae, unfortunately too recent for Einstein to be
aware of. The time window of brightness is relatively con-
stant for comparable supernovae, but astronomers made
an expected but nevertheless striking finding: the appar-
ent time window of brightness depends on the distance
of the supernova, in exactly the same proportion that
their redshift. For instance, a distant supernova with a
redshift of λapp/λ = 1.5, has precisely a 1.5-fold longer
duration of brightness [6]. Hence, time dilation corre-
sponds exactly to wavelength increase, or equivalently
frequency decrease, whereas apparent time contraction
corresponds to wavelength shortening and frequency in-
crease. Reciprocally, spacing wavelength crests automat-
ically cause apparent time slowing, in the same manner
that projecting at 12 frames per second a movie sched-
uled for 24 frames per second, shows abnormally slow
scenes.

7 Test of the new Doppler equa-
tions

7.1 Longitudinal effects

The celebrated experiment of Ives and Stilwell [7] and its
descendants [8] focused on the longitudinal Doppler ef-
fect. Ives and Stilwell recovered the time dilation factor
by measuring the arithmetic means of the shifted wave-
lengths in front and behind moving atoms [7]. This result
is however not discrimining since it is also obtained with
the candidate formula.

7.2 Transverse effects

The existence of the transverse Doppler effect has been
supported in a single study [9]. But more recently, us-
ing microwaves which exhibit a high spatial purity and
a precise polarization plane, a sensitive apparatus failed
to detect any transverse effect [10], which led the author
to question the principle of dilation of special relativity.
It is suggested here that this seemingly negative result
could be indirectly considered as a verification of time
dilation.

7.3 Relevance of the CRD equation

The test of the new candidate equation CRD is prob-
lematic considering the notorious difficulty of transverse
tests and because it satisfies the Ives-Stilwell type lon-
gitudinal tests as well as the previous equation. In fact,
its best asset for now is its elegance, that is often a sign
of accuracy in science, and its fundamental symmetry
illustrated by the geometric means of the non-collinear
paths.
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Appendices
For electromagnetic waves, the so-called time-dilation

effect should be taken into account to yield the relativis-
tic Doppler effect. This is not a Doppler effect strictly
speaking, but another type of a wave stretching naturally
obtained when the source and the receiver belong to dif-
ferent inertial frames. It has been clearly and entirely
deduced from the invariance of light velocity by Einstein
in his seminal paper of 1905 on special relativity [2]. This
dilation can be even more intuitively conceived using the
light clock of Einstein described below.

A The light clock of Einstein

The beat of the light clock of Einstein is the rebound of
a photon between facing mirrors. This clock is placed
vertically in a wagon rolling at constant speed v. For
an external observer (with an excellent view!), the light
path appears oblique when the train moves, whereas for
an observer located inside the train, it appears vertical
(Fig.A.1). The reference time interval ∆t corresponds to
the frame comoving with the light clock.

Figure A.1 The famous triangular time-space diagram of the

moving Einstein’s clock. The horizontal scale is artificially

stretched relatively to the vertical one for better visualization.

With respect to the angle θ of Fig.A.1, elementary
trigonometry says

sin θ =
c∆t

c∆tmov
=

∆t

∆tmov
(A.1a)

and

cos θ =
v∆tmov

c∆tmov
=
v

c
(A.1b)

which immediately gives, using the relationship sin2 θ+
cos2 θ = 1,

∆tmov

∆t
=

1√
1− v2

c2

(A.1c)

Another way to obtain this result is to use the
straightforward geometrical tool of special relativity: the
Minkowski spacetime. The oblique (hypotenuse) and ver-
tical paths of light start from and arrive to the same
points. This common spacetime interval should reconcile
the point of view of an observer in the train, for whom the

clock appears immobile, and that of an ouside observer
for whom there is an additional translation. Hence,

∆s2 = (c∆t)2 = (c∆tmov)2 −∆x2mov (A.2a)

giving

c2
(

∆t

∆tmov

)2

= c2 −
(

∆xmov

∆tmov

)2

(A.2b)

and finally
∆tmov

∆t
=

1√
1− v2

c2

(A.2c)

In spacetime diagrams like the triangular scheme of
Fig.A.1, the proper time of the clock is obtained when
the distance to be crossed by light appears minimal.
In Fig.A.1., this is the vertical path (∆t), whereas for
the external observer moving at speed v relatively to
the clock this path appears stretched by ∆tmov/∆t =
1/
√

1− (v/c)2.
The light clock of Einstein is illuminating in that there is
obviously no relative movement betwen the facing mir-
rors. In this respect, the wavelengh dilation perceived by
the external observer is not a Doppler effect but just an
interframe perspective effect.

B Time dilation by wave stretch-
ing

In the light clock experiment, the distinction between
moving and immobile frames is irrelevant as they can be
permuted. The train and the station platform are two
equivalent systems of reference and the situation is sim-
ply inverted if the clock is put on the platform and if the
observer inside the train considers that it is the platform
that moves relative to the train in the opposite direction.
A perspective effect is naturally reciprocal. The best
known perspective effect is the apparent contraction of
the size of a person standing far away from us, compared
to a person standing close to us. We are very accustomed
to this familiar effect and easily understand that this per-
son should have exactly the inverse perception. Distance
is a symmetrical notion, as is uniform motion. The ap-
parent size reduction effect is so well integrated in our
mind that it is unconsciously corrected. Moreover, it is
used inversely to estimate the distance. The same opera-
tion can be applied to time dilation to deduce the relative
frame velocity from the degree of wavelength stretching.
Eq.(A.2a) can be modified as follows: On the one hand,
c = λ/T and on the other hand, the time intervals can
be replaced by a given number (n) of periods ∆t = nλ/c.
The invariance of this number from any viewpoint allows
to rewrite Eq.(A.2a) as

∆xmov

∆tmov
= v = c

√
λmov − λ
λmov

(B.1a)

9



which can be transformed into

λmov

λ
=

1√
1− v2

c2

(B.1b)

Eq.(B.1b) is typically the equation of a Doppler ef-
fect, showing that time flows follows wave frequencies. If
the successive images of a film are two-fold spaced, the
film would naturally run 2 times slower.
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