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Abstract

The time dilation of special relativity is considered as
a pure relativistic phenomenon not deduced from wave-
length distortion. Alternatively, it is suggested here that
time distortion always originates from wavelength dis-
tortion, including in special relativity. A link between
the special relativistic time and the quantum of time
is first established to propose that wavelengths are ad-
justable uncertainty parameters allowing to maintain the
invariance of the light speed and the number of periods.
The light clock of Einstein is then used to develop a new
Doppler analysis in the frame of an external observer
and transformed to cancel the virtual effect between
comoving points. This approach yields a conjectural
Doppler formula with remarkable properties. Contrary
to the previous Doppler equations characterized by their
asymmetry, the new formula gives geometrically sym-
metrical Doppler effects in the whole space in front and
behind the closest point from the source, whose center
of gravity corresponds precisely to a global inter-frame
dilation factor 1/4/1 — (v/c)2. These results extend the
direct relation between wavelength and time distortion
to special relativity.

1 Introduction

Time dilation, the keystone of special relativity, is con-
ceived as a pure relativistic phenomenon and the time
between wave crests is just expected to comply with this
time dilation [I]. The inverse view proposed here is that
time distortion results from wavelength distortion in all
contexts. Special relativity does not escape the funda-
mental parallel between time and wavelengths which is
much more general than special relativity. A conjectural
equation based on wave distortion and using the classi-
cal Doppler formula, is obtained by cancelling the virtual
Doppler effect viewed from a moving frame. It is similar
to the relativistic formula but with additional properties.

2 A wave distortion is a time dis-
tortion

The most striking evidence that distortions of wave-
lengths exactly correspond to time distortions has not
been provided by a Doppler effect, but by the cosmolog-
ical redshift. Supernovae are star explosions remaining
extremely bright for a few weeks, a short duration at
the cosmological scale. This time window is relatively
constant for comparable supernovae, but astronomers
made a remarkable discovery: the apparent time win-
dow of brightness depends on the distance of the su-
pernova, in exactly the same proportion that their red-
shift. For instance, a distant supernova with a redshift
of A*PP /X = 1.5, has precisely a 1.5-fold longer duration
of brightness [2]. Hence, apparent time dilation corre-
sponds to wavelength increase, or equivalently frequency
decrease, whereas apparent time contraction corresponds
to wavelength shortening and frequency increase. The
decrease or increase of wavelengths is evaluated by com-
parison with their standard values measured in the co-
moving frame, using for example atomic rays identical
in all inertial frames when viewed by comoving iner-
tial observers. Strangely, although the Doppler effect
is clearly a phenomenon of wavelength distortion, the
scientific community did not establish a clear relation-
ship between time dilation and a Doppler effect, perhaps
because time dilation depends only on relative speeds
whereas a Doppler effect is orientation-dependent. Cer-
tain authors stated that there is no necessary relation
at all between the relativity theory and the Doppler ef-
fect [3]. But using the light clock of Einstein, it will be
shown that relativistic time dilation is analogous to a
generalized Doppler effect. While doing so, an intrigu-
ing theoretical Doppler equation will be obtained. The
famous light clock of Einstein is an universal clock that
is not based on an atomic ray, but on the constancy of
light velocity.

3 The light clock of Einstein

The beat of the light clock of Einstein is the rebound of
a photon between facing mirrors. This clock is placed
vertically in a wagon rolling at constant speed v. For an
external observer, the light path appears oblique when



the train moves, whereas for an observer located inside
the train, it appears always vertical (Fig.1). The refer-
ence time interval At corresponds to the frame comoving
with the standard clock.

Figure 1. The famous triangular time-space diagram of the
moving Einstein’s clock. The horizontal scale is artificially
stretched relatively to the vertical one for better visualization.

With respect to the angle 6 of Fig.l, elementary
trigonometry says

. cAt At
sinf = CAgmov = Agmov (1la)
and At
cosf = — =Y (1b)

cAtmov ¢
which immediately gives, using the relationship sin® 6 +
cos?f =1,
AtmOV 1

At o2 (Lc)

Another straightforward way to obtain this result is
to use the powerful geometrical tool of special relativ-
ity: the Minkowski spacetime. The oblique (hypotenuse)
and vertical paths of light are necessarily identical in the
Minkowski spacetime because light starts from and ar-
rives to the same points. This common spacetime in-
terval should reconcile the point of view of an observer
in the train, for whom the clock appears immobile, and
that of an ouside observer for whom there is an additional
translation. Hence,

As® = (cAt)? = (cAt™Y)? — Az? (2a)
giving
At \? Agmov\?
2 2
=) 2 (== 9

¢ (Atmov) ¢ (Atmov) ( b)

and finally

AtmOV 1

AT — (2¢)

In spacetime diagrams like the triangular scheme of
Fig.1, the proper time of the clock is obtained when
the distance to be crossed by light appears minimal. In
Fig.1, it corresponds to the vertical path (At), whereas
for the external observer moving at speed v relatively to
the clock this path appears stretched by At™°V/At =

1/y/1— (v]c)2.

4 Linking the relativistic and the
quantum times

4.1 The quantum of time

The apparent paradox of special relativity is that the
hypotenuse and the vertical side of the triangle shown
in Fig.1 are simultaneously crossed by light at the same
speed c. There is a very simple solution to explain this
constancy, which consists in modifying the fundamental
components of c. The speed of light can be written

(3)

where the spatial unit is the wavelength \ and the
time unit is the period 7. A quantum of time & can
be defined, which depends on the energetic status of the
system: It is the time necessary to cross the length unit
below which successive configurations cannot be distin-
guished because of the uncertainty principle. For a ther-
modynamic system, the length unit is the thermal wave-
length of de Broglie A and the mean particle velocity is
the averaged Maxwell velocity, which gives [4]:

¢ = X\ meters/T seconds

A h

CTWY T AkpT

where T is the temperature. The corresponding value
for photons (kg1 = hv), is very simple

=4x107 "™ sat T =300 K

(4)

e t_A_T (5)

v 4c A4

where T' is the period. A period has internal sym-
metries and can be subdivided into 4 indivisible motifs
(m/2 windows). Furthermore, the 4 is imposed as a con-
dition for recovering the undulatory behaviour of light
from the definition of € as an ”uncertainty window”. In-
deed, the conception of £ as the minimal time interval
during which no evolution can be perceived, means that
it can be included in a delay differential equation of the
form

dy(t)

“a —ky(t —¢) (6a)
of which an undulatory solution is
0
5 (6b)
and
(t) = Asin (lt) (6¢)
Y 2e
In statistical mechanics,
kgT
T _ Bl (6d)



(where T is the temperature) and for photons, if adding
to this pulsation a uniform spatial translation along x at
speed \/4e

m (4e
= Asi — | = =
y(x,t) sin (25 ( e t)) (6e)
which is the traditional light wave fonction
(z,t) = Asin2 r_ 1 (6f)
ylz,t) = m N T

(where T is the period). Time and energy can be
adjusted in time-energy boxes of uncertainty, provided
maintaining invariants. In other words, the velocity of
light and the number of time units can be preserved from
all viewpoints by compressing or dilating the waves.

4.2 Stretching the waves

The Einstein clock gives

ATV > At (7a)

Since the two paths of the light in Fig.1 are the same,
the number of periods, say n, is preserved so that Eq.(7a)
is equivalent to

nI™ > nT (7b)

Hence

Vmov < v

(7¢)

a phenomenon of wave stretching compensates space-
time dilation in such a way that (i) the speed of light and
(ii) the number of periods, are both maintained identical
(Fig.2).

Figure 2. Wavelength dilation allows to maintain the in-
variance of the light speed and of the number of time units
for the immobile and the moving observers.

According to this scheme, relative times simply
emerge from relative frequencies. The principle of un-
certainty AEAt > h/4w, where AE = hAwv, can be
expressed as AtAv > 1/4w, showing that time and fre-
quencies are mutually constrained. It is interesting to
note that the Doppler effect obtained here by stretching
a fictitious space, somewhat resembles the cosmological
redshift [5]. In this respect, special relativity appears as
a phenomenon of virtual space expansion.

4.3 Time dilation of special relativity is
a perspective effect

In the experiment of the light clock inside a train de-
scribed above, the distinction between moving and non-
moving frames is irrelevant as they can be permuted.
The wagon and the station platform are two equivalent
systems of reference and the situation is simply inverted
if the clock is put on the platform and if the observer in-
side the train considers that it is the platform that moves
relative to the train in the opposite direction. A perspec-
tive effect is naturally reciprocal.

The best known perspective effect is the apparent con-
traction of the size of a person standing far away from us
compared to a person standing close to us. We are very
accustomed to this familiar effect and easily understand
that this person should have exactly the inverse percep-
tion. Distance is a symmetrical notion, as is uniform
motion. The apparent size reduction effect is so well in-
tegrated in our mind that it is unconsciously corrected.
Moreover, it is used inversely to estimate mentally the
distance. The same operation can be adapted to time
dilation to deduce the speed of the source from the de-
gree of wavelength stretching. Eq.(2a) can be modified
as follows: On the one hand, ¢ = A/T and on the other
hand, the time intervals can be replaced by a given num-
ber (n) of periods At = n\/c. The invariance of this
number from any viewpoint allows to rewrite Eq.(2a) as

AoV /)\mov -\
Alfmov =v=c Amov (8&)
or using frequencies
v VmOV
Z=4/1—= b
2= > (8b)

which can be transformed into
AmOV

o
) /?12
C

Eq.(8c¢) is typically the equation of a Doppler effect.
Accordingly, it is shown below that the time dilation of
special relativity can be derived from a virtual Doppler
effect.

5 Analogy between time dilation
and a Doppler effect

In spite of its apparent simplicity, this original section
is completely heterodox because the relativistic Doppler
formula is assumed to be not a matter of compression or
elongation of wavelengths [T, B]. Conversely, it is sug-
gested here that the phenomenon of time dilation of spe-
cial relativity is simply based on a wavelength distortion
which can be recovered using the classical Doppler for-
mula. A Doppler effect is caused by the velocity of a wave



source relatively to an observer. The classical doppler ef-
fect shortens the apparent wavelength A™°" of an object
approaching at speed v such that A™°V = ¢T" — vT where
T is the period, giving A™V/A =1 — Conversely it
stretches the apparent wavelength of a receding object
such that A™°V/A = 14 2. In the general case, when
the velocity vector is not strictly collinear with the line
of sight, these equations should be modified by replacing
v by a smaller value. When using radial velocities which
are the orthogonal projection of the velocity vector on
the source-observer line (vcos#), there is no transverse
effect because when the source is at the closest point from
the observer, § = 7/2 and the radial speed is zero. But
let us develop a new Doppler approach using the clas-
sical Doppler formula in which radial velocities defined
with angles, are replaced by time-dependent Doppler-
generating speeds. Since the light speed is finite and
invariant, this new approach is completely reciprocal be-
tween the sources and the observer, contrary to the an-
gles which are subject to aberration effects. The result-
ing conjectural Doppler formula will prove surprisingly
elegant.

ol

5.1 A Doppler effect derived from the
light clock of Einstein

Classical Doppler effects mixe longitudinal and trans-
verse effects and range between the two asymptotes 1—
and 1+ 2. The intermediate values are currently defined
using the angle # between the motion line and the re-
ceiver. In fact, since € varies with time and generates
certain problems such as aberration effects, it seems more
rational to skip it and to calculate the Doppler effect di-
rectly as a function of time. A Doppler-generating speed
h can be defined using the Pythagorean theorem. When
a moving source at distance Hy from the observer reaches
at speed v the closest point from this observer, the tri-
angle shown in Fig.3 evolves such that the hypotenuse
reduces from Hy to D while the source path reduces from
Ly to 0, with speeds h and v respectively, related to each
other with a couple of simple equations.

2

Ho

Lo
2
e >

v

Figure 3. A source moving at constant speed v starts from
a distance Hy from the immobile observer. The shortest dis-
tance between the source and the observer is D.

H}=D?+1L} (9a)

and
(Ho — ht)* = D? + (Lo — vt)? (9b)

whose substraction allows to eliminate D and yields

ht = Hy — \/H3 + (v1)? — 2Lout (9¢)

Eq.(9¢) also holds in the particular case where Hy
and Ly are precisely adjusted such that the wave front
reaches the receiver when the source reaches the closest
point, following a time delay At. In this case, Hy and Ly
can be replaced by cAt and vAt respectively and Eq.(9c¢)
becomes

h= (cAt — (et + (vt)2 — 2v2tAt) /t(10)

When inserted in the classical Doppler formula, the
speeds calculated with Eq.(10) give the results presented
in Fig.4. The signal received when the observer is at
right angle to the motion line was ejected towards the
observer at rate h = v?/c. This value is calculated as
the limit of a series expansion of Eq.(10) that is not
defined at this point. The resulting Doppler effect is
AmOV/N =1 — Z—z Of course, this effect is artificially
generated and should now be cancelled to impose the ex-
pected absence of Doppler effect between the comoving
mirrors of the light clock of Einstein (Fig.1). This can-
cellation yields a conjectural Doppler equation with very
interesting properties.
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Figure 4. Evolution of the Doppler-generating speed calculated using Eq.(10). The time unit At is the travel time of the

signal reaching the receiver when the source is the closest to it. The origin of time ¢ = 0 is centered at this closest position.

6 Comparison of the different
Doppler approaches

6.1 Normalization of the different
Doppler formulas with respect to
time

To compare the different Doppler formulas, the conjec-
tural and existing equations should be comparable for
any relative configuration of the source and the observer.
The comparison with the relativistic equation [6] is deli-
cate because several equations are possible depending on
the angle used: either the original angle between the ve-
locity vector and the source-observer connection line ()
or the reception angle (6").

2
v
\mov 1—1—90059 1-—
c c
= = = o , (11a)
1 v 1— —cost
2

the two angles of this identity are related to each other
through the so-called aberration formula [6]

cos @ — v
cosf = ——C (11b)
1— —cost

C

Table 1: The aberration effect in special relativity is re-
lated to the time points of wave emission.

t cos® cost AoV /N
2
At =20 1- =
C C
2
v
0 0 S p1-5

This situation is somewhat confusing because if one
assumes that the transverse effect is obtained when the
cosinus is 0, the first formula of Eq.(11a) predicts a
wave dilation, whereas the second formula gives the in-
verse wave contraction. The former solution is the right
one in special relativity [7]. In fact, 6 and 6’ can-
not be simultaneously equal to 7/2. This subtlety is
a matter of delay of wave travel At (Table.l). The
relativistic Doppler formula contains two variables: the
speed v and an angle. This angle varies along the wave
path and can be expressed as a function of time, such
that (t) = tan—!'(D/vt). Hence, on the one hand



cos@(t) = 1/4/1+ (D/vt)?, and on the other hand the

distance D can itself be defined as a function of At
(D = Atv/c? — v?), thereby allowing to make the rela-
tivistic formula a function of time only. There are am-
biguities in the literature about the sign of the velocity
(—v and 4wv) in Doppler equations. To eliminate this
source of confusion, all the equations can be composed
to make this speed always positive, irrespective of the

relative location of the observer, by transferring the sign
to the time ¢ ranging from —oo and +o0o. To ”synchro-
nize” the formulas at the time points of wave emission, in
the new formula, ¢ should be replaced by ¢t + At. Finally,
a dimensionless normalized time holding for all source
paths relatively to a receiver is defined as ¢ = ¢t/At. A
little algebra satisfying all these requirements gives the
equations compiled in Table.2.

Table 2: Doppler effects generated by a wave emitted at the normalized time ¢ and calculated using the different
formulas. The conjectural formula uses the classical Doppler framework 1 — v/c, in which v is replaced by the
Doppler-generating speed h calculated previously. ¢ = 0 is the time point at which the distance between the source
and the observer is minimal and At is defined as the time-of-flight of the wave reaching the observer when located

at the closest point from the source.

Treatment Doppler effect t=-00 t=-1 t=0 t=+1 t=+oc0
Amov v2 T v 02 02 v
Classical 1+ | 1-2 12 1 1+ 148
assica h + 20 p 2 + 2 +
2 v
Amov (Classical 1 -
Relativistic — e 1 v - 2
A V2 c? 02 v?
AoV Q4 ¢ v V2 V2 v
Virtual = — 11— - 1-— 1—-— 1 1+ -
e A 1+¢ c c? c? +
Amoev Virtual 1 1 1 1
Conjectural (X) - u;m T 1 5 T
A v 14— v? v 1 =
c 2 c
pmov A v 02 02 v
Conjectural = 142 1 -2 1= 1Y
onjectural (v) ” o + 2 2 c

Withf—iand@—\ll—i(l—ﬂ)
At B c?

For the time point ¢ = —1 where the conjectural
function is not defined, the Doppler effect takes the
limit value 1 — Z—j These different Doppler equations
describe general combinations of longitudinal and trans-
verse Doppler effects for any relative position of the

source and the observer. As these normalized equations
can now be compared, their profiles are superposed for
visualization in Fig.5, for the same arbitrary values of ¢
and v and using ¢ units.
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Figure 5. Comparative profiles of Doppler effects predicted for v = ¢/3, by the relativistic equation (dotted line), the classical

equation (dashed line) and the conjectural Doppler equation calculated here (plain line). Time 0 correspond to wave emis-

sion. The switch between the contraction and the dilation occurs at the closest point for the classical formula and before the

closest point for the relativistic formula (between -1 and 0, see the text) and for the conjectural function, precisely at £ = —1).

6.2 Comparative symmetry of the differ-
ent Doppler formulas

The mean values of the Doppler effects generated at time
points symmetrically located on both sides of the closest
point (¢ = 0) depend on the modes of averaging, which
are, when expressed using wavelengths,

A
A A

)\mov AmOV

(=t) (1)
A A

e for the arithmetic mean: 3 (

e and for the geometric mean:

, respec-

tively.

The appropriate tool to evaluate the symmetry on
both sides of the closest point is logically the geomet-
ric mean, because it is the only one which holds for
both periods and frequencies such that (T(_s), T(4+)) =
1/ <1/(,t), 1/(+t)>. The Doppler equations based on radial
velocities, classical and relativistic, are characterized by
their absence of symmetry whereas the conjectural for-
mula displays a perfect geometric symmetry, in such a
way that the geometric mean of the Doppler effects be-
fore and after the midpoint are independent of time and

always 1/4/1 — Z—; (Table 3). A frame is not a unique

object but is made of an infinite number of mutually syn-
chronized clocks and of comoving points in infinite space,
which can all be considered as sources. As a consequence,
the global Doppler effect perceived by a single point mov-
ing relatively to this frame is, in line with the rule of
color reflectance fusion, the geometric mean of all these
sources which distribute equally in front of and behind
their mutual closest points relative to the moving point.
With the conjectural Doppler formula, the mean inter-

frame Doppler effect is (A™°V/A) = 1/4/1 — Z—s This
result suggests a correspondence between the time dila-
tion effect and a generalized interframe Doppler effect
described by the conjectural Doppler equation.

7 Can the conjectural formula be
regarded as a putative Doppler
equation?

The conjectural Doppler equation built here appears re-
markably elegant in many aspects. (i) As shown above, it
is completely symmetric and predicts a global interframe
effect equal to the Lorentz factor. (ii) By construction,
its inversion point between the blue and red shifts is sim-
ply obtained at ¢ = —1, which seems to be the only ex-



Table 3: Arithmetic and geometric means of Doppler effects expressed using either wavelengths or frequencies. The
geometric means of the new formulas are time-independent for wavelengths as well as frequencies. ¢ and © are

defined in Table.2.

Mean A Vs v Classical Relativistic Virtual Conjectural
1 P P 2
Arithmetic A 1 [ — © , © —)/(1- v
'02 1-— t2 1-— t2 C2
1— —
c
Ch 6?2 0 —¢t? 6 —t? 1 v?
g ) V2 ) v? 02 02 92 _ 12 02 _ 2 / T2
- = — t _ R
( 02>(+C2 ) ! c? <1+62t>
. 1 v? v? v? v? 1
Geometric A @\/(1 — c2> (1 + 2 t2> 5 1+ — 12 1-— ) =
==
c
© ] 1 v?
v 2 2 1= 2
v? v? vt 5 v
\/(1—02>(1+C2P> 14 -4

pectable value based on the light clock device of Fig.1.
In this respect, it is of interest to compare the inversion
points of the different formulas.

7.1 Switching points

The three different Doppler equations compared in Fig.4,
have different switching points between contracted and
dilated waves:

e for the classical formula, at t =t = 0,
e for the conjectural formula at t = —1 or t = —At,

e and finally, the most complicated result is obtained
for the traditional relativistic formula, for which
the switching point is close to the transverse line,
at

or

where D is the minimal distance between the source
and the observer.

7.2 Coincidence between the conjectural
Doppler effect at speed v and dis-
tance increase at speed v

Imagine that a receiver recedes from a source (considered
immobile) at speed v. The source emits a light beam
propagating at speed c towards the receiver at time tg,
when they are spaced by Dg. Light reaches the receiver
at time ty after crossing a distance Dy. The duration of
the light travel is

tR —tg = DR/C (12&)
The new spacing between the source and the receiver
has become

Replacing the duration in Eq.(12b) by its value given by
Eq.(12a), yields

= — (12¢)

This classical treatment gives the conjectural Doppler
value A™°V/X (Table.2). In case of collinear approach,
the same reasoning gives

Dy 1

. 12d
C



7.3 Test of the relativistic Doppler equa-
tion

The conjectural Doppler equation naturally emerged
from a Doppler analysis, but was not intended to sup-
plant the traditional relativistic formula. Many experi-
ments have been conducted to test the theory of special
relativity through verifying the relativistic Doppler for-
mula of Einstein [§], through

o Transverse effects. Following a suggestion of Ein-
stein himself [J], the existence of the transverse
Doppler effect has been experimentally observed in
[I0]. This test does not allow distinguishing be-
tween the equation of Eintein and the conjectural
equation found here, which predict the same trans-
verse effect.

o Longitudinal effects. The celebrated experiment of
Ives and Stilwell [I1] and its descendents [12] fo-
cused on the longitudinal Doppler effect. Ives and
Stilwell recovered the time dilation factor by mea-
suring the arithmetic means of the shifted wave-
lengths in front and behind moving atoms [11].
This result is not obtained for the conjectural for-
mula presented here, except for small values of
t. Strangely, Ives and Stilwell did not use fre-
quencies although they would have been easier to
study. Moreover, they did not use the geometric
means. These choices can be explained by the re-
sults shown in Table.3 because with the relativistic
formula, the geometric means and the arithmetic
mean of the relativistic frequencies are awkward
and time-dependent. These values would merit
some additional tests.

8 Conclusion

Contrary to the relativistic Doppler equation which did
not result from a Doppler analysis [6], a Doppler ap-
proach is presented here which suggests that the inter-
frame time dilation is a matter of wave stretching, in
agreement with the parallel between time and redshift
observed for supernovae [2]. The global interframe time

dilation factor 1/4/1 — Z—; corresponds exactly to the ge-

ometric average of this perfectly symmetric conjectural
Doppler equation.
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