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relation (A18) and/or (A19). This introduces a cut in the complex frequency-plane
which leads to a power law when a Laplace transform formalism is used for solving
the initial value problem. For strong shocks in the Newtonian limit the acoustic
flow in the shocked gas is smaller than that of the incompressible flow. The linear
dynamics of the front is mainly governed by the vorticity wave leading to normal
modes that are neutral to leading order in this limit. The linear equation for the
wrinkles of the shock front then reduces to a simple wave equation [6, 7]. Another
property of wrinkled shock waves is the formation of Mach stems (triple points).
For a long time, they have been systematically observed on the shock front in ex-
periments [1, 2], even for a weak wrinkling, but no particular attention was payed
to these nonlinear effects. However, such triple points propagating in the transverse
direction of the shock front are basic ingredients of the cellular structure of unsta-
ble gaseous detonations [5, 6]. A model equation for the dynamics of shock waves,
including the Mach stem formation, has been recently derived for strong shocks in
the Newtonian limit [7]. In this limit the nonlinear effects are mainly governed by
the vorticity wave leading to the formation of singularities of the slope of the front,
representative of Mach stems. The compressible effects that are skipped to leading
order in the analysis are however essential for the formation of the secondary shock
in Mach stems. But, in the limit used in the theoretical analysis, they are not the
nonlinear mechanism responsible for the formation of singularity of the front slope.
They are a consequence of this singularity and do not affect neither the geometry
not the dynamics of the shock front, see fig. D1. This is no longer the case for
weak shock wave or when the departure from unity of the specific heat ratio is not
sufficiently small.
The objective of this work is to carry out a numerical analysis of the model

equation and to compare the results with direct numerical simulations of shock-
vortex and turbulence-vortex interactions and also with a preliminary experiment.
For the sake of completeness and simplicity the derivation of the model equa-

tion is outlined in physical terms in section 2. The technical details can be found
elsewhere [7]. Numerical studies of the model equation are presented in section 3.
In this section analogies with the model for the formation of large-scale structure
of the Universe are pointed out. The results are compared with direct numerical
simulations of shock-turbulence interaction in three dimension geometry performed
at Stanford University [9, 10] and also of shock-vortex interaction in two dimen-
sional geometry performed at Normandie University, see section 4. In section 5 a
preliminary experimental study of a plane shock wave reflected from a wavy wall,
performed recently at Aix-Marseille University, is presented showing a qualitative
agreement with the numerical study of the model equation, but also quantitative
differences.

2. Model equation

The shock wave is considered as a discontinuity separating two flows of a poly-
tropic gas. The conditions upstream and downstream from the shock front will be
identified by the subscripts 1 and 2 respectively. The flow of the upstream gas is
prescribed and is not pertured by the shock front since the propagation velocity is
supersonic, M1 > 1. The flow in the shocked gas extends to infinity downstream
(the supporting piston is at infinity and is assumed to have no influence on the
shock dynamics). The dynamics of the shock front is obtained by solving the Euler
equations in the shocked gas, using the Rankine-Hugoniot conditions at the front
and a boundedness condition at infinity downstream. Using the same configuration
as in Appendix A, u and w denote the longitudinal and transverse flow velocity. A
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two-dimensional geometry is consider for simplicity, extension to 3D is straightfor-
ward. From now on we introduce the notation, u → u + u, ρ → ρ + ρ, p → p + p,
where an overbar identify the unperturbed flow in the referential frame of the shock
wave, α = w1 = w2 = 0. The analysis is performed in the distinguished limit for
which the compressed gas flow is strongly subsonic relative to the shock front,
M2 ≡ u2/a2 ≪ 1,

M1 ≡ u1/a1 ≫ 1, M
2
1(γ − 1) = O(1). (1)

According to the Rankine-Hugoniot condition (A16) in Appendix A, M
2
2 ≈ (γ −

1)/2 + 1/M
2
1 ≪ 1, and a perturbation analysis is carried out by using the Mach

number of the shocked flow (relative to the shock front) as a small parameter
ǫ ≡ M2, M1 = O(1/ǫ),

ǫ ≡ M2 ≪ 1, u2/u1 ≈ ǫ2, u1u2 ≈ a22, a2/a1 = O(1). (2)

2.1 Linear analysis for a polytropic gas

Consider the normal mode analysis outlined in Appendix A for a general material.
For a polytropic gas, to leading order in the limit ǫ → 0, the dispersion relation
(A18) reduces to S2 + 1 = 0. This corresponds to neutral modes of frequency
ω ≈ a2|k| solution to the wave equation

∂2α

∂t2
− a22

∂2α

∂y2
= 0, (3)

where a2 is the sound speed in the compressed medium. The physical insight is as
follows. In the Fourier representation (A4) and according to (A6), the ratio l/|k|
is of order ǫ so that the acoustic waves of the eigenmodes are propagating in the
transverse direction quasi-parallel to the front. According to the second term in the
bracket [ ] of (A7) and (A8), the order of magnitude of the velocity of the acoustic
wave is,

δu(a) = O
(

ǫ2δp2f/ρ2u2
)

, δw(a) = O (ǫδp2f/ρ2u2) , (4)

where, according to (A12), δp2f/p2 = O(ǫ2α̇t/u1), see also the second equation
(A4). Using (2) and the relation p2 ≈ ρ2a

2
2, equations (4) yield

δu(a) = O(ǫ2α̇t), δw(a) = O(ǫa2α
′

y) (5)

where the notations α̇t ≡ ∂α/∂t and α′
y ≡ ∂α/∂y have been used, x = α(y, t)

denoting the position of the perturbed front. Therefore the velocity of the flow of
the acoustic wave (5) is smaller by a factor ǫ2 than the flow velocity just downstream
to the shock, given by the linearized Rankine-Hugoniot relations (A13),

x = 0 : δu2 = δu2f = α̇t, δw = δw2f = u1α
′

y. (6)

To leading order in the limit ǫ → 0, the linear dynamics is thus controlled by the
vorticity wave

δu(i) ≈ α̇t(y, t− x/u2), δw(i) ≈ u1α
′

y(y, t− x/u2). (7)
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The incompressibility condition ∂δu(i)/∂x + ∂δw(i)/∂y = 0 then yields the wave
equation (3) where the relation u1u2 ≈ a22 in (2) has been used. The vorticity wave
(7) is a shear flow quasi-parallel to the front, |δu(i)/δw(i)| = O(ǫ). A sketch of the
flow associated with an eigenmode propagating in one transverse direction (simple
wave) is sketched in fig. D1 left.

2.2 Weakly nonlinear analysis for a wrinkled shock in a quiescent medium

In the same conditions as before, acoustic waves are also negligible in the nonlinear
dynamics of a weakly wrinkled shock propagating in a quiescent medium, as shown
below. The Euler equations in the compressed gas can be written in the form,

∂u

∂t
+ u2

∂u

∂x
= U − 1

ρ

∂p

∂x
,

∂w

∂t
+ u2

∂w

∂x
= W − 1

ρ

∂p

∂y
,

U ≡ δu
∂u

∂x
+ w

∂u

∂y
, W ≡ δu

∂w

∂x
+ w

∂w

∂y
,

where δu ≡ u − u2 and U = W = 0 in the unperturbed flow. Mass conservation
is added to these equations. A weakly nonlinear approximation is valid when the
quadratic terms U and W are small compared to the unsteady terms. When ex-
pressed in terms of the vorticity wave (7) and using the relation u1u2 ≈ a22, the
quantities U and W take the form,

U ≈ 1

2

∂H

∂x
, W ≈ −1

2

u1
u2

∂H

∂y
, (8)

where H ≡ [−α̇2
t (y, t− x/u2) + a22α

′2
y (y, t− x/u2)].

The ratio of each quadratic terms in U and W to the linear terms of the Euler
equations, evaluated from (7), is of order

|α′

y|/ǫ ≈ |α̇t|/u2, (9)

where we have used (2). This quantity will be assumed to be small in the weakly
nonlinear analysis, |α′

y|/ǫ ≪ 1, so that the amplitude of the wrinkles are limited
to small values such that |α′

y| ≈ |α̇t|/a2 ≪ ǫ. Then, a perturbation analysis is
performed using the small parameter ε ≪ 1, defined such that |α′

y|/ǫ = O(ε). To
leading order, the analysis is simplified because the acoustic waves introduce terms
that are even smaller than the quadratic terms, by a factor ǫ at least.
The source terms U andW in (8) satisfy the same equations as the linear vorticity

wave, ∂U/∂t + uN∂U/∂x = 0 and ∂W/∂t + uN∂W/∂x = 0, so that they would
introduce a secular contribution (a term growing linearly in time) to u and w if
they were not balanced by a pressure term, as in the study of cellular detonations
[11, 12]. However it is not worth carrying out such a complex calculation here. One
only has to notice that the source terms U and W are zero for simple progressive
waves, α̇t = ±aNα′

y ⇒ H = 0. This corresponds to the fact that the shear flow
associated with the progressive waves of normal modes is an exact solution of the
incompressible Euler equations. More generally, for an initial disturbance of the
front of finite size Λ, the source terms U andW cannot influence the front geometry
after a short finite time, since the term H vanishes for t > Λ/aN , namely when the
two progressive waves (propagating in opposite direction) no longer overlap. These
terms do not play a significant role in the ultimate formation of cusps on wrinkles of
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small amplitude in the limit (1). However this is no longer true for initial wrinkles
whose amplitude is of the same order as the wavelength. This case is beyond the
scope of the theoretical analysis. To leading order of the weakly nonlinear analysis,
the Euler equations then reduce to their linear form and the flow takes the same
form as in the linear analysis (7), the pressure fluctuations being fully taken into
account by the acoustic flow.
However, in the laboratory frame, the boundary conditions at the front (Rankine-

Hugoniot relations) introduce quadratic terms leading to corrections of order ε to
the dynamics [7],

x = α : δu ≡ δu2f (y, t) ≈ α̇t + u1α
′2
y, w ≡ δw2f (y, t) ≈ u1α

′

y, (10)

where the nonlinear terms that introduce corrections of a higher order (higher than
ε) have been neglected. The shift of the front position, induced by the wrinkling,
also introduces quadratic terms into the boundary values at the origin

x = 0 : δu ≡ u2f (y, t) ≈ δu2f − αu′x, w ≡ w2f (y, t) ≈ δw2f − αw′

x, (11)

where u′x(y, t) ≡ ∂δu(i)/∂x|x=0, and w′
x(y, t) ≡ ∂δw(i)/∂x|x=0.

Solving the vorticity wave with the boundary condition (11), the incompress-
ibility condition then leads to a nonlinear equation for the wrinkles in the form
−(1/u1)∂u2f/∂t+ ∂w2f/∂y = 0. The nonlinear terms coming from the shift of ori-
gin in (11) give no contribution. This can be shown by using the following relations

−u2∂(αu
′

x)/∂t = −u2α̇t∂δu
(i)/∂x|x=0 + α∂2δu(i)/∂x2|x=0,

∂(αw′

x)/∂y = α′

y∂δw
(i)/∂x|x=0 + α∂2δw(i)/∂x∂y|x=0,

since, according to the incompressibility condition, the sum of the two last terms is
zero. When considering conditions for which H = 0, the sum of the two first terms
is also zero since they give (1/2)∂H/∂t. Incompressibility then leads to a weakly
nonlinear equation for the evolution of the front x = α(y, t),

|α′

y|/ǫ ≪ 1 :
∂2α

∂t2
− a22

∂2α

∂y2
+ u1

∂

∂t

(

∂α

∂y

)2

= 0, (12)

where the nonlinear term introduces a correction of order ε to the wave equation
(3) coming from the Hugoniot condition in (10). By the way notice that, according
to (12), the mean velocity of the wrinkled shock front is increased by a term
u1 < (∂α/∂y)2 > where < . > denotes an average in the transverse direction and
in time. This is not important here.
Introducing the non-dimensional quantities,

η ≡ y/Λ, τ = a2t/Λ, A(η, τ) ≡ α(y, t)/(ǫΛ) (13)

equation (12) takes the following non-dimensional, form free from parameter,

A′

η ≪ 1 :
∂2A

∂τ2
− ∂2A

∂η2
+

∂

∂τ

(

∂A

∂η

)2

= 0, (14)

where (2) has been used. In this equation, A′
η ≡ ∂A/∂η = α′

y/ǫ is a small quantity,
by definition of order ε, A′

η = O(ε), see text below (9).
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2.3 Discussion of the dynamics of a weakly wrinkled shock front

When limiting the attention to simple waves for the wrinkles propagating in a
single transverse direction at velocity a2, to leading order in the weakly nonlinear
analysis, equation (12) takes the form of a Burgers’ equation (with zero dissipation)
for the slope of the front that can be written, according to (B2), in the form
∂α′

y/∂t
′+u1α

′
y∂α

′
y/∂y = 0, see Appendix B. This indicates that equation (12) leads

to the formation of singularities (discontinuity of α′
y) in finite time, representative

of triple points as sketched in fig. D1 right.
In this weakly nonlinear analysis, the nonlinear term in (14) comes from the

first Rankine-Hugoniot jump condition in (10). Except for a different numerical
coefficient (1 instead of 2), this term has the same form as the one that would be
introduced by a simple Huygens construction of a weakly wrinkled front propagat-
ing at a constant velocity in the normal direction. However the wave equation in the
transverse direction describing the linear dynamics of a wrinkled shock front, see
(3), cannot be obtained by a Huygens construction. But, the relaxation mechanism
of initial disturbances, in the form of a power law coming from compressible effects,
is absent from the analysis. It should be obtained by pushing the perturbation anal-
ysis to a higher order. This is a difficult task that has not yet be performed. The
problem is different from (and more difficult than) weakly unstable detonations for
which the acoustic damping is exponential [12].
By the way, notice also that equation (14) could be relevant to describe micro-

seisms, see equations (111) and (112) in [8].

2.4 Model equation for shock-vortex and shock turbulence interaction

Consider a cylindrical and subsonic vortex of diameter Λ and turnover velocity
ve/a1 < ǫ. With this limitation the pressure fluctuations have a negligible effect
upon the shock dynamics. The axis of the vortex is parallel to the planar shock
wave and its velocity relative to the upstream gas is neglected. The analysis is
performed below for a vortex of finite size, Λ, and can be extended to real vortices.
The analysis can be summarized as follows [7]. A small distortion of the shock front
is formed during the short lapse of time of shock-vortex interaction τint ≡ Λ/u1
(period of crossover). After this short lapse of time, t > τint, the shock propagates
in a quiescent medium and its evolution is described by (12). This subsequent
evolution involves a time scale much longer than the interaction time in the limit
(1-2), Λ/u2 ≫ τint. The problem takes the form of a two-timescale problem in
which the first stage (period of crossover) determines the initial condition for the
second stage controlled by (2).
During the crossover (first stage for ve ≪ a1), a quasi-planar pressure pulse

of transverse extension Λ (∆y ! Λ) propagating downward in the longitudinal
direction x at the velocity a2+u2, is generated in the compressed gas. This pressure
pulse is generated by a longitudinal impulsive source of lifetime τint, and will not
influence the subsequent front evolution. Simultaneously the transmitted vortex
takes the form of a shear wave quasi parallel to the front [7]. The shock-vortex
interaction is sketched in fig. D2. Denoting u1(x/Λ, y/Λ) and w1(x/Λ, y/Λ) the
longitudinal and transverse component of the flow velocity of the vortex in the
upstream gas, the perturbation of the upstream flow velocity, felt by the shock
wave during the crossover (u1f , w1f ) is

u1f (t/τint, y/Λ) = u1(−u1t/Λ, y/Λ), w1f (t/τint, y/Λ) = w1(−u1t/Λ, y/Λ)

where the origin of time corresponds to the beginning of cross-over. It is then shown
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in [7] that the local disturbance of the shock front is given by an integration with
respect to time of the following expression

ve/a1 ≪ ǫ, 0 < t < τint : ∂α/∂t ≈ 2(a2/u1)u1f , (15)

leading to a wrinkle of small amplitude

|δα|/Λ ≈ 2a2ve/u
2
1 (16)

where ve denotes the turn-over velocity, |u1|/ve = O(1), |w1|/ve = O(1). The
transverse velocity w1 of the vortex does not affect the shape of the front. Its role
is limited to feed the vorticity flow propagating in the shocked gas, see fig. D2.
In the spirit of the two-time scale approximation the subsequent dynamics of the

shock front is given by the solution to (14) for the following initial condition,

t = 0 : ∂A/∂t = 0, |A| = 2ve/u1, (17)

which corresponds to a small reduced amplitude, smaller than ǫ2. A composite
solution, valid at any time is then obtained by combining (12) and (15)

|u1f |
a1

≪ ǫ :
∂2α

∂t2
− a22

∂2α

∂y2
+ u1

∂

∂t

(

∂α

∂y

)2

= 2
a2
u1

∂u1f
∂t

. (18)

The extension to three-dimensional geometry is straightforward. By using the non-
dimensional quantities in (13), equation (18) can be written for a two-dimensional
shock surface in the following non-dimensional form,

∂2A

∂τ2
−△A+

∂|∇A|2
∂τ

=
∂ψ

∂τ
where ψ ≡ 2

(

u1f
a2

)

. (19)

Expressed in terms of the dimensional units of space and time, the non dimensional
source term takes the form

∂ψ/∂τ = 2(Λ/u2)∂u1/∂x|x=−u1t,

which is a term of small amplitude, of order 2ve/u2 ≪ 1, rapidly fluctuating on
the reduced time scale a2/u1 = O(ǫ) since, according to (2), a2/a1 = O(1). This is
true under the condition ve/a1 ≪ ǫ used by the weakly nonlinear analysis in the
limit (1). Equation (19) can be used as a model for the geometry and dynamics of
a two-dimensional shock front propagating in a frozen turbulent flow u1(x, y), Λ
and ve denoting the integral scale and the turbulence intensity respectively.

3. Numerical simulations of the model equation

In the following subsections we will use clawpack software [14, 15] (a well known
program for hyperbolic equations) to simulate the model equations (14) and (19).

3.1 Numerical simulations without forcing term

Let us start with a numerical simulation of equation (14) in one dimension and with-
out forcing term, using periodic boundary conditions in the transverse direction. A
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typical result for the initial value problem with a sinusoidal initial shape and a zero
initial derivative with respect to time is presented in fig. D3. The reduced length
of the domain is 5 and the sinusoidal initial condition is τ = 0: A = 0.3 sin(2πη/5),
∂A/∂τ = 0. After a delay of a few reduced time a nonlinear pattern of standing
wave is formed with the same wavelength as the initial condition but with crests,
also called cusps (sharp transition of the slope) pointing toward the shocked gas
and propagating in both transverse directions. The figure D3 corresponds to a final
time of τ = 8 and a crest to crest amplitude of 0.5 compared to 0.6 at the ini-
tial condition. A stronger damping is observed for smaller wavelengths (not shown
here), this could be influenced by the small viscous damping term introduced by
the numerical code to treat the slope discontinuity. Further work has to be done in
that direction. The result corresponds roughly to that of Burgers equation for the
spatial derivative but with the difference that the transverse propagation described
by the second order equation (14) is in both directions. The result of figure D3 is in
direct correspondence with that obtained with the cellular detonation model [12]
in which the wrinkles are triggered by a linear instability mechanism (absent here)
in the vicinity of the threshold of a Hopf bifurcation at a finite wavelength.
We now turn to simulation of (19) in two-dimensional geometry, still without

forcing term, ψ = 0. We have already noted the analogy of (14) and (19) with
the Burgers equation. The formation of large-scale structures in the Universe is
currently analyzed via a multi-dimensional form of the Burgers equation [16, 17].
This analysis of mass distribution in the Universe is based on the Zeldovich ap-
proximation: each element of matter (including dark matter or anything else..)
is moving in a straight line with a constant velocity which is a prescribed ran-
dom field associated with small initial fluctuations in the early Universe, as they
are ”observed” from the cosmic microwave background. After the onset of singu-
larities regions of high density form a disordered cellular structure called ”foam”
or ”sponge” in the form of thin layers of high density delimiting large regions of
low density. It is tempting to check that this property of coalescence, which is
known for the solutions to the multidimensional Burgers equation with an initial
random field, is also obtained with equation (14). The purpose here is not to per-
form a sophisticated and detailed analysis such as those extensively developed for
a long time for the Burgers equation, see for example [18]. Attention is limited
here to point out a general property of the solution that can be relevant for the
shock-turbulence interaction considered below. This property of solutions to (19)
is illustrated in figures D4. The simulation is started with a white noise of small
amplitude, |δA| ≈ 0.01, on the 256*256 points of the computational square domain
of size 5 with periodic boundary conditions. Figures D4 show the wrinkled front
just after the beginning of the simulation and at time 4 respectively. Large cellular
structures delimited by folds (also called crests or cusps), are observed at time 4.
This illustrates the so-called ”coalescence property” similar to that characterizing
the solution to Burgers equation for random initial conditions.

3.2 Shock turbulence interaction

In this subsection a simulation of shock-turbulence interaction is presented using
the model equation (19). It would be expensive to simulate a three dimensional
turbulence to be introduced into the model equation. This is not necessary here
since our purpose is limited to point out a general geometrical characteristic of the
patterns of folds that are formed on the front surface.
We simply use a synthetic turbulence generator [19], which produces an isotropic

frozen velocity field with a k−5/3 cascade. The shock is then propagated at a con-
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stant velocity 1.5 through this frozen velocity field. Only the longitudinal compo-
nent is used in equation (19). The simulations are performed in a square box of
length 5, using 256*256 points, with a turbulent kinetic energy 0.078, which corre-
spond to ψ = 0.396 and an integral scale of 0.15. A small integral scale is selected
in order to point out the ”coalescence property” already observed with a turbulent
flame model [20]. The longitudinal component of the turbulent flow is shown in fig.
D5a. Starting from a flat shock front, the two-dimensional field of the amplitude
of the wrinkled front is shown at time 4 in fig. D5b. Strongly cusped folds defining
a disordered pattern of cellular structures with a characteristic size larger than
the integral scale are clearly observed. The front looks qualitatively similar to that
observed in direct numerical simulations [9, 10], except that no local quenching is
observed, as it could have been anticipated since only small amplitudes are consid-
ered in (19). However we were not able to find in the published DNS works [9, 10]
the data necessary to know whether or not the difference of length scale between
the integral scale of the upstream turbulence and the typical size of the cellular
structure of the wrinkled shock front is also observed in DNS.
In order to be more quantitative, the time evolution of the spectrum of the

fluctuations of front position, relative to the mean front position (actually one-
dimensional spectrum averaged over samples at a fixed time), is shown in figure
D6a. The spectra at 30 different times are plotted in this figure, showing the initial
increase and the final saturation of the amplitude of the wrinkles. The energy
spectrum of the upstream turbulence, E(k), is also plotted on the same figure. The
comparison of the latter with the other spectra shows clearly that the characteristic
size of the cellular structure of the shock front becomes larger that the integral scale
of the turbulence as the time increases. An histogram of the front position of the
last run (τ = 4) is shown in figure D6b. The skewness of the probability density
function results from folds with crests pointing towards shocked gases. A similar
skewness is observed in direct numerical simulations [9].

4. DNS of shock vortex interaction

The interaction between a two-dimensional inviscid vortex and a relatively strong
normal shock is analyzed by numerical simulation using the the Spectral Difference
solver described in Appendix C. Compared to previous studies using (W)ENO-type
reconstruction techniques and spatial discretization with 3rd/4th-order accuracy
on structure Cartesian grids [21, 22], the numerical solver used here allows higher-
order (7th-order) computations over unstructured meshes and features a sub-cell
shock capturing approach, see Appendix C. The rectangular computational domain
of dimensions 2H×H consists of 200×80 quadrilateral elements, see fig. D7. Setting
the order n equal to 7, the total number of degrees of freedom (DoF) is 784 000.
In the region where the shock is located, namely, in the middle of the domain,
the mesh is refined in the horizontal direction by means of the following stretching
function (mirrored about the centerline):

x(η)

H
=

tanh(Cstrη)

tanh(Cstr)
− 1, (20)

with η ∈ [0 : 1] and the stretching coefficient Cstr = 1.5. Inflow (prescribed density
and velocity) and outflow (prescribed pressure) conditions are set at the left and
the right boundaries, respectively, whereas periodic conditions are used at the top
and bottom boundaries. The choice of periodic boundaries is justified by the fact
that the present analysis is only concerned with the short time interval during
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which the interaction between the vortex and the shock takes place. Within this
time-frame, the perturbations emanating from the shock-vortex interaction region
and traveling in the vertical direction do not have enough time to cross the periodic
planes and perturb the region of interest.
The initial conditions and the prescribed boundary values are determined ac-

cording to the Rankine–Hugoniot jump conditions (A17) such as to obtain a Mach
2 stationary shock, M1 = 2. The static pressure p2, namely, the outflow pressure,
and M1 = 2 are the only prescribed quantities. In order to establish a well resolved
shock for the mesh used, a precursor computation without the vortex is initially
performed and let run until any initial perturbation issuing from the shock region
has left the domain. The established shock region is depicted, greatly magnified
within a region of width 0.04H, in fig. D8. The comparison between the contours of
the Mach number (top picture) and the artificial viscosity (bottom picture) clearly
shows that subcell resolution is attained, as expected for such a high-order com-
putation. Also note the good level of localization provided by the sensor, which is
clearly switching on the artificial viscosity only inside the element where the shock
is located (the linear smoothing algorithm is obviously spreading the artificial vis-
cosity to the closest neighbour elements).
Once the stationary shock is established, a homentropic Taylor vortex [23] is

placed in the middle of the left region at five vortex radii upstream of the shock
using the following relations:

[

ρ(x)

ρ1

]γ−1

=

[

p(x)

p1

]
γ−1

γ

= 1− γ − 1

2
M2

v exp(1− ξ2v − η2v), (21)

u1 − u(x)

u1ηv
=

w(x)

u1ξv
=

Mv

M1
exp

(

1− ξ2v − η2v
2

)

, (22)

where Mv represents the vortex Mach number whereas ξv = (x−xv0)/Rv and ηv =
(y − yv0)/Rv are the spatial coordinates in the vortex reference frame normalized
with respect to the vortex radius Rv = 0.1H (xv0 and yv0 are the coordinates of the
vortex center at the beginning of the simulation). Two different values of the vortex
Mach number are analyzed, namely, Mv = 0.4 and 0.8. These values are outside
the validity domain of (14) and (18-19) (strong shock and weak vortex). However
as seen thereafter, for Mv = 0.4, a good agreement is observed between the shock
surface evolution modeled by (14) and DNS. The time history of the contours
of the density in the region of interest is depicted in fig. D9 for the Mv = 0.8
test. According to the classification presented in [21], although both values of the
selected shock Mach numbers fall within the region of strong interactions (with
a Mach reflection pattern), the former is relatively close to the weak interaction
region, whereas the latter is well within the strong interaction region. Indeed, by
observing the computed Schlieren plots depicted in figures D10 and D11, a very
marked Mach reflection pattern can be seen in the Mv = 0.8 test case, whereas, for
the lower value of Mv, the two cusps of the front are still present but are extremely
weak and barely visible in fig. D10d. In order to make distinction between the two
test cases, the computations performed with Mv = 0.4 and 0.8 are referred in the
following to as moderate and strong shock-vortex interaction tests, respectively.
The time evolution of the shock profiles for the moderate and strong interaction

tests are depicted in fig. D12, along with the numerical solutions of the model equa-
tion (14), obtained with a sixth order PADE scheme [24] adding a small amount
of second order artificial viscosity to handle the cusps. The initial conditions used
for solving (14) are the profiles extracted from the two-dimensional simulations
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using the maximum pressure gradient as a marker of the shock location. Each
profile is translated along the x-axis according to the corresponding normalized
time. Note that the discontinuity in the three profiles between a time of 0.2 and
0.4 for Mv = 0.8 (fig. D12b) is due to the particular post-processing algorithm
which identifies the shock at the location of the maximum pressure gradient (in
the norm). This extremum—one for each value of y/H—is detected in this case on
the relatively strong reflected shock, see fig. D11. The two cusps at the front where
the Mach stem is formed can be clearly seen in the plots. The velocity in the lab-
oratory frame of the upward moving cusp is approximatively 0.72 a2 for Mv = 0.4
and 0.66 a2 for Mv = 0.8. This should be analyzed by taking into account the
downward component of the velocity of the transmitted vortex which is not negli-
gible in the numerical simulations in contrast to the limit used in the theoretical
description. The two cusps, one propagating upward and the other downward, are
observed. The agreement of equation (14) with the full simulation is satisfactory
for the Mv = 0.4. The Mv = 0.8 case is too far from the conditions used in the
theoretical analysis for providing a satisfactory agreement.

5. Experimental study of a plane shock wave reflected from a wavy wall

In order to test the model equation (14) and more particularly the solution for
an initial condition given by sinusoidal shape of the front, an experiment of shock
reflexion on a wavy wall was recently performed in a shock tube by the group
at IUSTI directed by Lazhar Houas and Georges Jourdan. A similar experiment
was performed a long time ago for studying the linear relaxation power law of the
amplitude of the front [1]. The attention is focused in the IUSTI experiment on the
trajectory of the triple points. The facility is described elsewhere [25]. An incident
planar shock wave propagating at 514 m/s in air (Mach number 1.5) is reflected
from a wavy wall having a one dimensional sinusoidal shape (amplitude 1 mm,
wavelength 2 cm), see the three pictures of fig.D13 left. The propagation Mach
number of the reflected shock is 1.43 corresponding to 325 m/s for the velocity in
the laboratory frame and to 536 m/s for the propagation velocity relative to the
upstream gas put in motion at 239 m/s by the incident shock before reflexion. A
high speed camera (125 000 frames/second) is used to record the Schlieren pictures
of the reflected shock. The three pictures of fig.D13 left are taken at 120 µs, 200
µs and 280 µs respectively after reflexion. The structure of the flow and of the
shock front just after reflexion (not shown here) is relatively complex, as the flow
features that arise from the impact of shock wave on a concave cavity [26]. Few
time after reflexion, 20 µs, typically the front shape takes a strongly cusped and
periodic cell structure with crests (cusps) pointing toward the concave part of the
wavy wall. At approximately 50 µs that is about 1.7 cm from the wall, these cusps
split into two triple points, one propagating upward in the transverse direction
and the other downward. A quite similar feature is also observed concerning the
singularities of slope at the early times of the numerical study of the model equation
(14) starting with a sinusoidal shape and a zero derivative with respect to time.
After less than 100 µs, at a distance about 3.4 cm (1.7 times the wavelength)
from the wall, the front is quasi-planar with two arrays of regularly spaced triple
points moving transversally at constant velocity in the opposite directions. The
trajectories of these triple points form a diamond-shaped pattern shown in fig.D13
right. This result is qualitatively similar to the above numerical results obtained
with the model equation, see fig.D3 and also to markings left by cellular detonations
on soot-coated foils at the walls [5, 6, 12].
However there is a quantitative discrepancy, the transverse velocity of the triple
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points in the experiment is about 310 m/s that is smaller than the sound speed in
the shocked gas of the reflected shock wave, evaluated to be 446 m/s by using the
Rankine-Hugoniot conditions. Assuming that the shocked gases are quiescent (at
rest), this subsonic velocity is not compatible with the propagation of the secondary
shock of Mach stems. Further experimental investigations are required to decipher
the nature of the triple points.

6. Conclusions

The model equations (14) and (19) derived for strong shocks in the Newtonian
limit (1) and for very subsonic disturbances of the upstream flow capture impor-
tant features of the dynamics of shock waves, notably concerning the formation of
singularities of the slope of the shock front and the two-dimensional network formed
by the corresponding folds of the shock surface. However the front disturbances are
weak for such conditions. Quantitative discrepancies with experiments and DNS,
performed in more realistic conditions, exist and require further investigations.
Among the questions to be addressed the two following ones are worth mention-

ing. Is it true in real situations, that the typical length scale of the wrinkled front
of a shock wave propagating in a turbulent flow becomes larger than the integral
scale, as it is predicted by equation (19)? What is the nature of the triple points
observed in the two-dimensional experiments of wrinkled shock fronts ?
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Appendix A. Dispersion relation

Consider a planar shock wave propagating in the negative x direction at a constant
(supersonic) velocity u1 in a uniform medium, M1 ≡ u1/a1 > 1, where a denotes
the sound speed. This requires an external device to trigger the shock, for example
a piston at constant velocity in the shocked gas. We assume that such a piston
is at infinity and does not generate disturbances. In the reference frame of the
unperturbed planar solution, the unperturbed front stands perpendicular to the
x-axis at x = 0 and the shocked material flows at a constant (subsonic, ) velocity
u2 > 0 in the positive x direction (M2 ≡ u2/a2 < 1). Let

x = α(y, t)

represent the perturbed position of the shock front at transverse position y and
at time t. In order to save the notations we used a 2D geometry, the extension to
3D is straightforward. The upstream medium is unperturbed and is assumed to be
uniform. The Euler equations are solved in the shocked material. The boundary
conditions are given at x = 0 by the linearized Hugoniot relations and a bounded-
ness condition is enforced downstream in the shocked material for x → ∞. For any
physical quantity f we introduce the decomposition f = f+δf , where f represents
the unperturbed solution. Vorticity and entropy are generated in the compressed
material at the shock and convected downstream in the x-direction at the velocity
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u2. The flow is thus decomposed into a vorticity wave (superscrit i) and an acoustic
wave (superscript a)

δu2 = δu(i)(y, t− x/u2) + δu(a)(x, y, t), (A1)

δw2 = δw(i)(y, t− x/u2) + δw(a)(x, y, t), (A2)

where u and w denote the longitudinal and transverse component respectively and
where the pressure fluctuations are fully taken into account by the acoustic flow
(δu(a), δw(a)). The flow (δu(i), δw(i)) is incompressible, ∂u(i)/∂x+ ∂w(i)/∂y = 0.
For an harmonic perturbation of the front position, a normal-mode decomposi-

tion is used,

α(y, t) = α̃(t)eiky, α̃(t) = α̂eσt, δf(x, y, t) = f̃(x)eiky+σt, (A3)

where k is the transverse wave vector (a real quantity), and σ = s± iω (ω > 0) is
a complex number whose real part s is the linear growth rate (or damping rate if
s < 0) and the imaginary part ω is the frequency of oscillation in time.

A.1 Analysis for a general material

The acoustic waves propagating in the shocked material, solution to the equation
of linear acoustic take the form

δp = p̃2f exp (il±x+ iky + σt) , p̃2f/p1 = −4(γ/γ + 1)M1σα̂/a1 (A4)

where the quantities l± are solutions to the second-order algebraic equation,

(σ + il±u2)
2 + a22(l

2
± + k2) = 0, (A5)

i
l±
|k| =

M2S ±
√
1 + S2

√

1−M
2
2

with S ≡ σ

a2|k|
1

√

1−M
2
2

. (A6)

The constant of integration p̃2f is given by the linearized Rankine-Hugoniot con-
dition at x = 0. Its expression in (A4) is given for simplicity for a polytropic
gas where γ is the ratio of specific heats, see the general relation below in (A12).
Boundedness condition at x → ∞ implies Re(il±) < 0. The vorticity wave is then
computed by using the boundary condition at x = 0 obtained by subtracting the
acoustic flow from the flow given by the Rankine-Hugoniot condition (ũ2f , w̃2f )

δũ(i) =

[

ũ2f +
il±u2

σ + il±u2

p̃2f
ρ2u2

]

e−σx/uN , (A7)

δw̃(i) =

[

w̃2f +
iku2

σ + il±u2

p̃2f
ρ2u2

]

e−σx/uN . (A8)

The incompressibility condition of the entropy wave

−(il±σ + u2k
2)

(σ + il±u2)

p̃2f
ρ2u2

− σ
ũ2f
u2

+ ikw̃2f = 0, (A9)
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then leads to an equation for σ/(a2|k|)

±
√

S2 + 1
p̃2f

ρ2a2u2
+ S

ũ2f
u2

− ikw̃2f

|k|u2
M2

√

1−M
2
2

= 0, (A10)

where S and the ± sign are the same as in (A6) and where the following relation

−(il±u2σ + u22k
2) = −(σ + il±u2)

[

il±u2

(

1−M
2
2

)

− σM
2
2

]

has been used. Introducing the non-dimensional parameters r and n characterizing
the material and the strength of the shock wave,

r ≡ − (ρ1u1)
2

dp/dρ−1|2f
> 0, n ≡ ρ2

ρ1

M
2
2

(

1−M
2
2

) > 0, (A11)

where dp/dρ−1|2f is the slope of the Hugoniot curve at the state of the shocked
material in the plane (p, 1/ρ), the Rankine-Hugoniot conditions yield

δp2f
p2

= −2

(

1− p
1

p
2

)

(1− r)

∂α/∂t

u1
, (A12)

δu2f
u2

=

(

ρ2
ρ1

− 1

)

1 + r

(1− r)

∂α/∂t

u1
,

δw2f

u2
=

(

ρ2
ρ1

− 1

)

∂α

∂y
. (A13)

Introducing (A12) and (A13) into (A10) yields the dispersion relation for the gen-
eral case in the form

±2M2S
√

1 + S2 = (1 + r)S2 + (1− r)n. (A14)

The physical solutions to (A14) are those satisfying the boundedness condition of
the pressure at infinity,

Re[M2S ±
√

1 + S2] ! 0. (A15)

A.2 Neutral modes of shock waves in polytropic gases

For polytropic gas, a1 =
√

γp1/ρ1, a2 =
√

γp2/ρ2, the Hugoniot conditions yield

M
2
2 =

(γ − 1)M
2
1 + 2

2γM
2
1 − (γ − 1)

(A16)

p1
p2

=
(γ + 1)

2γM
2
1 − (γ − 1)

,
ρ2
ρ1

=
u1
u2

=
(γ + 1)M

2
1

(γ − 1)M
2
1 + 2

, (A17)

and equation (A14) reduces to

±2M2S
√

1 + S2 = S2
(

1 + 1/M
2
1

)

+ 1. (A18)
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According to (A16) for γ ! 5/3, equation (A18) has two pairs of imaginary roots
(neutral normal modes), S = ±iΩ, with Ω > 1, so that the right hand side of (A18)
is negative. Therefore the ± sign in the expression ±i

√
Ω2 − 1 = ±

√
1 + S2 in the

left hand side of (A18) should be the same as that of S = ±iΩ, to give

−2M2Ω
√

Ω2 − 1 = −Ω2
(

1 + 1/M
2
1

)

+ 1 < 0. (A19)

Then, according to (A6), each Ω corresponds to a single value l > 0, il± = ±il

l

|k| =





M2Ω+
√
Ω2 − 1

√

1−M
2
2



 > 0, Ω ≡ ω

a2|k|
1

√

1−M
2
2

> 1. (A20)

A.3 Non-radiating condition

The reduced frequency ω/a2|k| > 0 can also be expressed in terms of l/|k| and M2

by solving the quadratic equation for Ω2 obtained from the first equation (A20).

This yields two solutions Ω2(1−M
2
2) = (1+M

2
2)l

2/k2 +1± 2(l/k)M2

√

l2/k2 + 1,

that can be written ω2/(a22k
2) =

[

√

l2/k2 + 1±M2l/k
]2
, corresponding simply to

the solutions of the wave equation (A5). From these solutions, only the one with
the minus sign has to be retained

ω = a2
√

l2 + k2 − u2l, (A21)

This is because the solution to (A19) should satisfy the inequality ω < a2
√
l2 + k2

yielding (1 −M
2
2)Ω

2 − 1 < l2/k2. The latter is checked for Ω > 1 by introducing
the expression (A19) for 2M2Ω

√
Ω2 − 1 into l2/k2 obtained from (A20).

Introducing the wave vector κ ≡ lex+key where ex and ey are the unitary vectors
along the axes Ox and Oy respectively, the frequency in (A21) takes the form ω =
κ.[a2κ/

√
l2 + k2−u2ex], so that, in the reference frame of the unperturbed (planar)

shock, the component along the x-axis of the propagation velocity of the sound wave
is u2 − a2l/

√
l2 + k2. The non-radiating condition, u2 − a2l/

√
l2 + k2 < 0, can be

written M2 < (l/|k|)/
√

(l/k)2 + 1 that is (l/|k|) > M2/(1−M
2
2)

1/2, a condition
which is satisfied by the expression of l/|k| in (A20) since Ω > 1. The fronts
with non-radiating neutral modes are stable[4], in contrast to those characterized
by sound emission since they correspond to an unbounded reflexion coefficient of
acoustic waves emitted in the shock gases.

Appendix B. Burgers equation

Using reduced amplitudes of order unity, Ã ≡ A/ε, equation (14) can be written

Ã = O(1) :
∂2Ã

∂τ2
− ∂2Ã

∂η2
+ ε

∂

∂τ

(

∂Ã

∂η

)2

= 0, (B1)

showing the two-time-scale nature of the problem, a wave equation with both
frequency and wavelength of order unity and a slowly varying amplitude on the
time scale τ ′ ≡ ετ . When limiting the attention to simple waves for the wrinkles
propagating in a single transverse direction at velocity, for example in the direction
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of negative η, the solution to (14) is looked for in the form Ã(η, τ, ετ) = A(η+τ, τ ′)
and ∂/∂τ → ∂/∂η + ε∂/∂τ ′. When the terms of order ε2 are neglected in front of
those of order ε, equation (B1) reads 2ε∂2A/∂η∂τ ′+ ε∂(∂A/∂η)2/∂η = 0, yielding

∂A′

∂τ ′
+A′

∂A′

∂η
= 0, (B2)

where A′ ≡ ∂A/∂η.

Appendix C. The numerical scheme for shock-vortex interaction

The shock-vortex interaction numerical tests are conducted by solving the unsteady
two-dimensional Euler equations for gas dynamics:

∂U

∂t
+

∂F i

∂xi
= 0, (i = 1, 2), (C1)

where t represents the time, x = (x1, x2) the position vector, U =
(

ρ ρu1 ρu2 ρe
)T

is the vector of conservative variables, and F
i is for the flux vector

F
i =









ρui
ρu1ui + δ1ip
ρu2ui + δ2ip
(ρe+ p)ui









. (C2)

In the above equations, ρ is the fluid’s density, u = (u1, u2) is the velocity vector,
δij is the Kronecker delta, p is the pressure and e is the total energy (internal +
kinetic), which is related to the pressure assuming the validity of the ideal gas law,

ρe =
p

γ − 1
+

1

2
ρuiui, (C3)

where γ = cp/cv is the ratio between specific heat capacities at constant pressure
and volume.
The above equations are solved using the high-order Spectral Difference (SD)

method for unstructured spatial discretizations. The formulation of the equations
on quadrilateral grids is similar to the one described in [27]. In the SD method,
in particular, the solution in each element is reconstructed from n solution points
using a degree n − 1 polynomial for each coordinate direction. Likewise, degree n
polynomials are used to reconstruct the fluxes from n+1 flux points. In the present
study, the solution points in 1D are chosen to be the Gauss-Legendre quadrature
points, whereas the flux points are selected to be the Gauss-Legendre quadrature
points of order n−1 plus the two end points −1 and 1. This particular combination
of solution and flux points, in fact, can be proved to be linearly stable for all orders
of accuracy and optimal in reducing aliasing errors and providing good conditioning
for the non-linear case [28, 29]. The reconstructed fluxes are only element-wise
continuous, but discontinuous across cell interfaces. Therefore a Riemann solver is
employed to compute a common flux at cell interfaces to ensure conservation and
stability. In the current implementation, the Roe solver with entropy fix [30, 31]
is used. The left and right states here represent the solution on both sides of the
shared edge flux point.
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High-order methods are highly susceptible to overshoots and undershoots in the
neighborhood of discontinuities. These spurious oscillations can be damped using
artificial viscosity. Note however that, in order to avoid detrimental effects on the
solution accuracy, the effects of artificial viscosity should be localized to a small
part of each of the cells through which the shock passes. In the present study,
the method proposed in [32, 33] is adopted. This approach, which was originally
developed for the Discontinuous Galerkin (DG) scheme, combines a highly selective
spectral sensor, based on the modal decomposition via orthogonal polynomials,
with a consistently discretized artificial viscosity. The method smooths out the
discontinuities in the solution to a width that is appropriately resolved by the
mesh and the polynomial approximations, thus obtaining subcell resolution for
high-order discretizations. Moreover, if p = n − 1 is the polynomial order of the
solution, the amount of artificial viscosity is set to scale as 1/p and, for high order
polynomials, shock profiles which are much thinner than the element size can be
obtained. The method is briefly summarized below.
The solved equation set is augmented with a Laplacian diffusion term,

∂U

∂t
+

∂F i

∂xi
=

∂

∂xi

(

ǫ
∂U

∂xi

)

, (C4)

where ǫ represents the added artificial viscosity to be introduced in regions where
the flow is under-resolved, such as across shocks and contact discontinuities. In
order to sense these regions accurately, the level of smoothness of a selected variable
ψ, hereafter referred to as the sensor variable, is determined by checking the rate
of decay of the expansion coefficients, or modal coefficients, of the solution in an
orthogonal basis. In the present case, normalized orthogonal Legendre polynomials
are adopted and the sensor variable is written as

ψ(ξ) =
n
∑

i=1

ψ̂iP
∗

i−1(ξ), (C5)

where P ∗
i (ξ) is the normalized Legendre polynomial of degree i

P ∗

i (ξ) = Pi(ξ)

√

2i+ 1

2
⇒

∫ 1

−1
P ∗

i (ξ)P
∗

j (ξ) dξ = δij , (C6)

and ψ̂i are the modes of the sensor variable, which can be obtained from its nodal
values through a simple matrix multiplication with the inverse Vandermonde ma-
trix constructed using the selected polynomial basis [34].
After introducing the truncated expansion

ψ(ξ) =
n−1
∑

i=1

ψ̂iP
∗

i−1(ξ), (C7)

a resolution indicator [32, 33], or sensor, inside each element is defined as

se = log10

[

(ψ − ψ,ψ − ψ)e
(ψ,ψ)e

]

, (C8)

where (·, ·)e is the standard inner product in the element. From Eqs. (C5) and (C7),
the orthonormality of the Legendre polynomial basis (cf. Eq. (C6)), in particular,
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leads to the following simple expressions for the inner products in Eq. (C8):

(ψ − ψ,ψ − ψ)e =

∫ 1

−1
ψ̂2
nP

∗

n−1(ξ)P
∗

n−1(ξ) dξ = ψ̂2
n, (C9)

(ψ,ψ)e =

∫ 1

−1

n
∑

i=1

n
∑

j=1

ψ̂iψ̂jP
∗

i−1(ξ)P
∗

j−1(ξ) dξ (C10)

=

n
∑

i=1

n
∑

j=1

ψ̂iψ̂j

∫ 1

−1
P ∗

i−1(ξ)P
∗

j−1(ξ) dξ =

n
∑

i=1

n
∑

j=1

δijψ̂iψ̂j =

n
∑

i=1

ψ̂2
i . (C11)

Hence, the artificial viscosity is evaluated as

ǫe =











0 for se < s0 − κ,
ǫ0
2

[

1 + sin π(se−s0)
2κ

]

for s0 − κ ≤ se ≤ s0 + κ,

ǫ0 for se > s0 + κ,

(C12)

where ǫ0, s0 and κ are additional parameters to be chosen empirically. In the present
implementation, ǫ0 is computed from the spectral radius of the flux Jacobian and
the element size h as

ǫ0 = λmaxh/(n− 1), (C13)

where λmax = max(
√
uiui + a) is the maximum wave speed in the whole domain

and a is the speed of sound [35].
With regards to the threshold s0 and sensor tolerance κ, these are computed

via an auto-calibration algorithm, which, through a manufactured solution, is able
to determine the optimal values for the shock-sensor parameters for an arbitrarily
selected value of n. In particular, s0 is computed from the value of the sensor
when a relatively sharp hyperbolic tangent profile is assumed for the solution. The
relevant nodal values take the form

ψm.f.(ξi) =
1

2

[

1 + tanh

(

tr(i− 1− n/2) + 1/2

(n− 1)/5

)]

, (i = 1, . . . , n), (C14)

where tr(·) represents truncation to the lower integer and is used to prevent the
manufactured signal from being perfectly centered in the element of odd order n,
which is particularly undesired for low orders (for n = 3, for example, this would
make the manufactured signal linear and cause the threshold s0 to be too low and
the sensor to trigger artificial viscosity in smooth regions of the flow). If sm.f. is the
value of the sensor for the manufactured solution, computed from Eq. (C8), then

s0 = sm.f. − 3, and κ = 1. (C15)

Although the described calibration algorithm yet involves some level of empiricism
on the determination of the artificial viscosity parameters—namely, the correction
to sm.f. in Eq. (C15) and the value of κ itself—the resulting values were found to
work well in a variety of different test cases with the order n ranging from 3 to 9.
A particularly desired feature of this strategy effectively appears to be the removal
of the order-dependency of the optimal parameters.
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Also note that the element-wise viscosities from Eq. (C12) are made C0 contin-
uous as suggested in [33] by means of bilinear interpolation of the common values
of ǫ evaluated at the elements’ interfaces.



October 15, 2015 19:17 Combustion Science and Technology paperClavin

REFERENCES 21

Appendix D. Figures
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Figure D1. Left: Flow of shocked gas associated with a progressive normal mode of a wrinkled shock
front propagating into a quiescent gas (2–D geometry). The picture shows the upward propagation of the
progressive wave associated with a harmonic disturbance of the front. The shear flow of the vorticity wave
is in red. The non-radiative acoustic wave is in blue. To leading order the acoustic wave propagates in
a direction quasi-parallel to the shock front and the phase velocity, ω/k, of the wrinkles on the front is
equal to the sound speed in the shocked gas a2. Right: Sketch of the Mach stems formed by the nonlinear
evolution of the progressive disturbance propagating upwards.
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Figure D2. Sketch of the shock-vortex interaction for a strong shock and a very subsonic vortex, in the
Newtonian limit, see equation (1).
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Figure D3. One dimensional simulation in a domain of length 5, starting from an initial condition 0.3 ∗

sin(2 ∗ π ∗ x/5). Note the periodic diamond-shaped pattern formed by the trajectory of cusps (crests)
pointing towards shocked gases (a single cell is shown). The shock propagates downwards. The downward
propagation velocity is arbitrary in this picture.

(a) (b)

Figure D4. Front position for a front corresponding to a white noise initial condition. (a) Solution at a
short time just after the initialization. (b) Solution at time 4. Note the coalescence of the initial small cells
to form a large scale structure of the wrinkled front.
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(a) (b)

Figure D5. Shock-turbulence interaction described by the model equation (19). (a) Fluctuations of the
longitudinal component of the upstream frozen velocity field in a cross section perpendicular to the direction
of propagation of the shock. (b) Fluctuations of the front position at time τ = 4. Note that the typical
length scale of the size of the wrinkles of the shock front is larger than the integral scale of the upstream
turbulence.
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Figure D6. Statistical properties of the solution presented in figure D5. (a) Spectra of the fluctuations of
the front position at different times. The wavenumber is plotted on the horizontal axis and the amplitude
on the vertical axis. The amplitude increases with time. The curve with the largest amplitude corresponds
to time τ = 4 for which a saturation is observed. These spectra are compared to the spectrum of the
upstream turbulent flow E(k) (lower curve) showing the difference of length scales between the wrinkled
front and the upstream turbulent flow. (b) Histogram at time τ = 4 of the amplitude of the wrinkles of
the front, showing a skewness which is due to the existence of lines of crest (folds, cusps).

Figure D7. Computational grid: 200× 80 quadrilateral elements.
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(a)

(b)

Figure D8. Contours of Mach number (a) and artificial viscosity (b) across the initial shock within a
region of width 0.04H. Black lines and white dots represent the elements’ interfaces and the solution
points, respectively.

(a) τ∗ = 0.021 (b) τ∗ = 0.120

(c) τ∗ = 0.231 (d) τ∗ = 0.352

Figure D9. Mv = 0.8: time evolution of density contours (τ∗ = tu1/H − 1/2).
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(a) τ∗ = 0.030 (b) τ∗ = 0.120

(c) τ∗ = 0.217 (d) τ∗ = 0.366

Figure D10. Mv = 0.4: time evolution of numerical Schlieren plots (τ∗ = tu1/H − 1/2).

(a) τ∗ = 0.021 (b) τ∗ = 0.120

(c) τ∗ = 0.231 (d) τ∗ = 0.352

Figure D11. Mv = 0.8: time evolution of numerical Schlieren plots (τ∗ = tu1/H − 1/2).



October 15, 2015 19:17 Combustion Science and Technology paperClavin

REFERENCES 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

N
o
r
m
a
l
i
z
e
d
 
d
i
s
t
a
n
c
e

Normalized time

(a) Mv = 0.4
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(b) Mv = 0.8

Figure D12. Time evolution of shock profiles. Bold line: DNS. Line: Solution of Eq. (14).

 

t=0: shock/sinusoidal end-wall interaction

Figure D13. Shock tube experiment of shock reflexion from a wavy wall (one-dimensional wrinles). Prop-
agation in air with a Mach number 1.5 and 1.43 for the incident shock and the reflected shock respectively.
The reflected shock propagates from left to right. Left: Schlieren pictures at 3 different times after reflex-
ion: 120 µs, 200 µs, 280 µs. Triple points moving in opposite transverse directions are clearly seen on the
reflected shock. Right: Diamond shaped pattern of the trajectories of the triple points


