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We develop a strategy making extensive use of tent spaces to study parabolic equations with quadratic nonlinearities as for the Navier-Stokes system. We begin with a new proof of the well-known result of Koch and Tataru on the well-posedness of Navier-Stokes equations in R n with small initial data in BM O -1 (R n ). We then study another model where neither pointwise kernel bounds nor self-adjointness are available.

Introduction

In [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], it was shown that the incompressible Navier-Stokes equations in R n are well-posed for small initial data in BM O -1 (R n ). The result was a breakthrough, and it is believed to be best possible, in the sense that BM O -1 (R n ) is the largest possible space with the scaling of L n (R n ) where the incompressible Navier-Stokes equations are proved to be well-posed. Ill-posedness is shown in the largest possible space B -1 ∞,∞ (R n ) in [START_REF] Bourgain | Ill-posedness of the Navier-Stokes equations in a critical space in 3D[END_REF], and in a space between BM O -1 (R n ) and B -1 ∞,∞ (R n ) in [START_REF] Yoneda | Ill-posedness of the 3D-Navier-Stokes equations in a generalized Besov space near BMO -1[END_REF]. See also some counter-examples of this type in [START_REF] Auscher | Espaces critiques pour le système des équations de Navier-Stokes incompressibles[END_REF].

The proof in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] reduces to establishing the boundedness of a bilinear operator. This proof has two main ingredients: bounds coming from the representation of the Laplacian (such as the estimates for the Oseen kernel) and, in the crucial step, self-adjointness of the Laplacian to obtain an energy estimate using a clever integration by parts. Our new proof is rather based on operator theoretical arguments with emphasis on use of tent spaces, maximal regularity operators and Hardy spaces. In particular, we do not make use of self-adjointness of the Laplacian: we obtain the energy estimate by using Hardy space estimates for the main term and cruder estimates for a remainder term. Although more involved for the Navier-Stokes system as compared to the original proof, our argument is flexible enough to adapt to other models. We illustrate this at the end of the article by treating a more complicated model with rougher operators.

That our techniques have generalisations to rougher operators is thanks to recent works on maximal regularity in tent spaces (cf. [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF] and [START_REF] Auscher | Singular integral operators on tent spaces[END_REF]) and on Hardy spaces associated with (bi-)sectorial operators (cf. [START_REF] Auscher | Boundedness of Banach space valued singular integral operators and Hardy spaces[END_REF], [START_REF] Auscher | Hardy spaces of differential forms on Riemannian manifolds[END_REF], [START_REF] Hofmann | Hardy and BMO spaces associated to divergence form elliptic operators[END_REF], [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] and followers). Using those results, it is possible to adapt our new proof to operators whose gradient of the semigroup (or the semigroup itself, although we do not do it here) only satisfies bounds of non-pointwise type. This could open up the way to possible generalisations for Navier-Stokes equations on rougher domains and in other type of geometry (cf. [START_REF] Taylor | Incompressible fluid flows on rough domains[END_REF], [START_REF] Mitrea | Navier-Stokes equations on Lipschitz domains in Riemannian manifolds[END_REF], [START_REF] Mitrea | On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds[END_REF], [START_REF] Mitrea | The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains[END_REF] for Lipschitz domains in Riemannian manifolds, and [START_REF] Bahouri | The heat kernel and frequency localized functions on the Heisenberg group[END_REF] on the Heisenberg group), geometric flows (cf. [START_REF] Koch | Geometric flows with rough initial data[END_REF]), or other semilinear parabolic equations of a similar structure, but for rougher domains or operators (cf. [START_REF] Lemarié-Rieusset | Solutions auto-similaires non radiales pour l'équation quasigéostrophique dissipative critique[END_REF] for dissipative quasi-geostrophic equations, and [START_REF] Giga | Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system[END_REF], [START_REF] Haak | On Kato's method for Navier-Stokes equations[END_REF] for abstract formulations of parabolic equations with quadratic nonlinearity). Let us also mention the survey article [START_REF] Koch | Parabolic equations with rough data[END_REF], which considers parabolic equations with a similar structure.

The solution spaces considered have some similarities with the ones we consider in Section 5. The approach in [START_REF] Koch | Parabolic equations with rough data[END_REF] seems more suitable for applications on uniform manifolds, but restricted to operators with pointwise bounds, whereas one of the key aspects of this article is to show that our methods can be adapted to operators that satisfy non-pointwise bounds.

Potential applications may also be stochastic Navier-Stokes equations (cf. e.g. [START_REF] Liu | Local and global well-posedness of SPDE with generalized coercivity conditions[END_REF] and the references therein). The maximal regularity operators on tent spaces we are relying on in our proof, have proven useful already for other stochastic differential equations (cf. [START_REF] Auscher | Conical stochastic maximal L p -regularity for 1 ≤ p < ∞[END_REF]).

The new proof of Koch-Tataru's result

Consider the incompressible Navier-Stokes equations    u t + (u • ∇)u -∆u + ∇p = 0 div u = 0 u(0, . ) = u 0 , (NSE) where u(t, x) is the velocity and p(t, x) the pressure with (t, x) ∈ R n+1 + = (0, ∞) × R n . As usual, the pressure term can be eliminated by applying the Leray projection P. It is known from [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF] that the differential Navier-Stokes equations are equivalent to their integrated counterpart u(t, . ) = e t∆ u 0 -´t 0 e (t-s)∆ P div(u(s, . ) ⊗ u(s, . )) ds div u 0 = 0 under an assumption of uniform local square integrability of u. (In fact, under such a control on u, most possible formulations of the Navier-Stokes equations are equivalent, as shown by the nice note of Dubois [START_REF] Dubois | What is a solution to the Navier-Stokes equations? C. R[END_REF].) Using the Picard contraction principle, matters reduce to showing that the bilinear operator B, defined by B(u, v)(t, . ) := ˆt 0 e (t-s)∆ P div((u ⊗ v(s, . )) ds, (2.1) is bounded on an appropriately defined admissible path space to which the free evolution e t∆ u 0 belongs. This is what we reprove with an argument based on boundedness of singular integrals like operators on parabolically scaled tent spaces.

For a ball B := B(x, r) ⊆ R n , denote λB = λB(x, r) = B(x, λr), and S 0 (B) = B, S j (B) = 2 j B \ 2 j-1 B for j ≥ 1. We use the following tent spaces on R n+1 + .

Definition 2.1. The tent space T 1,2 (R n+1 + ) is defined as the space of all measurable functions F in R n+1 + such that

F T 1,2 (R n+1 + ) = ˆRn ¨Rn+1 + t -n/2 1 B(x, √ t) (y) |F (t, y)| 2 dydt 1/2 dx < ∞.
The tent spaces T ∞,1 (R n+1 + ) and T ∞,2 (R n+1 + ) are defined as the spaces of all measurable functions

F in R n+1 + such that F T ∞,p (R n+1 + ) = sup x∈R n sup t>0 t -n/2 ˆt 0 ˆB(x,
for p ∈ {1, 2}, respectively. The tent space T 1,∞ (R n+1 + ) is defined as the space of all continuous functions F : R n+1 + → C such that the parabolic non-tangential limit lim (t,y)→x x∈B(y, √ t)

F (t, y) exists for a.e. x ∈ R n and

F T 1,∞ (R n+1 + ) = N (F ) L 1 (R n ) < ∞,
where N , defined by N (F )(x) := sup (t,y);x∈B(y, √ t) |F (t, y)|, denotes the non-tangential maximal function.

The tent spaces were introduced in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF], but in elliptic scaling. It is easy to check that

F ∈ T 1,2 (R n+1 + ) ⇔ G ∈ T 1,2 ell (R n+1 + ),
where G(t, . ) := tF (t 2 , . ), and T 1,2 ell (R n+1 + ) denotes the tent space in elliptic scaling denoted by T 1 2 in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF]. The same correspondence holds true for T ∞,2 (R n+1 + ). For T 1,∞ (R n+1 + ), the correspondence is G(t, . ) := F (t 2 , . ), and for T ∞,1 (R n+1 + ), G(t, . ) := t 2 F (t 2 , . ). One has the duality (T 1,2 (R n+1 + )) ′ = T ∞,2 (R n+1 + ) and (T 1,∞ (R n+1 + )) ′ ⊃ T ∞,1 (R n+1 + ) with duality form ˜Rn+1 + f (t, y)g(t, y) dydt. For the later, we observe that for h ∈ T ∞,1 , then dµ = h(t, x) dxdt is a (parabolic) Carleson measure, that is an element of the dual space to T 1,∞ (R n+1 + ).

We recall the definition of the admissible path space for (NSE) in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] (with the notation as in [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]).

Definition 2.2. Let T ∈ (0, ∞]. Define E T := {u measurable in (0, T ) × R n : u E T < ∞},
with

u E T := t 1/2 u L ∞ ((0,T )×R n ) + sup x∈R n sup 0<t<T t -n/2 ˆt 0 ˆB(x, √ t) |u(s, y)| 2 dyds 1/2 .
Remark 2.3. (i) Observe that for T = ∞, one has

u E∞ = t 1/2 u L ∞ (R n+1 + ) + u T ∞,2 (R n+1 + ) . (2.2) (ii)
The corresponding adapted value space E T is defined as the space of u 0 ∈ S ′ (R n ) with (e t∆ u 0 ) 0<t<T ∈ E T . For T = ∞, observe that the first part of the norm in (2.2) corresponds to the adapted value space

Ḃ-1 ∞,∞ (R n ) and the second part to BM O -1 (R n ). Since BM O -1 (R n ) ֒→ Ḃ-1 ∞,∞ (R n ), one has E ∞ = BM O -1 (R n ). Theorem 2.4. Let T ∈ (0, ∞]. The bilinear operator B defined in (2.1) is continuous from (E T ) n × (E T ) n to (E T ) n .
Proof. We restrict ourselves to the case T = ∞. The same argument works otherwise.

Step 1 (From linear to bilinear). In a first step, one reduces the bilinear estimate to a linear estimate. We use the following fact, which is a simple consequence of Hölder's inequality:

u, v ∈ (E ∞ ) n , α := u ⊗ v ⇒      α ∈ T ∞,1 (R n+1 + ; C n ⊗ C n ), s 1/2 α(s, . ) ∈ T ∞,2 (R n+1 + ; C n ⊗ C n ), sα(s, . ) ∈ L ∞ (R n+1 + ; C n ⊗ C n ).
(2.

3)

It thus suffices to show that for the linear operator A, defined by (2.4) A(α)(t, . ) = ˆt 0 e (t-s)∆ P div α(s, . ) ds, there exists a constant C > 0 such that for all α satisfying the conditions in (2.3),

t 1/2 A(α) L ∞ (R n+1 + ;C n ) ≤ C α T ∞,1 (R n+1 + ;C n ⊗C n ) + C sα(s, . ) L ∞ (R n+1 + ;C n ⊗C n ) , (2.5) A(α) T ∞,2 (R n+1 + ;C n ) ≤ C α T ∞,1 (R n+1 + ;C n ⊗C n ) + C s 1/2 α(s, . ) T ∞,2 (R n+1 + ;C n ⊗C n ) . (2.6)
Step 2 (L ∞ estimate). The proof of (2.5) is the one found in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF]. Notice that the argument only uses the polynomial bounds on the Oseen kernel k t (x) of e t∆ P (See e.g. [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]Chapter 11]) for |β| = 1,

(2.7) t |β|/2 ∂ β k t (x) ≤ Ct -n/2 (1 + t -1/2 |x|) -n-|β| ∀β ∈ N n , ∀x ∈ R n , ∀t > 0
and no other special properties on the corresponding operator e t∆ P. We shall see later that such assumptions can be weakened.

Step 3 (T ∞,2 estimate -New decomposition). We split A into three parts:

A(α)(t, . ) = ˆt 0 e (t-s)∆ P div α(s, . ) ds = ˆt 0 e (t-s)∆ ∆(s∆) -1 (I -e 2s∆ )s 1/2 P div s 1/2 α(s, .
) ds

+
ˆ∞ 0 e (t+s)∆ P div α(s, . ) ds -ˆ∞ t e (t+s)∆ Ps -1/2 div s 1/2 α(s, . ) ds

=: A 1 (α)(t, . ) + A 2 (α)(t, . ) + A 3 (α)(t, . ).
Step 3(i) (Maximal regularity operator). To treat A 1 , we use the fact that the maximal regularity operator

M + : T ∞,2 (R n+1 + ) → T ∞,2 (R n+1 + ), (M + F )(t, . ) := ˆt 0 e (t-s)∆ ∆F (s, . ) ds, (2.8) is bounded. The result for T 2,2 (R n+1 + ) = L 2 (R n+1 + )
was established by de Simon in [START_REF] De Simon | Un'applicazione della theoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine[END_REF]. The extension to T ∞,2 (R n+1 + ) was implicit in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], but not formulated this way. It is an application of [9, Theorem 3.2], taking β = 0, m = 2 and L = -∆, noting that the Gaussian bounds for the kernel of t∆e t∆ yield the needed decay. This extends to C n -valued functions F straightforwardly. Next, for s > 0, define T s := (s∆) -1 (I -e 2s∆ )s 1/2 P div. Observe that T s is bounded uniformly from

L 2 (R n ; C n ⊗ C n ) to L 2 (R n ; C n ),
and that standard Fourier computations show that T s is a convolution operator with kernel k s satisfying a pointwise estimate of order n + 1 at ∞, more precisely,

|k s (x)| ≤ Cs -n/2 (s -1/2 |x|) -n-1 ∀x ∈ R n , ∀s > 0, |x| ≥ s 1/2 . (2.9)
We show in Lemma 3.1 below, stated under weaker assumptions in form of L 2 -L ∞ off-diagonal estimates, that the operator T , defined by

T : T ∞,2 (R n+1 + ; C n ⊗ C n ) → T ∞,2 (R n+1 + ; C n ), (T F )(s, . ) := T s (F (s, . )), (2.10)
is bounded. With the definitions in (2.8) and (2.10), we then have A 1 (α) = M + T (s 1/2 α(s, . )) and the boundedness of these operators imply

A 1 (α) T ∞,2 = M + T (s 1/2 α(s, . )) T ∞,2 T (s 1/2 α(s, . )) T ∞,2 s 1/2 α(s, . ) T ∞,2 .
Step 3(ii) (Hardy space estimates). This is the main new part of the proof. We use in the following that the Leray projection P commutes with the Laplacian and the above bounds on the Oseen kernel to show that

A 2 : T ∞,1 (R n+1 + ; C n ⊗ C n ) → T ∞,2 (R n+1 + ; C n ), (A 2 F )(t, . ) := ˆ∞ 0 e (t+s)∆ P div F (s, . ) ds, (2.11)
is bounded. We work via dualisation, and it is enough to show that

A * 2 : T 1,2 (R n+1 + ; C n ) → T 1,∞ (R n+1 + ; C n ⊗ C n ), (A * 2 G)(s, . ) = e s∆ ˆ∞ 0 ∇Pe t∆ G(t, . ) dt, (2.12) is bounded. Indeed, if G ∈ T 1,2 , identifying F with the density of a parabolic Carleson measure, | A 2 F, G | = | F, A * 2 G | ≤ C F T ∞,1 G T 1,2
and using that T ∞,2 is the dual of T 1,2 proves the claim. To see (2.12), we factor A * 2 through the Hardy space H 1 (R n ; C n ⊗ C n ). We know from classical Hardy space theory, that H 1 (R n ) can either be defined via non-tangential maximal functions or via square functions (here in parabolic scaling instead of the more commonly used elliptic scaling). First, the operator

S : T 1,2 (R n+1 + ; C n ) → H 1 (R n ; C n ⊗ C n ), (2.13) SG( . ) = ˆ∞ 0 ∇Pe t∆ G(t, . ) dt, (2.14)
is bounded. This uses the polynomial decay of order n + 1 at ∞ of the kernel of ∇Pe t∆ in (2.7) (some weaker decay of non-pointwise type would suffice for this, in fact). The precise calculations are given in [START_REF] Fefferman | H p spaces of several variables[END_REF] (cf. also [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF]). Second, again by [START_REF] Fefferman | H p spaces of several variables[END_REF], we have for

h ∈ H 1 (R n ) that (s, x) → e s∆ h(x) ∈ T 1,∞ and N (e s∆ h) L 1 (R n ) h H 1 (R n ) .
The same holds componentwise for C n ⊗ C n -valued functions. A combination of both estimates gives the expected result for A * 2 .

Step 3(iii) (Remainder term). The considered integral in A 3 is not singular in s and is an error term. It suffices to show that

R : T ∞,2 (R n+1 + ; C n ⊗ C n ) → T ∞,2 (R n+1 + ; C n ), (RF )(t, . ) := ˆ∞ t e (t+s)∆ Ps -1/2 div F (s, . ) ds (2.15) is bounded as A 3 (α) = R(s 1/2 α(s, .
)). This can be seen as a special case of [START_REF] Auscher | Singular integral operators on tent spaces[END_REF]Theorem 4.1 (2)]. As parts of this proof refer to earlier arguments, we give a self-contained proof for R in Lemma 3.3 below.

Technical results

Lemma 3.1. Let (T s ) s>0 be a measurable family of uniformly bounded operators in L 2 (R n ), which satisfy L 2 -L ∞ off-diagonal estimates of the form

1 E T s 1 Ẽ L 2 (R n )→L ∞ (R n ) ≤ Cs -n 4 s -1/2 dist(E, Ẽ) -n 2 -1 (3.1)
for all s > 0 and Borel sets E, Ẽ ⊆ R n with dist(E, Ẽ) ≥ s 1/2 . Then the operator T , defined by

T : T ∞,2 (R n+1 + ) → T ∞,2 (R n+1 + ), (T F )(s, . ) := T s (F (s, . )), is bounded.
Remark 3.2. This statement obviously extends to vector-valued functions. A straightforward calculation shows that the kernel estimates in (2.9) imply the L 2 -L ∞ off-diagonal estimates in (3.1).

Proof. The proof is a slight modification of [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF]Theorem 5.2

]. Let F ∈ T ∞,2 (R n+1 + ) and fix (t, x) ∈ R n+1 + . Define F 0 := 1 B(x,2 √ t) F and F j := 1 B(x,2 j+1 √ t)\B(x,2 j √ t) F for j ≥ 1. On the one hand, the uniform boundedness of T s in L 2 (R n ) yields T s F 0 (s, . ) L 2 (B(x, √ t)) F (s, . ) L 2 (B(x,2 √ t)) .
On the other hand, Hölder's inequality and (3.1) yield for s < t and j ≥ 1,

T s F j (s, . ) L 2 (B(x, √ t)) t n 4 T s F j (s, . ) L ∞ (B(x, √ t)) t n 4 s -n 4 √ s 2 j √ t n 2 +1 F (s, . ) L 2 (B(x,2 j+1 √ t)) 2 -j( n 2 +1) F (s, . ) L 2 (B(x,2 j+1 √ t)) .
Thus,

t -n/2 ˆt 0 T s F (s, . ) 2 L 2 (B(x, √ t)) ds 1/2 j≥0 2 -j( n 2 +1) 2 j n 2 (2 j √ t) -n ˆt 0 F (s, . ) L 2 (B(x,2 j+1 √ t)) ds 1/2 F T ∞,2 (R n+1 + ) .
Lemma 3.3. The operator R defined in (2.15) is bounded.

Proof. We write

(RF )(t, . ) = ˆ∞ t K(t, s)F (s, . ) ds,
with K(t, s) := e (t+s)∆ Ps -1/2 div for s, t > 0. We first show the boundedness of R on L 2 (R n+1 + ) and the proof gives a meaning to this integral. This follows from the easy bound K(t, s) L 2 →L 2 ≤ Cs -1/2 (t + s) -1/2 . Indeed, pick some β ∈ (-1 2 , 0), set p(t) := t β and observe that k(t, s) :=

1 (t,∞) (s) K(t, s) L 2 (R n )→L 2 (R n ) satisfies ˆ∞ 0 k(t, s)p(t) dt ˆs 0 s -1/2 t -1/2 t β dt s β = p(s), ∀s > 0, ˆ∞ 0 k(t, s)p(s) ds ˆ∞ t s -1/2 s -1/2 s β ds t β = p(t), ∀t > 0.
This allows to apply Schur's lemma and the L 2 boundedness is proved.

Next, we show that R extends to a bounded operator on T ∞,2 (R n+1 + ). Note that for all s, t > 0, the operator K(t, s) is an integral operator of convolution with k t,s , which satisfies

|k t,s (x)| ≤ Cs -1/2 (t + s) -1/2 (t + s) -n 2 1 + (t + s) -1/2 |x| -n-1 ∀x ∈ R n , ∀s, t > 0. (3.2)
These estimates imply L 2 -L ∞ off-diagonal estimates of the form

1 E K(t, s)1 Ẽ L 2 →L ∞ ≤ Cs -1/2 (t + s) -1/2 (t + s) -n 4 1 + (t + s) -1/2 dist(E, Ẽ) -n 2 -1 (3.3) 
for all Borel sets E, Ẽ ⊆ R n and s, t > 0. Let F ∈ T ∞,2 (R n+1 + ) and fix (r, x 0 ) ∈ R n+1 + . Define B j := (0, 2 j r) × B(x 0 , √ 2 j r) for j ≥ 0 and C j := B j \ B j-1 for j ≥ 1. Then set F 0 := 1 B 0 F and F j := 1 C j F for j ≥ 1. Using Minkowski's inequality, we have

r -n/2 ˆr 0 (RF )(t, . ) 2 L 2 (B(x 0 , √ r)) dt 1/2 j≥0 r -n/2 ˆr 0 (RF j )(t, . ) 2 L 2 (B(x 0 , √ r)) dt 1/2 =: j≥0 I j .
For j ≤ 2, the boundedness of R on L 2 (R n+1 + ) yields the desired estimate 

I j F T ∞,2 (R n+1 + ) . For j ≥ 3, split C j = (0, 2 j-1 r) × (B(x 0 , √ 2 j r) \ B(x 0 , √ 2 j-1 r)) ∪ (2 j-1 r, 2 j r) × B(x 0 , √ 2 j r) =: C (0) j ∪ C (1) j . Denote F (0) j := 1 C (0)
I (0) j k≥0 r -n/2 ˆr 0 ˆ2k+1 t 2 k t (2 k t) K(t, s)F (0) j (s, . ) 2 L 2 (B(x 0 , √ r)) dsdt 1/2 . (3.4)
Now observe that for j ≥ 3, k ≥ 0, t ∈ (0, r) and s ∈ (2 k t, 2 k+1 t), Hölder's inequality and (3.3) yield for any δ ∈ (0, 1]

K(t, s)F (0) j (s, . ) L 2 (B(x 0 , √ r)) r n/4 K(t, s)F (0) j (s, . ) L ∞ (B(x 0 , √ r)) r n/4 s -1/2 (t + s) -1/2 (t + s) -n/4 1 + √ 2 j-1 r - √ r (t + s) 1/2 -n 2 -δ F j (s, . ) L 2 (2 j ) -n 4 -δ 2 r -δ/2 (2 k t) -1+δ/2 F j (s, . ) L 2 .
Inserting this into (3.4), interchanging the order of integration and choosing δ < 1 finally gives j≥1

I (0) j j≥1 k≥0 2 -j δ 2 2 -k( 1 2 -δ 2 ) (2 j r) -n/2 ˆ2j r 0 F j (s, . ) 2 L 2 ds 1/2 F T ∞,2 (R n+1 + ) .
For I

(1) j , we can only use L 2 -L ∞ boundedness for K(t, s) instead of off-diagonal estimates. For s ∈ (2 j-1 r, 2 j r) and t ∈ (0, r), one obtains

K(t, s)F (1) j (s, . ) L 2 (B(x 0 , √ r))
r n/4 K(t, s)F

(1)

j (s, . ) L ∞ (B(x 0 , √ r)) r n/4 s -1/2 (t + s) -1/2 (t + s) -n/4 F j (s, . ) L 2 2 -jn/4 (2 j r) -1 F j (s, . ) L 2 .
Plugging this into I

(1) j then gives

I (1) j r -n/2 ˆr 0 ˆ2j r 2 j-1 r
(2 j r) K(t, s)F

(1)

j (s, . ) 2 L 2 (B(x 0 , √ r)) dsdt 1/2 (2 j r) -1/2 r 1/2 (2 j r) -n/2 ˆ2j r 0 F j (s, . ) 2 L 2 ds 1/2 2 -j/2 F T ∞,2 (R n+1 + ) .
Summing over j gives the assertion.

Comments

Let us temporarily denote by T ∞,2 1/2 (R n+1 + ) the weighted tent space defined by

F ∈ T ∞,2 1/2 (R n+1 + ) if and only if s 1/2 F (s, . ) ∈ T ∞,2 (R n+1 + ). Respectively for T 2,2 1/2 (R n+1 + ).
The first comment is that the T ∞,2 1/2 estimate for α is not used in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF].

The second comment is that our proof is non local in time. By this, we mean that we need to know α = u ⊗ v on the full time interval [0, T ] to get estimates for B(u, v) at all smaller times t.

In contrast, the proof in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] is local in time: bounds for u, v on the time interval [0, t] suffice to get bounds at time t for B(u, v).

The third comment is on the optimality of the estimate in (2.6), which could be related to the second comment. We have seen in Section 2 that both A 1 and A 3 are bounded operators from T ∞,2 1/2 to T ∞,2 . It is thus a natural question whether the same holds for A 2 as it would eliminate the T ∞,1 term in the right hand side of (2.6). We show that this is not the case. It is therefore necessary to use a different argument for A 2 , as is done in Step 3(ii) above. In [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], this operator does not arise.

Proposition 4.1. The operator A 2 is neither bounded as an operator from

T 2,2 1/2 (R n+1 + ; C n ⊗ C n ) to T 2,2 (R n+1 + ; C n ), nor from T ∞,2 1/2 (R n+1 + ; C n ⊗ C n ) to T ∞,2 (R n+1 + ; C n ).
We adapt the argument of [4, Theorem 1.5].

Proof. We first show the result for T 2,2 . We work with the dual operator A * 2 defined in (2.12) and show that

G → s -1/2 (A * 2 G)(s, . ) = s -1/2 e s∆ ˆ∞ 0 ∇Pe t∆ G(t, . ) dt is not bounded from L 2 (R n+1 + ; C n ) = T 2,2 (R n+1 + ; C n ) to L 2 (R n+1 + ; C n ⊗ C n ) . There exists u ∈ L 2 (R n ; C n ) with ∇(-∆) -1/2 (-∆) -1/2 P(e ∆ -e 2∆ )u = 0 in L 2 (R n ; C n ⊗ C n ). Define G(t, . ) = u for t ∈ (1, 2), and G(t, . ) = 0 otherwise. Clearly G ∈ L 2 (R n+1 + ; C n ). Then, for s < 1, s -1/2 (A * 2 G)(s, . ) = e s∆ ∇(-∆) -1/2 (s(-∆)) -1/2 ˆ2 1 (-∆)Pe t∆ u dt = e s∆ ∇(-∆) -1/2 (s(-∆)) -1/2 P(e ∆ -e 2∆ )u, (4.1)
and

s -1/2 (A * 2 G)(s, . ) 2 L 2 (R n+1 + ) ≥ ˆ1 0 e s∆ ∇(-∆) -1/2 (-∆) -1/2 P(e ∆ -e 2∆ )u 2 2 ds s = ∞,
as e s∆ → I for s → 0.

For the result on T ∞,2 , we argue similarly. There is some ball

B = B(x, 1) in R n such that ∇(-∆) -1/2 (-∆) -1/2 P(e ∆ -e 2∆ )u = 0 in L 2 (B; C n ⊗ C n ). Let G be defined as above. Then G ∈ T ∞,2 (R n+1 + ; C n ),
since the Carleson norm of G can be restricted to balls of radius larger than 1 by definition of G and

G 2 T ∞,2 = sup x 0 ∈R n sup r>1 r -n/2 ˆr 0 ˆB(x 0 , √ r) |G(t, x)| 2 dxdt ≤ ˆ2 1 ˆRn |u(x)| 2 dxdt = u 2 2 .
Now, using again (4.1), we get as above

s -1/2 (A * 2 G)(s, . ) 2 T ∞,2 ≥ ˆ1 0 e s∆ ∇(-∆) -1/2 (-∆) -1/2 P(e ∆ -e 2∆ )u 2 L 2 (B) ds s = ∞.

A model case

We illustrate that we do not use self-adjointness and pointwise bounds by considering a model case. See also [START_REF] Iwabuchi | Small solutions for nonlinear heat equations, the Navier-Stokes equation, and the Keller-Segel system in Besov and Triebel-Lizorkin spaces[END_REF] for other models of similar type.

Let A ∈ L ∞ (R n ; L(R n )) with Re(A(x)) ≥ κI > 0 for a.e. x ∈ R n . Let L = -div(A∇). Consider the equation ∂ t u(t, x) + Lu(t, x) -div x f (u 2 (t, x)) = 0, u(0, . ) = u 0 , (5.1)
where we assume that f : R → R n is globally Lipschitz continuous, and satisfies

|f (x)| ≤ C|x|, x ∈ R.
As before, we want to find mild solutions, i.e., solutions u : R n+1

+ → R of the integral equation u(t, . ) = e -tL u 0 - ˆt 0 e -(t-s)L div x f (u 2 (s, . )) ds. (5.2)
Here too, we put appropriate assumptions on u 0 so as to construct mild solutions with Carleson type control. Again, using the Picard contraction principle, matters reduce to showing that the operator B, defined by

B(u)(t, . ) := ˆt 0 e -(t-s)L div x f (u 2 (s, . )) ds, (5.3)
is bounded on an appropriately defined admissible path space to which the free evolution e -tL u 0 belongs.

Replacing f (u 2 ) by an independent function F , there is a corresponding linear problem

∂ t u(t, x) + Lu(t, x) = div x F (t, x), u(0, . ) = u 0 . (5.4)
The differential equation is understood in the sense of distributions: u is a weak solution, meaning that u and ∇ x u are locally square integrable and the differential equation is understood against test functions on R n+1

+ ¨ -u(t, x)∂ t ϕ(t, x) + A(x)∇ x u(t, x) • ∇ x ϕ(t, x) dxdt = -¨F (t, x) • ∇ x ϕ(t, x) dxdt.
We also mean u(0, . ) = u 0 as u(t, . ) → u 0 in distribution sense. We look for (mild) solutions in the integral form u(t, . ) = e -tL u 0 + ˆt 0 e -(t-s)L div x F (s, . ) ds. (5.5) Each term will be appropriately defined. In particular, we use the same notation for e -tL while they have different meanings.

5.1. The path space and main results. For this model case, we work with a slightly different path space than previously. We use the notation - ´to denote averages.

Definition 5.1. For (t, x) ∈ R n+1 + , define the (parabolic) Whitney box of standard size as

W (t, x) := (t, 2t) × B(x, √ t). For 1 ≤ q, r ≤ ∞, F measurable in R n+1 + and (t, x) ∈ R n+1
+ , the Whitney average of F is defined as

(W q,r F )(t, x) =   - ˆ2t t - ˆB(x, √ t) |F (s, y)| q dy r/q ds   1/r
.

with the usual essential supremum modification when q = ∞ or/and r = ∞. For q = r, we write W q F = W q,q F , that is

(W q F )(t, x) := |W (t, x)| -1/q F L q (W (t,x))
or the essential supremum on W (t, x) for q = ∞. The tent spaces T ∞,1,q,r (R n+1 + ) and T ∞,2,q,r (R n+1 + ) are defined as the spaces of all measurable functions

F in R n+1 + such that F T ∞,p,q,r (R n+1 + ) = W q,r F T ∞,p (R n+1 + ) < ∞, for p ∈ {1, 2}, respectively. The tent space T 1,∞,2 (R n+1 + ) is defined as the space of all measurable functions F in R n+1 + such that F T 1,∞,2 (R n+1 + ) = N (W 2 F ) L 1 (R n ) < ∞. For p ∈ [1, ∞) and F measurable in R n+1 + , set N p F (t, x) = |B(x, √ t)| -1/p F (t, . ) L p (B(x, √ t)) , (t, x) ∈ R n+1
+ . This is well-defined almost everywhere.

We quote [29, Theorem 3.1, Theorem 3.2] which gives a Carleson duality result for tent spaces with Whitney averages.

Proposition 5.2. There exists

C > 0 such that for functions F, G measurable in R n+1 + , F G L 1 (R n+1 + ) ≤ C F T 1,∞,2 (R n+1 + ) G T ∞,1,2 (R n+1 + ) . Moreover, (T 1,∞,2 (R n+1 + ), T ∞,1,2 (R n+1 + )
) form a dual pair with respect to the duality (F, G) → ˜Rn+1

+ F G dxdt in the sense that for all F ∈ T 1,∞,2 (R n+1 + ), F T 1,∞,2 (R n+1 + ) ∼ sup G T ∞,1,2 (R n+1 + ) =1 |(F, G)|,
and for all

G ∈ T ∞,1,2 (R n+1 + ), G T ∞,1,2 (R n+1 + ) ∼ sup F T 1,∞,2 (R n+1 
+ ) =1 |(F, G)|.
Let us define a path space for the model equation ( 5.1), which we again denote by E T .

Definition 5.3. Let T ∈ (0, ∞]. Let p ∈ [1, ∞). Define (5.6) E T := {u measurable in (0, T ) × R n : u E T < ∞},
with

u E T := N 2p (s 1/2 u(s, . )) L ∞ ((0,T )×R n ) + sup x∈R n sup 0<t<T t -n/2 ˆt 0 ˆB(x, √ t) |(W 2p u)(s, y)| 2 dyds 1/2 .
Compared with the path space for Navier-Stokes, we have a weaker requirement on the L ∞ term (control of local L 2p norms with finite p instead of p = ∞) and stronger requirement in the Carleson control (L 2p integrability with 2p > n whereas 2p = 2 works for Navier-Stokes).

We obtain the following well-posedness result. As before, we restrict ourselves to the case T = ∞.

Theorem 5.4. Suppose p ∈ [2, ∞) with 2p > n. There exists ε > 0 such that for all

u 0 ∈ BM O -1 (R n ) with u 0 BM O -1 < ε, the equation (5.2) has a unique solution u in a ball of E ∞ .
This solution is a weak solution to (5.1).

The corresponding linear theorem on which this theorem bears is as follows.

Theorem 5.5.

Suppose p ∈ [2, ∞) with 2p > n. For all u 0 ∈ BM O -1 (R n ) and F ∈ T ∞,1,p (R n+1 + ; C n ) with s 1/2 F (s, . ) T ∞,2,p,2p < ∞,
the function u defined by (5.5) is a weak solution to (5.4) and satisfies the estimate

u T ∞,2,2p u 0 BM O -1 + F T ∞,1,p + s 1/2 F (s, . ) T ∞,2,p,2p . Moreover, if in addition, N p (sF (s, . )) ∞ < ∞, then N 2p (t 1/2 u(t, . )) ∞ u 0 BM O -1 + F T ∞,1,p + N p (sF (s, . )) ∞ .
The strategy of proof is as follows. In Section 5.2, we study the free evolution, and in Section 5.3, we state the main results for the Duhamel term. The proofs of Theorem 5.5 and Theorem 5.4 are given in Section 5.4 assuming the technical estimates are proved. We prove in Sections 5.5 and 5.6, respectively, the L ∞ estimate and the Carleson measure estimate on the Duhamel term. As this is technical, we postpone to Section 5.7 the meaning of the Duhamel term and to Section 5.8 that it is a weak solution.

Our proof relies on the following estimates on the semigroup (e -tL ) t>0 generated by the -L defined as a maximal accretive operator on L 2 (R n ). The same estimates hold true for L replaced by L * . Lemma 5.6. (i) Denote by w t (x, y) the kernel of e -tL . It is a Hölder continuous function and there exist constants C, c > 0 such that for all t > 0, x, y ∈ R n ,

|w t (x, y)| ≤ Ct -n 2 exp(-ct -1 |x -y| 2 ).
(ii) There exists ε > 0 such that ∇e -tL is bounded from

L 1 (R n ) to L q (R n ) if 1 ≤ q < 2 + ε.
Moreover, one has L 1 -L q off-diagonal estimates for ∇e -tL of the form

1 E √ t∇e -tL 1 Ẽ L 1 (R n )→L q (R n ) ≤ Ct -1 2 t -n 2 (1-1 q ) exp(-ct -1 dist(E, Ẽ) 2 ) (5.7)
for all Borel sets E, Ẽ ⊆ R n and t > 0.

Proof. For (i), see [START_REF] Auscher | Regularity theorems and heat kernel for elliptic operators[END_REF]Theorem 3.23]. For (ii), see [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Proposition 1.24].

Remark 5.7. The absence of pointwise bounds for ∇e -tL * is responsible for not taking 2p = 1 in the Carleson control and not taking 2p = ∞ in the L ∞ term. One can also weaken the estimate of Lemma 5.6. The pointwise bounds of the kernel of e -tL to L r ′ -L r off-diagonal estimates with r > n and by [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF] the ones on ∇e -tL become from L r ′ to L q . It implies that for dimensions n = 1, 2, 3, 4, one could take L to have complex coefficients or even an elliptic system if one wishes (see [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]). The proof of this possible generalisation is a little more involved and we do not include details.

5.2.

The free evolution. We need to make sense to the free evolution term e -tL u 0 . Recall that in the case of the Navier-Stokes systems (with the Laplacian in the background), the adapted value space consists of divergence free elements u 0 in BM O -1 (R n ; C n ) and is characterized by e t∆ u 0 in the path space. We consider a similar procedure, but here we have to work with a space a priori adapted to the operator L. We define the space BM O -1 Section 8.4]. The latter is the completion of the homogeneous Sobolev space Ẇ 1,2 (R n ) for the norm [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF] so that the action of tL * e -tL * makes sense. Under our assumptions on Proposition 8.43] together with Lemma 5.6 above which shows p -(L * ) = 1 in the notation of [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF]). We choose this realization. In particular, since the Schwartz space

L (R n ) as the dual space of H 1,1 L * (R n ) introduced in [27,
(t, x) → tL * e -tL * t -1/2 L * 1/2 h(x) T 1,2 , that is (5.8) ˆRn ¨Rn+1 + t -n/2 1 B(x, √ t) (y) tL * e -tL * t -1/2 L * 1/2 h(y) 2 dydt 1/2 dx < ∞. Note that h ∈ Ẇ 1,2 (R n ) is equivalent to L * 1/2 h ∈ L 2 (R n ) by
L * , H 1,1 L * (R n ) can be realized as the Triebel-Lizorkin space Ḟ 1,2 1 (R n ) ∼ = Ḣ1,1 (R n ) ([27,
S(R n ) is dense in Ḟ 1,2 1 (R n ) ([42, Theorem 2.3.3]), it makes BM O -1 L (R n
) a space of tempered distributions equal to the standard space BM O -1 (R n ) as sets with equivalent topology. From now on, we do not distinguish them (Under weaker assumptions on L, it could be that this identification is not possible. Still the space BM O -1 L exists). Lemma 5.8. Assume u 0 is a tempered distribution. Then

u 0 ∈ BM O -1 (R n ) if and only if there exists G ∈ T ∞,2 (R n+1 + ) such that (5.9) u 0 , h = ¨Rn+1 + G(s, y)sL * e -sL * s -1/2 L * 1/2 h(y) dyds ∀ h ∈ S(R n ),
the integral converging absolutely, and

u 0 BM O -1 ∼ inf{ G T ∞,2 ;
(5.9) holds}.

In that case, the integral exists for all h

∈ Ẇ 1,2 (R n ) ∩ Ḟ 1,2 1 (R n
) and gives u 0 , h , and this functional further extends to all h ∈ Ḟ 1,2 1 (R n ) by density.

Proof. This is a straightforward consequence of the definition of BM O -1 L (R n ) and its identification with BM O -1 (R n ).

Thus, we may introduce the map S :

T ∞,2 → BM O -1 , G → ´∞ 0 s -1/2 L 1/2 sLe -sL G(s, .
) ds defined by (5.9), which is bounded and onto.

Lemma 5.9. The map V :

T ∞,2 → T ∞,2 , G → H with H(t, . ) = ˆ∞ 0 s -1/2 L 1/2 sLe -(t+s)L G(s, . ) ds is bounded.
Proof. The proof is analogous to that of Lemma 3.3. One proves the T 2,2 boundedness first using the Schur test. Next, one has L 2 -L ∞ estimates like (3.3) with extra multiplicative factor s s+t for the operator-valued kernel K(t, s) = s -1/2 L 1/2 sLe -(s+t)L compared to the one in Lemma 3.3 (this is needed to allow integration on the full interval (0, ∞)). This suffices to run the same argument as for R.

Corollary 5.10.

Let u 0 ∈ BM O -1 (R n ).
(1) For each t > 0, e -tL u 0 ∈ BM O -1 (R n ) with e -tL u 0 , h = u 0 , e -tL * h say for each h ∈ S(R n ), e -tL u 0 BM O -1 ≤ C u 0 BM O -1 uniformly and we have the semigroup property e -(s+t)L u 0 = e -sL (e -tL u 0 ) for any s, t > 0.

(2) t → e -tL u 0 belongs to C ∞ (0, ∞; BM O -1 (R n )) and is a strong solution in (0, ∞) of ∂ t u + Lu = 0. (3) e -εL u 0 → u 0 weak- * as ε → 0. (4) Moreover, u(t, x) := e -tL u 0 (x) ∈ T ∞,2 and u T ∞,2 u 0 BM O -1 . Proof. By construction of H 1,1 L * (R n ), the H ∞ -functional calculus of L * on L 2 (R n ) extends to H 1,1 L * (R n ): first defined on L 2 (R n ), it has a first extension to Ẇ 1,2 (R n ) thanks to [6] and next to H 1,1 L * (R n ). By duality, L has H ∞ -functional calculus on BM O -1 L (R n
) and in particular we obtain item (1) using the identification. Item (2) is then an easy consequence of semigroup theory in Banach spaces. Item (3) is proved by duality provided one can show strong convergence e

-εL * h → h as ε → 0 in H 1,1 L * (R n ).
By density and the uniform boundedness of the semigroup in H 1,1 L * (R n ), it suffices to assume h ∈ Ẇ 1,2 (R n ) for which (5.8) is finite. But the theory of [START_REF] Hofmann | Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces[END_REF] allows one to change tL * e -tL * by (tL * ) k e -tL * for any integer k ≥ 1 and to have an equivalent norm for the pre-complete space (see in particular Corollary 4.17 there). Now, one can follow the proof of [START_REF] Auscher | A priori estimates for boundary value elliptic problems via first order systems[END_REF]Proposition 4.5] given in a different but similar context to show the strong convergence. We skip details. To prove item [START_REF] Auscher | Remarks on maximal regularity[END_REF], pick G such that u 0 = SG. It remains to see that V G(t, x) = (e -tL u 0 )(x) for example in the distributions in R n+1 + since we can see both functions as distributions. Pick a test function in the form ϕ ⊗ h(t, x) = h(x)ϕ(t). Then (using sesquilinear forms)

V G, ϕ ⊗ h = G, V * (ϕ ⊗ h) = ˚G(s, y)sL * e -sL * s -1/2 L * 1/2 (e -tL * h)(y)ϕ(t)dsdydt = ˆ u 0 , e -tL * h ϕ(t) dt = ˆ e -tL u 0 , h ϕ(t) dt = u, ϕ ⊗ h .
Each line can be appropriately justified and we leave details to the reader.

Remark that e -tL u 0 (x) is not defined by integration against the kernel w t (x, y) in Lemma 5.6.

Nevertheless, one has the following properties.

Lemma 5.11.

Let u 0 ∈ BM O -1 (R n ). Then t → e -tL u 0 ∈ C ∞ (0, ∞; L 2 loc (R n )) and
e -(t+s)L u 0 (x) = ˆRn w s (x, y)e -tL u 0 (y) dy

for almost every t, s > 0 and x ∈ R n . As a consequence, (t, x) → e -tL u 0 (x) is (almost everywhere equal to) a locally bounded and Hölder continuous function (to which it is now identified).

Proof. Using the same analysis, one can replace e -tL by (tL) m e -tL = (-1) m t m ∂ m t e -tL for each positive integer m and obtain that t m ∂ m t e -tL u 0 (x) exists for all m in T ∞,2 , hence in

L 2 loc (R n+1 + ). Thus, we may see t → e -tL u 0 in C ∞ (0, ∞; L 2 loc (R n ))
and furthermore the integrals ´B |e -tL u 0 (x)| 2 dx depend on the size of the ball B, not its location (thus we may see e -tL u 0 in L 2 uloc ). To show the integral representation for e -(s+t)L u 0 (x), we use for any h ∈ S(R n ), e -(s+t)L u 0 , h = e -tL u 0 , e -sL * h and then use the integral representation for e -sL * h with the adjoint of kernel of w s (x, y). Next, we use for any a > 0 and z

∈ R n , ˆ2a a - ˆB(z, √ 2a) |e -tL u 0 (y)|dydt √ a u 0 BM O -1
and the estimates of Lemma 5.6 together with the decay of h to show that for any a, s > 0 ˆ2a a ˆRn ˆRn |h(x)w s (x, y) e -tL u 0 (y)| dydxdt < ∞ hence the integral ´Rn w s (x, y)e -tL u 0 (y) dy exists for all s and almost every t, x and by Fubini's theorem, for almost every t > 0, e -tL u 0 , e -sL * h = ˆRn ˆRn w s (x, y)e -tL u 0 (y) dy h(x) dx.

The conclusion follows.

Proposition 5.12. Let u 0 ∈ BM O -1 (R n ). Then (t, x) → e -tL u 0 (x) is a weak solution of the parabolic equation ∂ t u -div A∇u = 0 (with u and ∇ x u in L 2 loc in space-time).

Proof. To see this, note that by Corollary 5.10 (4), u ∈ T ∞,2 , therefore in L 2 loc (R n+1 + ). Then write ∇ x e -tL u 0 = ∇ x e -(t/2)L e -(t/2)L u 0 (justified by the previous lemma). Since t 1/2 ∇ x e -(t/2)L satisfies L 2 off-diagonal estimates, Lemma 3.1 yields that this defines a bounded operator on T ∞,2 , thus ∇ x e -tL u 0 ∈ L 2 loc (R n+1 + ). It remains to show that e -tL u 0 (x) solves the parabolic equation in the weak sense. Now suppose

ϕ ∈ D(R n+1 + ). Then ϕ ∈ C 1 ((0, ∞); L 2 c (R n ))
with compact support in (0, ∞), and u : t → e -tL u 0 ∈ C 1 ((0, ∞); L 2 loc (R n )) by Lemma 5.11, hence

0 = ˆ∞ 0 (-u(t), ∂ t ϕ(t) -∂ t u(t), ϕ(t) ) dt.
It remains to justify

ˆ∞ 0 -∂ t u(t), ϕ(t) dt = ˆ∞ 0 A∇ x u(t), ∇ x ϕ(t) dt,
as both terms can be expressed as double Lebesgue integrals. Fix δ > 0 and write for t > δ, u(t) = e -(t-δ)L u(δ) which can be computed from the kernel representation in Lemma 5.11. Thus, one can obtain

-∂ t e -(t-δ)L u(δ), ϕ(t) = A∇ x e -(t-δ)L u(δ), ∇ x ϕ(t)
by differentiation under the integral sign and integration by parts. Details are completely routine and skipped.

We continue with the following auxiliary lemma.

Lemma 5.13. For F ∈ T ∞,2 (R n+1 + ) and t > 0, set

(5.10) G(t, •) = - ˆt 2 t 4
e -(t-s)L F (s, •) ds.

Suppose q, r ∈ [2, ∞]. Then there exists C > 0, independent of F , such that

N q (t 1/2 G) L ∞ (R n+1 + ) ≤ C F T ∞,2 and G T ∞,2,q,r ≤ C F T ∞,2 .
Proof. Let (τ, x) ∈ R n+1 + and t ∈ [τ, 2τ ]. Using Minkowski's inequality, L 2 -L q off-diagonal estimates for (e -tL ) t>0 , and Hölder's inequality gives for any N ≥ 0

- ˆB(x, √ τ ) |G(t, y)| q dy 1/q ≤ - ˆt 2 t 4 - ˆB(x, √ τ ) |e -(t-s)L F (s, . )(y)| q dy 1/q ds ∞ j=0 2 -2jN - ˆt 2 t 4 τ -n 2 ˆ2j B(x, √ τ ) |F (s, y)| 2 dy 1/2 ds ≤ ∞ j=0 2 -j(2N -n 2 ) - ˆt 2 t 4 - ˆ2j B(x, √ τ ) |F (s, y)| 2 dyds 1/2 ∞ j=0 2 -j(2N -n 2 ) - ˆτ τ 4 - ˆ2j B(x, √ τ ) |F (s, y)| 2 dyds 1/2
.

By taking t = τ , we have an estimate of N q (t 1/2 G)(τ, x) and the right hand side is bounded by

∞ j=0 2 -j(2N -n 2 ) ˆ2j τ 0 - ˆ2j B(x, √ τ ) |F (s, y)| 2 dyds 1/2 F T ∞,2 if N > n 4 .
Remark that the argument applies with q = ∞, taking essential supremum. Next, by estimating the L r average in time, we also have

  - ˆ2τ τ - ˆB(x, √ τ ) |G(t, y)| q dy r/q dt   1/r ∞ j=0 2 -j(2N -n 2 ) - ˆτ τ 4 - ˆ2j B(x, √ τ ) |F (s, y)| 2 dyds 1/2 .
Hence, Fubini's theorem and

N > n 2 finally yield G T ∞,2,q,r = W q,r G T ∞,2 ∞ j=0 2 -j(2N -n 2 ) sup (r,x 0 )∈R n+1 + ˆr 0 - ˆB(x 0 , √ r) - ˆτ τ 4 - ˆ2j B(x, √ τ ) |F (s, y)| 2 dydsdxdτ 1/2 ∞ j=0 2 -j(2N -n) sup (r,x 0 )∈R n+1 + ˆr 0 - ˆ2j+1 B(x 0 , √ r) |F (s, y)| 2 dyds 1/2 F T ∞,2 .
Again, the argument applies for q and/or r = ∞.

Corollary 5.14.

Let p ∈ [1, ∞]. There exists C > 0 such that for all u 0 ∈ BM O -1 , N 2p (t 1/2 e -tL u 0 ) ∞ + e -tL u 0 T ∞,2,2p ≤ C u 0 BM O -1
Proof. As e -tL u 0 T ∞,2 u 0 BM O -1 , it suffices to apply Lemma 5.13 with q = r = 2p and F (s, . ) = e -sL u 0 , noting that G = F in (5.10). Let us this last point. We have seen that F (t, . ) = e -(t-s)L (F (s, . )) for almost every 0 < s < t and it suffices to average for t/4 < s < t/2, and (5.10) holds for almost every t > 0. This suffices to get the conclusions. 5.3. The Duhamel term. For the proof of Theorem 5.5, we need to study the linear operator A (formally) defined by A(α)(t, . ) = ˆt 0 e -(t-s)L div α(s, . ) ds.

Proposition 5.15. Assume F ∈ T ∞,1,2 (R n+1 + ; C n ). Then

I(t) = ˆt 0 e -(t-s)L div F (s, . ) ds is defined in S ′ (R n ) by for all ϕ ∈ S(R n ), I(t), ϕ = - ˆt 0 ˆRn F (s, x) • ∇e -(t-s)L * ϕ(x) dxds
where the integral converges (we use sesquilinear dualities). Moreover, lim t→0 I(t) = 0 in S ′ (R n ), and

I ∈ C((0, ∞); S ′ (R n )).
Remark that one could even assume F ∈ T ∞,1,q ′ (R n+1 + ; C n ) with q ′ the dual exponent for q in Lemma 5.6, (ii) for L * . We may not be able to take q ′ = 1. Thus we have a definition for A and also a trace in the sense of Schwartz distributions for all α ∈ T ∞,1,2 . The estimates substituting for (2.5) and (2.6), are the following. Proposition 5.16. When p ∈ [2, ∞) with 2p > n, there exists C > 0 such that for all measurable functions α in R n+1 + for which the right-hand side is finite,

N 2p (t 1/2 A(α)) ∞ ≤ C α T ∞,1,2 + C N p (sα(s, . )) ∞ , (5.11) A(α) T ∞,2,2p ≤ C α T ∞,1,p + C s 1/2 α(s, . )
T ∞,2,p,2p . (5.12)

The second estimate allows us to prove Corollary 5.17.

Assume F ∈ T ∞,1,p (R n+1 + ; C n ) with s 1/2 F (s, . ) T ∞,2,p,2p < ∞. Then I = A(F ) belongs to L 2 loc (R n+1 + ), ∇ x I ∈ L 2 loc (R n+1 + )
and is a weak solution to ∂ t I(t, x) + LI(t, x)= div F (t, x). 5.4. Proof of Theorems 5.4 and 5.5. First the proof of Theorem 5.5 follows immediately from the results in Section 5.2 and the results stated in the above section. We turn to the proof of Theorem 5.4.

Lemma 5. [START_REF] Dubois | What is a solution to the Navier-Stokes equations? C. R[END_REF]. With E ∞ as defined in (5.6), we have

u, v ∈ E ∞ , α := f (u 2 ) -f (v 2 ) ⇒      α ∈ T ∞,1,p (R n+1 + ; C n ), s 1/2 α(s, . ) ∈ T ∞,2,p,2p (R n+1 + ; C n ), N p (sα(s, . )) ∈ L ∞ (R n+1 + ; C n ).
(5.13)

Proof. By the Lipschitz property of f , observe that |f (u 2 ) -f (v 2 )| ≤ ab, with a = C|u -v| and b = |u + v| which satisfy the same conditions as u and v. By repeated use of Hölder's inequality, one obtains

α T ∞,1,p = C 1 (W p α) ∞ ≤ C 1 (W 2p a • W 2p b) ∞ ≤ C 2 (W 2p a) ∞ C 2 (W 2p b) ∞ = a T ∞,2,2p b T ∞,2,2p .
Similarly,

N p (s 1/2 v(s, . )) ≤ N 2p (a)N 2p (s 1/2 b(s, . )) ≤ N 2p (a) N 2p (s 1/2 b(s, . )) ∞ hence W p,2p (s 1/2 α(s, . )) ≤ W 2p (a) N 2p (s 1/2 b(s, .
)) ∞ and

s 1/2 α(s, . ) T ∞,2,p,2p = C 2 (W p,2p (s 1/2 α(s, . ))) ∞ ≤ a T ∞,2,2p N 2p (s 1/2 b(s, . )) ∞ . Finally, N p (sα(s, . )) ∞ ≤ N 2p (s 1/2 a(s, . )) ∞ N 2p (s 1/2 b(s, . )) ∞ .
We have shown in Corollary 5.14 that for every given initial data u 0 ∈ BM O -1 (R n ), the free evolution u(t, x) = e -tL u 0 (x) belongs to the path space E ∞ defined in (5.6). Let us assume for a moment (5.11) and (5.12). Then the theorem is a consequence of Picard's contraction principle. The integral equation (5.2) is equivalent to u(t, . ) = e -tL u 0 -A(f (u 2 ))(t, . ), and Lemma 5.18, (5.11), (5.12) imply

A(f (u 2 )) -A(f (v 2 )) E∞ ≤ C u -v E∞ u + v E∞ .
The smallness condition on u 0 ensures that (5.2) has a unique solution in any closed ball B(0, R) with R < 1 2C of the Banach space E ∞ . Proposition 5.12 and Corollary 5.17 show that u is a weak solution to (5.4) with F = f (u 2 ), hence to (5.1).

Proof of Proposition 5.16:

The L ∞ estimate. Fix (t, x) ∈ R n+1 + , and let a ∈ (0, 1) be arbitrary (1/2 for example). To estimate the quantity t -n/4p t 1/2 Aα(t, . ) L 2p (B(x, √ t)) , we split A into the two parts

t 1/2 Aα(t, . ) = t 1/2 ˆat 0 e -(t-s)L div α(s, . ) ds + t 1/2
ˆt at e -(t-s)L div α(s, . ) ds. (5.14) For the second part, L p -L 2p off-diagonal estimates for (e -tL div) t>0 yield

t -n/4p t 1/2
ˆt at e -(t-s)L div α(s, .

) ds L 2p (B(x, √ t)) ≤ ∞ j=0 t -n/4p ˆt at t t -s 1/2 e -(t-s)L (t -s) 1/2 div 1 S j (B(x, √ t)) sα(s, . ) L 2p (B(x, √ t)) ds t -n/2p ˆt at t t -s n 4p + 1 2 sα(s, . ) L p (B(x,8 √ t))
ds s

+ ∞ j=3 t -n/2p ˆt at t t -s n 4p + 1 2 t -s 2 2j t N sα(s, . ) L p (2 j B(x, √ t)) ds s N p (sα(s, . )) L ∞   ˆt at t t -s n 4p + 1 2 ds s + ∞ j=3 2 -2jN 2 j n p ˆt at t -s t N -n 4p -1 2 ds s   N p (sα(s, . )) L ∞ ,
where the assumption 2p > n is used in the last step. Consider now the first part in (5.14). Decompose

t -n/4p t 1/2 ˆat 0 e -(t-s)L div α(s, . ) ds L 2p (B(x, √ t)) ≤ t -n/4p t 1/2 ˆat 0 e -(t-s)L div 1 B(x,8 √ t) α(s, . ) ds L 2p (B(x, √ t)) + ∞ j=3 t -n/4p t 1/2 ˆat 0 e -(t-s)L div 1 S j (B(x, √ t)) α(s, . ) ds L 2p (B(x, √ t)) .
For the on-diagonal part, we write

t -n/4p t 1/2 ˆat 0 e -(t-s)L div 1 B(x,8 √ t) α(s, . ) ds L 2p (B(x, √ t)) (5.15) = sup g∈L (2p) ′ (B(x, √ t)) g (2p) ′ =1 t -n/4p ˆat 0 e -(t-s)L t 1/2 div 1 B(x,8 √ t) α(s, . ) ds, g = sup g∈L (2p) ′ (B(x, √ t)) g (2p) ′ =1 t -n/4p
ˆat 0 α(s, . ), β 0 (s, . ) ds , with β 0 (s, y) = 1 (0,at)×B(x,8 √ t) (s, y)t 1/2 ∇e -(t-s)L * g(y).

Since α ∈ T ∞,1,p (R n+1 + ; C n ) by assumption and p ≥ 2, we have α ∈ T ∞,1,2 (R n+1 + ; C n ). By Proposition 5.2, it suffices to show that N (W 2 β 0 ) ∈ L 1 (R n ) with N (W 2 β 0 ) 1 t n/4p . To do so, split β 0 = β 0 0 + β 1 0 with β 0 0 (s, y) = 1 (0,at)×B(x,8 √ t) (s, y)t 1/2 ∇e -tL * g(y) =: 1 (0,at) (s)h(y),

β 1 0 (s, y) = 1 (0,at)×B(x,8 √ t) (s, y)t 1/2 ∇(e -(t-s)L * -e -tL * )g(y).
Now, since h is constant with respect to s, one has for every

x 0 ∈ R n , N (W 2 β 0 0 )(x 0 ) = sup |x 0 -z|< √ σ σ -n 2 -1 ¨W (σ,z) |1 (0,at) (s)h(y)| 2 dyds 1/2 (M(h 2 )) 1/2 (x 0 ) =: M 2 h(x 0 ), (5.16)
where M denotes the uncentred Hardy-Littlewood maximal operator. Moreover, note that supp

β i 0 ⊆ B(x, 8 √ t) × (0, at) implies supp N (W 2 β i 0 ) ⊆ B(x, c √ t)
for some constant c > 0, i = 0, 1, independent of x and t. Using (5.16), the support property of N (W 2 β 0 0 ), Kolmogorov's lemma (see e.g. [19, Lemma 5.16]) and L (2p) ′ -L 2 boundedness of (t 1/2 ∇e -tL * ) t>0 by Lemma 5.6 (ii), one obtains

N (W 2 β 0 0 ) 1 ˆB(x,c √ t) M 2 h(x 0 ) dx 0 |B(x, c √ t)| 1/2 h 2 t n/4 t -n 2 ( 1 (2p) ′ -1 2 ) g (2p) ′ = t n/4p .
This gives the desired estimate for β 0 0 . To handle β 1 0 , we first observe that a simple geometric argument shows that for every x 0 ∈ R n , there exists a parabolic cone Γ(x 0 ), with aperture independent of x 0 , such that

(σ, z) ∈ Γ(x 0 ) ⇒ W (σ, z) ⊂ Γ(x 0 ), Therefore, N (W 2 β 1 0 )(x 0 ) 2 ¨Γ(x 0 ) s≤at |β 1 0 (s, y)| 2 dyds s n/2+1 ,
and, using Fubini in the second step,

ˆB(x,c √ t) N (W 2 β 1 0 )(x 0 ) dx 0 t n/4 ˆB(x,c √ t) N (W 2 β 1 0 )(x 0 ) 2 dx 0 1/2 t n/4
ˆRn ˆat

0 |t 1/2 ∇(e -(t-s)L * -e -tL * )g(y)| 2 dyds s 1/2 . (5.17) Now write t 1/2 ∇(e -(t-s)L * -e -tL * )g = t 1/2 ∇e -t 2 L * ˆt/2 t/2-s
L * e -rL * g dr.

Since (t 1/2 ∇e -tL * ) t>0 is bounded from L (2p) ′ to L 2 , and (e -tL * ) t>0 is analytic in L (2p) ′ , one has for s ∈ (0, at),

t 1/2 ∇(e -(t-s)L * -e -tL * )g 2 t -n 2 ( 1 (2p) ′ -1 2 ) ˆt/2 t/2-s L * e -rL * g dr (2p) ′ t -n 2 ( 1 (2p) ′ - 1 
2 ) s t g (2p) ′ .

(5.18)

Plugging this into (5.17) yields

ˆB(x,c √ t) N (W 2 β 1 0 )(x 0 ) dx 0 t n/4p g (2p) ′ ˆat 0 s t 2 ds s 1/2 t n/4p .
To handle the off-diagonal part, we follow the same path and replace β 0 by

β j = 1 (0,at)×S j (B(x, √ t)) (s, y)t 1/2 ∇e -tL * 1 B(x, √ t) g(y)
for j ≥ 4, and split β j = β 0 j + β 1 j in the same way as for β 0 , with h replaced by

h j (y) = 1 S j (B(x, √ t)) (y)t 1/2 ∇e -tL * g(y).
According to Lemma 5.6 (ii), (t 1/2 ∇e -tL * ) t>0 satisfies L (2p) ′ -L 2 off-diagonal estimates, which yield for any N ≥ 0,

h j 2 t -n 2 ( 1 (2p) ′ -1 2 ) 1 + 2 2j t t -N g (2p) ′ t -n 2 ( 1 (2p) ′ -1 2 ) 2 -2jN .
Observe that similarly as above, the support property of β 0 j implies supp N (W 2 β i j ) ⊆ B(x, c2 j √ t), with c independent of x, t and j. Also N (W 2 β 0 j ) M 2 h j . Thus, by Kolmogorov's Lemma again,

N (W 2 β 0 j ) 1 |B(x, c2 j √ t)| 1/2 h j 2 2 -j(2N -n 2 ) t n/4 t -n 2 ( 1 (2p) ′ -1 2 ) g (2p) ′ = 2 -j(2N -n 2 ) t n/4p .
Choosing N > n 4 allows us to sum over j and gives the assertion for β 0 j . Finally, for β 1 j , one can repeat the argument for β 1 0 , and replace (5.17) by

N (W 2 β 1 j ) 1 2 jn/2 t n/4 ˆSj (B(x, √ t)) ˆat 0 |t 1/2 ∇(e -(t-s)L * -e -tL * )g(y)| 2 dyds s 1/2 . (5.19)
Combining L (2p) ′ -L 2 off-diagonal estimates for t 1/2 ∇e -tL * in t with L (2p) ′ off-diagonal estimates for rL * e -rL * in r ≈ t then refines the estimate (5.18) to

t 1/2 ∇(e -(t-s)L * -e -tL * )g L 2 (S j (B(x, √ t)) t -n 2 ( 1 (2p) ′ -1 2 ) 1 + 2 2j t t -N s t g (2p) ′ .
Plugging the estimate back into (5.19) and integrating over s gives

N (W 2 β 1 j ) 1 2 jn/2 2 -2jN t n/4p .
Summing over j finally gives the assertion of the lemma provided N > n/4.

Proof of Proposition 5.16:

The Carleson measure estimate. In order to show (5.12), we use a similar splitting for A as in Section 2. Write A(α)(t, . ) = ˆt 0 e -(t-s)L div α(s, . ) ds

= ˆt 0 e -(t-s)L L(sL) -1 (I -e -2sL
)s 1/2 div s 1/2 α(s, . ) ds

+ ˆ∞ 0 e -(t+s)L div α(s, . ) ds - ˆ∞ t e -(t+s)L s -1/2 div s 1/2 α(s, . ) ds =: A 1 (α)(t, . ) + A 2 (α)(t, . ) + A 3 (α)(t, .
).

In the following, we use without further mention that L has a bounded H ∞ functional calculus in L p (R n ) for any 1 < p < ∞ (which follows from [20, Theorem 3.1] combined with Lemma 5.6).

For the estimate on A 1 , we apply the following two lemmata. The first one is an extension of [9, Theorem 3.2] using the structure of the maximal regularity operator.

Lemma 5.19. Suppose q ∈ [2, ∞). The operator

M + : T ∞,2,q (R n+1 + ) → T ∞,2,q (R n+1 + ), (M + F )(t, . ) := ˆt 0 Le -(t-s)L F (s, . ) ds, (5.20) is bounded.
Proof. According to Lemma 5.6 and [12, Lemma 1.19], (tLe -tL ) t>0 satisfies Gaussian estimates, therefore in particular the weaker L 2 off-diagonal estimates of [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF]Definition 2.3]. Hence, we can apply [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF]Theorem 3.2] to obtain that M + : T ∞,2 (R n+1 + ) → T ∞,2 (R n+1 + ). Combining this with the embedding T ∞,2,q (R n+1 + ) ֒→ T ∞,2 (R n+1 + ) as a mere application of Hölder's inequality, we obtain

M + : T ∞,2,q (R n+1 + ) → T ∞,2 (R n+1 + ) (5.21)
is bounded. To show it is bounded into the smaller space T ∞,2,q (R n+1 + ), we argue as follows. Set

M + F (t, . ) := M + F (t, . ) -- ˆt 2 t 4
e -(t-s)L M + F (s, . ) ds.

According to Lemma 5.13 and (5.21), we have for the last term

- ˆt 2 t 4 e -(t-s)L M + F (s, . ) ds T ∞,2,q M + F T ∞,2 F T ∞,2,q . Thus M + : T ∞,2,q (R n+1 + ) → T ∞,2,q (R n+1 + ) is bounded if and only if M + : T ∞,2,q (R n+1 + ) → T ∞,2,q (R n+1
+ ) is bounded. To show the latter, observe that

M + F (t, . ) = - ˆt 2 t 4 ˆt s Le -(t-σ)L F (σ, . ) dσds,
therefore, for any τ > 0 and t ∈ (τ, 2τ ), we have the time localisation formula

(5.22) M + F (t, . ) = M + (1 (τ /4,τ ) F )(t, . ), hence for fixed (τ, x), W q ( M + F )(τ, x) = W q ( M + (1 ( τ 4 ,2τ ) F ))(τ, x). Let F ∈ T ∞,2,q (R n+1 + ). Fix (r, x 0 ) ∈ R n+1
+ , and set B := B(x 0 , √ r). By Minkowski's inequality,

r -n/2 ˆr 0 ˆB(W q ( M + F )(τ, x)) 2 dxdτ 1/2 ≤ ∞ j=0 r -n/2 ˆr 0 ˆB(W q ( M + 1 S j (B(x, √ τ )) F )(τ, x)) 2 dxdτ 1/2 =: ∞ j=0 I j .
Consider first the case j ≤ 3. According to [17, Theorem 1.2], combined with Lemma 5.6, L has L q -maximal regularity on L q (R n ), that is, M + is bounded on L q ((0, ∞); L q (R n )), which also implies boundedness of M + on L q ((0, ∞); L q (R n )). Using this bound and (5.22), one obtains

W q ( M + (1 B(x,8 √ τ ) F ))(τ, x) τ -n/2-1 ˆ2τ τ /4 ˆB(x,8 √ τ ) |F (s, y)| q dsdy 1/q = C W q (F )(τ, x),
where W q denotes the average over the rescaled Whitney box ( τ 4 , 2τ ) × B(x, 8 √ τ ). By covering this Whitney box by boundedly many Whitney boxes of standard size, one obtains

r -n/2 ˆr 0 ˆB(W q ( M + 1 B(x,8 √ τ ) F )(τ, x)) 2 dxdτ 1/2 F T ∞,2,q .
Consider now the case j ≥ 4. Denote F j (s, y) := F (s, y)1 S j (B(x, √ τ )) (y)1 (0,2r) (s). Using Minkowski's inequality and L q off-diagonal estimates for the semigroup, which are a consequence of the kernel estimates stated in Lemma 5.6 (i), one obtains for fixed (τ, x) ∈ (0, r) × B, t ∈ (τ, 2τ ) and any N ≥ 1,

M + F j (t, . ) L q (B(x, √ τ )) ≤ - ˆt 2 t 4 ˆt s (t -σ) -1 (t -σ)Le -(t-σ)L F j (σ, . ) L q (B(x, √ τ )) dσds ˆt t 4 (t -σ) -1 t -σ 2 2j τ N F j (σ, . ) L q (B(x, √ τ )) dσ 2 -2jN τ -1 ˆ2τ τ 4 F j (σ, . ) L q (B(x, √ τ )) dσ.
Since the last expression is independent of t and by definition of F j , we therefore have

τ -n 2 -1 ¨W (τ,x) | M + F j (t, y)| q dydt 1/q 2 -2jN τ -n 2 -1 ˆ2τ 1 4 τ ˆ2j B(x, √ τ ) |F (σ, y)| q dydσ 1/q
.

By change of angle in tent spaces [3, Theorem 1.1], choosing N large enough and summing over j, one obtains the assertion.

Lemma 5.20. For s > 0, denote T s = (sL) -1 (I -e -2sL )s 1/2 div. Suppose q ∈ [2, ∞), q ∈ [q, ∞) with q ≤ q * (with q * = nq n-q if q < n and q * = ∞ otherwise) and r ∈ [2, ∞). Then the operator T : T ∞,2,q,r (R n+1

+ ; C n ) → T ∞,2,q,r (R n+1 + ), (T F )(s, . ) := T s (F (s, . )), is bounded.
Proof. We first obtain L q -L q off diagonal estimates for (T s ) s>0

1 E T s 1 Ẽ L q →L q ≤ Cs -n/2(1/q-1/q) exp(-cs -1 dist(E, Ẽ) 2 ) (5.23)
for all Borel sets E, Ẽ and all s > 0. Assuming first q < n, we show T s L q →L q * s 1/2 . The solution of the Kato square root problem [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF][START_REF] Hofmann | The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds[END_REF] in L 2 with its extension to L p spaces (see [START_REF] Auscher | Square root problem for divergence operators and related topics[END_REF]Theorem 4.1] or [START_REF] Auscher | On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on R n and related estimates[END_REF]) implies that ∇(L * ) -1/2 is bounded in L q ′ as 1 < q ′ ≤ 2, therefore Proposition 5.3]. Combining this with the fact that the semigroup (e -tL ) t>0 is bounded on L q * gives the claim. This in particular yields (5.23) with q = q * and when dist(E, Ẽ) ≤ cs 1/2 . For dist(E, Ẽ) ≥ s 1/2 , we can obtain the stronger L 2 -L ∞ off-diagonal estimates from Lemma 5.6 by writing

L -1/2 div : L q (R n ; C n ) → L q (R n ) is bounded. Moreover, L -1/2 : L q (R n ) → L q * (R n ) is bounded, see [2,
T s = -s -1/2
ˆ2s 0 e -uL div du, (5.24) which then gives

1 E T s 1 Ẽ L q →L q * ≤ s -1/2 ˆ2s 0 1 E e -uL div 1 Ẽ L q →L q * du s -1/2 ˆ2s 0 u -1 exp(-cu -1 dist(E, Ẽ) 2 ) du s -1/2 exp(-c ′ s -1 dist(E, Ẽ) 2 ).
Hence we have shown (5.23) with q = q * and this implies (5.23) for any q ≤ q ≤ q * . When q ≥ n, the first part of the argument does not work but one can instead use (5.24) and still obtain an integrable factor when dist(E, Ẽ) ≤ cs 1/2 when plugging in the L q to L q norm. Details are left to the reader. Now (5.23) implies for (τ, x) ∈ R n+1 + and s ∈ (τ, 2τ )

- ˆB(x, √ τ ) |T s F (s, . )(y)| q dy 1/q ≤ ∞ j=0 - ˆB(x, √ τ ) |T s 1 S j (B(x, √ τ )) F (s, . )(y)| q dy 1/q ∞ j=0 s 2 2j τ N τ -n 2 ˆ2j B(x, √ τ ) |F (s, y)| q dy 1/q ∞ j=0 2 -j(2N -n q ) - ˆ2j B(x, √ τ ) |F (s, y)| q dy 1/q .
Choosing N large enough and using change of angle in tent spaces [3, Theorem 1.1], we therefore have

T F T ∞,2, q,r = W q * ,r (T F ) T ∞,2 ∞ j=0 2 -j(2N -n q -n 2 ) sup (r,x 0 )∈R n+1 +    ˆr 0 - ˆ2j+1 B(x 0 , √ r)   - ˆ2τ τ - ˆ2j B(x, √ τ ) |F (s, y)| q dy r/q ds   2/r dxdτ    1/2 F T ∞,2,q,r .
We use the theory of Hardy spaces associated with operators for the estimate of A 2 .

Lemma 5.21. The operator

A * 2 : T 1,2 (R n+1 + ) → T 1,∞,2 (R n+1 + ; C n ), (A * 2 G)(s, . ) = ∇e -sL * ˆ∞ 0 e -tL * G(t, . ) dt,
is bounded.

Note that we cannot commute ∇ and the semigroup as in Navier-Stokes. Well, in fact, one can if we imbed the scalar operator in a vector operator as in the proof below.

Proof. We outline how to obtain the result from [11, Theorem 9.1]. A direct proof is possible but is long and tedious. Recall that

L = -div(A∇) with A ∈ L ∞ (R n ; L(R n )), Re(A(x)) ≥ κI > 0 for a.e.
x ∈ R n . Associated with L * are the operators

D := 0 div -∇ 0 , B * := 1 0 0 A * ,
and

DB * := 0 div A * -∇ 0 , DB * DB * := -div A * ∇ 0 0 -∇ div A * ,
the latter acting as bisectorial and sectorial operators in L 2 (R n ; C 1+n ), respectively. Following [START_REF] Auscher | A priori estimates for boundary value elliptic problems via first order systems[END_REF], for a vector

v = v ⊥ v ∈ C 1+n , we call v ∈ C n the tangential part of v. Observe that -∇e -sL * ´∞ 0 e -tL * G(t, .
) dt is the tangential part of

DB * e -sDB * DB * ˆ∞ 0 e -tL * G(t, . ) 0 dt,
hence the tangential part of e -sDB * DB * h, with

h = 0 -´∞ 0 ∇e -tL * G(t, . ) dt .
An equivalent formulation of the Kato square root estimate for L * [START_REF] Auscher | The solution of the Kato square root problem for second order elliptic operators on R n[END_REF][START_REF] Hofmann | The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds[END_REF] is the square function estimate ¨Rn+1

+ |(e -tL div F )(x)| 2 dxdt F 2 2 for all F ∈ L 2 (R n ; C n ), hence (t, x) → (e -tL div F )(x) is bounded from L 2 to T 2,2
and by duality this defines the bounded map

S : T 2,2 (R n+1 + ) → L 2 (R n ; C n ), SG = ˆ∞ 0 ∇e -tL * G(t, . ) dt.
By application of Lemma 5.6 (ii) for ∇e -tL * , one can show (e.g., by adapting the proof of [16, Theorem 6], using L 1 -L 2 off-diagonal estimates instead of kernel estimates) that this operator maps

T 1,2 (R n+1 + ) to H 1 (R n ; C n ). Thus, G ∈ T 1,2 (R n+1 + ) implies h ∈ H 1 D (R n ; C n+1
) where this space is a closed subspace of H 1 defined, for example in [START_REF] Auscher | A priori estimates for boundary value elliptic problems via first order systems[END_REF]. As B * has real coefficients, [START_REF] Auscher | A priori estimates for boundary value elliptic problems via first order systems[END_REF]Corollary 13.3] shows that

H 1 DB * (R n ; C n+1 ) = H 1 D (R n ; C n+1
) (the former space also being defined in [START_REF] Auscher | A priori estimates for boundary value elliptic problems via first order systems[END_REF]). Therefore, [11, Theorem 9.1] is applicable. Combined with [START_REF] Auscher | A priori estimates for boundary value elliptic problems via first order systems[END_REF]Remark 9.8], it yields for every h ∈ H

1 D (R n ; C n+1 ), Ñ (e -sDB * DB * h) 1 h H 1 .
where Ñ is the variant of the non-tangential maximal function N used in [START_REF] Auscher | A priori estimates for boundary value elliptic problems via first order systems[END_REF] and Ñ F and N F have (by a purely geometrical argument) equivalent L 1 norms. This gives the assertion.

Finally, to handle A 3 , we show Lemma 5.22. The sublinear operator R : F → F with

F (t, . ) = ˆ∞ 4t |e -(t+s)L s -1/2 div F (s, . )| ds is bounded from T ∞,2 (R n+1 + ; C n ) to T ∞,2 (R n+1 + ). Proof. Write F (t, . ) = ˆ∞ 4t |K(t, s)F (s, . )| ds,
with K(t, s) := e -(t+s)L s -1/2 div for s, t > 0. As a consequence of uniform boundedness of (e -tL t 1/2 div) t>0 in L 2 , one has

K(t, s) L 2 →L 2 = s -1/2 (t + s) -1/2 e -(t+s)L (t + s) 1/2 div L 2 →L 2 s -1/2 (t + s) -1/2 .
This allows to apply Schur's lemma as for Lemma 3.3, and implies boundedness of R from

L 2 (R n+1 + ; C n ) to L 2 (R n+1 + ).
For the extension to T ∞,2 , observe that Lemma 5.6 yields L 2 -L ∞ off-diagonal estimates of the form (3.3). The second part of the proof of Lemma 3.3 directly carries over to the present situation, and yields boundedness of R on T ∞,2 .

Proof of (5.12). Recall the splitting A = A 1 + A 2 + A 3 at the beginning of the section. For A 1 , we apply Lemma 5.20 with q = p > n/2 and q = r = 2p, in which case q ≤ q ≤ q * . Combining this with Lemma 5.19 yields

A 1 (α) T ∞,2,2p = M + T (s 1/2 α(s, . )) T ∞,2,2p
T (s 1/2 α(s, . )) T ∞,2,2p s 1/2 α(s, . ) T ∞,2,p,2p .

Concerning A 2 , Lemma 5.21 above establishes boundedness of the dual operator A * 2 , from T 1,2 (R n+1 + ) to T 1,∞,2 (R n+1 + ; C n ). By duality and Proposition 5.2, respectively, we therefore obtain boundedness of the operator A 2 from T ∞,1,2 (R n+1 + ; C n ) to T ∞,2 (R n+1 + ). In order to obtain boundedness into T ∞,2,2p (R n+1 + ), we apply Lemma 5.13 with F (s) = A 2 (α)(s, . ) and q = r = 2p. Observe that, A 2 (α)(t, . ) = e -(t-τ )L A 2 (α)(τ, . ) for each τ < t, hence one finds with the notation of Lemma 5.13, G(t) = A 2 (α)(t, . ), therefore we obtain the bootstrap estimate

A 2 (α) T ∞,2,2p A 2 (α) T ∞,2 α T ∞,1,2 .
Finally we consider A 3 . We apply a slight variant of Lemma 5. 

F T ∞,2 = R(s 1/2 α(s, . )) T ∞,2 s 1/2 α(s, . ) T ∞,2 s 1/2 α(s, . ) T ∞,2,p,2p .
as p ≥ 2. This finishes the proof.

Remark 5.23. One wonders why we analyse A 2 and A 3 separately, while in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], this is not needed. In Section 4, we already observed that at the level of tent spaces we used the T ∞,2

1/2 condition on α and not the pointwise bounds on α, while the latter and not the former is used in the proof of the energy estimate (15) of [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF]. This proof requires an integration by parts to absorb some non absolutely convergent integrals. Supposing we want to analyse A 2 + A 3 as one operator, we would have to prove a T ∞,2,2p control for this sum. Or similarly, taking Lemma 5.13 into account, a bound in T ∞,2 , ie a Carleson measure estimate. This means that locally, we would be looking at expressions such as

ˆτ 0 ˆB(x, √ τ )
| ˆt 0 e -(t+s)L div α(s, . )(y) ds| 2 dydt, and we would have to bound against some form of local L 1 estimates for α (and, possibly, the local averaged N p quantities). Compared to [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], we face the following problems here. First, div does not commute anymore with the semigroup. As explained after Lemma 5.21, we can still use a commutation property, but only by making use of the framework of first order Hodge-Dirac operators. But second, it is not clear how to compute the square and beat the lack of absolute convergence of the integral inside as in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], as we impose no self-adjointness on L. The other option is to argue by duality with non-tangential maximal functions. But even in this specific situation, we do not see how to handle the terms. Thus A 2 contains the "singular terms" which are handled by the Hardy space technique (to absorb the non absolutely converging terms) while A 3 is a remainder term with no singularity and no use of Hardy spaces, thus acting on a different tent space. It is not clear to us how to use the condition on N p (sα) from the solution space in such estimates. Assume from now on ϕ ∈ D(R n ) with support in a ball B = B(x 0 , 1) of radius 1. Assume t ∈ (0, 1 2 ), otherwise the estimate is simpler and can be done in a similar way (but we may get a polynomial growth in t as t increases). We show that uniformly for t ∈ (0, 1 2 ) and for all ϕ as above, J(t) ≤ C( ∇ϕ 2 + ∇ϕ ∞ + ϕ 2 ) and lim t→0 J(t) = 0.

To do this, we split the double integral defining J(t) into four parts as follows. For the last term in (5.25), we have

ˆt/4 0 ˆ2B |F (s, x)||∇ϕ(x)| dxds ≤ ∇ϕ ∞ ˆ2 0 ˆ2B |F (s, x)| dxds ≤ ∇ϕ ∞ |2B| F T ∞,1 .
From the embedding T ∞,1,2 ֒→ T ∞,1 and dominated convergence,

lim t→0 ˆt/4 0 ˆ2B |F (s, x)||∇ϕ(x)| dxds = 0.
For the second term in (5.25), abbreviate h(s, x) = 1 (0,t/4) (s)1 2B (x)(∇e -tL * ϕ -∇ϕ)(x). Then by Proposition 5.2 ˆt/4

0 ˆRn |F (s, x)||(∇e -tL * ϕ -∇ϕ)(x)| dxds ≤ ¨Rn+1 + |F (s, x)||h(s, x)| dxds F T ∞,1,2 h T 1,∞,2 .
Now note that by definition of h, one has supp N (W 2 h) ⊆ 3B, and N (W 2 h)(x) ≤ M 2 (∇e -tL * ϕ-∇ϕ)(x) (see (5.16) for the definition of M 2 ). Using this in the first step and Kolmogorov's lemma (see [START_REF] Duoandikoetxea | Fourier analysis[END_REF]Lemma 5.16]) in the second step, we get

h T 1,∞,2 ≤ ˆ3B M 2 (∇e -tL * ϕ -∇ϕ)(x) dx |3B| 1/2 ∇e -tL * ϕ -∇ϕ 2 .
For the last expression, the solution of the Kato square root problem gives

∇e -tL * ϕ -∇ϕ 2 ≃ (L * ) 1/2 (e -tL * -I)ϕ 2 = (e -tL * -I)(L * ) 1/2 ϕ 2 ≤ 2 (L * ) 1/2 ϕ 2 ≃ ∇ϕ 2 ,
and this estimate holds uniformly with respect to t. Moreover (e -tL * -I)(L * ) 1/2 ϕ 2 → 0, t → 0 + .

Thus, we obtain

ˆt/4 0 ˆB |F (s, x)||∇e -tL * ϕ -∇ϕ(x)| dxds F T ∞,1,2 |3B| 1/2 ∇e -tL * ϕ -∇ϕ 2 , F T ∞,1,2 |3B| 1/2 ∇ϕ 2 ,
where the estimate is uniformly with respect to t. This implies that

lim t→0 ˆt/4 0 ˆB |F (s, x)||∇e -tL * ϕ -∇ϕ(x)| dxds = 0.
For the first part in (5.25), abbreviate h(s, x) = 1 (0,t/4) (s)

1 2B (x)(∇e -(t-s)L * ϕ -∇e -tL * ϕ)(x).
Similarly as above, we have by Proposition 5.2,

ˆt/4 0 ˆ2B |F (s, x)||∇e -(t-s)L * ϕ(x) -∇e -tL * ϕ(x)| dsdx ¨Rn+1 + |F (s, x)|| h(s, x)| dxds F T ∞,1,2 h T 1,∞,2 ,
and supp N (W 2 h) ⊆ 3B. Now a geometric argument shows that there exists a cone Γ(x) with aperture independent of x, such that

(τ, z) ∈ Γ(x) ⇒ W (τ, z) ⊂ Γ(x),
and therefore

N (W 2 h)(x)   ¨(y,s)∈ Γ(x) s≤t/4 |∇e -(t-s)L * ϕ(y) -∇e -tL * ϕ(y)| 2 dyds s n/2+1   1/2 .
Integrating this over 3B and using Fubini yields

ˆ3B N (W 2 h)(x) dx |3B| 1/2 ˆt/4 0 ˆRn |∇e -(t-s)L * ϕ(y) -∇e -tL * ϕ(y)| 2 dyds s 1/2 . (5.26)
We can now estimate the inner integral by

∇e -(t-s)L * ϕ -∇e -tL * ϕ 2 e -(t-2s)L * e -sL * (I -e -sL * )(L * ) 1/2 ϕ 2 ≤ Q s (L * ) 1/2 ϕ 2 .
where Q s = e -sL * (I -e -sL * ) and using that the semigroup contracts on L 2 (R n ). We have therefore obtained

ˆt/4 0 ˆ2B |F (s, x)||∇e -(t-s)L * ϕ(x) -∇e -tL * ϕ(x)| dxds F T ∞,1,2 |3B| 1/2 ˆt/4 0 Q s (L * ) 1/2 ϕ 2 2 ds s 1/2
.

The square function on the right hand side is uniformly bounded with respect to t by (L * ) 1/2 ϕ 2 ≃ ∇ϕ 2 , and tends to 0 for t → 0. This yields that the left hand side tends to 0 for t → 0.

Case 2: t 4 < s ≤ t and x ∈ 2B. This time, we split ∇e -(t-s)L * ϕ = ∇e -(t-s)L * ϕ -∇ϕ + ∇ϕ.

For the second term, we can directly estimate

ˆt t/4 ˆ2B |F (s, x)||∇ϕ(x)| dxds ∇ϕ ∞ F T ∞,1,2 |2B|,
and as above, the left hand side tends to 0 for t → 0 by dominated convergence. Then for the first term, we abbreviate h(s, x) := 1 (t/4,t) (s)1 2B (x)(∇e -(t-s)L * ϕ -∇ϕ)(x), and Proposition 5.2 yields

ˆt t/4 ˆ2B |F (s, x)||∇e -(t-s)L * ϕ(x) -∇ϕ(x)| dsdx F T ∞,1,2 h T 1,∞,2 .
For the estimate on h, we use the same arguments as in Case 1 for h. Instead of (5.26), we obtain

ˆ3B N (W 2 h)(x) dx |3B| 1/2 ˆt t/4 ˆRn |∇e -(t-s)L * ϕ(y) -∇ϕ(y)| 2 dyds s 1/2 . (5.27)
The right hand side can be estimated by |3B| We split (2B) c into annuli S j (B) as defined before Definition 2.1. For j ≥ 2,

ˆt/4 0 ˆSj (B) |F (s, x)||∇e -(t-s)L * ϕ(x) -∇e -tL * ϕ(x)| dxds F T ∞,1,2 h j T 1,∞,2 ,
where

h j (s, x) = 1 (0,t/4) (s)1 S j (B) (x)(∇e -(t-s)L * ϕ -∇e -tL * ϕ)(x).
For the estimate on h j , note that supp N (W 2 h j ) ⊆ Sj (B), for a slightly larger annulus Sj (B). With similar arguments as in Case 1 and using (5.28), one has

ˆS j (B) N (W 2 h j )(x) dx |2 j B| 1/2   ˆS j (B) ¨(y,s)∈ Γ(x) s≤t/4 | ˆt t-s ∇L * e -uL * ϕ(y) du| 2 dyds s n/2+1 dx   1/2 |2 j B| 1/2 ˆt/4 0 ˆS j (B) | ˆt t-s ∇L * e -uL * ϕ(y) du| 2 dyds s 1/2
, where Sj (B) denotes another slightly larger annulus. Then L 2 off-diagonal estimates for u 1/2 ∇uL * e -uL * yield for N ∈ N ˆt/4

0 ˆS j (B) | ˆt t-s ∇L * e -uL * ϕ(y) du| 2 dyds s 1/2   ˆt/4 0 ˆt t-s u -1/2 u -1 1 + (2 j ) 2 u -N du 2 ϕ 2 2 ds s   1/2 t -1/2 t 4 j N ˆt/4 0 s 2 t 2 ds s 1/2 ϕ 2 t -1/2 t 4 j N ϕ 2 . Therefore, ˆt/4 0 ˆSj (B) |F (s, x)||∇e -(t-s)L * ϕ(x) -∇e -tL * ϕ(x)| dxds F T ∞,1,2 |2 j B| 1/2 t -1/2 t 4 j N ϕ 2 ,
and by choosing N > n 4 , the last expression is summable over j, and the sum tends to 0 for t → 0 when N > 1 2 . We turn to the second term in (5.28). We again split (2B) c into annuli S j (B). For j ≥ 2,

ˆt/4 0 ˆSj (B) |F (s, x)||∇e -tL * ϕ(x)| dxds F T ∞,1,2 hj T 1,∞,2 , (5.29) with hj (s, x) = 1 (0,t/4) (s)1 S j (B) (x)(∇e -tL * ϕ)(x).
The support property of hj implies supp N (W 2 hj ) ⊆ Sj (B), moreover note that N (W 2 hj )(x) ≤ M 2 (1 S j (B) ∇e -tL * ϕ)(x). Thus, Kolmogorov's lemma in the second step and L 2 off-diagonal estimates for t1/2 ∇e -tL * in the third step yield

hj T 1,∞,2 ≤ ˆS j (B) M 2 (1 S j (B) ∇e -tL * ϕ)(x) dx |2 j B| 1/2 1 S j (B) ∇e -tL * ϕ 2 |2 j B| 1/2 t -1/2 t 4 j N ϕ 2 .
We choose N > n 4 , so that the last expression is summable in j, and the sum tends to 0 for t → 0 when N > 

ˆt t/4 ˆSj (B) |F (s, x)||∇e -(t-s)L * ϕ(x)| dsdx F T ∞,1,2 gj T 1,∞,2 . with gj (s, x) := 1 (t/4,t) (s)1 S j (B) (x)∇e -(t-s)L * ϕ(x). We get from L 2 off-diagonal estimates for (t -s) 1/2 ∇e -(t-s)L * , W 2 gj (σ, x) = σ -n/2+1 ¨W (σ,x) |1 (t/4,t) (s)1 S j (B) (y)∇e -(t-s)L * ϕ(y)| 2 dyds 1/2 t -n/2+1 ˆ2σ σ (t -s) -1 1 + (2 j ) 2 t -s -2N dσ 1/2 ϕ 2 t -n/4-1/2 t 4 j N ϕ 2 .
Since supp N (W 2 gj ) ⊆ Sj (B), we therefore have

gj T 1,∞,2 ≤ ˆS j (B) N (W 2 gj )(y) dy |2 j B|t -n/4-1/2 t 4 j N ϕ 2 ,
which is summable in j for N > n 2 , and the sum tends to 0 for t → 0 when N > n 4 + 1 2 .

We now prove the continuity 1 of t → I(t) in S ′ (R n ). The argument is as above but a little tedious. Let 0 < t < τ < 1 2 and write I(τ ) -I(t) as ˆτ t e -(τ -s)L div F (s, . ) ds -ˆt 0 e -(t-s)L (I -e -(τ -t)L ) div F (s, . ) ds. (5.30)

As above, we bound the double integral against ϕ supported in B. For the first term arising from (5.30), the calculations for J(τ ) show that

ˆτ t ˆRn |F (s, x)||∇e -(τ -s)L * ϕ(x)| dxds ≤ C( ∇ϕ 2 + ∇ϕ ∞ + ϕ 2 ).
By dominated convergence, we obtain that the left hand side tends to 0 for t → τ . For τ → t, we repeat the arguments of Case 2 and Case 4, changing t to τ and inserting the indicator of (t, τ ) in the second factor. In Case 2, that is when we replace R n by 2B, the estimate on ∇ϕ tends to 0 for τ → t by dominated convergence. For the estimate on ∇e -(τ -s)L * ϕ -∇ϕ, the right hand side of (5.27) gets replaced by |3B| 1/2 times

ˆτ t ˆRn |∇e -(τ -s)L * ϕ(y) -∇ϕ(y)| 2 dyds s 1/2 τ -t τ 1/2 sup 0<u≤τ -t ∇e -uL * ϕ -∇ϕ 2 ,
which tends to 0 for τ → t.

In Case 4, that is when we replace R n by annuli S j (B), we let the reader check that by using L 2 off-diagonal estimates for (τ -s) 1/2 ∇e -(τ -s)L * , we can replace the factor t 4 j

N by τ -t

4 j
N , which tends to 0 for τ → t.

For the second term arising from (5.30), consider J(t) = ˆt 0 ˆRn |F (s, x)||∇e -(t-s)L * (I -e -(τ -t)L * )ϕ(x)| dxds. Now note that in the above estimate on J(t), only in two places we have estimates against ∇ϕ ∞ , which we can not use. In all other cases, we obtain bounds in terms of ∇ϕ 2 or ϕ 2 . For these estimates, we want to replace ϕ by (I -e -(τ -t)L * )ϕ so that we need to localize again: Let (B k ) be a covering of R n with balls of radius 1 with bounded overlap. Let χ k be smooth cut-off functions with support in B k , k χ k = 1 and ∇χ k ∞ ≤ 1. From the estimates on J(t), we obtain bounds on J(t) in terms of χ k (I -e -(τ -t)L * )ϕ 2 and ∇(χ k (I -e -(τ -t)L * )ϕ) 2 . We now use that on the one hand, L 2 off-diagonal estimates for e -(τ -t)L * and ∇e -(τ -t)L * imply for dist(B, B k ) > 2, It remains to study two terms, for the parts of J(t) which were estimated against ∇ϕ ∞ (in Case 1 and Case 2 at the beginning). More precisely, we have to consider J0 (t) = ˆt 0 ˆRn |F (s, x)||∇(I -e -(τ -t)L * )ϕ(x)| dxds.

χ k (I -e -(τ -t)L * )ϕ 2 = χ k e -(τ -t)L * ϕ 2 τ -t dist(B, B k ) 2
Here, we follow the argument of (5.29). Let g j (s, x) = 1 (0,t) (s)1 S j (B) (x)∇(I -e -(τ -t)L * )ϕ(x) replace hj (s, x). If j ≤ 1, we use that ∇(I -e -(τ -t)L * )ϕ 2 ∇ϕ 2 , and tends to 0 for τ → t. For j ≥ 2, L 2 off-diagonal estimates give g j T 1,∞,2 |2 j B| 1/2 1 S j (B) ∇(I -e -(τ -t)L * )ϕ 2 |2 j B| 1/2 (τ -t) -1/2 τ -t

4 j N ϕ 2 ,
and this is summable in j for N > n 4 , and the sum tends to 0 for τ → t if N > 1 2 .

5.8. Proof of Corollary 5.17. The estimate (5.12) shows that I ∈ T ∞,2,2p . Since T ∞,2,2p ֒→ T ∞,2 , and every function in T ∞,2 is locally square integrable, this shows the first statement. For the second statement, consider the two cases s ∈ (0, t/2) and s ∈ (t/2, t). For s ∈ (0, t/2), write ˆt/2 0 ∇ x e -(t-s)L div F (s, . ) ds = ∇ x e -t/2L ˆt/2 0 e -(t/2-s)L div F (s, . ) ds.

Again by (5.12), the integral on the right hand side is in T ∞,2 . Using L 2 off-diagonal estimates for ∇ x e -t/2L , one can then show that the left hand side is in L 2 loc (R n+1 + ). For s ∈ (t/2, t), we use that the bounded functional calculus for L in L 2 implies that G(t, . ) → ˆt t/2 ∇ x e -(t-s)L div G(s, . ) ds maps T 2,2 into T 2,2 . This can be extended to a map on T ∞,2 by using L 2 off-diagonal estimates for ∇ x e -(t-s)L div (obtained using by composition of the ones for ∇ x e -((t-s)/2)L and e -((t-s)/2)L div) as in previous arguments, we skip details. It is also uniform in ε but that is not crucial. Next, (∇e -(t-s)L * ∂ t ϕ)(t, x) = (∇∂ t {e -(t-s)L * ϕ})(t, x) -(∇{∂ t e -(t-s)L * }ϕ)(t, x)

and, using that ϕ(t, •) belongs to the Sobolev space W 1,2 (R n ) so that the equality holds almost everywhere for fixed t, (∇{∂ t e -(t-s)L * }ϕ)(t, x) = -(∇L * e -(t-s)L * ϕ)(t, x) = ({∇e -(t-s)L * div}A * ∇ϕ)(t, x).

Using T Further, if one uses the full assumption on F , then I ∈ L 2 loc (R n+1 + ) so that this integral rewrites as the double Lebesgue integral ˜I(t, x)∂ t ϕ(t, x) dtdx. Next, adapting case 2 and case 4 of the proof of Proposition 5.15, we also obtain ˆb 0 ˆRn F (s, x) • ∇e -εL * ϕ(s + ε, x) dxds → ˆ∞ 0 ˆRn F (s, x) • ∇ x ϕ(s, x) dxds.

For the last term, we use again the full assumption on F . With the same arguments as for I, one can show that ∇ x I ε is locally square integrable on R n+1 + , uniformly in ε: for a fixed compact set K, ∇ x I ε is bounded in L 2 (K) for ε < ε K (the truncation in time brings harmless modifications). In particular, after using Fubini to exchange the t and s integrals, ˆb 0 ˆRn ˆb s+ε F (s, x) • ({∇e Putting all this together, we have justified the parabolic equation in the weak sense.

  split the integral in s and use Hölder's inequality to obtain

5. 7 . 1 .

 71 Proof of Proposition 5.15. We define I(t) as a Schwartz distribution byI(t), ϕ = -ˆt 0 ˆRn F (s, x) • ∇e -(t-s)L * ϕ(x) dxdsfor every ϕ ∈ S(R n ) by proving thatJ(t) := ˆt 0 ˆRn |F (s, x)||∇e -(t-s)L * ϕ(x)| dxdsis controlled by continuous semi-norms on ϕ. Moreover, we prove this in such a way to obtain lim t→0 J(t) = 0. First recall that every ϕ ∈ S(R n ) can be written as ϕ = k∈Z n λ k ϕ k , where λ k ∈ C, (|λ k |) k is a rapidly decaying sequence, and the functions ϕ k ∈ D(R n ) are supported in balls B k of radius It therefore suffices to obtain a uniform bound with respect to the size of B k on | I(t), ϕ k | in terms of appropriate semi-norms on ϕ k and the limit as t → 0.

Case 1 :

 1 s ≤ t 4 and x ∈ 2B. Write ∇e -(t-s)L * ϕ =∇e -(t-s)L * ϕ -∇e -tL * ϕ (5.25)+∇e -tL * ϕ -∇ϕ +∇ϕ.

N ϕ 2 ∇ 2 N ϕ 2 ,

 222 (χ k (I -e -(τ -t)L * )ϕ) 2 ∇χ k ∞ χ k e -(τ -t)L * ϕ 2 + χ k ∇e -(τ -t)L * ϕ 2 τ -t dist(B, B k )and the left hand side is summable in k and the sum tends to 0 for τ → t as long as N is large. If dist(B, B k ) ≤ 2, then use that for τ → t, (I -e -(τ -t)L * )ϕ 2 → 0, ∇(χ k (I -e -(τ -t)L * )ϕ) 2 → 0.

  It remains to verify the parabolic equation in the weak sense. Suppose ϕ ∈ D(R n+1 + ). Let 0 < a < b and B a ball of R n such that supp ϕ ⊂ [a, b] × B. Let ε > 0, and denoteI ε (t, •) = I ε (t) = ´t-ε 0 e -(t-s)L div F (s, .) ds, defined as a Schwartz distribution similarly to I(t). We have-ˆ∞ 0 I ε (t), ∂ t ϕ(t) dt = ˆb a ˆ∞ 0 ˆRn 1 [0,t-ε] (s)F (s, x) • (∇e -(t-s)L * ∂ t ϕ)(t, x) dxdsdt = ˆb 0 ˆRn ˆb s+ε F (s, x) • (∇e -(t-s)L * ∂ t ϕ)(t, x) dtdxds,where, as usual, the semigroup acts on ∂ t ϕ(t, •) for each t. As in the proof of Proposition 5.15, we justify the use of Fubini's theorem from F ∈ T ∞,1,2 and uniformly t ∈[a, b], (s, x) → 1 [0,t-ε] (s)(∇e -(t-s)L * ∂ t ϕ)(t, x) ∈ T1,∞,2 with N (W 2 (1 [0,t-ε] (s)(∇e -(t-s)L * ∂ t ϕ)(t, •))) 1 C ϕ .

  13. Fix t > 0. For s ∈ [t/4, t/2],

	A 3 (α)(t, . ) = e -(t-s)L F t (s, . )	
	with F t (s, . ) = ´∞ t e -(s+σ)L div α(σ, . ) dσ. Hence, A 3 (α)(t, . ) = -´t 2 t 4	e -(t-s)L F t (s, . ) ds. Apply-
	ing the beginning of the argument for Lemma 5.13 and observing that |F t (s, . )| ≤ F (s, . ) := F T ∞,2 . Using Lemma 5.22, and ´∞ 4s |e -(s+σ)L div α(σ, . )| dσ, we obtain A 3 (α) T ∞,2,2p Hölder's inequality in the last step, we have

  Case 3: Assume s ≤ t 4 and x / ∈ 2B. In this case, write ∇e -(t-s)L * ϕ = ∇e -(t-s)L * ϕ -∇e -tL * ϕ + ∇e -tL * ϕ (5.28)

	=	ˆt t-s	∇L
			1/2 times
	sup 0<u≤t	∇e -uL * ϕ -∇ϕ 2 ,
	which converges to 0 as t → 0.		

* e -uL * ϕ du + ∇e -tL * ϕ.

  1 2 . Plugging this estimate back into (5.29) gives the desired estimate.

	Case 4: t 4 ≤ s ≤ t and x / ∈ 2B. Split (2B) c into annuli S j (B), and consider j ≥ 2. Here, Proposition 5.2 yields

  1,∞,2 estimates for terms depending on ϕ (we do no need them to be uniform in ε: this is where we use that t ≥ s + ε), one can plug in this decomposition and integrate by parts in t to obtain-ˆ∞ 0 I ε (t), ∂ t ϕ(t) dt = -ˆb 0 ˆRn F (s, x) • ∇e -εL * ϕ(s + ε, x) dxds -ˆb 0 ˆRn ˆb s+ε F (s, x) • ({∇e -(t-s)L * div}A * ∇ϕ)(t, x) dtdxds.Now, we take limits in each term. For I ε (t), similar analysis to the one in Proposition 5.15 and dominated convergence show that I ε (t) converges to I(t) in L 1 loc (D ′ (R n )). In particular, ˆ∞ 0 I

ε (t), ∂ t ϕ(t) dt → ˆ∞ 0 I(t), ∂ t ϕ(t) dt.

  -(t-s)L * div}A * ∇ x ϕ)(t, x) dtdxds = ˆ∞ 0 ˆRn ∇ x I ε (t, x) • A * (x)∇ x ϕ(t, x) dxdt.Indeed, this formula holds by definition if A * ∇ϕ is a test function. And as ∇ x I ε is L 2 loc , one can approximate A * ∇ϕ by some test function in L 2 (supp ϕ). Now, asI ε converges to I in L 1 loc (D ′ (R n )), thus in D ′ (R n+1 + ), we have that ∇ x I ε converges to ∇ x I in D ′ (R n+1 + ).As it is bounded on L 2 (supp ϕ), we have weak convergence in L 2 (supp ϕ) and ˆ∞ 0 ˆRn ∇

x I ε (t, x) • A * (x)∇ x ϕ(t, x) dxdt → ˆ∞ 0 ˆRn ∇ x I(t, x) • A * (x)∇ x ϕ(t, x) dxdt.

The previous argument easily shows that I(t) is measurable: it suffices to bound ´h(t)J(t) dt for locally integrable positive h instead of just J(t) for fixed t.
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