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WEYL CALCULUS AND DUAL PAIRS

M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

Abstract. We consider a dual pair (G,G′), in the sense of Howe, with G compact acting

on L2(Rn) for an appropriate n via the Weil Representation. Let G̃ be the preimage of
G in the metaplectic group. Given a genuine irreducible unitary representation Π of

G̃ we compute the Weyl symbol of orthogonal projection onto L2(Rn)Π, the Π-isotypic
component. We apply the result to obtain an explicit formula for the character of the

corresponding irreducible unitary representation Π′ of G̃′ and to compute of the wave
front set of Π′ by elementary means.
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1. Introduction.

Let W be a vector space of finite dimension 2n over R with a non-degenerate symplectic
form 〈·, ·〉. Denote by Sp ⊆ GL(W) the symplectic group and let G,G′ ⊆ Sp = Sp(W) be

an irreducible dual pair. Denote by G̃, G̃′ the preimages of G, G′ in the metaplectic group
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2 M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

S̃p = S̃p(W). Consider irreducible admissible representations Π, Π′ of G̃, G̃′ respectively
which are in Howe’s correspondence. By definition Π⊗Π′ is realized as a quotient of the

space of the smooth vectors of the Weil representation ω of S̃p(W). Hence, as explained
in [Prz93], there is a unique, up to a non-zero constant multiple, GG′-invariant tempered
distribution fΠ⊗Π′ on W such that Π⊗ Π′ is realized on the range of the operator

Op ◦ K(fΠ⊗Π′). (1)

(See (3) and (4) below for the precise definitions of Op and K.) Thus, in principle, all
the information about the representation Π⊗Π′ is encoded in the distribution fΠ⊗Π′ . For
example the group action is given by

(Π(g̃)⊗ Π′(g̃′)) ◦ (Op ◦ K(fΠ⊗Π′)) = (Op ◦ K(fΠ⊗Π′)) ◦ ω(g̃g̃′) (g̃ ∈ G̃, g̃′ ∈ G̃′).

This is why fΠ⊗Π′ is called an intertwining distribution [Prz93]. In fact fΠ⊗Π′ happens to
be the Weyl symbol, [Hör83], of the operator (1), see (5) below.

Often fΠ⊗Π′ may be computed in terms of the distribution character ΘΠ of Π, [Prz93].
If the group G is compact then the distribution character ΘΠ′ may also be recovered from
fΠ⊗Π′ via an explicit formula [Prz91]. Thus we have a diagram

ΘΠ −→ fΠ⊗Π′ −→ ΘΠ′ . (2)

The asymptotic properties of fΠ⊗Π′ determine the associated varieties of the primitive
ideals of Π and Π′ and, under some more assumptions, the wave front sets of these
representations, see [Prz93] and [Prz91].

We believe that in general one should be able to have a diagram like (2) with the arrows
in arbitrary direction. In particular deciding whether two representations are in Howe’s
correspondence should be done by comparing the intertwining distributions obtained from
their characters.

The usual, often very successful, approach to Howe’s correspondence avoids any work
with the distributions on the symplectic space. Instead, one finds Langlands parame-
ters (see [Moe89], [AB95], [Pau98], [Pau00], [Pau05], [LPTZ03]), character formulas (see
[Ada98], [Ren98], [DP96]), or candidates for character formulas (as in [BP13]), or one
establishes preservation of unitarity (as in [Li89], [He03], [Prz93] or [ABP+07]). However,
in the background (explicit or not), there is the orbit correspondence induced by the
moment maps

g∗ ←−W −→ g′∗,

see (16). This correspondence of orbits has been studied in [DKP97], [DKP05] and
[Pan10]. Furthermore, in their recent work, [LM13], H. Y. Lock and J.J. Ma computed
the associated variety of the representations for the dual pairs in the stable range in terms
of the orbit correspondence. The p-adic case was studied in detail in [Moe98]. Moreover,
still in the stable range, R. Gomez and C. Zhu computed their generalized Whittaker
models, [GZ13].

Needless to say, working with the GG′-invariant distributions on W is a more direct
approach than relying on the orbit correspondence. In this paper we consider the dual
pairs with G compact. Then the representations Π and Π′ are the irreducible unitary
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highest weight representations. They have been defined by Harish-Chandra in [Har55]
and were classified in [EHW83]. They have been studied in terms of Zuckerman functors
in [Wal84], [Ada83] and [Ada87].

As a complementary contribution to all this work, we compute the intertwining distri-
butions fΠ⊗Π′ explicitly. Our formula for the intertwining distribution fΠ⊗Π′ is explicit
enough to find its asymptotics, see Theorem 44. These allow us to compute the wave
front set of the representation Π′ within the Classical Invariant Theory, without using
[Vog78]. See Corollary 46 below. Also, in the case when both groups are compact, we
have the diagram (2) with the arrows in arbitrary direction. Therefore we see which rep-
resentations Π and Π′ occur in Howe’s correspondence, which corresponds to which and
we recover the fact that Π ⊗ Π′ occurs with multiplicity one without using [How89a] or
[Wey46]. This is a stepping stone for understanding the more general situation.

In order to describe more precisely the content of this paper we need to introduce some
notation.

Denote by sp the Lie algebra of Sp. Fix a compatible positive complex structure J on
W. Hence J ∈ sp is such that J2 = −1 (minus the identity) and the symmetric bilinear
form 〈J ·, ·〉 is positive definite on W. Let dw be the Lebesgue measure on W such that
the volume of the unit cube with respect to this form is 1. (Since all positive complex
structures are conjugate by elements of Sp, this normalization does not depend on the
particular choice of J .) Let W = X ⊕ Y be a complete polarization. We normalize the
Lebesgue measures on X and on Y similarly.

Each element K ∈ S∗(X× X) defines an operator Op(K) ∈ Hom(S(X),S∗(X)) by

Op(K)v(x) =

∫

X

K(x, x′)v(x′) dx′. (3)

Here S(V) and S∗(V) denote the Schwartz space on the vector space V and the space of
tempered distributions on V, respectively.

The map Op : S∗(X×X)→ Hom(S(X),S∗(X)) is an isomorphism of linear topological
spaces. This is known as the Schwartz Kernel Theorem, [Hör83, Theorem 5.2.1].
Fix the unitary character χ(r) = e2πir, r ∈ R, and recall the Weyl transform K :
S∗(W)→ S∗(X× X) given for f ∈ S(W) by

K(f)(x, x′) =
∫

Y

f(x− x′ + y)χ
(1
2
〈y, x+ x′〉

)
dy. (4)

The Weyl symbol of the operator Op ◦ K(f) is the symplectic Fourier transform f̂ of f ,
defined by

f̂(w′) = 2−n

∫

W

f(w)χ(1
2
〈w,w′〉) dw (w′ ∈W). (5)

A theorem of Calderon and Vaillancourt asserts that the operator Op ◦ K(f) is bounded
on L2(X) if its Weyl symbol and all its derivatives are bounded functions on W, [How80,
Theorem 3.1.3]. The intertwining distributions we compute are Weyl symbols of some
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bounded operators which naturally come from the Representation Theory of Real Reduc-
tive Groups. Many of these symbols turn out to be singular distributions. In order to
introduce them we recall the Weil representation.

For an element g ∈ Sp, let Jg = J−1(g − 1). Then its adjoint with respect to the form
〈J ·, ·〉 is J∗

g = Jg−1(1−g). In particular Jg and J
∗
g have the same kernel. Hence the image

of Jg is
JgW = (KerJ∗

g )
⊥ = (KerJg)

⊥

where ⊥ denotes the orthogonal with respect to 〈J ·, ·〉. Therefore, the restriction of Jg
to JgW defines an invertible element. Thus it makes sense to talk about det(Jg)

−1
JgW

, the
reciprocal of the determinant of the restriction of Jg to JgW. Let

S̃p = {g̃ = (g, ξ) ∈ Sp× C, ξ2 = idim(g−1)W det(Jg)
−1
JgW
} . (6)

Then there exists a 2-cocycle C : Sp × Sp → C, so that S̃p is a group, the metaplectic
group, with respect to the multiplication

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)) . (7)

In fact, by [AP12, Lemma 52],

|C(g1, g2)| =
√∣∣∣∣

det(Jg1)Jg1W det(Jg2)Jg2W

det(Jg1g2)Jg1g2W

∣∣∣∣ (8)

and by [AP12, Proposition 46 and formula (109)],

C(g1, g2)

|C(g1, g2)|
= χ(

1

8
sgn(qg1,g2)), (9)

where sgn(qg1,g2) is the signature of the symmetric form

qg1,g2(u
′, u′′) =

1

2
〈(g1 + 1)(g1 − 1)−1u′, u′′〉+ 1

2
〈(g2 + 1)(g2 − 1)−1u′, u′′〉 (10)

(u′, u′′ ∈ (g1 − 1)W ∩ (g2 − 1)W.

By the signature of a (possibly degenerate) symmetric form we understand the difference
between the maximal dimension of a subspace where the form is positive definite and the
maximal dimension of a subspace where the form is negative definite.
Let

χc(g)(u) = χ
(1
4
〈(g + 1)(g − 1)−1u, u〉

)
(u = (g − 1)w, w ∈W). (11)

(In particular, if g − 1 is invertible on W, then χc(g)(u) = χ(1
4
〈c(g)u, u〉 where c(g) =

(g + 1)(g − 1)−1 is the usual Cayley transform.) For g̃ = (g, ξ) ∈ S̃p define

Θ(g̃) = ξ, T (g̃) = Θ(g̃)χc(g)µ(g−1)W, ω(g̃) = Op ◦ K ◦ T (g̃), (12)

where µ(g−1)W is the Lebesgue measure on the subspace (g− 1)W normalized so that the
volume of the unit cube with respect to the form 〈J ·, ·〉 is 1. In these terms, (ω,L2(X))

is the Weil representation of S̃p attached to the character χ. A proof of this fact based
on previous work of Ranga Rao [Rao93] may be found in [Tho09]. Conversely, one may
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take the above definition of ω and check directly that it is a representation with all the
required properties. This was done in [AP12, Theorem 60].

We consider a dual pair (G,G′), in the symplectic group Sp, with G compact. Let G̃
be the preimage of G in the metaplectic group, equipped with the Haar measure of total

mass 1. Fix an irreducible unitary representation Π of G̃ which occurs in the restriction

of ω to G̃ and let ΘΠ be its (distribution) character. Then the operator

ω(Θ̌Π) =

∫

G̃

ΘΠ(g̃
−1)ω(g̃) dg̃

is (dimΠ)−1 times the orthogonal projection L2(X) → L2(X)Π onto the Π-isotypic com-
ponent of L2(X). The Weyl symbol of this projection is equal to a constant multiple
of

T (Θ̌Π) =

∫

G̃

ΘΠ(g̃
−1)T (g̃) dg̃. (13)

This is precisely the intertwining distribution we introduced before:

fΠ⊗Π′ = T (Θ̌Π).

Here we are using that the symplectic transform of T (Θ̌Π) is ±T (Θ̌Π), [Prz91, (5.2) and
(5.4.2)].

For example, if G = O1 = {±1} and G′ = Sp, then

G̃ = {(1, 1), (1,−1), (−1, in2−n), (−1,−in2−n)}
with the multiplication given by (g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)), where

C(1,±1) = C(±1, 1) = 1 and C(−1,−1) = 22n.

In these terms, the following two one-dimensional representations of G̃ occur in ω.

Π+(g, η) = |η|−1η, Π−(g, η) = g|η|−1η (14)

A straightforward computation shows that

T (Θ̌Π±
) =

1

2

(
δ0 ± 2−ndw

)
, (15)

where δ0 is the Dirac delta at the origin in W.
In general, Classical Invariant Theory says that the space L2(X)Π is irreducible under

the joint action of G̃ and G̃′, [How89a]. Hence L2(X)Π = L2(X)Π⊗Π′ for an irreducible

unitary representation Π′ of G̃′. We are interested in the character ΘΠ′ of Π′.
The unnormalized moment map

τ ′ : W→ g′
∗
, τ ′(w)(y) = 〈yw,w〉 (w ∈W, y ∈ g′) (16)

is a quadratic polynomial map with compact fibers. Hence the pull-back

S(g′) ∋ ψ → ψ ◦ τ ′ ∈ S(W)

is well defined and continuous, [Prz91, Lemma 6.1]. Therefore, by dualizing, we get a
push-forward of distributions

τ ′∗ : S∗(W)→ S∗(g′). (17)
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Recall the Cayley transform c(x) = (x + 1)(x − 1)−1, which we view as a rational map
from the Lie algebra sp into the group Sp. In particular c(0) = −1. Let

c̃ : sp→ S̃p (18)

be a real analytic lift of c. Set c̃−(x) = c̃(x)c̃(0)−1. Then c̃−(0) is the identity in the group

S̃p.
Let c̃∗−ΘΠ′ be the pullback of ΘΠ′ by c̃−, [Hör83, Theorem 6.1.2]. Then, as shown in

[Prz91, Theorem 6.7], for an appropriately defined Fourier transform F on g′,

1

Θ ◦ c̃ c̃
∗
−ΘΠ′ =

(central character of Π)(c̃(0))

dimΠ
F(τ ′∗(T (Θ̌Π))) . (19)

Formula (19) allows us to determine ΘΠ′(Ψ) for every Ψ ∈ C∞
c (G̃′) supported in the image

of c̃−. Indeed ΘΠ′(Ψ) =
(
c̃∗−ΘΠ′

)
(ψ) where ψ(x) = Ψ(c̃−(x)) ch

−2r(x) for x ∈ g′. Here

ch−2r is the Jacobian of c̃−; see (145) and (148) in section 6.
For example, if G = O1 then for ψ ∈ S(g′) we have

τ ′∗(T (Θ̌Π))(ψ) = T (Θ̌Π)(ψ ◦ τ ′) =
1

2

(
δ(ψ) + 2−n

∫

W

ψ(τ ′(w)) dw
)
.

Recall that τ ′(W\{0}) ⊆ g′ is one of the two non-zero minimal nilpotent orbits in g′ = sp,
which we denote Omin. Hence

1

Θ ◦ c̃ c̃
∗
−ΘΠ′

±
= Π±(c̃(0))F

(1
2
(δ ± µOmin

)
)
, (20)

where µOmin
= τ ′∗(2

−ndw) is an invariant measure on Omin and Π′
± are the corresponding

two irreducible pieces of the Weil representation ω. Notice that, since c(0) = −1, the
definition (14) gives Π−(c̃(0)) = −Π−(c̃(0)). It follows that

1

Θ ◦ c̃ c̃
∗
−Θω = Π+(c̃(0))F(µOmin

) . (21)

This formula gives the character of ω as the Fourier transform of an invariant measure of
a nilpotent orbits in sp. This is what Kirillov’s orbit method would aim at (if it worked
on semisimple Lie groups).

In this paper we compute explicitly the distribution fΠ⊗Π′ = T (Θ̌Π) in terms of the
GG′-orbital integrals on W, see Theorems 40 and 43. In particular we see that T (Θ̌Π) is a
smooth function if and only if (G,G′) is a pair of compact unitary groups, see Proposition
49. Also, modulo a few exceptions, T (Θ̌Π) is a locally integrable function if and only if
the rank of G is greater or equal to the rank of G′. Our results on the orbital integrals
are based on the corresponding results of Harish-Chandra, which are transferred from the
Lie algebra g′ to the symplectic space W via a theorem of G. Schwarz, [Sch74]. We hope
to circumvent it in the future in order to treat the case of a non-compact group G.
Let τ : W→ g∗ be the unnormalized moment map for g given, as in (16), by τ(w)(x) =
〈xw,w〉. The variety τ−1(0) ⊆ W is the closure of a single orbit O; see e.g. [Prz91,
Lemma 2.16]. There is a positive GG′-invariant measure µO on this orbit which defines
a homogeneous tempered distribution. We denote its degree by deg µO. For t > 0 let
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Mt(w) = tw, w ∈ W. Denote by M∗
t the corresponding pullback of distributions. In

particular M∗
t µO = tdeg µOµO. We show that

tdeg µOM∗
t−1T (Θ̌Π) →

t→0
const µO,

as tempered distributions, where const is a non-zero constant, see Proposition 44. This
last statement leads to an elementary proof of the equality

WF1(ΘΠ′) = τ ′τ−1(0) , (22)

see Corollary 46. Here WF1(ΘΠ′) denotes the fiber of the wave front set WF (ΘΠ′) over

the identity 1 ∈ G̃′. As proven by Rossmann in [Ros95], WF1(ΘΠ′) agrees with WF (Π′),
the wave front set of the representation Π′ in the sense of Howe [How81]. The equality
(22) was already verified in [Prz91, Theorem 6.11], but the proof used a theorem of Vogan
concerning the restriction of a representation to a maximal compact subgroup, [Vog78],
which is not needed in our present approach. In order to stay within the theory of the
almost semisimple orbital integrals on the symplectic space, see section 4, we consider only
representations Π such that the distribution character ΘΠ is supported in the preimage

G̃1 of the Zariski identity component G1 of G. This eliminates some representations of
the groups O2l. For reader’s convenience one should mention here that there is a notion of
an associated variety of a presentation introduced by Vogan [Vog89] and that associated
variety determines the wave front set of a representation [SV00]. In this context a recent
work of Lock and Ma [LM13] provides a vast generalization of our formula for the wave
front set of Π′. Needless to say this approach is much more sophisticated and much less
direct than ours.

In section 7 we demonstrate that our computation are precise enough to recover Weyl’s
theorem, saying that if both G and G′ are compact then the restriction of the Weil

representation to G̃× G̃′ decomposes with multiplicity one.
In section 8 we compute limits of the almost semisimple orbital integrals using van

der Corput lemma rather than techniques based on unpublished work of Ranga Rao and
obtain in that case a stronger version of Rossmann’s limit formula, [Ros90].

2. The group G̃ and the Weyl denominator.

We keep the notation from the introduction. In particular, (G,G′) is a dual pair with
G compact and J is a fixed compatible positive complex structure on W.

In this section we describe the restriction of the covering

S̃p ∋ (g, ξ)→ g ∈ Sp (23)

to the group G. This is then applied to study the analytic lift of the Weyl denominator.
Let SpJ ⊆ Sp denote the centralizer of J . Since SpJ is a maximal compact subgroup of

Sp, we may assume that G ⊆ SpJ and begin by studying the restriction of the map (23)

to S̃pJ .
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Let WC be the complexification of W. Denote by the same symbol 〈·, ·〉 the complex
bilinear extension of the symplectic form from W to WC. Let W+

C ⊆ WC be the i-
eigenspace for J . Denote by WC ∋ w → w ∈WC the conjugation with respect to the real

form W ⊆WC. Then W−
C = W+

C is the (−i)-eigenspace for J and

WC = W+
C ⊕W−

C (24)

is a complete polarization. The formula

H(w,w′) = i〈w,w′〉 (w,w′ ∈WC) (25)

defines a non-degenerate hermitian form on WC and the map

1

2
(1− iJ) : W→W+

C (26)

is an R-linear isomorphism. Moreover, if w = 1
2
(1− iJ)w0 and w

′ = 1
2
(1− iJ)w′

0 for some
w0, w

′
0 ∈W, then

H(w,w′) =
1

2
(〈Jw0, w

′
0〉+ i〈w0, w

′
0〉). (27)

In particular, the restriction H|W+
C

of H to W+
C is positive definite. Let U ⊆ End(W+

C )

denote the isometry group of the form H|W+
C

.

Let g ∈ SpJ . Then g can be extended to a complex linear endomorphism, still denoted
by g, which belongs to Sp(WC)

J . Clearly g(W+
C ) = W+

C . Set u = g|W+
C

. Then for every

w ∈W+
C with w = 1

2
(1− iJ)w0 for w0 ∈W, we have uw = g

[
1
2
(1− iJ)w0

]
= 1

2
(1− iJ)gw0,

i.e.

u =
1

2
(1− iJ) ◦ g ◦ [1

2
(1− iJ)]−1 .

It follows that u ∈ U .
Let

Ũ = {(u, ζ); det u = ζ2, u ∈ U} ⊆ GL(W+
C )× C×. (28)

endowed with the coordinate-wise multiplication. This is a connected two-fold covering
group of U.

Proposition 1. The group isomorphism

SpJ ∈ g → u = g|W+
C

=
1

2
(1− iJ) ◦ g ◦ [1

2
(1− iJ)]−1 ∈ U (29)

lifts to a group isomorphism

S̃pJ ∋ (g, ξ)→ (u, ξ det(g − 1)(g−1)W+
C

) ∈ Ũ . (30)

Therefore the restriction of the covering (23) to S̃p
J
is isomorphic to the covering

Ũ ∋ (u, ζ)→ u ∈ U. (31)
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Proof. Notice that any element g ∈ Sp(WC)
J preserves the decomposition (24) and satis-

fies the following formula

〈g−1w,w′〉 = 〈w, gw′〉 (w ∈W+
C , w

′ ∈W−
C ). (32)

Since the symplectic form identifies W+
C with the dual of W−

C and since the determinant of
the adjoint linear map is equal to the determinant of the original linear map, (32) shows
that

det(g − 1)W−
C

= det(g−1 − 1)W+
C

,

where we take the determinant of the linear map restricted to the indicated subspace.
Hence,

det(g − 1) = (−1)n det(g − 1)2
W+

C

det(g)−1

W+
C

. (33)

Let g ∈ SpJ . The restriction 〈·, ·〉0 of 〈·, ·〉 to (g − 1)W is nondegenerate. Indeed, since
g and J commute, the orthogonal complement ((g − 1)W)⊥ of (g − 1)W with respect to
〈·, ·〉 coincides with the orthogonal complement of (g − 1)W with respect to the positive
definite form 〈J ·, ·〉. Hence ((g − 1)W)⊥ ∩ (g − 1)W = 0.

Consider (g − 1)W as a symplectic space with 〈·, ·〉0 as a symplectic form, and let Sp0

be the corresponding symplectic group. Since J preserves (g − 1)W, we can consider its
restriction J0 to (g−1)W. It satisfies J2

0 = −1 and the bilinear form 〈J0·, ·〉0 is symmetric
and positive definite. So J0 is a positive compatible complex structure on (g − 1)W. In
particular, J0 ∈ Sp0. So det(J)(g−1)W = det(J0) = 1.
Formula (33) applied to g ∈ Sp((g − 1)WC)

J0 shows that

det(Jg)(g−1)W = det(J−1(g − 1))(g−1)W = idim(g−1)W det(g − 1)2
(g−1)W+

C

det(g)−1

(g−1)W+
C

.

Recall the notation u = g|W+
C

. Since W+
C is the direct sum of (g−1)W+

C and the subspace

where g = 1,

det(g)(g−1)W+
C

= det(g)W+
C

= det(u). (34)

Thus, in terms of (6)

det(Jg)
−1
(g−1)W = idim(g−1)W det(g − 1)−2

(g−1)W+
C

det(u). (35)

Hence, the map (30) is a well defined bijection. We now prove that it is a group homo-
morphism.

We see from (7) that the map (30) is a group homomorphism if and only if

C(g1, g2) =
det(g1 − 1)(g1−1)W+

C

det(g2 − 1)(g2−1)W+
C

det(g1g2 − 1)(g1g2−1)W+
C

. (36)

The equations (35) and (8) show that the absolute values of the two sides of (36) are
equal.
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In order to shorten the notation, let us write c(g)u = (g + 1)(g − 1)−1u for u in the
image of g − 1. Set

hg1,g2(w
′, w′′) = H(−ic(g1)w′, w′′) + H(−ic(g2)w′, w′′)

(w′, w′′ ∈ (g1 − 1)W+
C ∩ (g2 − 1)W+

C .

Then, since g1 and g2 commute with J ,

hg1,g2(w
′, w′′) =

1

2
(〈c(g1)w′

0, w
′′
0〉 − i〈Jc(g1)w′

0, w
′′
0〉)

+
1

2
(〈c(g2)w′

0, w
′′
0〉 − i〈Jc(g2)w′

0, w
′′
0〉),

where w′ and w′′ are the images of w′
0 and w

′′
0 under the map (26) respectively. Moreover,

w′
0, w

′′
0 ∈ (g1−1)W∩ (g2−1)W. In particular we see that the form hg1,g2 is hermitian and

Re(hg1,g2(w
′, w′′)) = qg1,g2(w

′
0, w

′′
0).

Let w1, w2, ..., wn be an hg1,g2-orthogonal basis of the complex vector space W+
C with

hg1,g2(w
k, wk) = ±1 or 0. Then w1

0, Jw
1
0, w

2
0, Jw

2
0, ..., w

n
0 , Jw

n
0 is an qg1,g2-orthogonal

basis of the real vector space W with hg1,g2(w
k, wk) = qg1,g2(w

k
0 , w

k
0) = qg1,g2(Jw

k
0 , Jw

k
0).

The signature of hg1,g2 is the difference between the number of the positive hg1,g2(w
k, wk)

and the number of the negative hg1,g2(w
k, wk), and similarly for the symmetric form qg1,g2 .

Hence

sgnhg1,g2 =
1

2
sgn qg1,g2 .

Therefore

isgnhg1,g2 = e
πi
2
sgnhg1,g2 = e

πi
4
sgn qg1,g2 = χ(

1

8
sgn qg1,g2). (37)

We see from (9) and (37) that it will suffice to prove that

det(g1 − 1)(g1−1)W+
C

det(g2 − 1)(g2−1)W+
C

det(g1g2 − 1)(g1g2−1)W+
C

∣∣∣∣∣
det(g1g2 − 1)(g1g2−1)W+

C

det(g1 − 1)(g1−1)W+
C

det(g2 − 1)(g2−1)W+
C

∣∣∣∣∣
= isgnhg1,g2 . (38)

This requires a significant amount of additional notation and therefore will be done in
Appendix E. In fact, since both sides of (36) are cocycles we may (and shall) assume that
Ker(g1 − 1) = {0}, see [AP12, proof of Theorem 31]. �

Proposition 1 allows us to study the covering G̃→ G by means of the (explicitly given)

covering Ũ→ U.
In the following we restrict ourselves to dual pairs (G,G′) which are irreducible, that

is no nontrivial direct sum decomposition of the symplectic space W is simultaneously
preserved by G and G′. Irreducible dual pairs have been classified by Howe [How79].
Those for which G is compact are all of type I. They are

(Od, Sp2m(R)) , (Ud,Up,q) , (Spd,O
∗
2m). (39)
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More precisely, given the dual pair (G,G′), there is a division algebra D = R, C or H,
an involution D ∋ a → a ∈ D over R, a right D-vector space V with a positive definite
hermitian form (·, ·) and a left D-vector space V′ with a non-degenerate skew-hermitian
form (·, ·)′ so that G is the isometry group of the form (·, ·), G′ is the isometry group of
the form (·, ·)′ and the symplectic space W = V ⊗D V′ with 〈·, ·〉 = trD/R((·, ·) ⊗ (·, ·)′),
see [How79]. The group G is viewed as a subgroup of the symplectic group via the
identification G ∋ g = g ⊗ 1 ∈ Sp. Similarly, the group G′ is viewed as a subgroup of the
symplectic group via the identification G′ ∋ g′ = 1⊗ g′ ∈ Sp.

Since G commutes with J , there is J ′ ∈ G′ such that J = 1 ⊗ J ′. Let V′
C = V′ ⊗R C

and let V′
C
+ ⊆ V′

C be the i-eigenspace for J ′. Then W+
C = V ⊗D V′

C
+ and

det(g)W+
C

= det(g ⊗ 1)V⊗DV
′
C
+ (g ∈ G).

The description of G as isometry group of the form (·, ·) on V provides an irreducible
complex representation of G on VC = V ⊗R C, of dimension d = dimV.

Recall that the group Od has, up to an equivalence, one irreducible complex represen-
tation of dimension d. Call it δ. Then det(δ(g)) = ±1, g ∈ G.

The group Ud has two irreducible complex representations of dimension d, δ and the
contragredient δc. Then det(δc(g)) = det(δ(g))−1, g ∈ G.
The group Spd has, up to an equivalence, one irreducible complex representation δ of

dimension 2d. In this case det(δ(g)) = 1, g ∈ G.
In these terms

det(g ⊗ 1)V⊗DV
′
C
+ =





det(δ(g))m if G′ is isomorphic to Sp2m(R),
det(δ(g))p−q if G′ is isomorphic to Up,q,
1 if G′ is isomorphic to O∗

2m.
(40)

We set √
G = {(g, ζ); g ∈ G, ζ2 = det(δ(g))} . (41)

Proposition 2. The covering

G̃→ G (42)

splits if and only if det(g ⊗ 1)V⊗DV
′
C
+ is a square. This does NOT happen if and only if

either G′ is isomorphic to Sp2m(R) with m odd or G′ is isomorphic to Up,q with p+ q odd.

In these cases G̃ is isomorphic to
√
G.

Proof. Because of Proposition 1 we can identify the cover S̃pJ → SpJ with Ũ→ U. Hence

the cover G̃ → G splits if and only if there is a group homomorphism G ∈ g → ζ(g) ∈
U1 ⊆ C× so that ζ(g)2 = det(g)W+

C

. Here we are using (34) and that G is compact.

By (40), this happens except at most in the two cases listed in the statement of the
Proposition.

Suppose that G′ = Sp2m(R), and let ζ : Od → U1 be a continuous group homomorphism
so that ζ(g)2 = det(δ(g))m = (±1)m. Then ζ(Od) ⊆ {±1,±i} and it is a subgroup with
at most two elements. So ζ(Od) ⊆ {±1}. On the other hand, if g ∈ Od \ SOd, then
det(δ(g)) = −1. Thus ζ(g)2 6= det(δ(g))m if m is odd.
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Suppose now that G′ = Up,q, and let ζ : Ud → U1 be a continuous group homomorphism
so that ζ(g)2 = det(δ(g))p−q. Restriction to U1 ≡ {diag(h, 1 . . . , 1) : h ∈ U1} ⊆ Ud yields
a continuous group homomorphism h ∈ U1 → ζ(h) ∈ U1. Thus, there is k ∈ Z so that
ζ(h) = hk for all h ∈ U1. So h2k = ζ(h)2 = det(diag(h, 1 . . . , 1))p−q implies that p + q
must be even.

For the last statement, consider for k ∈ Z the covering Mk = {(g, ζ) : ζ2 = det(δ(g))2k+1}
of G. Then (g, ζ) → (g, ζ(det(δ(g)))−k) is a covering isomorphism between Mk and
M0. �

Let G♯ =
√
G if the covering (42) does not split and let G♯ = (Z/2Z)×

√
G if it does.

Then we have the obvious (possibly trivial) covering

G♯ → G̃. (43)

Let H ⊆ G be the diagonal Cartan subgroup. Denote by H♯ ⊆ G♯ the preimage of H̃
and let H♯

o ⊆ H♯ be the connected identity component. Fix a system of positive roots
of h in gC and let ρ ∈ ih∗ denote one half times the sum of all the positive roots. Then
there is a group homomorphism ξρ : H♯

o → C× whose derivative at the identity coincides
with ρ. More generally, for any µ ∈ ih∗, let ξµ : H♯

o → C× denote the unique group
homomorphism which has derivative at the identity equal to µ, if it exists. In particular
the Weyl denominator

∆(h) = ξρ(h)
∏

α>0

(1− ξ−α(h)) (h ∈ H♯
o), (44)

where the product is taken over all the positive roots α, is well defined and analytic.

3. A Theorem of G. W. Schwartz.

Since the group G is compact, the involution D ∋ a → a ∈ D is trivial if and only if
D = R. Let Md,d′ =Md,d′(D) denote the real vector space of the d by d′ matrices with the

entries in D and let Hd′ = Hd′(D) = {X ∈ Md′,d′ ; X
t
= X} denote the real vector space

of the D-hermitian matrices of size d′. In this section we shall be concerned with the map

β :Md,d′ ∋ w → wtw ∈ Hd′ . (45)

The group Ud = Ud(D) = {g ∈ GLd(D); g
t = g−1} acts onMd,d′ via the left multiplication

and preserves the fibers of β. (In the standard notation Ud(D) is equal to Od if D = R, Ud

if D = C and Spmd if D = H.) The title of this section refers to the following proposition,
which is based on a theorem by G. Schwartz [Sch74] .

Proposition 3. With the above notation,

C∞
c (Hd′) ◦ β = C∞

c (Md,d′)
Ud , (46)

where XY means the Y -invariants in X.
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Proof. Since each element of D may be viewed as a matrix with real entries of size equal to
the dimension of D over R, we have an inclusion Md,d′(D) ⊆ Md dimD,d′ dimD(R). Cauchy-
Schwarz inequality shows that

trD/R β(w) = trD/R(Iβ(w)) ≤
√
trD/R I

√
trD/R(β(w)2) (w ∈Md,d′). (47)

In particular we see that β is a proper map. Since the composition with β maps smooth
functions to smooth functions, the left hand side of (46) is contained in the right hand
side.

Consider a function φ ∈ C∞
c (Md,d′)

Ud . Then β(supp(φ)) is a compact subset of Hd′ .
Hence there exists a function f ∈ C∞

c (Hd′) equal to 1 in a neighborhood of β(supp(φ)).
Also, we know from [Sch74] that there is a function Ψ ∈ C∞(Hd′) such that Ψ ◦ β = φ.
Let ψ = Ψf . Then ψ ∈ C∞

c (Hd′) and ψ ◦ β = φ. Thus the right hand side of (46) is
contained in the left hand side. �

Corollary 4. The following equality holds, C∞
c (g′) ◦ τ ′ = C∞

c (W)G.

Proof. Fix a matrix F = −F t ∈ GLd′(D). The classification of the dual pairs, [How89b],
implies that we may realize the symplectic space W as Md,d′ with the symplectic form

〈w′, w〉 = trD/R(−Fwtw′) (w ∈W).

Then G = Ud acts on W by the left multiplication and G′ = {g ∈ GLd′(D); g
tFg = F}

via the right multiplication by the inverse. In particular,

〈y(w), w〉 = 〈−wy,w〉 = trD/R(Fw
twy) (y ∈ g′, w ∈W).

Notice that the Lie algebra g′ = {FX; X ∈ Hd′}. Also, if we identify g′ = g′∗ via the
trace, then

τ ′(w) = Fwtw = Fβ(w) (w ∈W).

Therefore
C∞

c (g′) ◦ τ ′ = C∞
c (Hd′) ◦ β.

Hence the corollary follows from Proposition 3. �

Corollary 5. The map τ ′∗ : S∗(W)G → S∗(g′), (17), is injective.

4. An almost semisimple orbital integral on the symplectic space.

In this section we describe the orbital integrals needed to express the distribution (13).
For that purpose it is convenient to view our dual pair as a supergroup as follows.
Let V0 = V and let V1 = V′. From now on we assume that both are left vector spaces

over D. Set V = V0 ⊕ V1 and define an element S ∈ End(V) by

S(v0 + v1) = v0 − v1 (v0 ∈ V0, v1 ∈ V1).

Let

End(V)0 = {x ∈ End(V); Sx = xS},
End(V)1 = {x ∈ End(V); Sx = −xS},
GL(V)0 = End(V)0 ∩GL(V).
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Denote by (·, ·)′′ the direct sum of the two forms (·, ·) and (·, ·)′. Let
s0 = {x ∈ End(V)0; (xu, v)′′ = −(u, xv)′′, u, v ∈ V}, (48)

s1 = {x ∈ End(V)1; (xu, v)′′ = (u, Sxv)′′, u, v ∈ V},
s = s0 ⊕ s1,

S = {s ∈ GL(V)0; (su, sv)′′ = (u, v)′′, u, v ∈ V},
〈x, y〉 = trD/R(Sxy).

Then (S, s) is a real Lie supergroup, i.e. a real Lie group S together with a real Lie
superalgebra s = s0⊕ s1, whose even component s0 is the Lie algebra of S. We shall write
s(V) instead of s whenever we shall want to specify the Lie superalgebra s constructed as
above from V and (·, ·)′′. By restriction, we have the identification

s1 = HomD(V0,V1) . (49)

The group S acts on s by conjugation and 〈·, ·〉 is a non-degenerate S-invariant form
on the real vector space s, whose restriction to s0 is symmetric and restriction to s1 is
skew-symmetric. We shall employ the notation s.x = sxs−1 for the action of s ∈ S on
x ∈ s. In terms of our previous notation,

g = s0|V0
, g′ = s0|V1

, W = s1, G = S|V0
, G′ = S|V1

,

so that
s0 = g⊕ g′ and S = G×G′.

Notice that the action of S = G×G′ on s1 = W by conjugation corresponds to the action
of G on W by the left multiplication and of G′ on W via the right multiplication by the
inverse. Also, we have the unnormalized moment maps

τ : W ∋ w → w2|V0
∈ g, τ ′ : W ∋ w → w2|V1

∈ g′. (50)

An element x ∈ s is called semisimple (resp., nilpotent) if x is semisimple (resp.,
nilpotent) as an endomorphism of V. We say that a semisimple element x ∈ s1 is regular
if it is nonzero and dim(S.x) ≥ dim(S.y) for all semisimple y ∈ s1. Let x ∈ s1 be fixed.
The anticommutant and the double anticommutant of x in s1 are

xs1 = {y ∈ s1 : {x, y} = 0} ,
xs1s1 =

⋂

y∈xs1

ys1 ,

respectively. A Cartan subspace h1 of s1 as the double anticommutant of a regular
semisimple element x ∈ s1. We denote by h1

reg the set of regular elements in h1.
Next we describe the Cartan subspaces h1 ⊆ s1 for the supergroups associated with the

irreducible dual pairs (G,G′) with G compact. We refer to [Prz06, §6] and [MPP11, §4] for
the proofs omitted here. Given a Cartan subspace h1, there are Z/2Z-graded subspaces
Vj ⊆ V such that the restriction of the form (·, ·)′′ to each Vj is non-degenerate, Vj is
orthogonal to Vk for j 6= k and

V = V
0 ⊕ V

1 ⊕ V
2 ⊕ · · · ⊕ V

l′′ . (51)
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The subspace V0 coincides with the intersection of the kernels of the elements of h1
(equivalently, V0 = Ker(x) if h1 =

xs1s1). For 1 ≤ j ≤ l′′, the subspaces Vj are described
as follows. Suppose D = R. Then there is a basis v0, v

′
0 of Vj

0
and basis v1, v

′
1 of Vj

1
such

that

(v0, v0)
′′ = (v′0, v

′
0)

′′ = 1, (v0, v
′
0)

′′ = 0,

(v1, v1)
′′ = (v′1, v

′
1)

′′ = 0, (v1, v
′
1)

′′ = 1.

The following formulas define an element uj ∈ s1(V
j),

uj(v0) =
1√
2
(v1 − v′1), uj(v1) =

1√
2
(v0 − v′0),

uj(v
′
0) =

1√
2
(v1 + v′1), uj(v

′
1) =

1√
2
(v0 + v′0).

Suppose D = C. Then V
j

0
= Cv0, V

j

1
= Cv1, where (v0, v0)

′′ = 1 and (v1, v1)
′′ = δji, with

δj = ±1. The following formulas define an element uj ∈ s1(V
j),

uj(v0) = e−iδj
π
4 v1, uj(v1) = e−iδj

π
4 v0. (52)

Suppose D = H. Then V
j

0
= Hv0, V

j

1
= Hv1, where (v0, v0)

′′ = 1 and (v1, v1)
′′ = i. The

following formulas define an element uj ∈ s1(V
j),

uj(v0) = e−iπ
4 v1, uj(v1) = e−iπ

4 v0.

In any case, by extending each uj by zero outside Vj, we have

h1 =
l′′∑

j=1

Ruj . (53)

The formula (53) describes all Cartan subspaces in s1, up to conjugation by S. In other
words it describes a maximal family of mutually non-conjugate Cartan subspaces. Notice
that there is only one such subspace unless the dual pair (G,G′) is isomorphic to (Ul,Up,q)
with l′′ = l < p+ q. In the last case there are min(l, p)−max(l− q, 0)+1 such subspaces,
assuming p ≤ q. For each m such that max(l − q, 0) ≤ m ≤ min(p, l) there is a Cartan
subspace h1,m determined by the condition that m is the number of the positive δj in
(52). We may assume that δ1 = · · · = δm = 1 and δm+1 = · · · = δl = −1. The choice of
the spaces Vj

0
may be done independently of m. The spaces Vj

1
depend on m.

The Weyl group W (S, h1) is the quotient of the stabilizer of h1 in S by the subgroup Sh1

fixing each element of h1. If D 6= C, then the group W (S, h1) acts by all the sign changes
and all permutations of the uj’s. If D = C, then the group W (S, h1) acts by all the sign
changes of the uj’s and all permutations which preserve (δ1, . . . , δl′′), see [Prz06, (6.3)].

Set δj = 1 for all 1 ≤ j ≤ l′′, if D 6= C. In general, let

Jj = δjτ(uj), J ′
j = δjτ

′(uj) (1 ≤ j ≤ l′′). (54)
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Then Jj, J
′
j are complex structures on V

j

0
and V

j

1
respectively. Explicitly,

Jj(v0) = −v′0, Jj(v
′
0) = v0, J ′

j(v1) = −v′1, J ′
j(v

′
1) = v1, if D = R, (55)

Jj(v0) = −iv0, J ′
j(v1) = −iv1, if D = C or D = H.

(The point of the multiplication by the δj in (54) is that the complex structures Jj, J
′
j do

not depend on the Cartan subspace h1.) In particular, if w =
∑l′′

j=1wjuj ∈ h1, then

τ(w) =
l′′∑

j=1

w2
j δjJj and τ ′(w) =

l′′∑

j=1

w2
j δjJ

′
j. (56)

Let h2
1
⊆ s0 be the subspace spanned by all the squares w2, w ∈ h1. Then

h21 =
l′′∑

j=1

R(Jj + J ′
j).

We shall use the following identification

h21|V0
∋

l′′∑

j=1

yjJj =
l′′∑

j=1

yjJ
′
j ∈ h21|V1

(57)

and denote both spaces by h. Denote by l the rank of g and by l′ the rank of g′. Then h

is an elliptic Cartan subalgebra of g, if l′′ = l, and an elliptic Cartan subalgebra of g′, if
l′′ = l′. Let d = dimD V0 and let d′ = dimD V1. The proofs of the following two lemmas is
straightforward and left to the reader.

Lemma 6. Suppose l ≤ l′. Then l′′ = l and one may choose the system of the positive
roots of h in gC so that the product of all of them is given by the formula

πg/h(
l∑

j=1

yjJj) =





∏
1≤j<k≤l i(−yj + yk) if D = C,∏
1≤j<k≤l(−y2j + y2k) ·

∏l
j=1 2iyj if D = H,∏

1≤j<k≤l(−y2j + y2k) if D = R and g = so2l,∏
1≤j<k≤l(−y2j + y2k) ·

∏l
j=1 iyj if D = R and g = so2l+1.

(58)

Let z′ ⊆ g′ be the centralizer of h. We may choose the order of roots of h in g′C/z
′
C so that

the product of all of them is equal to

πg′/z′(y) = (59)



∏
1≤j<k≤l i(−yj + yk) ·

∏l
j=1(−iyj)d

′−d if D = C,∏
1≤j<k≤l(−y2j + y2k) ·

∏l
j=1(−y2j )d

′−d if D = H,∏
1≤j<k≤l(−y2j + y2k) ·

∏l
j=1 2iyj ·

∏l
j=1(iyj)

d′−d if D = R and g = so2l,∏
1≤j<k≤l(−y2j + y2k) ·

∏l
j=1 2iyj ·

∏l
j=1(iyj)

d′−d+1 if D = R and g = so2l+1.
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The product of the positive roots of h2
1
in the complexification of s0 evaluated at w2, where

w =
∑l′′

j=1wjuj ∈ h1, is equal to

πs0/h21
(w2) = πg/h(τ(w))πg′/z′(τ

′(w)) =




(∏
1≤j<k≤l i(−δjw2

j + δjw
2
k)
)2
·∏l

j=1(−iδjw2
j )

d′−d if D = C,
(∏

1≤j<k≤l(−w4
j + w4

k)
)2
·∏l

j=1 2iw
2
j ·
∏l

j=1(−w4
j )

d′−d if D = H,
(∏

1≤j<k≤l(−w4
j + w4

k)
)2
·∏l

j=1 2iw
2
j ·
∏l

j=1(iw
2
j )

d′−d if D = R and g = so2l,(∏
1≤j<k≤l(−w4

j + w4
k)
)2
·∏l

j=1 iw
2
j ·
∏l

j=1 2iw
2
j ·
∏l

j=1(iw
2
j )

d′−d+1 if D = R and g = so2l+1.

Lemma 7. Suppose l ≥ l′. Then l′ = l′′. Set h′ = h. Then one may choose the system of
the positive roots of h′ in g′C so that the product of all of them is given by the formula

πg′/h′(
l′∑

j=1

yjJj) =





∏
1≤j<k≤l′ i(−yj + yk) if D = C,∏
1≤j<k≤l′(−y2j + y2k) if D = H,∏
1≤j<k≤l′(−y2j + y2k) ·

∏l′

j=1 2iyj if D = R.

(60)

Let z ⊆ g be the centralizer of h. We may choose the order of roots of h in gC/zC so that
the product of all of them is equal to

πg/z(y) = (61)




∏
1≤j<k≤l′ i(−yj + yk) ·

∏l′

j=1(−iyj)d−d′ if D = C,∏
1≤j<k≤l′(−y2j + y2k) ·

∏l′

j=1 2iyj ·
∏l′

j=1(−y2j )d−d′ if D = H,∏
1≤j<k≤l′(−y2j + y2k) ·

∏l′

j=1(iyj)
d−d′ if D = R and g = so2l,∏

1≤j<k≤l(−y2j + y2k) ·
∏l′

j=1 iyj ·
∏l′

j=1(iyj)
d−d′ if D = R and g = so2l+1.

The product of the positive roots of h2
1
in the complexification of s0 evaluated at w2, where

w =
∑l′′

j=1wjuj ∈ h1, is equal to

πs0/h21
(w2) = πg′/h′(τ

′(w))πg/z(τ(w)) =




(∏
1≤j<k≤l′ i(−δjw2

j + δjw
2
k)
)2
·∏l′

j=1(−iδjw2
j )

d′−d if D = C,
(∏

1≤j<k≤l′(−w4
j + w4

k)
)2
·∏l′

j=1 2iw
2
j ·
∏l′

j=1(−w4
j )

d′−d if D = H,
(∏

1≤j<k≤l′(−w4
j + w4

k)
)2
·∏l′

j=1 2iw
2
j ·
∏l′

j=1(iw
2
j )

d′−d if D = R and g = so2l,(∏
1≤j<k≤l′(−w4

j + w4
k)
)2
·∏l′

j=1 iw
2
j ·
∏l′

j=1 2iw
2
j ·
∏l′

j=1(iw
2
j )

d′−d if D = R and g = so2l+1.

The following lemma is an immediate consequence of Lemmas 6 and 7.

Lemma 8. There is a constant C(h1), which depends on h1, such that |C(h1)| = 1 and

|πs0/h21(w
2)| = C(h1) πs0/h21

(w2) (w ∈ h1).
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If h1 is a Cartan subspace of W, then

h1
reg = {w ∈ h1 : πs0/h21

(w2) 6= 0} . (62)

Fix a Cartan subspace h1 ⊆W, an element w ∈ h1
reg and a function φ ∈ S(W). Suppose

G = O2l+1 with l < l′. Let w0 ∈ s1(V
0) be a non-zero element. Then w + w0 is a regular

almost semisimple element whose centralizer in S is denoted by Sh1+w0 . Set O(w) =
S.(w + w0) and define

µO(w),h1
(φ) =

∫

S/S
h
1
+w0

φ(s.(w + w0)) d(sS
h1+w0). (63)

Then, up to a constant multiple,

µO(w),h1
(φ) =

∫

S/S
h
1

∫

s1(V
0)

φ(s.(w + w0)) dw0 d(sSh1). (64)

In all the remaining cases let O(w) = S.w and let

µO(w),h1
(φ) =

∫

S/S
h
1

φ(s.w) d(sSh1). (65)

Let H ⊆ G be the Cartan subgroup with the Lie algebra h. Denote by ∆(H) ⊆ G×G′ be
the diagonal embedding. Then, explicitly,

Sh1 = ∆(H)({1} × Z′), (66)

where Z′ ⊆ G′ is the centralizer of h ⊆ g′.
To simplify the notation, when the Cartan subspace h1 is fixed, we shall simply write

µO(w) instead of µO(w),h1
. These are well defined, tempered distribution on W, see

[MPP11], which depend only on τ(w), or equivalently τ ′(w) via the identification (57).
Let µW be the Lebesgue measure on W normalized as in the Introduction. Choose a
positive Weyl chamber h+

1
⊆ h1

reg. We shall normalize the above orbital integrals so that
the Weyl integration formula reads

µW =
∑

h1

∫

τ(h+
1
)

|πs0/h21(w
2)|µO(w)(φ) dτ(w) (67)

if l ≤ l′, and

µW =

∫

τ ′(h+
1
)

|πs0/h21(w
2)|µO(w)(φ) dτ

′(w) (68)

if l ≥ l′.

Lemma 9. Suppose l ≤ l′ and D = C. Then for max(l − q, 0) ≤ m < m′ ≤ min(p, l),

τ(hreg
1,m

) ∩ τ(hreg
1,m′) = ∅.
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Proof. We see from (56) and (62) that

τ(h1
reg
,m ) = {

l∑

j=1

yjJj; y1, . . . , ym > 0 > ym+1, . . . , yl, yj 6= yk for j 6= k}. (69)

Hence

τ(hreg
1,m

) ∩ τ(hreg
1,m′)

= {
l∑

j=1

yjJj; y1, . . . , ym > 0 = ym+1 = · · · = ym′ > ym′+1, . . . , yl, yj 6= yk for j 6= k}

= ∅.
�

Definition 10. Let Ch1
= C(h1) · idim g/h, where C(h1) is as in Lemma 8. Define the

Harish-Chandra regular almost semisimple orbital integral on W by the following formula

f(y) =
∑

h1

Ch1
πg′/z′(y)µO(w) (y ∈

⋃

h1

τ(h1
reg), y = τ(w) = τ ′(w)).

(Since, by Lemma 9, the union is disjoint, the definition makes sense. If l > l′, then there
is only one Cartan subspace h1 and z′ = h′.)

In the remainder of this section we shall extend f and its partial derivatives continuously
to a larger domain inside h. This domain will depend on l and l′. If l ≤ l′, then we will
provide a continuous extension of f (and its partial derivatives up to a specific order) to
a distribution valued function f : h ∩ τ(W) → S∗(W)S. If l > l′, then f and all of its
partial derivatives extend continuously to the closure of every connected component of
h′In−reg ∩ τ ′(h1). See Theorem 17 for the precise statement.

Let µg be the Lebesgue measure on g. Let us normalize the orbital integrals µG.y ∈
S∗(g), y ∈ hreg, so that

µg =

∫

h+
|πg/h(y)|2µG.y dy, (70)

where h+ ⊆ hreg is a Weyl chamber.
Let Wg ⊆ W be the maximal subset such that τ |Wg

: Wg → g, the restriction of τ to
Wg, is a submersion. Then Wg 6= ∅ if and only if l ≤ l′, see Appendix A. In this case we
shall assume that

τ |∗Wg
(µg) = µW|Wg

. (71)

Lemma 11. Suppose l ≤ l′. Then

πg/h(τ(w))τ |∗Wg
(µG.τ(w)) = f(y)|Wg

(w ∈ h1
reg).

Proof. We see from (71) that

|πg/h(τ(w))|2τ |∗Wg
(µG.τ(w)) = |πg/h(τ(w))πg′/z′(τ ′(w))|µO(w)|Wg

(w ∈ h+
1
).
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Hence,

|πg/h(τ(w))|τ |∗Wg
(µG.τ(w)) = |πg′/z′(τ ′(w))|µO(w)|Wg

(w ∈ h1
reg),

because both sides are W (S, h1)-invariant. Thus,

πg/h(τ(w))τ |∗Wg
(µG.τ(w))

=

( |πg′/z′(τ ′(w))|
πg′/z′(τ ′(w))

πg/h(τ(w))

|πg/h(τ(w))|

)
πg′/z′(τ

′(w))µO(w)|Wg
(w ∈ h1

reg).

Let C(h1) be the constant in Lemma 8. Then

|πg′/z′(τ ′(w))|
πg′/z′(τ ′(w))

πg/h(τ(w))

|πg/h(τ(w))|
= C(h1)

πg/h(τ(w))
2

|πg/h(τ(w))|2
= C(h1)i

dim g/h.

Hence, the lemma follows. �

Let

W (G, h) =

{
Σl if D = C,

Σl ⋉ {±1}l otherwise.
(72)

Denote the elements of Σl by σ and the elements of {±1}l by ǫ = (ǫ1, ǫ2, . . . , ǫl), so that
an arbitrary element of the group (72) looks like ǫσ, with ǫ = (1, 1, . . . , 1), if D = C. This
group acts on h as follows:

(ǫσ)
l∑

j=1

yjJj =
l∑

j=1

ǫjyσ−1(j)Jj (73)

and coincides with the Weyl group, equal to the normalizer of h in G divided by the
centralizer of h in G, as the indicated by the notation.
Since the moment map τ intertwines the action of the Weyl group W (S, h1) with the

subgroup W (S, h1, h) ⊆ Σl ⊆ W (G, h) leaving the sequence δ1, δ2, . . . , δl fixed. The
function f(y) is invariant under that subgroup. Furthermore,

W (G, h)
⋃

h1

τ(h1
reg) =

⋃

h1

(W (G, h)/W (S, h1, h))τ(h1
reg), (74)

where the union on the right hand side is disjoint. Hence, in any case (l ≤ l′ or l > l′) we
may extend the function f uniquely toW (G, h)

⋃
h1
τ(h1

reg) so that the extension satisfies

the following symmetry condition

f(sy) = sgng/h(s)f(y) (s ∈ W (G, h), y ∈ W (G, h)
⋃

h1

τ(h1
reg)), (75)

where sgng/h is defined by

πg/h(sy) = sgng/h(s) πg/h(y) (y ∈ h) . (76)

One motivation for such a definition of the extension is that left hand side of the equality
in Lemma 11 extends to all y ∈ h and satisfies the symmetry condition (75). We would
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like to extend the function f from the set W (G, h)
⋃

h1
τ(h1

reg) to h ∩ τ(W). This will

require some more work.
Suppose l ≤ l′. Fix an elliptic Cartan subalgebra h′ ⊆ g′ containing τ ′(h1). We may

assume that h′ does not depend on h1. Let h′In−reg ⊆ h′ be the subset where no non-
compact roots vanish. Set hIn−reg

1
= τ ′−1(h′In−reg) ∩ h1. Then τ(h

In−reg

1
) is the set of the

elements y ∈ τ(h1) such that, under the identification (57), no non-compact imaginary
root of h′ in g′C vanishes on y.

Lemma 12. Suppose l ≤ l′. For our specific Cartan subspace (53), the set τ(hIn−reg

1
)

consists of elements y =
∑l

j=1 yjJj, such that

yj > 0 for all j, if G = O2l or G = O2l+1 or G = Spl with l < l′ or 1 = l = l′,

yj ≥ 0 for all j , yj + yk > 0 for all j 6= k, if G = Spl and 1 < l = l′, (77)

and

yj > 0 if j ≤ m and l −m < q; yj ≥ 0 if j ≤ m and l −m = q when l ≥ q ;

yj < 0 if m < j and m < p; yj ≤ 0 if m < j and m = p when l ≥ p ;

yj − yk > 0 if j ≤ m < k , (78)

if G′ = Up,q and h1 = h1,m. In particular, in the last case,

τ(hIn−reg

1,m
) ∩ τ(hIn−reg

1,m′ ) 6= ∅ implies |m−m′| ≤ 1, (79)

τ(hIn−reg

1,m
) ∩ τ(hIn−reg

1,m+1
) ⊆ {

l∑

j=1

yjJj; y1, . . . , ym ≥ 0 = ym+1 ≥ ym+2, . . . , yl}.

Proof. We see from (56) that the set τ(h1) consists of elements y =
∑l

j=1 yjJj, such that

δjyj ≥ 0 for all 1 ≤ j ≤ l. Hence
∑l

j=1 yjJ
′
j ∈ h′ not annihilated by any imaginary

non-compact root of h′ in g′C implies (77) when D 6= C.
If G′ = Up,q, then the non-compact roots of of h′ in g′C acting on elements of h ⊆ h′ are

given by

h ∋
l∑

j=1

yjJ
′
j → ±i(yj − yk) ∈ iR, if j ≤ m < k or k ≤ m < j,

h ∋
l∑

j=1

yjJ
′
j → ±iyj ∈ iR, if j ≤ m and l −m < q or m < j and m < p.

Hence, (78) follows. The last statement follows from the equality

τ(h1,m) ∩ τ(h1,m+k) (80)

= {
l∑

j=1

yjJj; y1, . . . , ym ≥ 0 = ym+1 = · · · = ym+k ≥ ym+k+1, . . . , yl},

which is a consequence of (69). �
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Lemma 13. Suppose l ≤ l′. For a fixed Cartan subspace h1, the function

τ ′∗ ◦ f : τ(h1
reg)→ S(g′)G′

(81)

extends to a smooth function

τ ′∗ ◦ f : τ(hIn−reg

1
)→ S(g′)G′

(82)

whose all derivatives are bounded. Further, any derivative of (82) extends to a continuous

function on the closure of any connected component of τ(hIn−reg

1
).

Proof. For a moment let us exclude the case G = O2l+1 with l < l′. Let ψ ∈ C∞
c (g′).

Then

τ ′∗(µO(w))(ψ) =

∫

S/S
h
1

ψ(τ ′(s.w)) d(sSh1). (83)

Let Z′ ⊆ G′ is the centralizer of h ⊆ g′ and recall formula (66) for Sh1 . Since G is compact,
(83) is a constant multiple of

∫

G′/Z′

ψ(g′.y) d(g′Z′). (84)

As checked in [MPP11, (23)], there is a positive constant C such that

πg′/z′(y)

∫

G′/Z′

ψ(g′.y) d(g′Z′) (85)

= C∂(πz′/h′)

(
πg′/h′(y + y′′)

∫

G′

ψ(g′.(y + y′′) dg′
)
|y′′=0,

where y ∈ h and y′′ ∈ h′ ∩ [z′, z′]. Hence, the lemma follows from [Har57b, Theorem 2,
page 207 and Lemma 25, page 232] and the fact the space of the distributions is weakly
complete, [Hör83, Theorem 2.1.8].

Suppose G = O2l+1 with l < l′. Let w0 ∈ s1(V
0) be as in (63). Then (w+w0)

2 = w2+w2
0.

Hence,

τ ′∗(µO(w))(ψ) =

∫

S/S
h
1
+w0

ψ(τ ′(s.(w + w0))) d(sS
h1+w0) (86)

=

∫

S/S
h
1
+w0

ψ(s.(τ ′(w) + τ ′(w0))) d(sS
h1+w0)

= C1

∫

G′/Z′n

ψ(g.(y + n)) d(gZ′n),

where C1 is a positive constants, y = τ ′(w), n = τ ′(w0) and Z′n is the centralizer of n in
Z′.
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Let πshort
z′/h′ denote the product of the positive short roots of h′ in z′C. As checked in

[MPP11, (35)], there is a positive constant C such that

∂(πshort
z′/h′ )

(
πg′/h′(y + x)

∫

G′/H′

ψ(g.(y + y′′)) d(gH)

)∣∣∣∣
y′′=0

(87)

= Cπg′/z′(y)

∫

G′/Z′n

ψ(g.(y + n)) d(gZ′n).

Hence the lemma follows from theorems of Harish-Chandra, as before. �

For a test function φ on a vector space U set

φt(u) = t− dim Uφ(t−1u) (t > 0, u ∈ U). (88)

Then a distribution Φ on U is homogeneous of degree a ∈ C if and only if

Φ(φt) = taΦ(φ) (t > 0, φ ∈ C∞
c (U)).

Lemma 14. Suppose l = 1. Set

f (k) = lim
y→0

∂(Jk
1 )f(y) (k = 0, 1, , . . . ).

Then τ ′∗(f
(k)) is homogeneous of degree

− dim(g′) + deg(πg′/z′) + l′ − 1− k, if G = O2l+1 and l < l′, (89)

− dim(g′) + deg(πg′/z′)− k, otherwise.

(Here deg(πg′/z′) denotes the degree of the polynomial πg′/z′.) Furthermore,

supp(τ ′∗(f
(k))) ⊆ τ ′(τ−1(0)). (90)

Proof. It suffices to consider the restriction of f to τ(h1
reg) for one of the Cartan subspaces

h1. Let ψ ∈ C∞
c (g′). For a moment let us exclude the case G = O2l+1, l < l′. As we have

seen in the proof of Lemma 13, there is a non-zero constant C, such that for t > 0

τ ′∗(f
(0))(ψt) = C lim

y→0
πg′/z′(y)

∫

G′/Z′

ψt(g.y) d(gZ
′)

= C lim
y→0

πg′/z′(y)

∫

G′/Z′

t− dim(g′)ψ(g.t−1y) d(gZ′)

= t− dim(g′)+deg(πg′/z′ )τ ′∗(f
(0))(ψ).

Thus, by taking the derivative, (89) follows.
Let U ⊆ W be an open subset with the compact closure U such that U ∩ τ−1(0) = ∅.

For w′ ∈ U let w′ = w′
s+w

′
n be the Jordan decomposition and let ǫ be the minimum of all

the |w′
s| (for some fixed norm | · | on W) such that w′ ∈ U . Then ǫ > 0 because otherwise

there would be a non-zero nilpotent element of W outside of τ−1(0), which is impossible.
Hence

S.w ∩ U = ∅ (|w| < ǫ,w ∈ h1). (91)

Since supp f(τ(w)) = Sw this implies (90).
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Suppose G = O2l+1 and l < l′. Then for t > 0,

τ ′∗(f
(0))(ψt) = C lim

y→0
πg′/z′(y)

∫

S/S
h
1

∫

s1(V
0)

ψt(τ
′(s.(w + w0))) dw0 d(sSh

1
)

But,

πg′/z′(y)

∫

S/S
h
1

∫

s1(V
0)

ψt(τ
′(s.(w + w0))) dw0 d(sSh

1
)

= t− dim(g′)πg′/z′(y)

∫

S/S
h
1

∫

s1(V
0)

ψ(τ ′(s.(t−1/2w + t−1/2w0))) dw0 d(sSh

1
)

= t− dim(g′)+ 1
2
dim(s1(V

0))πg′/z′(y)

∫

S/S
h
1

∫

s1(V
0)

ψ(τ ′(s.(t−1/2w + w0))) dw0 d(sSh

1
)

= t− dim(g′)+deg(πg′/z′ )+
1
2
dim(s1(V

0))πg′/z′(t
−1y)

∫

G′/Z′n

ψ(g.(t−1y + n)) d(gZ′n)).

Hence, by taking the limit if y → 0 we conclude that

τ ′∗(f
(0))(ψt) = t− dim(g′)+deg(πg′/z′ )+

1
2
dim(s1(V

0))τ ′∗(f
(0))(ψ).

Since dim(s1(V
0)) = 2l′ − 2, (89) follows.

Also, with the above notation, w + w0 is a Jordan sum with w, the semisimple part,
and w0, the nilpotent part. Hence, as in (91), we have

S.(w + w0) ∩ U = ∅ (|w| < ǫ,w ∈ h1).

Since supp(f(τ(w))) = S.(w + w0), (90) follows. �

Lemma 15. Let l = 1. Then h = RJ1 and

W (G, h)
⋃

h1

τ(h1
reg) =





R+J1 if (G,G′) = (U1,Ul′ = Ul′,0),
R−J1 if (G,G′) = (U1,Ul′ = U0,l′),
R×J1 if (G,G′) = (O3, Sp2l′), (O2, Sp2l′), (Sp1,O

∗
2l′)

or (U1,Up,q) with 1 ≤ p ≤ q.

Let f(y) denote the function (75). For an integer k = 0, 1, 2, . . . define

〈f (k)〉 = lim
y→0±

∂(Jk
1 )f(yJ1)

if (G,G′) = (U1,Ul′) and

〈f (k)〉 = lim
y→0+

(∂(Jk
1 )f(yJ1)− lim

y→0−
(∂(Jk

1 )f(yJ1)

in the remaining cases. Assume that 1 < l′. Then

〈f (k)〉 = 0 if 0 ≤ k <





2l′ − 2 if D = R and G = O3,

2l′ − 1 if D = R and G = O2,

l′ − 1 if D = C,

2(l′ − 1) if D = H.
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Proof. Suppose (G,G′) = (O3, Sp2l′). We know from Lemma 14 that the distribution
τ ′∗(〈f (k)〉) is supported in τ ′(τ−1(0)). However Lemma 11 shows that for any φ ∈ C∞

c (Wg),
f(y)(φ) is a smooth function of y ∈ h. Therefore, 〈f (k)〉|Wg

= 0. Hence,

supp(τ ′∗(〈f (k)〉)) ⊆ τ ′(τ−1(0) \Wg).

A straightforward argument shows that τ ′(τ−1(0)\Wg) is the union of one of the two min-
imal nilpotent orbits in g′, call it Omin, and the zero orbit. Furthermore, dim(Omin) = 2l′.
(See Appendix A.) Lemma 14 and (58) show that τ ′∗(〈f (k)〉) is a homogeneous distribution
of degree

− dim g′ + deg(πg′/z′) + l′ − 1− k = − dim g′ + 3l′ − 2− k
However, as shown in [Wal93, Lemma 6.2], τ ′∗(〈f (k)〉) = 0 if the homogeneity degree is
greater than − dim g′ + 1

2
dim Omin. Hence the claim follows.

Exactly the same argument works if (G,G′) = (O2, Sp2l′), or (Sp1,O
∗
2l′), or (U1,Up,q)

with 1 ≤ p ≤ q, except that τ ′(τ−1(0)\Wg) = {0}, see Appendix A. So, instead of relying
on [Wal93, Lemma 6.2], we may use the classical description of distributions supported
at {0}, [Hör83, Theorem 2.3.4.].
Suppose (G,G′) = (U1,Ul′). Then (83) and (84) show that for ψ ∈ C∞

c (g′) and 0 6=
y = τ(w) = τ ′(w),

τ ′∗(f(y))(ψ) = const πg′/z′(y)

∫

G′

ψ(g′.y) d(g′).

Since the group G′ is compact, the last integral defines a smooth function of y = y′J1.
Also, in this case, πg′/z′(y) = (iy′)l

′−l. Hence, the claim follows. �

Lemma 16. Suppose l ≤ l′. Let f(y) denote the function (75), with y =
∑l

j=1 yjJj ∈
W (G, h)

⋃
h1
τ(hreg

1
). For any multiindex α = (α1, . . . , αl) set ∂(J)

α = ∂(J1)
α1 . . . ∂(Jl)

αl.

For 1 ≤ j ≤ l define

〈∂(J)αf〉yj=0 = lim
yj→0±

∂(J)αf(y)

if {yj 6= 0; y ∈ W (G, h)
⋃

h1
τ(hreg

1
)} = R±, and

〈∂(J)αf〉yj=0 = lim
yj→0+

∂(J)αf(y)− lim
yj→0−

∂(J)αf(y)

if {yj 6= 0; y ∈ W (G, h)
⋃

h1
τ(hreg

1
)} = R×. Then for 1 ≤ j ≤ l

〈∂(J)αf〉yj=0 = 0 if 0 ≤ αj <





2(l′ − l) + 1 if D = R and G = O2l,

2l′ − 2l if D = R and G = O2l+1,

l′ − l if D = C,

2(l′ − l) if D = H.

(Here 〈∂(J)αf〉yj=0 is a function of the y with yj = 0.)
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Proof. Without any loss of generality we may assume that j = l. Let w =
∑l−1

j=1wjuj,

where δjw
2
j = yj, 1 ≤ j ≤ l − 1. Recall the decomposition (51). The centralizer of w in

W = s1 is equal to

sw1 = s1(V)
w = s1(V

1)w ⊕ · · · ⊕ s1(V
l−1)w ⊕ s1(V

0 ⊕ V
l). (92)

As checked in the proof of [Prz06, Theorem 4.5] 1, there is a slice through w equal to

Uw = (w1 − ǫ, w1 + ǫ)u1 + · · ·+ (wl−1 − ǫ, wl−1 + ǫ)ul−1 + s1(V
0 ⊕ V

l),

where ǫ > 0 is sufficiently small. In order to indicate its dependence on the graded space V,
let us denote by fV(y) the function (75). Recall that y =

∑l
j=1 yjJj ∈ W (G, h)

⋃
h1
τ(hreg

1
)

and let wy be such that τ ′(wy) = y. The Lebesgue measure on s1(V) is fixed and the
orbital integral µO(wy) is normalized as in (67). We normalize the Lebesgue measure on
each s1(V

j) and on s1(V
0 ⊕ Vl) so that via the direct sum decomposition

s1(V) = s1(V
1)⊕ s1(V

2)⊕ · · · ⊕ s1(V
l−1)⊕ s1(V

0 ⊕ V
l)

we get the same measure on W = s1(V). Then the S(V)-orbital integral µO(wy) restricts
to Uw and the result is the tensor product of S(Vj)w-orbital integrals and the S(V0⊕Vl)-
orbital integral, because Uw is a slice. Therefore,

fV(y)|Uw (93)

= P (y)(fV1(y1J1)|(w1−ǫ,w1+ǫ)u1 ⊗ · · · ⊗ fVl−1(yl−1Jl−1)|(wl−1−ǫ,wl−1+ǫ)ul−1
⊗ fV0⊕Vl(ylJl)),

where P (y) is a polynomial, whose precise expression may be found from (58). In (93)

fVj(yjJj)|(wj−ǫ,wj+ǫ)uj
∈ D′((wj − ǫ, wj + ǫ)uj) (1 ≤ j ≤ l − 1)

and
fV0⊕Vl(ylJl) ∈ D′(s1(V

0 ⊕ V
l)). (94)

Here D′(X) denotes the space of distributions on X. Since the dimension of a Cartan
subalgebra of S(V0 ⊕ Vl)|V1

is equal to l′ − l + 1, Lemma 16 follows from (93), (94) and
Lemma 15. This verifies the claim with α = (0, . . . , 0, k, 0, . . . , 0) with the k on the place
j. In order to complete the proof we repeat the same argument with the f replaced by
∂(J)βf , where βj = 0. �

In the case l ≤ l′, Lemmas 13 and 16 provide a further extension of the function f to
a continuous function

f : W (G, h)
⋃

h1

τ(hIn−reg

1
)→ S∗(W)S (95)

which satisfies the symmetry condition (75).

1The statement of that theorem needs to be modified as follows. “Let x ∈ g1 be semisimple. Then gx1
has a basis of Gx-invariant neighborhoods of x consisting of admissible slices Ux through x. If ker(x) = 0
then one may choose the Ux so that, for i = 0, 1,

Ux ∋ y → y2|Vi
∈ g0(Vi)

x2

is an (injective) immersion.”
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Let

r =
2 dim(g)

dim(V0)
, (96)

where we view both g and V0 as vector spaces over R. Explicitly,

r =





2l − 1 if G = O2l,
2l if G = O2l+1,
l if G = Ul,
l + 1

2
if G = Spl.

(97)

Let

ι =

{
1 if D = R or C
1
2

if D = H.
(98)

The formula (97) together with (58) show that

max{degyj πg/h; 1 ≤ j ≤ l} = 1

ι
(r − 1), (99)

where degyj πg/h denote the degree of πg/h(
∑l

j=1 yjJj) with respect to the variable yj.
The following theorem collects the required properties of the Harish-Chandra almost

semisimple orbital integral on W.

Theorem 17. Suppose l ≤ l′. Then the closure of the subset W (G, h)
⋃

h1
τ(h1

reg) ⊆ h is

equal to

h∩τ(W) =

{
h if D 6= C,

W (G, h){∑l
j=1 yjJj; y1, . . . , ymax(l−q,0) ≥ 0 ≥ ymin(p,l)+1, . . . , yl} if D = C.

The function (95) is smooth on the subset where each yj 6= 0 and, for any multi-index
α = (α1, . . . , αl) with

max(α1, . . . , αl) ≤
{
d′ − r − 1 if D = R or C,
2(d′ − r) if D = H,

the function ∂(Jα)f(y) extends to a continuous function on h ∩ τ(W). This exten-
sion is equal to zero on the boundary of this set. We shall therefore extend it from
W (G, h)

⋃
h1
τ(hIn−reg

1
) to h ∩ τ(W) by zero.

Suppose now l > l′. Then f extends to a smooth function

f : h′In−reg ∩ τ ′(h1)→ C (100)

and any derivative of f extends to a continuous function on the closure of any connected
component of h′In−reg ∩ τ ′(h1).
Proof. The formula for h ∩ τ(W) follows from (56), (69) and (73), via a case by case
verification. The extension of ∂(Jα)f(y) is a consequence of Lemma 16. Finally, the
extension in the case l ≤ l′ is done as in Lemma 13. �

In general we shall write fφ(y) for f(y)(φ).
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5. Limits of orbital integrals.

In this section we consider weighted dilations of the almost semisimple orbital using a
positive variable t. It turns out that the limit as t tends to 0 is a constant multiple of the
invariant measure on a nilpotent orbit. So we begin by describing the nilpotent orbits. It
turns out that there is one maximal orbit.

Let m denote the minimum of d = dimD V0 and the dimension, over D, of a maximal
isotropic subspace of V1 with respect to the form (·, ·)′ in (48). Recall that the pair (G,G′)
is said to be in the stable range with G the smaller member if m = d.

Lemma 18. Let m be as above and let d′ = dimD V1. Let SHk(D) denote the space of the
skew-hermitian matrices of size k with coefficients on D, 0 ≤ k ≤ m. There are nilpotent
orbits O′

k ⊆ g such that

τ ′τ−1(0) = O′
m ∪ O′

m−1 ∪ · · · ∪ O′
0, (101)

O′
k ∪ O′

k−1 ∪ · · · ∪ O′
0 is the closure of O′

k for 0 ≤ k ≤ m,

dimO′
k = d′k dimR(D)− 2 dimR SHk(D).

Explicitly

dimO′
k =





kd′ − k(k − 1) if D = R,
2kd′ − 2k2 if D = C,
4kd′ − 2k(2k + 1) if D = H.

(102)

Suppose D = R or C. Then the partition of d′ corresponding to the complexification
Ok

′
C = G′

CO′
k of the orbit O′

k is λ′ = (2k, 1d
′−2k). In other words, the Young diagram

corresponding to the orbit Ok
′
C has k rows of length 2 and d′ − 2k rows of length 1. If

D = H, then Ok
′
C corresponds to the partition λ′ = (22k, 12d

′−4k) of 2d′.
The equality

dim O′
m = dim W − 2 dim g, (103)

holds if and only if either the dual pair (G,G′) is in the stable range with G - the smaller
member or if (G,G′) is one of the following pairs

(Om+1, Sp2m(R)), (Ud′−m,Um,d′−m) with 2m < d′.

Proof. As is well known, the variety τ ′(τ−1(0)) is the closure of a single G′ orbit O′
m, see

for example [Prz91, Lemma (2.16)].
Let w ∈ s1 be a nilpotent element. Then

V = V
(0) ⊕ V

(1) ⊕ · · · ⊕ V
(k),

where V(0) is the kernel of w and each (w,V(j)), 1 ≤ j ≤ k is indecomposable (see [DKP05,
Def. 3.14]). (If w = 0 then V = V(0).) The orbit of w, call it Ok, is of maximal dimension
if the kernel of w is minimal, which happens if and only if k = m. Since the only nilpotent
element of g is zero, we have

0 = τ(w) = w2|V0
.
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Fix j ≥ 1. Then (w,V(j)) is non-zero and indecomposable. The structure of such elements
is well known. In particular we see from [DKP05, Prop.5.2(e)] that there are vectors
v1, v3 ∈ V1 and v2 ∈ V0 such that

V
(j) = Dv2 ⊕ (Dv1 ⊕ Dv3), wv1 = v2, wv2 = v3, wv3 = 0.

Hence,

V
(j)

1
= Dv1 ⊕ Dv3, w2v1 = v3, w

2v3 = 0

and the decomposition

V1 = V
(0)

1
⊕ V

(1)

1
⊕ · · · ⊕ V

(k)

1
,

determines the G′-orbit O′
k of τ ′(w) = w2|V1

.
The dual pair corresponding to S|V(j) is (O1, Sp2(R)), if D = R, (U1,U1,1), if D = C,

(Sp1,O
∗
4), if D = H. The complexifications of these pairs are (O1, Sp2(C)), (GL1(C),GL2(C))

and (Sp2(C),O4(C)) respectively. In particular, this leads to the description of the com-
plexification of the orbit in terms of the Young diagrams, as in [CM93].
The closure relations between the orbits O′

k are well known and their dimension may
be computed using [CM93, Corollary 6.1.4] leading to (102). The dimension formula in
(101) follows from (102).

The fact that (103) holds if the pair is in the stable range was checked in [Prz91, Lemma
(2.19)]. The last statement follows from (102) via a direct computation. �

Now we construct a slice through an element of the maximal nilpotent orbit.
Recall the non-degenerate bilinear form 〈·, ·〉 and the automorphism θ on s, [Prz06,

sec. 2.1]. (The restriction of 〈·, ·〉 to s0 is a Killing form and the restriction to s1 is a
symplectic form. Also, the restriction of θ to s0 is a Cartan involution and the restriction
of −θ to s1 is a positive definite compatible complex structure.) In particular the bilinear
form B(·, ·) = −〈θ·, ·〉 is symmetric and positive definite.

Fix an element N ∈ s1. Then N + [s0, N ] ⊆ s1 may be thought of as the tangent space
at N to the S-orbit through N . Denote by [s0, N ]⊥B ⊆ s1 the B-orthogonal complement
of [s0, N ]. Since the form B is positive definite,

s1 = [s0, N ]⊕ [s0, N ]⊥B . (104)

Consider the map

σ : S×
(
N + [s0, N ]⊥B

)
∋ (s, u)→ su ∈ s1. (105)

The range of the derivative of the map σ at (s, u) is equal to

[s0, su] + s[s0, N ]⊥B = s
(
[s0, u] + [s0, N ]⊥B

)
. (106)

Let

U = {u ∈ N + [s0, N ]⊥B ; [s0, u] + [s0, N ]⊥B = s1}. (107)

The equality (104) implies that N ∈ U and U is the slice we were looking for. Next,
we consider the orbits passing through U . The maximal nilpotent orbit corresponds to a
point N and the almost semisimple ones to others points in U which will approach N in
a suitable sense, as explained below.
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Notice that U is the maximal open neighborhood of N in N + [s0, N ]⊥B such that the
map

σ : S× U ∋ (s, u)→ su ∈ s1 (108)

is a submersion. Then σ(S× U) ⊆ s1 is an open S-invariant subset and

σ : S× U ∋ (s, u)→ su ∈ σ(S× U) (109)

is a surjective submersion.
We shall use the map (109) to study the S-orbital integrals in s1. This is parallel

to Ranga Rao’s unpublished study of the orbital integrals in a semisimple Lie algebra,
[BV80].

From now on we assume that N is nilpotent.

Lemma 19. The map

N + [s0, N ]⊥B ∋ u→ u2 ∈ s0 (110)

is proper.

Proof. We proceed in terms of matrices. Thus V0 = Dd is a left vector space over D via

av := va (v ∈ V0, a ∈ D).

Then EndD(V0) may be identified with the space of matrices Md(D) acting on Dd via left
multiplication. Let

(v, v′) = vtv′ (v, v′ ∈ Dd).

This is a positive definite hermitian form on Dd. The isometry group of this form is

G = {g ∈Md(D); g
tg = Id}.

Similarly, V1 = Dd′ is a left vector space over D and

G′ = {g ∈Md′(D); g
tFg = F},

where F = −F t ∈ GLd′(D). This is the isometry group of the form

(v, v′)′ = vtFv′ (v, v′ ∈ Dd′).

Furthermore we have the identifications

s1 = HomD(V0,V1) =Md′,d(D),

with the symplectic form

〈w′, w〉 = trD/R(w
∗w′) (w,w′ ∈Md′,d(D)),

where w∗ = wtF . Also, −θ(w) = F−1w so that

B(w′, w) = trD/R(w
tw′).

Two elements w,w′ ∈Md′,d(D) anticommute if and only if

ww′∗ + w′w∗ = 0 and w∗w′ + w′∗w = 0. (111)



WEYL CALCULUS AND DUAL PAIRS 31

From now on we choose the matrix F as follows

F =




0 0 Ik
0 F ′ 0
−Ik 0 0


 (112)

where 0 ≤ k ≤ m, where m is the minimum of d and the Witt index of the form
( , )′, as in Lemma 18. Then, with the block decomposition of an element of Md′,d(D) =
Md′,k(D)⊕Md′,d−k(D) dictated by (112),




w1 w4

w2 w5

w3 w6




∗

=

(
−wt

3 wt
2F

′ wt
1

−wt
6 wt

5F
′ wt

4

)
.

We may choose

N = Nk =




Ik 0
0 0
0 0


 (113)

Notice that

[s0, N ]⊥B = θ
(
[s0, N ]⊥

)
= θ

(
Ns1
)
= θNs1,

where the second equality is taken from [Prz06, Lemma 3.5]. Hence, a straightforward
computation using (111) shows that

[s0, N ]⊥B =








0 0
0 w5

w3 w6


 ; w3 = −wt

3



 .

The image of w under the map (110) consists of pairs of matrices



Ik 0
0 w5

w3 w6






Ik 0
0 w5

w3 w6




∗

=




w3 0 Ik
−w5w

t
6 w5w

t
5F

′ 0
−w3w

t
3 − w6w

t
6 w6w

t
5F

′ w3


 (114)

and 


Ik 0
0 w5

w3 w6




∗


Ik 0
0 w5

w3 w6


 =

(
2w3 w6

−wt
6 wt

5F
′w5

)
. (115)

Hence the claim follows. �

Suppose k = m. Then it is easy to see from (113) and (A.1) that N = Nm ∈ Wg, or
equivalently U ⊆ Wg, if and only if either the pair (G,G′) is in the stable range with G
the smaller member or (G,G′) = (Ol′+1, Sp2l′(R)).

Corollary 20. If k = m, then the map

τ : N + [s0, N ]⊥B ∋ w → w∗w ∈ g (116)

is proper.
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Proof. This follows from the formula (115). Indeed, it is enough to see that the map

w5 → wt
5F

′w5

is proper. The variable w5 does not exist unless D = C and d > m. This means that m
is the Witt index of the form ( , )′. Hence iF ′ is a definite hermitian matrix. Therefore
the above map is proper. �

Corollary 21. Suppose k = m. If E ⊆ s1 is a subset such that τ(E) ⊆ g is bounded, then

E ∩
(
N + [s0, N ]⊥B

)

is bounded.

Proof. This is immediate from Corollary 20. �

Lemma 22. For each k = 0, 1, 2, . . . ,m, the orbital integral µOk
is S - invariant and

defines a tempered distribution on W, homogeneous of degree deg µOk
= dimO′

k−dimW.

Proof. The stabilizer of the image of Nk in V1 is a parabolic subgroup P′ ⊆ G′ with the
Langlands decomposition P ′ = GLk(D)G

′′N′, where G′′ is an isometry group of the same
type as G′ and N′ is the unipotent radical. As a GLk(D) - module, n′, the Lie algebra of
N′, is isomorphic to Mk,d′−2k(D)⊕Hk(D), where Hk(D) ⊆Mk,k(D) stands for the space of
the hermitian matrices. Hence the absolute value of the determinant of the adjoint action
of an element a ∈ GLk(D) on the real vector space n′ is equal to

| detAd(a)n′ | = | detR(a)|d
′−2k+

2 dimHk(D)

k dimR D

Since G′ = K′P′, where K′ is a maximal compact subgroup, the Haar measure on G′ may
be written as

dg′ = | detAd(a)n′ | dk da dg′′ dn′.

Recall that da = | detR(a)|−k d+a, where d+a stands for the Lebesgue measure on the real
vector space Mk,k(D). Also,

2 dimHk(D)

k dimR D
− k =





1 if D = R,

0 if D = C,

−1
2

if D = H.

Hence,

| detAd(a)n′ || detR(a)|−k = | detR(a)|d
′−2k+

2 dimHk(D)

k dimR D
−k

is locally integrable on the real vector space Mk,k(D).
Since the stabilizer of Nk in G′ is equal to G′′N′ ⊆ P′, the G′ orbit of Nk defines a

tempered distribution on W by
∫

W

φ(w) dµG′Nk
(w) =

∫

GLk(D)

∫

K′

φ(kaNk) detAd(a)n′ dk da (φ ∈ S(W).
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This distribution is homogeneous of degree

(d′ − 2k +
2dimHk(D)

k dimR D
)dimRD− dimW

Thus it remains to check that

(d′ − 2k +
2dimHk(D)

k dimR D
) k dimR D = d′k dimR(D)− 2 dimR SHk(D),

which is easy, because Mk,k(D) = Hk(D) ⊕ SHk(D). In order to conclude the proof we
notice that the orbital integral on the orbit SNk is the G - average of the orbital integral
we just considered:

∫

W

φ(w) dµ
SNk

(w) =

∫

G

∫

GLk(D)

∫

K′

φ(kaNkg) detAd(a)n′ dk da dg.

�

Now we want to see dilations by t > 0 in s1 as transformations in the slice U modulo
the action of the group S, which is permissible as we consider S-orbits.
For t > 0 let

st =




t−1 0 0
0 I 0
0 0 t




where the blocks are as in (112). Then st ∈ G′. We view st as an element st ∈ GL(s1) by

st(w) = stw (w ∈ s1).

Also, define an element Mt ∈ GL(s1) by

Mt(w) = tw (w ∈ s1).

Set gt =Mt ◦ st ∈ GL(s1). Thus

gt(w) = tstw (w ∈ s1).

Lemma 23. The linear map gt ∈ GL(s1) preserves the set N + [s0, N ]⊥B and the subset
U ⊆ N + [s0, N ]⊥B . In fact

gt




Ik 0
0 w5

w3 w6


 =




Ik 0
0 tw5

t2w3 t2w6


 . (117)

Hence,

τ |U ◦ gt|U =Mt2 ◦ τ |U . (118)

Furthermore

gt ◦ σ = σ ◦ (Ad st × gt|N+[s0,N ]⊥B ), (119)
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where the gt|N+[s0,N ]⊥B on the right hand side stands for the restriction of gt to N +

[s0, N ]⊥B . In particular, the subset σ(S × U) ⊆ s1 is closed under the multiplication by
the positive reals. Also,

det((gt|N+[s0,N ]⊥B )
′) = tdim s1−dimO′

k . (120)

and
det(g′t) = tdim s1 (121)

Proof. The formula (117) is clear from the definition of gt and (118) follows from (117)
and (115).

In order to verify (119) we notice that for s ∈ S and u ∈ N + [s0, N ]⊥B we have

gt ◦ σ(s, u) = gt(su) = t(sts)u = (stss
−1
t )(tstu)

= σ(stss
−1
t , gtu) = σ ◦ (Ad st × gt|N+[s0,N ]⊥B )(s, u).

By the Chain Rule, the derivative of σ at (s, u) is surjective if and only if the derivative
of gt ◦ σ at (s, u) is surjective. Then (117) shows that this happens if and only if the
derivative of σ at (stss

−1
t , gtu) is surjective. By (106), the last statement is equivalent to

the derivative of σ being surjective at (s, gtu). In other words, gt preserves U .
Since g′t = M ′

t = Mt and since det st = 1, (121) is obvious. In order to verify (120) we
proceed as follows. The derivative of the map gt|N+[s0,N ]⊥B coincides with the following
linear map 


0 0
0 w5

w3 w6


→




0 0
0 tw5

t2w3 t2w6


 .

The determinant of this map is equal to the determinant of the following map


0 w4

0 w5

w3 w6


→




0 tw4

0 tw5

t2w3 tw6


 ,

which equals
t2 dimR SHk(D)td

′(d−k) dimR D.

Since, by (101),

2 dimR SHk(D) + d′(d− k) dimR D = dim s1 − dimO′
k,

(120) follows. �

Next we consider an S-invariant distribution F on σ(S× U) and its restriction F |U to
the slice U . The following lemma proves that the restriction to U of the t-dilation of F is
equal to gt|U applied to F |U .
Lemma 24. Suppose F ∈ D′(σ(S × U))S. Then the intersection of the wave front set
of F with the conormal bundle to U is zero, so that the restriction F |U is well defined.
Furthermore, σ∗F = µS ⊗ F |U . Moreover, for t > 0,

M∗
t F = g∗tF, (122)
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and
(M∗

t F )|U = (gt|U)∗F |U . (123)

Proof. The wave front set of F is contained in the union of the conormal bundles to the
S-orbits through elements of s1. This is because the characteristic variety of the system
of differential equations expressing the condition that this distribution is annihilated by
the action of the Lie algebra s0 coincides with that set. The intersection of this set with
the conormal bundle to U is zero. Indeed, this intersection is equal to the orthogonal
complement to the sum of the union of the tangent bundles to the orbits and the tangent
bundle to U , which, by the submersivity of the map σ, is equal to the whole tangent
bundle. Hence, F restricts uniquely to U . The formula σ∗F = µS ⊗ F |U follows from the
diagram

U → S× U → σ(S× U), u→ (1, u)→ u,

which shows that the restriction to U equals the composition of σ∗ and the pullback via
the embedding of U into S× U .

Since s∗tF = F we see that g∗tF =M∗
t s

∗
tF =M∗

t F . Hence,

(gt|U)∗F |U = (g∗tF )|U = (M∗
t F )|U .

Thus we are done with (122) and (123). �

Lemma 25. Suppose F, F0 ∈ D′(σ(S× U))S and a ∈ C are such that

ta(gt−1 |U)∗F |U →
t→0+

F0|U .

Then
taM∗

t−1F →
t→0+

F0

in D′(σ(S× U)).
Proof. This is immediate from (123) and Proposition B.1. �

Now we are ready to compute the limit of the weighted dilatation of the unnormalized
almost semisimple orbital integral µO.

Proposition 26. Let k = m. Let O ⊆ σ(S× U) be an S-orbit and let µO ∈ D′(s1) be the
corresponding orbital integral. Assume µO is S - invariant. Then

lim
t→0+

tdeg µOmM∗
t−1µO|σ(S×U) = µO|U(U)µOm |σ(S×U), (124)

where µOm ∈ D′(σ(S × U)) is the orbital integral on the orbit Om = SNm normalized so
that µOm |U is the Dirac delta at Nm and the convergence is in D′(σ(S×U)). This orbital
integral is a homogeneous distribution of degree deg µOm = dimO′

m − dimW.

A few remarks before the proof. The scalar µO|U(U) may be thought of as the volume of
the intersection O∩U . This volume is finite because the restriction µO|U is a distribution
on U with the support equal to the closure of O ∩ U , which is compact by Corollary 21.
Hence µO|U applies to any smooth function on U , which may be chosen to be constant
on O ∩ U .
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A straightforward argument shows that every regular orbit O passes through U , i.e. is
contained in σ(S× U), if the pair (G,G′) is in the stable range.

Our normalization of µSNm does not depend on the normalization of µO, which is
absorbed by the factor µO|U(U).
Proof. By (120)

tdimO′
m−dim s1(gt−1 |U)∗µO|U(ψ) = µO|U(ψ ◦ gt|U).

We see from (117) that

lim
t→0

gtu = Nm (u ∈ U).
Hence, for any ψ ∈ C∞

c (U),

lim
t→0

µO|U(ψ ◦ gt) = µO|U(ψ(N)IU) = µO|U(IU)ψ(N) = µO|U(U)ψ(Nm),

where IU is the indicator function of U . Thus (124) follows from Lemma 25. �

In order to find the limit of the weighted dilations of the normalized almost semisimple
orbital integral f(y), see Corollary 29, we still need to compute the weight.

A direct computation involving the formulas (58) and (61) verifies the following lemma.

Lemma 27. Suppose d ≤ d′. Then

dim W = dim g+ dim g′/z′ + dim h+ dim s1(V
0), (125)

or equivalently

dim W = 2 deg πg/h + 2 deg πg′/z′ + 2 dim h+ dim s1(V
0). (126)

Here dim s1(V
0) = 0 unless G = O2l+1, G

′ = Sp2l′(R) and d = 2l + 1 < 2l′ = d′.
If d < d′, then dim s1(V

0) = 0 and

dim W = dim g′ + dim g/z+ dim h, (127)

or equivalently

dim W = 2 deg πg′/h + 2 deg πg/z + 2 dim h. (128)

Recall Harish-Chandra’s semisimple orbital integral on f(y) ∈ S∗(W)S, (95) and (100).
Lemma 27 plus a direct computation implies the following lemma.

Lemma 28. For φ ∈ C∞
c (W) and t > 0

µO(w)(t
dimWφt) = tdim s1(V

0)µO(t−1w)(φ) (w ∈ h
reg

1
). (129)

Equivalently,

M∗
t−1f(y) = t2 deg πg/z+2dim hf(t2y). (130)

Also, without any assumptions, we have the following equivalent formulas

(ψ ◦ τ ′)t = t2 dim g′−dim Wψt2 ◦ τ ′ (ψ ∈ S(g′)), (131)

τ ′∗(M
∗
t−1u) = tdimW−2 dim g′M∗

t−2τ ′∗(u) (u ∈ S∗(W)).
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Corollary 29. Assume that k = m. Then,

lim
t→0+

tdeg µOmM∗
t−1f(y)|σ(S×U) = f(y)|U(U)µOm(φ)|σ(S×U). (132)

The distribution f(0) is homogeneous of degree deg f(0) = −(2 deg πg/z + 2dim h). (If
l ≤ l′, then 2 deg πg/z + 2dim h = dim g+ dim h.) Moreover (132) is equivalent to

lim
t→0+

t
1
2
(deg µOm−deg f(0))f(ty)|σ(S×U) = f(y)|U(U)µOm |σ(S×U). (133)

Proof. The statement (132) is immediate from Proposition 26. In order to see that (132)
is equivalent to (133) we recall (130), which also shows that deg f(0) = −2 deg πg/z −
2 dim h. �

The set of almost semisimple elements in s1 coincides with the union of the S-orbits
through the generalized Cartan subspaces

⋃
h̃1
Sh̃1, [MPP11, (47)]. Since the set of the

regular almost semisimple elements is dense in
⋃

h̃1
Sh̃1, [MPP11, Theorem 19] implies

that the set of the regular almost semisimple elements is dense in s1. Hence there is a
regular y such that the corresponding orbit in W is contained in σ(S× U). Then all the
orbits corresponding to ty, with t ≥ 0, are contained in σ(S× U).

Next we shall try to shed some light at the limits of the derivatives of the orbital
integrals. We assume that l ≤ l′. As in [Har57a] we identify the symmetric algebra on
g with C[g], the algebra of the polynomials on g using the invariant symmetric bilinear
form B on g.

Lemma 30. Let y ∈ h ∩ τ(W) and let Q ∈ C[h] be such that deg(Q) is small enough so
that, by Corollary 17, ∂(Q)f(y) exists. Then

tdeg µOmM∗
t−1∂(Q)f(y)|σ(S×U) →

t→0+
CµOm , (134)

in D′(σ(S × U)), where C = ∂(Q)f(y)|U(IU) is the value of the compactly supported
distribution ∂(Q)f(y)|U on U applied to the constant function IU .

Proof. We see from Lemma 24 that it suffices to prove the lemma with (134) replaced by

tdeg µOmgt−1 |∗U∂(Q)f(y)|U →
t→0+

CδNm , (135)

Let ψ ∈ C∞
c (U). Since ∂(Q)f(y)|U is a compactly supported distribution on U ,

tdeg µOmgt−1 |∗U∂(Q)f(y)|U(ψ) = ∂(Q)f(y)|U(ψ ◦ gt)
→

t→0+
∂(Q)f(y)|U(ψ(Nm)IU)

= ∂(Q)f(y)|U(IU)δNm(ψ).

�

Proposition 31. Let y ∈ h ∩ τ(W) and let Q ∈ C[h] be such that deg(Q) is small enough
so that, by Corollary 17, ∂(Q)f(y) exists. Then

tdeg µOmM∗
t−1∂(Q)f(y) →

t→0+
CµOm (136)
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in the topology of S∗(W), where C = ∂(Q)f(y)|U(IU).
Proof. As we have seen in (87) and (85), there is a positive constant const such that for
ψ ∈ S(g′)

τ ′∗(∂(Q)f(y))(ψ) = ∂(Q)τ ′∗(f(y))(ψ) (137)

= const ∂(Qπ̃z′/h′)

(
πg′/h′(y + y′′)

∫

G′

ψ(g.(y + y′′)) dg

)
|y′′=0,

where π̃z′/h′ = πshort
z′/h′ if G = O2l+1 with l < l′, and π̃z′/h′ = πz′/h′ otherwise. Let P ∈ C[g′]G

′

.
Then

∂(Qπ̃z′/h′)

(
πg′/h′(y + y′′)

∫

G′

(Pψ)(g.(y + y′′)) dg

)
|y′′=0 (138)

= ∂(Qπ̃z′/h′)

(
P (y + y′′)πg′/h′(y + y′′)

∫

G′

ψ(g.(y + y′′)) dg

)
|y′′=0.

By commuting the operators of the multiplication by a polynomial with differentiation
we may write

∂(Qπ̃z′/h′)P (y + y′′) =
∑

|α|≤deg(Qπ̃z′/h′ )

Pα(y + y′′)∂α,

where ∂α =
∏l′

j=1 ∂(J
′
j)

αj . Hence, (138) is equal to

∑

|α|≤deg(Qπ̃z′/h′ )

Pα(y)∂
α

(
πg′/h′(y + y′′)

∫

G′

ψ(g.(y + y′′)) dg

)
|y′′=0. (139)

We see from (137) - (139) that the range of the map

C[g′]G
′ ∋ P → τ ′∗(∂(Q)f(y)) ◦ P ∈ S∗(g′) (140)

is contained in the space spanned by the distributions

∂α
(
πg′/h′(y + y′′)

∫

G′

ψ(g.(y + y′′)) dg

)
|y′′=0 (|α| ≤ deg(Qπ̃z′/h′).

In particular this range is finite dimensional. Therefore Harish-Chandra regularity theo-
rem [Har65, Theorem 1, page 11] implies that the Fourier transform

(τ ′∗(∂(Q)f(y)))̂ ∈ S∗(g′)

is a locally integrable function. Therefore the argument used in the proof of [BV80,
Theorem 3.2] shows that there is an integer a such that the following limit exists in
S∗(g′):

lim
t→0+

taM∗
t (τ

′
∗(∂(Q)f(y)))̂ . (141)

By taking the inverse Fourier transform we see that there is an integer b such that the
following limit exists in S∗(g′):

lim
t→0+

tbM∗
t−1τ ′∗(∂(Q)f(y)). (142)
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But then the injectivity of the map τ ′∗, see Corollary 5, and (131) imply that there is an
integer d such that the following limit exists in S∗(W).

lim
t→0+

tdM∗
t−1∂(Q)f(y). (143)

Now Lemma 30 shows that d = deg µOm and the proposition follows. �

6. Intertwining distributions.

In the following we consider an irreducible unitary representation Π of G̃. We suppose
that Π is genuine in the sense that it is non-trivial on the kernel of the covering map

G̃ → G. Let µ ∈ ih∗ represent the infinitesimal character of Π. In particular, when
µ is dominant, then we will refer to it as the Harish-Chandra parameter of Π. This is
consistent with the usual terminology; see e.g. [Kna86, Theorem 9.20].

Assume that the distribution character ΘΠ is supported in the preimage G̃1 of the
Zariski identity component G1 of G. (Recall that G1 = G unless G is an orthogonal
group.) Then

ΘΠ(h)∆(h) =
∑

s∈W (G,h)

sgng/h(s)ξsµ(h) (h ∈ H♯
o), (144)

where we lift Π from G̃ to G♯ via the covering (43) if necessary, ∆ is the Weyl denominator
(44) and sgng/h is as in (76). Since sgng/h = sgn, the sign character of the Weyl group
W (g, h), unless G = O2l, we need to justify the formula (144) only in this case. Our

assumption that the distribution character ΘΠ is supported in the preimage G̃1 implies
that

ΘΠ(h) =

∑
s∈W (g,h) sgn(s)ξsµ(h)

∆(h)
+

∑
s∈W (g,h) sgn(s)ξsµ(th)

∆(th)
(h ∈ H♯

o),

where W (g, h) is the Weyl group of G1 = SO2l and t is any element of W (G, h) which
does not belong to W (g, h). Since sgn(s) = sgng/h(s) for s ∈ W (g, h) and

∆(th) = sgng/h(t)∆(h),

(144) follows.
In this section we study the analytic properties of the distribution fΠ⊗Π′ = T (Θ̌Π) ∈
S(W) introduced in (13). For x ∈ g define

ch(x) = | detR(x− 1)|1/2 , (145)

where the subscript R indicates that the element x ∈ g ⊆ End(V0) is viewed as an
endomorphism of V0 over R. Since all eigenvalues of x ∈ g are purely imaginary, x− 1 is
invertible and the function ch(x) is non-zero on g and we can raise it to any real power.
For an endomorphism x of W we set

χx

(1
4
(〈xw,w〉)

)
w ∈W . (146)

This definition coincides with (11) when x = c(g) for g ∈ Sp and g − 1 is invertible.
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Recall the functions c̃ and c̃− on sp to S̃p introduced in (18) and the constants r and

ι defined by (96) and (98), respectively. Recall also that d′ = dimD V1 and that G̃ is
equipped with the Haar measure dg̃ of total mass 1.

Lemma 32. Let c♯− : h → H♯
o be a real analytic lift of c̃− : h → H̃, via the covering (43).

For any φ ∈ S(W)

T (Θ̌Π)(φ) = C

∫

h

(
(Θ̌Π∆)(c♯−(x)) ch

d′−r−ι(x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx

= C ′

∫

h

(
ξ−µ(c

♯
−(x)) ch

d′−r−ι(x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx,

where φG(w) =
∫
G
φ(gw) dg, C is a non-zero constant, C ′ = C|W (G, h)| and each con-

secutive integral is absolutely convergent.

Proof. By definition

T (Θ̌Π)(φ) =

∫

G̃

Θ̌Π(g̃)T (g̃)(φ) dg̃, (147)

where the integral is absolutely convergent because both, the character and the function

T (g̃)(φ) are bounded (see for example [Prz93, Proposition 1.13]) and the group G̃ is
compact.

Since the support of the character is contained in G̃1 and since the image of the Cayley

transform c− : g→ G is contained and dense in G1, we may integrate over g rather than G̃
in (147). As checked in [Prz91, (3.11)], the Jacobian of c̃−(x) = c̃(x)c̃(0)−1 is a constant
multiple of ch−2r(x). Also, the element c̃(0) is in the center of the metaplectic group.
In particular, Θ̌Π(g̃c̃(0)

−1) is a constant multiple of Θ̌Π(g̃), where the constant has the
absolute value 1. Thus

T (Θ̌Π)(φ) = C1

∫

g

Θ̌Π(c̃−(x))T (c̃(x))(φ) ch
−2r(x) dx, (148)

where C1 is a non-zero constant and, by (12), T (c̃(x)) = Θ(c̃(x))χxµW. Since c(g.x) =

g.c(x), there is s ∈ S̃p in the preimage of 1 ∈ Sp such that sg̃c̃(x)g̃−1 = c̃(g.x). Since Π

occurs in Weil representation, for every h̃ ∈ S̃p we have Θ̌Π(sh̃)Θ(sh̃) = Θ̌Π(h̃)Θ(h̃). As

Θ̌Π and Θ are characters of G̃, it follows that Θ̌Π(c̃(g.x))Θ(c̃(g.x)) = Θ̌Π(c̃(x))Θ(c̃(x)).
Weyl integration formula on g shows that

T (Θ̌Π)(φ) = C2

∫

h

|πg/h(x)|2Θ̌Π(c̃−(x))T (c̃(x))(φ
G) ch−2r(x) dx, (149)

where C2 is a non-zero constant and φG is as in the statement of the Lemma. Recall
[Prz93, Lemma 5.7] that πg/h(x) is a constant multiple of ∆(c♯−(x)) ch

r−ι(x). Also πg/h(x)

is a constant multiple of πg/h(x). Hence, if we set Θ̌Π(c
♯
−(x)) = Θ̌Π(c̃−(x)), then

T (Θ̌Π)(φ) = C3

∫

h

(Θ̌Π∆)(c♯−(x)) ch
r−ι(x)πg/h(x)T (c̃(x))(φ

G) ch−2r(x) dx, (150)
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where C3 is a non-zero constant. Observe that, by (6) and (12),

Θ(c̃(x))2 = idimW det(Jc(x))
−1
W = idimW det(c(x)− 1)−1

W = idimW det
(
2−1(x− 1)

)
W
.

Since the determinant is taken on W, (145) implies that Θ(c̃(x)) is a constant multiple of

chd′(x), where d′ = dimD V1 as before. Hence, by (144),

T (Θ̌Π)(φ) = C4

∫

h

(Θ̌Π∆)(c♯−(x)) ch
d′−r−ι(x)πg/h(x)

∫

W

χx(w)φ
G(w) dw dx (151)

= C4

∑

s∈W (G,h)

sgng/h(s)

∫

h

(
ξ−sµ(c

♯
−(x)) ch

d′−r−ι(x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx,

where C4 is a non-zero constant and each consecutive integral is absolutely convergent.
Notice that for s ∈ W (G, h)

∫

W

χsx(w)φ
G(w) dw =

∫

W

χx(s
−1w)φG(w) dw =

∫

W

χx(s
−1w)φG(s−1w) dw

=

∫

W

χx(w)φ
G(w) dw

and that πg/h(sx) = sgn(s) πg/h(x). Therefore

∑

s∈W (G,h)

sgng/h(s)

∫

h

(
ξ−sµ(c

♯
−(x)) ch

d′−r−ι(x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx

=
∑

s∈W (G,h)

∫

h

(
ξ−sµ(c

♯
−(x)) ch

d′−r−ι(x)
)(

πg/h(sx)

∫

W

χsx(w)φ
G(w) dw

)
dx

=
∑

s∈W (G,h)

∫

h

(
ξ−sµ(c

♯
−(s

−1x)) chd′−r−ι(s−1x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx

=
∑

s∈W (G,h)

∫

h

(
ξ−µ(c

♯
−(x)) ch

d′−r−ι(x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx

= |W (G, h)|
∫

h

(
ξ−µ(c

♯
−(x)) ch

d′−r−ι(x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx.

We can verify the absolute convergence as follows. The boundedness of the function

T (g̃)(φ), g̃ ∈ G̃, means that there is a seminorm q(φ) on S(g) such that
∣∣∣Θ(c̃(x))

∫

W

χx(w)φ(w) dw
∣∣∣ ≤ q(φ) (x ∈ g). (152)

Equivalently, replacing q(φ) by a constant multiple,
∣∣∣
∫

W

χx(w)φ(w) dw
∣∣∣ ≤ q(φ) ch−d′(x) (x ∈ g). (153)
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(This is the van der Corput estimate, [Ste93, formula (23) on page 345].) Also, (99) and
(156) below imply that

|πg/h(x)| ≤ C5 ch
r−1(x) ≤ C5 ch

r−ι(x) (x ∈ h),

where C5 is a constant. Hence
∣∣∣πg/h(x)

∫

W

χx(w)φ(w) dw
∣∣∣ ≤ q(φ) ch−d′+r−ι(x) (x ∈ h). (154)

Therefore the integral over h in (151) may be dominated by (i.e. is less or equal a constant
times the following expression)

∫

h

chd′−r−ι(x) ch−d′+r−ι(x) dx =

∫

h

ch−2ι(x) dx <∞.

�

Let us fix the branch of the square root:

C \ R− ∋ z → z
1
2 ∈ C (155)

so that z
1
2 > 0, if z > 0. Then for y =

∑l
j=1 yjJj ∈ h,

ch(y) =
l∏

j=1

(1 + y2j )
1
2ι =

l∏

j=1

(1 + iyj)
1
2ι (1− iyj)

1
2ι . (156)

The elements Jj, 1 ≤ j ≤ l, form a basis of the real vector space h. Let J∗
j , 1 ≤ j ≤ l, be

the dual basis of the space h∗ and set

ej = −iJ∗
j , 1 ≤ j ≤ l . (157)

If µ ∈ ih∗, then µ =
∑l

j=1 µjej with µj ∈ R. We say that µ is strictly dominant if
µ1 > µ2 > · · · > µl.

The action of W(G, h) on h extends by duality to ih∗: if µ =
∑l

j=1 µjej ∈ ih∗ and

t = ǫσ ∈W(G, h) is as in (73), then

t
( l∑

j=1

µjej

)
=

l∑

j=1

ǫσ−1(j)µσ−1(j)ej . (158)

Lemma 33. Let c♯− be as in Lemma 32. Then

ξ−µ(c
♯
−(ty)) = ξ−t−1µ(c

♯
−(y)) (t ∈W(G, h , µ ∈ ih∗ , y ∈ h) . (159)

Moreover, let

δ =
1

2ι
(d′ − r + ι) . (160)

Then, with the notation of Lemma 32 and (156),

ξ−µ(c
♯
−(y)) ch

d′−r−ι(y) =
l∏

j=1

(1 + iyj)
−µj+δ−1(1− iyj)µj+δ−1, (161)
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where all the exponents are integers:

±µj + δ ∈ Z (1 ≤ j ≤ l). (162)

In particular, (161) is a rational function in the variables y1, y2, ..., yl.

Proof. Since

ξ−µ(c
♯
−(y)) =

l∏

j=1

(
1 + iyj
1− iyj

)−µj

=
l∏

j=1

(1 + iyj)
−µj(1− iyj)µj ,

(159) and (161) follow from (156).

Let λ =
∑l

j=1 λjej be the highest weight of the representation Π and let ρ =
∑l

j=1 ρjej
be one half times the sum of the positive roots of h in gC. If µ is the Harish-Chandra
parameter of Π, then µ = λ+ ρ =

∑l
j=1 µjej. Hence, the statement (162) is equivalent to

λj + ρj +
1

2ι
(d′ − r + ι) ∈ Z , (163)

which holds because of the assumption that Π is a genuine representation of G̃. Indeed,
if G = Od, then with the standard choice of the positive root system, ρj =

d
2
− j. Also,

λj ∈ Z, ι = 1, r = d − 1. Hence, (163) follows. Similarly, if G = Ud, then ρj =
d+1
2
− j,

λj +
d′

2
∈ Z, ι = 1, r = d, which implies (163). If G = Spd, then ρj = d + 1 − j, λj ∈ Z,

ι = 1
2
, r = d+ 1

2
, and (163) follows. �

In order to study the inner integral occurring in the formula for T (Θ̌Π) in Lemma 32,
we shall need the following lemma.

Lemma 34. Fix an element z ∈ h. Let z ⊆ g and Z ⊆ G denote the centralizer of z.
(Then Z is a real reductive group with the Lie algebra z.) Denote by c the center of z
and by πg/z be the product of the positive roots for (gC, hC) which do not vanish on z. Let
B(·, ·) be any non-degenerate symmetric G-invariant real bilinear form on g. Then there
is a constant Cz such that for and x ∈ h and x′ ∈ c,

πg/h(x)πg/z(x
′)

∫

G

eiB(g.x,x′) dg = Cz

∑

tW (Z,h)∈W (G,h)/W (Z,h)

sgng/h(t)πz/h(t
−1x)eiB(x,tx′).

(Here πz/h = 1 if z = h.)

Proof. The proof is a straightforward modification of the argument proving Harish-Chandra’s
formula for the Fourier transform of a regular semisimple orbit, [Har57a, Theorem 2, page
104]. A more general result was obtained in [DV90, Proposition 34, p. 49]. �

We shall fix the symplectic form 〈·, ·〉 on W according to the Lie superalgebra structure
introduced at the beginning of section 4 as follows

〈w,w′〉 = trD/R(Sww
′) (w,w′ ∈W). (164)

Then

〈xw,w〉 = trD/R(Sxw
2) (x ∈ g⊕ g′, w ∈W). (165)
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(See [Prz06, (2.4’)].) Let

B(x, y) =
π

2
trD/R(Sxy) =

π

2
trD/R(xy) (x, y ∈ g). (166)

Then, using the expression (50) for the unnormalized moment map τ , we have

χx(w) = e
πi
2
〈xw,w〉 = eiB(x,τ(w)) (x ∈ g, w ∈W). (167)

Lemma 35. Suppose l ≤ l′. Then, with the notation of Lemma 32,

πg/h(x)

∫

W

χx(w)φ
G(w) dw = C

∫

h∩τ(W)

eiB(x,y)fφ(y) dy .

where C is a non-zero constant and fφ(y) = f(y)(φ) for the Harish-Chandra regular
almost semisimple orbital integral f(y) of Definition 10.

Proof. By Lemmas 6 and 8 and the Weyl integration formula (67) on W,
∫

W

χx(w)φ
G(w) dw =

∑

h1

∫

τ(h+
1
)

πg/h(τ(w))πg′/z′(τ(w))C(h1)µO(w)(χxφ
G) dτ(w).

Let us consider first the case (65)

µO(w)(χxφ
G) =

∫

S/S
h
1

(χxφ
G)(s.w) d(sSh1).

Recall from (57) the identification y = τ(w) = τ ′(w) and let us write s = gg′, where g ∈ G
and g′ ∈ G′. Then

χx(s.w) = ei
π
2
〈x(s.w),s.w〉 = eiB(x,τ(s.w)) = eiB(x,g.τ(w)) = eiB(x,g.y)

and

φG(s.w) = φG(g′.w).

Since

({1} ×G′) ∩ Sh1 = {1} × Z′,

we see that for a positive constant C1

µO(w)(χxφ
G) = C1

∫

G

eiB(x,g.y) dg

∫

G′/Z′

φG(g′.w) d(g′Z′).

However we know from Harish-Chandra (Lemma 34) that

πg/h(x)

(∫

G

eiB(x,g.y) dg

)
πg/h(y) = C2

∑

t∈W (G,h)

sgng/h(t)e
iB(x,ty).
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Hence, by Definition 10 and (75) and for some suitable positive constants Ck,

πg/h(x)

∫

W

χx(w)φ
G(w) dw (168)

= C3

∑

t∈W (G,h)

sgng/h(t)
∑

h1

∫

τ(h+
1
)

eiB(x,ty)C(h1)πg′/z′(y)

∫

G′/Z′

φG(g′.w) d(g′Z′) dy

= C3

∑

t∈W (G,h)

sgng/h(t)
∑

h1

∫

τ(h+
1
)

eiB(x,ty)i− dim g/hCh1
πg′/z′(y)

∫

G′/Z′

φG(g′.w) d(g′Z′) dy

= C4

∑

t∈W (G,h)

sgng/h(t)

∫
⋃

h
1
τ(h+

1
)

eiB(x,ty)fφG(y) dy

= C4

∑

t∈W (G,h)

∫
⋃

h
1
τ(h+

1
)

eiB(x,ty)fφG(t.y) dy

= C4

∫

W (G,h)(
⋃

h
1
τ(h+

1
))

eiB(x,y)fφG(y) dy

= C4

∫

h∩τ(W)

eiB(x,y)fφG(y) dy.

Since fφG = vol(G)fφ, the formula follows.
Consider now the case

µO(w)(χxφ
G) =

∫

S/S
h
1

∫

s1(V
0)

(χxφ
G)(s.(w + w0)) dw0 d(sSh1).

Then, as in (64),

µO(w)(χxφ
G) =

∫

S/S
h
1
+w0

(χxφ
G)(s.(w + w0)) d(sS

h1+w0).

Furthermore,

χx(s.(w + w0)) = ei
π
2
〈x(s.(w+w0)),s.(w+w0)〉 = ei

π
2
〈x(s.w),sw〉

= eiB(x,τ(sw)) = eiB(x,g.τ(w)) = eiB(x,g.y)

and

φG(s.(w + w0)) = φG(g′.(w + w0)).

Hence, with n = τ ′(w0),

µO(w)(χxφ
G) = C1

∫

G

eiB(x,g.y) dg

∫

G′/Z′n

φG(g′.w) d(g′Z′n).

Therefore, the computation (168) holds again, and we are done. �
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Lemma 36. Suppose l > l′. Let z ⊆ g and Z ⊆ G be the centralizers of τ(h1). Then for
φ ∈ S(W)

πg/h(x)

∫

W

χx(w)φ
G(w) dw

= C
∑

tW (Z,h)∈W (G,h)/W (Z,h)

sgng/h(t)πz/h(t
−1.x)

∫

τ ′(h1
reg)

eiB(x,t.y)fφ(y) dy,

where C is a non-zero constant.

Proof. By the Weyl integration formula (67) with the roles of G and G′ reversed and
Lemmas 7 and 8,∫

W

χx(w)φ
G(w) dw = C1

∫

τ ′(h1
reg)

πg/z(y)πg′/h′(y)µO(w)(χxφ
G) dτ ′(w),

where

µO(w)(χxφ
G) =

∫

S/S
h
1

(χxφ
G)(s.w) d(sSh1).

Recall the identification y = τ(w) = τ ′(w) and let us write s = gg′, where g ∈ G and
g′ ∈ G′. Then

χx(s.w) = ei
π
2
〈x(s.w),s.w〉 = eiB(x,τ(s.w)) = eiB(x,g.τ(w)) = eiB(x,g.y)

and
φG(s.w) = φG(g′.w).

Since
({1} ×G′) ∩ Sh1 = {1} × H′,

we see that

µO(w)(χxφ
G) = C2

∫

G

eiB(x,g.y) dg

∫

G′/H′

φG(g′.w) d(g′H′).

However we know from Harish-Chandra (Lemma 34) that

πg/h(x)

∫

G

eiB(g.x,y) dg πg/z(y) = C3

∑

tW (Z,h)∈W (G,h)/W (Z,h)

sgng/h(t)πz/h(t
−1x)eiB(x,ty).

Hence,

πg/h(x)

∫

W

χx(w)φ
G(w) dw (169)

= C4

∑

tW (Z,h)∈W (G,h)/W (Z,h)

sgng/h(t)πz/h(t
−1x)

∫

τ ′(h1
reg)

eiB(x,ty)πg′/h′(y)

∫

G′/H′

φG(g′.w) d(g′H′) dy

= C5

∑

tW (Z,h)∈W (G,h)/W (Z,h)

sgng/h(t)πz/h(t
−1x)

∫

τ ′(h1
reg)

eiB(x,ty)fφG(y) dy.

Since fφG = vol(G)fφ, the formula follows. �
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Lemma 37. Suppose l ≤ l′. Let f(y) denote the function (95). Then there is a seminorm
q on S(W) such that

∣∣∣
∫

h∩τ(W)

f(y)(φ) eiB(x,y) dy
∣∣∣ ≤ q(φ) ch(x)−d′+r−1 ≤ q(φ) ch(x)−d′+r−ι

(x ∈ h, φ ∈ S(W)).

Proof. Since l ≤ l′, Lemma 35 and van der Corput estimate (154) prove that there is a
seminorm q on S(W) such that for all y ∈ h and φ ∈ S(W) we have

∣∣∣
∫

h∩τ(W)

f(y)(φ) eiB(x,y) dy
∣∣∣ ≤ q(φ) |πg/h(x)| ch(x)−d′ .

The result therefore follows from (99) and (156). �

Corollary 38. Suppose l ≤ l′. Then for any φ ∈ S(W)

T (Θ̌Π)(φ) = C

∫

h

ξ−µ(c
♯
−(x)) ch

d′−r−ι(x)

∫

h∩τ(W)

eiB(x,y)fφ(y) dy dx,

where C is a non-zero constant and each consecutive integral is absolutely convergent.

Proof. The equality is immediate from Lemmas 32 and 35. The absolute convergence of
the outer integral over h follows from Lemma 37. �

Suppose l > l′. Recall from (57) with l′′ = l′ that h′ =
∑l′

j=1 RJ
′
j is identified with

∑l′

j=1 RJj ⊆ h. Let h′′ =
∑l

j=l′+1 RJj, so that

h = h′ ⊕ h′′. (170)

Then z, the centralizer of τ(h1), is the centralizer of h′ in g and z = h′ ⊕ g′′, where g′′ is
the Lie algebra of the group G′′ of the isometries of the restriction of the form (·, ·) to

l∑

j=l′+1

V
j

0
. (171)

Furthermore, the derived Lie algebras of z and g′′ coincide (i.e. [z, z] = [g′′, g′′]) and h′′ is
a Cartan subalgebra of g′′.

Corollary 39. Suppose l > l′. Then for any φ ∈ S(W)

T (Θ̌Π)(φ)

= C
∑

s∈W (G,h)

sgng/h(s)

∫

h

ξ−sµ(c
♯
−(x)) ch

d′−r−ι(x)πz/h(x)

∫

τ ′(h1
reg)

eiB(x,y)fφ(y) dy dx

where C is a non-zero constant and each consecutive integral is absolutely convergent.
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Proof. The formula is immediate from Lemmas 32 and 36 together with formula (159):

T (Θ̌Π)(φ)

= C1

∫

h

(
ξ−µ(c

♯
−(x)) ch

d′−r−ι(x)
)(

πg/h(x)

∫

W

χx(w)φ
G(w) dw

)
dx

= C2

∫

h

(
ξ−µ(c

♯
−(x)) ch

d′−r−ι(x)
)


 ∑

tW (Z,h)∈W (G,h)/W (Z,h)

sgng/h(t)πz/h(t
−1x)

∫

τ ′(h1
reg)

eiB(x,ty)fφ(y) dy


 dx

=
C2

|W (Z, h)|

∫

h

(
ξ−µ(c

♯
−(x)) ch

d′−r−ι(x)
)


 ∑

t∈W (G,h)

sgng/h(t)πz/h(t
−1x)

∫

τ ′(h1
reg)

eiB(x,ty)fφ(y) dy


 dx

= C3

∑

t∈W (G,h)

sgng/h(t)

∫

h

(
ξ−µ(c

♯
−(tx)) ch

d′−r−ι(tx)
)

(
πz/h(x)

∫

τ ′(h1
reg)

eiB(tx,ty)fφ(y) dy

)
dx

= C3

∑

t∈W (G,h)

sgng/h(t)

∫

h

(
ξ−t−1µ(c

♯
−(x)) ch

d′−r−ι(x)
)

(
πz/h(x)

∫

τ ′(h1
reg)

eiB(x,y)fφ(y) dy

)
dx.

As in (99) we check that

max{degxj
πz/h; 1 ≤ j ≤ l} = max{degxj

πz′′/h′′ ; 1 ≤ j ≤ l′′} = 1

ι
(r′′ − 1).

Also, r − r′′ = d′. Hence,

chd′−r−1(x)|πz/h(x)| ≤ const chd′−r−1+r′′−1(x) = const ch−2(x).

Furthermore, fφ is absolutely integrable. Therefore, the absolute convergence of the last
integral over h follows from the fact that ch−2ι is absolutely integrable. �

Let β =
π

ι
, where ι is as in (98). Then

B(x, y) = −
l∑

j=1

xjβyj
(
x =

l∑

j=1

xjJj , y =
l∑

j=1

yjJj ∈ h
)
. (172)
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Indeed, the definition of the form B, (166), shows that

B(x, y) =
π

2
trD/R(xy) =

π

2

∑

j,k

trD/R(JjJk)xjyk

=
π

2

∑

j

trD/R(−1)xjyj = −
π

ι

∑

j

xjyj. (173)

For a subset γ ⊆ {1, 2, . . . , l} let
h ∩ γ⊥ = {y ∈ h; yj = 0 for all j ∈ γ}.

Theorem 40. Let l ≤ l′. Fix a genuine representation Π of G̃ with the Harish-Chandra
parameter µ ∈ ih∗. Let Pa,b and Qa,b be the polynomials defined in (C.4) and (C.5). Let
δ be as in (160) and set

aj = −µj − δ + 1 , bj = µj − δ + 1 (174)

pj(yj) = Paj ,bj(βyj)e
−β|yj | , qj(yj) = β−1Qaj ,bj(β

−1yj) (1 ≤ j ≤ l).

There is a non-zero constant C such that for φ ∈ S(W)

T (Θ̌Π)(φ) = C

∫

h∩τ(W)

(
l∏

j=1

(
pj(yj) + qj(−∂yj)δ0(yj)

)
)
· fφ(y) dy (175)

= C
∑

γ⊆{1,2,...,l}

∫

h∩τ(W)∩γ⊥

∏

j /∈γ

pj(yj) ·
∏

j∈γ

qj(∂(Jj)) · fφ(y) dγy

where dγy =
∏

j /∈γ dyj and δ0 is the Dirac delta at 0. Equivalently, if we define the
following generalized function

u(y) = C

l∏

j=1

(pj(yj) + qj(−∂yj)δ0(yj)) (y ∈ h ∩ τ(W)),

then

T (Θ̌Π)(φ) =

∫

h∩τ(W)

u(y) · fφ(y) dy . (176)

Theorem 17 implies that the function fφ has the required number of continuous deriva-
tives for the formula (175) to make sense. Notice that the operators appearing in the
integrand of (175) act on different variables and therefore commute.

Proof. Notice that the aj, bj are integers by (162). Equation (175) follows from Corollary
38, Lemma 33, Theorem 17 and from Proposition C.4. �

In the case D = C the boundary ∂(h ∩ τ(W)) may be non-empty. Then the integrals
in (175) with (h \ γ⊥)∩ ∂(h∩ τ(W)) 6= ∅ vanish. In any case we sum only over the γ such
that ∂(h∩ τ(W)) ⊆ γ⊥. In particular, all terms of the sum corresponding to γ 6= ∅ vanish
provided all hyperplanes yj = 0 are boundaries of h ∩ τ(W). From Theorem 17 we see
that this is the case if and only if max(l − q, 0) = min(p, l). In turn, this is equivalent to
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either l′ = q ≥ l and p = 0 or l = p + q = l′. In the first case (G,G′) = (Ul,Ul′); in the
second (G,G′) = (Up+q,Up,q).
Notice also that the degree of the polynomial Qaj ,bj is 2δ − 2. Hence, there are no

derivatives in the formula (175) if 2δ − 2 ≤ 0. However,

2δ − 2 =
1

ι
(d′ − r − ι) =

{
d′ − r − 1 if D 6= H,

2(d′ − r)− 1 if D = H.

Also,

d′ − r − ι =





2l′ − 2l if (G,G′) = (O2l, Sp2l′),

2l′ − 2l − 1 if (G,G′) = (O2l+1, Sp2l′),

l′ − l − 1 if (G,G′) = (Ul,Up,q), p+ q = l′,

l′ − l if (G,G′) = (Spl,O
∗
2l′).

Thus, since we assume l ≤ l′, there are no derivatives in the formula (175) if

d′ − r − ι ≤ 0,

which means that l = l′ if D 6= C and l ∈ {l′ − 1, l′} if D = C.

Lemma 41. Suppose l > l′. In terms of Corollary 39 and the decomposition (170)

ξ−sµ(c
♯
−(x)) ch

d′−r−ι(x)πz/h(x) (177)

=
(
ξ−sµ(c

♯
−(x

′)) chd′−r−ι(x′)
)(

ξ−sµ(c
♯
−(x

′′)) chd′−r−ι(x′′)πg′′/h′′(x
′′)
)
,

where x′ ∈ h′ and x′′ ∈ h′′. Moreover,∫

h′′
ξ−sµ(c

♯
−(x

′′)) chd′−r−ι(x′′)πg′′/h′′(x
′′) dx′′ (178)

= C
∑

s′′∈W (g′′,h′′)

sgn(s′′)I{0}(−(sµ)|h′′ + s′′ρ′′),

where C is a constant, ρ′′ is one half times the sum of positive roots for (g′′C, h
′′
C) and I{0}

is the indicator function of zero.

Proof. Part (177) is obvious, because πz/h(x
′ + x′′) = πg′′/h′′(x

′′). We shall verify (178).
Let r′′ denotes the number defined in (96) for the Lie algebra g′′. A straightforward
computation verifies the following table.

g r r′′ d′ − r + r′′

ud d d− d′ 0

od d− 1 d− d′ − 1 0

spd d+ 1
2

d− d′ + 1
2

0

By [Prz93, Lemma 5.7] applied to G′′ ⊇ H′′ and g′′ ⊇ h′′,

πg′′/h′′(x
′′) = C ′′

1∆
′′(c♯−(x

′′)) chr′′−ι(x′′) (x = x′ + x′′, x′ ∈ h′, x′′ ∈ h′′),
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where ∆′′ is the Weyl denominator for G′′,

∆′′ =
∑

s′′∈W (g′′,h′′)

sgn(s′′) ξs′′ρ′′ . (179)

Hence, the integral (178) is a constant multiple of

∫

h′′
ξ−sµ(c

♯
−(x

′′))∆′′(c♯−(x
′′)) chd′−r+r′′(x′′)

(
ch−2ι(x′′) dx′′

)

=

∫

c♯−(h′′)

ξ−sµ(h)∆
′′(h) dh,

where c♯−(h
′′) ⊆ H′′♯

o .
Notice that the function

H′′♯
o ∋ h→ ξ−sµ(h)∆

′′(h) ∈ C (180)

is constant on the fibers of the covering map H′′♯
o → H′′

o . Indeed, (179) shows that we’ll be
done as soon as we check that the weight −sµ+ s′′ρ′′ is integral for the Cartan subgroup
H′′ (i.e. it is equal to the derivative of a character of H′′). Only in the two cases, G = Ud

and G = O2n+1, the covering (180) is non-trivial.
Recall the notation used in the proof of (163), and let d′′ denote the dimension of the

vector space (171) over D. Suppose G = Ud. Then G′′ = Ud′′ , λj+
d′

2
∈ Z and ρj+

d+1
2
∈ Z.

Hence, (−sµ)j + d′+d+1
2
∈ Z. Since, ρ′′j +

d′′+1
2
∈ Z, we see that

Z ∋ (−sµ)j +
d′ + d+ 1

2
+ ρ′′j +

d′′ + 1

2
= (−sµ)j + ρ′′j + d+ 1.

Therefore (−sµ)j + ρ′′j ∈ Z.

Suppose G = SO2n+1. Then G′′ = SO2n′′+1, λj ∈ Z and ρj+
1
2
∈ Z. Hence, (−sµ)j+ 1

2
∈

Z. Since, ρ′′j +
1
2
∈ Z, we see that (−sµ)j + ρ′′j ∈ Z.

Therefore, (180) is a constant multiple of

∑

s′′∈W (g′′,h′′)

sgn(s′′)

∫

H′′
o

ξ−sµ(h)ξs′′ρ′′(h) dh (181)

=

{
vol(H′′

o) sgn(s
′′) if (sµ)|h′′ = s′′ρ′′,

0 if (sµ)|h′′ /∈ W (g′′, h′′)ρ′′,

= vol(H′′
o)

∑

s′′∈W (g′′,h′′)

sgn(s′′)I{0}(−(sµ)|h′′ + s′′ρ′′).

�
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Corollary 42. Suppose l > l′. Then for any φ ∈ S(W)

T (Θ̌Π)(φ) (182)

= C
∑

s∈W (G′,h′)

sgng′/h′(s)

∫

h′
ξ−sµ(c

♯
−(x)) ch

d′−r−ι(x)

∫

τ ′(h1
reg)

eiB(x,y)fφ(y) dy dx

= C ′

∫

h′
ξ−µ(c

♯
−(x)) ch

d′−r−ι(x)

∫

τ ′(h1
reg)

eiB(x,y)fφ(y) dy dx

where C is a non-zero constant, C ′ = C|W (G′, h′)| and each consecutive integral is abso-
lutely convergent. The expression (182) is zero unless one can choose the Harish-Chandra
parameter µ of Π so that

µ|h′′ = ρ′′. (183)

Proof. The second equality in (182) follows from the fact that fφ(sy) = sgng′/h′(s)fφ(y),
s ∈ W (G′, h′).

Observe that B(x′ + x′′, y) = B(x′, y) for x′ ∈ h′, x′′ ∈ h′′ and y ∈ τ ′(h1reg) ⊆ h′. We
see therefore from Corollary 39 and Lemma 41 that

T (Θ̌Π)(φ) = C
∑

s∈W (G,h)

∑

s′′∈W (G′′,h′′)

sgng/h(s) sgn(s
′′)I{0}(−(sµ)|h′′ + s′′ρ′′)

∫

h′
ξ−sµ(c

♯
−(x)) ch

d′−r−ι(x)

∫

τ ′(h1
reg)

eiB(x,y)fφ(y) dy dx. (184)

Notice that for x ∈ h′ and s′′ ∈ W (G′′, h′′), we have s′′x = x. Thus ξ−sµ(c
♯
−(x)) =

ξ−s′′sµ(c
♯
−(x)) by (159). Notice also that W (G′′, h′′) ⊆ W (G, h) and sgn(s′′) = sgng/h(s

′′).

Moreover, I{0}(−(sµ)|h′′ + s′′ρ′′) = I{0}(−(s′′−1sµ)|h′′ + ρ′′). Hence, replacing s by s′′s in
(184), we see that this expression is equal to

= C
∑

s∈W (G,h)

∑

s′′∈W (G′′,h′′)

sgng/h(s)I{0}(−(sµ)|h′′ + ρ′′) (185)

∫

h′
ξ−sµ(c

♯
−(x)) ch

d′−r−ι(x)

∫

τ ′(h1
reg)

eiB(x,y)fφ(y) dy dx.

= C|W (G′′, h′′)|
∑

s∈W (G,h), (sµ)|h′′=ρ′′

sgng/h(s)

∫

h′
ξ−sµ(c

♯
−(x)) ch

d′−r−ι(x)

∫

τ ′(h1
reg)

eiB(x,y)fφ(y) dy dx.

Clearly (185) is zero if there is no s such that (sµ)|h′′ = ρ′′. Since µ is determined
only up to the conjugation by the Weyl group, we may thus assume that µ|h′′ = ρ′′ and
(183) follows. Under this assumption the summation in (185) is over the s such that
(sµ)|h′′ = ρ′′. For such s we have

(sµ)|h′ + ρ′′ = sµ = s(µ|h′ + ρ′′). (186)
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Since µ is regular, (186) shows that s ∈ W (G′, h′). Hence, (182) follows. The absolute
convergence of the integrals was checked in the proof of Corollary 39. �

Theorem 43. Let l > l′. Fix a genuine representation Π of G̃ with the Harish-Chandra
parameter µ ∈ ih∗. The distribution T (Θ̌Π) is zero unless one can choose µ so that

µ|h′′ = ρ′′. (187)

Let us assume (187) and let

as,j = (sµ)j − δ + 1, bs,j = −(sµ)j − δ + 1 (s ∈ W (G′, h′), 1 ≤ j ≤ l′).

There is a constant C such that for φ ∈ S(W)

T (Θ̌Π)(φ) = C
∑

s∈W (G′,h′)

sgng′/h′(s)

∫

τ ′(h1
reg)

l′∏

j=1

Pas,j ,bs,j(βyj)e
−β|yj | · fφ(y) dy (188)

= C ′

∫

τ ′(h1
reg)

l′∏

j=1

pj(yj) · fφ(y) dy,

where C ′ = C|W (G′, h′)|, the constant β is as in (172) and pj(yj) = Pa1,j ,b1,j(βyj)e
−β|yj |.

In particular T (Θ̌Π) is a locally integrable function whose restriction to h1
reg is equal to a

non-zero constant multiple of

1

πg/z(τ ′(w))

∑

s∈W (G′,h′)

sgng′/h′(s)
l′∏

j=1

Pas,j ,bs,j(βδjτ
′(w)j)e

−βτ ′(w)j (w ∈ h1
reg). (189)

Proof. The formula (188) follows from Corollary 42, Lemma 33 and from Proposition C.5,
because under our assumption, as,j+bs,j = −2δ+2 = −1

ι
(d′−r)+1 ≥ 1. Weyl integration

on W, (68), together with (188) implies (189). �

Our formula for the intertwining distribution T (Θ̌Π) is explicit enough to find its asymp-
totics, see Theorem 44. These allow us to compute the wave front set of the representation
Π′ within the Classical Invariant Theory, without using [Vog78]. See Corollary 46 below.
We keep the notation of section 5.

Theorem 44. In the topology of S∗(W),

tdeg µOmM∗
t−1T (Θ̌Π) →

t→0+
CµOm ,

where C 6= 0, if T (Θ̌Π) 6= 0.

Proof. Proposition 31 and Theorem 40 imply that for l ≤ l′

lim
t→0+

tdeg µOmM∗
t−1T (Θ̌Π)

=


C

∑

γ⊆{1,2,...,l}

∫

h∩τ(W)∩γ⊥

∏

j /∈γ

pj(yj) ·
∏

j∈γ

qj(∂(Jj)) · f(y)|U(IU) dγy


µOm .
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Similarly, Proposition 31 and Theorem 43 imply that for l ≥ l′

lim
t→0+

tdeg µOmM∗
t−1T (Θ̌Π) =

(
C ′

∫

τ ′(h1
reg)

l′∏

j=1

pj(yj) · f(y)|U(IU) dy
)
µOm .

Thus in each case the limit is a constant multiple of the measure µOm . In order to
determine the constant it suffices to restrict the distribution T (Θ̌Π) to U . This can be
done explicitly, without the use of the orbital integrals as follows.

Recall from (167) that

〈xw,w〉 = trD/R(xτ(w)) (x ∈ g, w ∈W).

Hence

T (Θ̌Π)|U(IU) =

∫

U

T (Θ̌Π)|U(u) du =

∫

U

∫

G̃

ΘΠ(g̃
−1)Θ(g̃)χc(g)(u) dg̃ du

=

∫

U

∫

G̃

ΘΠ(g̃
−1)Θ(g̃)χ

(1
4
trD/R(c(g)τ(u))

)
dg̃ du. (190)

We shall use the notation introduced in the proof of Lemma 19 with k = m.
In the stable range the elements of U are of the form

u =

(
Im
w3

)

with w3 = −wt
3. So, by (115), τ(u) = 2w3 and the last integral in (190) is a non-zero

constant multiple of
∫

g

∫

G̃

ΘΠ(g̃
−1)Θ(g̃)χ

(1
4
trD/R(c(g)x)

)
dg̃ dx

=

∫

G̃

ΘΠ(g̃
−1)Θ(g̃)

(∫

g

χ
(1
4
trD/R(c(g)x)

)
dx
)
dg̃

= const

∫

G̃

ΘΠ(g̃
−1)Θ(g̃)δ0(c(g)) dg̃

= const ΘΠ(−Ĩ)Θ(−Ĩ),
where ΘΠ(g̃

−1)Θ(g̃) does not depend on the preimage g̃ of g ∈ Sp and const denotes some
non-zero constant.

Suppose now that the dual pair is not in the stable range, so m < d. Suppose moreover
that U consists of the matrices of the form

u =

(
Im 0
w3 w6

)

with w3 = −wt
3. This means that F ′ = 0 in (112), i.e. that G′ is not equal to Up,q with

p 6= q. By (115),

τ(u) =

(
2w3 w6

−wt
6 0

)
.
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For g ∈ G, write c(g) =

(
a −bt
b d

)
∈ g with a = −at ∈Mm(D) and d = −dt ∈Md−m(D).

Then

trD/R

(
c(g)

(
2w3 w6

−wt
6 0

))
= trD/R(2aw3 + b

t
w6

t + bw6) = 2 trD/R(aw3) + 2 trD/R(bw6) .

Hence, the last integral in (190) is a non-zero constant multiple of

∫ ∫ ∫

G̃

ΘΠ(g̃
−1)Θ(g̃)χ

(1
4
trD/R

(
c(g)

(
2w3 w6

−wt
6 0

)))
dg̃ dw3 dw6

= const

∫

G̃5

ΘΠ

( ˜(
−Im 0
0 g5

)−1)
Θ
( ˜(
−Im 0
0 g5

))
dg̃5

where const 6= 0 and G5 is the subgroup of G consisting of all the indicated matrices.
Notice that the integral

∫

G̃5

ΘΠ

( ˜(
−Im 0
0 g5

)−1)
Θ
( ˜(
−Im 0
0 g5

))
dg̃5

is a non-zero constant multiple of the sum of the multiplicities of of the irreducible com-
ponents of Π|G̃5

in ω, i.e. in Π, which is positive.
Suppose now that U consists of the matrices of the form

u =




Im 0
0 w5

w3 w6


 .

Then D = C and we may assume that

τ(u) =

(
2w3 w6

−wt
6 w5

tiw5

)
.

Computations similar to those of the previous case show that the last integral in (190) is
a non-zero constant multiple of

∫ ∫ ∫ ∫

G̃

ΘΠ(g̃
−1)Θ(g̃)χ

(1
4
trC/R

(
c(g)

(
2w3 w6

−wt
6 w5

tiw5

)))
dg̃ dw3 dw6 dw5 (191)

= const

∫

G̃5

ΘΠ

( ˜(
−Im 0
0 g5

)−1)
Θ
( ˜(
−Im 0
0 g5

))∫
χ
(1
4
trC/R(c(g5)w5

tiw5)
)
dw5 dg̃5.
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Let W5 =Md′−m,d−m(C) endowed with the structure of real symplectic space induced by

W under the identification of w5 with



0 0
0 w5

0 0


. If g5 − 1 is invertible, then 2

∫

W5

χ
(1
4
trC/R(c(g5)w5

tiw5)
)
dw5 =

∫

W5

χc(g5)(w5) dw5 =
Θ5(c̃(0)g̃5)

Θ5(c̃(0))Θ5(g̃5)
, (192)

where Θ5 is the character of the Weil representation for the metaplectic group S̃p(W5),
as defined in (12).

To compute (191), observe that if W = W1 ⊕W2 is a direct sum orthogonal decompo-
sition of the symplectic space W, then we have the embeddings

Sp(Wj) ⊆ Sp(W) (j = 1, 2).

Suppose gj ∈ Sp(Wj) with gj − 1 invertible in End(Wj). Then, in terms of [AP12,
Notation 4 and Notation 6], U = W2∩W1 = 0, V = 0, U1+U2 = W, U12 = W, q̃g1,g2 = 0.
Hence, γ(q̃g1,g2) = 1, see the bottom of page 46 in [AP12], and [AP12, Proposition 46]
implies that C(g1, g2) = 1. Therefore

Θ(g̃1g̃2) = Θ(g̃1)Θ(g̃2).

Also,

S̃p(Wj) ⊆ S̃p(W) (j = 1, 2).

We apply this with W1 = W5 and W2 equal to its orthogonal complement in W. Let G2

be the subgroup of G acting trivially on W5. Then, if Θ2 denotes the character of the
Weyl representation associated to W2,

Θ
(( −̃Im 0

0 g̃5

))
= Θ2(−̃Im)Θ5(g̃5) .

Since the restrictions ΘΠ|G̃5
and ΘΠ|G̃2

are genuine representations of G̃5 and G̃2, respec-

tively, the products ΘΠ|G̃j
(g̃)Θj(g̃) (j = 2, 5) are independent of the preimage g̃ of G̃j.

2Formula (192) ca be easily verified using twisted convolution ♮. Indeed

Θ(c̃(0))

∫

W

T (g̃)(w) dw = T (c̃(0))♮T (g)(0) = Θ(c̃(0)g̃),

so that ∫

W

χc(g)(w) dw =
Θ(c̃(0)g̃)

Θ(c̃(0))Θ(g̃)
.

See e.g. [AP12, Lemma 57].
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Hence, (191) is equal to

const

∫

G̃5

ΘΠ(

(
−̃Im 0
0 g̃5

)−1

)Θ(

(
−̃Im 0
0 g̃5

)
)

Θ5(c̃5(0)g̃5)

Θ5(c̃5(0))Θ5(g̃5)
dg̃5 (193)

= const

∫

G̃5

ΘΠ(

(
−̃Im 0
0 g̃5

)−1

)Θ2(−̃Im)Θ5(g̃5)
Θ5(c̃5(0)g̃5)

Θ5(c̃5(0))Θ5(g̃5)
dg̃5 (194)

= const

∫

G̃5

ΘΠ(

(
−̃Im 0
0 g̃5

)−1

)Θ2(−̃Im)
Θ5(c̃5(0)g̃5)

Θ5(c̃5(0))
dg̃5 (195)

= const

∫

G̃5

ΘΠ(

(
−̃Im 0
0 c̃5(0)

−1g̃5

)−1

)Θ2(−̃Im)
Θ5(g̃5)

Θ5(c̃5(0))
dg̃5 (196)

= const
Θ2(−̃Im)
Θ5(c̃5(0))

∫

G̃5

ΘΠ(−̃I
˜(
Im 0
0 g5

)−1

)Θ5(g̃5) dg̃5 (197)

= const′
∫

G5

ΘΠ|
G̃5
(g̃−1

5 )Θg̃5) dg̃5

This is a non-zero constant multiple of the sum of the multiplicities of the irreducible
components of Π|G̃5

in ω, i,.e. in Π, which is positive. �

Corollary 45. In the topology of S∗(g′),

tdimO′
mM∗

t2F(τ ′∗(T (Θ̌Π))) →
t→0+

CFµO′
m

or equivalently

tdimO′
m−2 dim g′M∗

t−2τ ′∗(T (Θ̌Π)) →
t→0+

CµO′
m
,

where C 6= 0, if T (Θ̌Π) 6= 0.

Proof. Observe that, by the uniqueness of the GG′-invariant measure, τ ′∗(µOm) is a positive
constant multiple of µO′

m
. Hence Proposition 44 together with (131) show that

tdeg µOm+dimW−2 dim g′M∗
t−2τ ′∗(T (Θ̌Π)) →

t→0+
CµO′

m
.

Now we apply the Fourier transform F and use the fact that

F ◦M∗
t−2 = t2 dim g′M∗

t2 ◦ F
to see that

tdeg µOm+dimWM∗
t2F(τ ′∗T (Θ̌Π)) →

t→0+
CFµO′

m
.

But Lemma 22 implies that deg µOm +dimW = dimO′
m. Hence the corollary follows. �

Corollary 46. Suppose the representation Π occurs in Howe’s correspondence and the dis-

tribution character ΘΠ is supported in the preimage G̃1 of the Zariski identity component
G1 of G. Then

WF (Π′) = O′
m.
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Proof. This is immediate from Corollary 45, Lemma C.1 and the easy to verify inclusion
WF (Π′) ⊆ O′

m, [Prz91, (6.14)]. �

7. The pair G = Ul, G′ = Ul′, l ≤ l′.

In this section we consider a dual pair (G,G′) with both members compact. By the
classification of the dual pairs, both G and G′ are compact unitary groups and we may
assume that G = Ul and G′ = Ul′ with l ≤ l′. Furthermore, since we want to use the
results of section 6, we view Ul′ as Up,q with p = 0 and q = l′. In particular, by Theorem
(17),

h ∩ τ(W) =
{ l∑

j=1

yjJj; yj ≤ 0 for all 1 ≤ j ≤ l
}
,

which is a W (G, h)-invariant domain, where W (G, h) acts on h by permutation of the
coordinates, as indicated in (73). The constant δ introduced in (160) has value

δ =
1

2
(l′ − l + 1) , (198)

and β = π in (172).

Fix a genuine representation Π of G̃ with the Harish-Chandra parameter µ ∈ ih∗ and
define

aj = µj − δ + 1, bj = −µj − δ + 1 (1 ≤ j ≤ l) , (199)

as,j = (sµ)j − δ + 1, bs,j = −(sµ)j − δ + 1 (s ∈ W (G, h), 1 ≤ j ≤ l) . (200)

(Hence aj = a1,j and bj = b1,j.)

Lemma 47. There is a constant C such that for φ ∈ S(W)

T (Θ̌Π)(φ) = C

∫

h∩τ(W)

l∏

j=1

Paj ,bj(πyj)e
πyj · fφ(y) dy (201)

=
C

|W (G, h)|
∑

s∈W (G,h)

sgn(s)

∫

h∩τ(W)

l∏

j=1

Pas,j ,bs,j(πyj)e
πyj · fφ(y) dy.

Equivalently, with a possibly different constant C,

T (Θ̌Π)(φ) = C

∫

h∩τ(W)

l∏

j=1

Paj ,bj ,−2(πyj)e
πyj · fφ(y) dy. (202)

Proof. We are going to use Theorem 40. Since we view Ul′ as Up,q with p = 0 and
q = l′, we have δj = −1 for all j. Since the degree of the polynomial Qas,j ,bs,j is equal to
−as,j−bs,j = 2δ−2 = l′− l−1, Corollary 17 implies that Qas,j ,bs,j(π

−1∂(Jj))fφ(y)yj=0 = 0.
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Hence all the terms with γ 6= ∅ are zero. Thus the first equality in (201) follows. For the
second, notice that, since (sy)j = ys−1(j), we have

l∏

j=1

Pas,j ,bs,j(πyj)e
πyj = e

∑l
j=1 πyj

l∏

j=1

Pas,j ,bs,j(πyj)

= e
∑l

j=1 πys−1(j)

l∏

j=1

Pa1,j ,b1,j(πys−1(j)) =
l∏

j=1

Paj ,bj(π(s
−1y)j)e

π(s−1y)j

and recall that fφ(sy) = sgn(s)fφ(y). Finally, since πyj ≤ 0, (C.4) implies that we may
replace Paj ,bj(πyj) by 2πPaj ,bj ,−2(πyj). �

Lemma 48. The distribution T (Θ̌Π) is non-zero if and only if the highest weight λ =∑
j=1 λjej ∈ ih∗ of Π satisfies the following condition:

λ1 ≥ λ2 ≥ · · · ≥ λl ≥
l′

2
. (203)

Equivalently, if and only if the Harish-Chandra parameter µ of Π satisfies

µj ∈ δ + Z+ (j = 1, 2, . . . , l) (204)

where Z+ denotes the set of non-negative integers.

The condition (203) means exactly that Π occurs in Howe’s correspondence, see for
example [Prz96, (A.5.2)]. Recall that we have chosen the Harish-Chandra parameter µ
to be strictly dominant, i.e. so that µ1 > µ2 > · · · > µl, but, in fact, the condition (204)
does not depend on the choice of the order of roots.

Proof. Let ρ =
∑

j=1 ρjej be one half times the sum of the positive roots. Then µj = λj+ρj
and ρj =

l+1
2
− j. Hence

µj − µj+1 = λj − λj+1 + 1 (1 ≤ j ≤ l − 1) ,

µj − δ = λj −
l′

2
+ l − j (1 ≤ j ≤ l) .

This proves the equivalence of the conditions (203) and (204) since µ is strictly dominant.
Notice that, since aj = µj − δ + 1, the condition (204) is also equivalent to aj ≥ 1 for

all 1 ≤ j ≤ l. If the distribution T (Θ̌Π) is non-zero, then none of the Paj ,bj ,−2 can be
identically 0. So aj ≥ 1 for all 1 ≤ j ≤ l by (C.2).

It remains to see that the condition aj ≥ 1 for all 1 ≤ j ≤ l suffices for the non-vanishing
of the expression (202). We are going to use a non-direct argument, though an alternative
one is going to be evident from Proposition 49 below.

In the case when both members of the dual pair are compact

fφ(y) = C1πg′/z′(y)

∫

S

φ(s.w) ds (205)

where w ∈ h1 and τ(w) = y is identified with τ ′(w) and C1 is the appropriate constant.
Clearly the integral in (205) converges if φ ∈ C∞

c (W) and gives an element of C∞
c (W)G.
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By Corollary 4, it is of the form ψ ◦ τ ′ where ψ ∈ C∞
c (g′). Since G′ is compact, a theorem

of Dadok, [Dad82, Corollary 1.5], applied to ig′ shows that the function

h ∩ τ(W) ∋ y →
∫

S

φ(s.w) ds ∈ C, (y = τ(w), w ∈ h1)

may be an arbitrary W (G, h)-invariant compactly supported C∞ function on h ∩ τ(W),
as φ varies through C∞

c (W). Therefore

h ∋ y → πg/h(y)

∫

S

φ(s.w) ds, (y = τ(w), w ∈ h1)

may be an arbitrary W (G, h)-skew-invariant compactly supported C∞ function on h ∩
τ(W). Hence, if (201) were zero, then the function

l∏

j=1

Paj ,bj ,−2(πyj)e
−πyj · πg′/z′(y)

πg/h(y)

would have to be W (G, h)-invariant. Equivalently,

l∏

j=1

Paj ,bj ,−2(πyj)

would have to be W (G, h)-invariant. This is not possible if aj ≥ 1 for all j. Indeed, µ is
strictly dominant and hence, by (C.2), the Paj ,bj ,−2 are non-zero polynomials of different
degrees. Thus, the distribution (201) is not zero. �

Proposition 49. With the notation of Lemma 48, let

Pµ(y) =
l∏

j=1

Paj ,bj ,−2(πyj) (y ∈ h).

The distribution T(Θ̌Π) is a smooth GG′-invariant function on W. For w ∈ h1 it is given
by the following formula:

T(Θ̌Π)(w) = cΠ e
−π

2
〈Jw,w〉

( 1

πg/h(y)

∑

s∈W (G,h)

sgn(s)Pµ(sy)
)

= cΠ e
−π

2
〈Jw,w〉

( 1

πg/h(y)

∑

s∈W (G,h)

sgn(s)Psµ(y)
)
, (206)

where cΠ is a constant, J is the unique positive compatible complex structure on W central-
ized by G and G′, β is as in (172) and y = τ(w) ∈ h. The sum in (206) is a W (G, h)-skew
symmetric polynomial. Hence the quotient by πg/h is a W (G, h) invariant polynomial on

h. It extends uniquely to a G-invariant polynomial P̃µ on g. Thus

T(Θ̌Π)(w) = cΠ e
−π

2
〈Jw,w〉P̃µ(τ(w)) (w ∈W). (207)
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Proof. We see from Lemma 47 and the formula (205) that for any φ ∈ S(W),

T (Θ̌Π)(φ) = C1

∫

h∩τ(W)

eπ
∑l

j=1 yjPµ(y)πg′/z′(y)

∫

G×G′

φ(gg′.w) dg dg′ dy. (208)

However, by (173) and (167) with β = π,

−π
l∑

j=1

yj = B(
l∑

j=1

Jj, y) =
π

2
〈

l∑

j=1

Jjw,w〉 =
π

2
〈Jw,w〉,

where J =
∑l

j=1 Jj has the required properties. Furthermore,

πg′/z′(y) =
1

|W (G, h)|
∑

s∈W (G,h)

sgn(s)πg′/z′(sy).

Hence, (208) implies

T (Θ̌Π)(φ) (209)

= C2

∫

h∩τ(W)

e−
π
2
〈Jw,w〉

∑

s∈W (G,h)

sgn(s)Pµ(sy)πg′/z′(y)

∫

G×G′

φ(gg′.w) dg dg′ dy.

Weyl integration formula on W, (67), together with (209) implies (206). �

We now reverse the role of G and G′ to compute the intertwining distribution T(Θ̌Π′)

for a genuine irreducible unitary representation Π′ of G̃′. Since we assume that l ≤ l′, the
decomposition (170) becomes

h′ = h⊕ h′′. (210)

Proposition 50. Let Π′ be a genuine representation of G̃′ with the Harish-Chandra pa-
rameter µ′ ∈ ih′∗. Then T(Θ̌Π′) 6= 0 if and only if

−µ′
j ∈ δ + Z+, (1 ≤ j ≤ l′) (211)

and µ′|h′′ = ρ′′ (up to permutation of the coordinates).

T(Θ̌Π′) is a non-zero constant multiple of T(Θ̌Π) if and only if µ and µ′ can be chosen in
their Weyl group orbits so that

µ′|h = −µ and µ′|h′′ = ρ′′. (212)

Proof. As one may see from (166), reversing the roles of the members of the dual pair in
Theorem 43 results in replacing the form B by −B. The constant β = π get therefore
replaced by −β = −π. Also, (205) gets replaced by

f ′
φ(y) = C1 πg/h(y)

∫

S

φ(s.w) ds

with an appropriate constant C1. Since this plays no role in Lemma 41 and Corollary 42,
T (Θ̌Π′) is zero unless one can choose µ′ so that

µ′|h′′ = ρ′′. (213)
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Since the roles of l and l′ are reversed, δ = 1
2
(l′ − l + 1) is replaced by δ′ = 1

2
(l − l′ + 1).

As before, δj = −1 for all j. Let

a′s,j = −(sµ′)j − δ′ + 1, b′s,j = (sµ′)j − δ′ + 1 (s ∈ W (G, h), 1 ≤ j ≤ l).

Then Theorem 43 says that

T (Θ̌Π′)(φ) = C
∑

s∈W (G,h)

sgn(s)

∫

h∩τ(W)

l∏

j=1

Pa′s,j ,b
′
s,j
(−πyj)e−πyj · f ′

φ(y) dy, (214)

where there are no derivatives because the degree of the polynomial Qa′s,j ,b
′
s,j

is equal to

−a′s,j − b′s,j = 2δ′ − 2 = l − l′ − 1 < 0.
Since −πyj ≥ 0, we have Pa′s,j ,b

′
s,j
(−πyj) = 2πPa′s,j ,b

′
s,j ,2

(−πyj). Recall, (C.3), that

Pa′s,j ,b
′
s,j ,2

(−πyj) = Pb′s,j ,a
′
s,j ,−2(πyj). Hence, (214) may be rewritten as

T (Θ̌Π′)(φ) = C
∑

s∈W (G,h)

sgn(s)

∫

h∩τ(W)

l∏

j=1

Pb′s,j ,a
′
s,j ,−2(πyj)e

−πyj · f ′
φ(y) dy, (215)

with a different constant C. Recall also that

πg/h(y) ·
l∏

j=1

yl
′−l
j = C2πg′/z′(y).

Hence, Proposition C.6 shows that

l∏

j=1

Pb′s,j ,a
′
s,j ,−2(πyj) · πg/h(y) = C3

l∏

j=1

Pb′s,j−(l′−l),a′s,j−(l′−l),−2(πyj) · πg′/z′(y).

Therefore (215) coincides with

T (Θ̌Π′)(φ) (216)

= C
∑

s∈W (G,h)

sgn(s)

∫

h∩τ(W)

l∏

j=1

P(sµ′)j−δ+1,−(sµ′)j−δ+1,−2(πyj)e
−πyj · fφ(y) dy,

with a possibly different constant C. By comparing (216) with (201) we see that (212)
holds. �

Since, by the definition (12),

OP(K(T (Θ̌Π))) = ω(Θ̌Π) and OP(K(T (Θ̌Π′))) = ω(Θ̌Π′),

Proposition 50 implies the following corollary.

Corollary 51. When restricted to the group G̃G̃′, the oscillator representation decomposes
into the Hilbert direct sum of irreducible components of the form CΠ ·Π⊗Π′, where Π is
determined by Π′ via the condition (212) and CΠ are some positive integral constants.
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The final part of this section is devoted to the proof that CΠ = 1, that is that each

irreducible representation Π ⊗ Π′ of G̃ × G̃′ contained in the oscillatory representation
occurs with multiplicity one, see Proposition 60 below. This is a well known and funda-
mental fact due to Hermann Weyl, [Wey46]. We include a proof using the interwining
distributions.

For β ∈ h∗ we denote by Hβ the unique element in h such that β(H) = tr(HHβ) for all
H ∈ h. We define the operator ∂(β) as the directional derivative in the direction of Hβ.
This defines in particular ∂(πg/h) =

∏
α>0 ∂(α).

Lemma 52. The constant Cz in Lemma 34 is equal in absolute value to

π−ll′+
l′(l′+1)

2

vol(G)

|W (z, h)|
|W (g, h)|

∂(πg/h)(πg/h)

∂(πz/h)(πz/h)
=

(l − l′)!
l!

π−ll′+
l′(l′+1)

2

vol(G)

∂(πg/h)(πg/h)

∂(πz/h)(πz/h)
. (217)

Proof. The proof is a straightforward modification of the argument proving Harish-Chandra’s
formula for the Fourier transform of a regular semisimple orbit, [Har57a, Theorem 2, page

104]. Notice that the constant π−ll′+
l′(l′+1)

2 = π− l(l−1)
2 π

(l−l′)(l−l′−1)
2 is due to the normaliza-

tion of B in (173). �

Recall that we denote by Σm the group of permutations of {1, 2, . . . ,m}.

Lemma 53. Let zj ∈ C for 1 ≤ j ≤ m. Then, with the convention that empty products
are equal to 1,

∑

s∈Σm

sgn(s)
m∏

j=1

s(j)−1∏

k=1

(zj − k) =
∏

1≤j<k≤m

(zj − zk) . (218)

Proof. The left-hand side is a Vandermonde determinant. Indeed

∑

s∈Σm

sgn(s)
m∏

j=1

s(j)−1∏

k=1

(zj − k)

= det




1 (z1 − 1) (z1 − 1)(z1 − 2) . . . (z1 − 1)(z1 − 2) . . . (z1 −m+ 1)
1 (z2 − 1) (z2 − 1)(z2 − 2) . . . (z2 − 1)(z2 − 2) . . . (z2 −m+ 1)
...

...
...

...
...

1 (zm − 1) (zm − 1)(zm − 2) . . . (zm − 1)(zm − 2) . . . (zm −m+ 1)




= det




1 z1 z21 . . . zm−1
1

1 z2 z22 . . . zm−1
2

...
...

...
...

...
1 zm z2m . . . zm−1

m


 .

This proves the result. �
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Lemma 54. Let n ∈ Z with n ≥ 2 and let a ∈ C. Set

F (a, n) =

det




1 a a(a+ 1) . . . a(a+ 1) · · · (a+ n− 2)
1 a+ 1 (a+ 1)(a+ 2) . . . (a+ 1)(a+ 2) · · · (a+ n− 1)
...

...
...

...
...

1 a+ n− 1 (a+ n− 1)(a+ n) . . . (a+ n− 1)(a+ n) · · · (a+ 2n− 3)
1 a+ n (a+ n)(a+ n+ 1) . . . (a+ n)(a+ n+ 1) · · · (a+ 2n− 2)



.

Then

F (a, n) =
n−1∏

k=1

k! .

In particular, F (a, n) is independent of a.

Proof. For 2 ≤ j ≤ n we replace the j-th row by the difference between the j-th and the
(j − 1)-th row. We obtain:

F (a, n) = det




1 a a(a+ 1) . . . a(a+ 1) · · · (a+ n− 2)
0 1 2(a+ 1) . . . (n− 1)(a+ 1) · · · (a+ n− 2)
...

...
...

...
...

0 1 2(a+ n− 1) . . . (n− 1)(a+ n− 1) · · · (a+ 2n− 4)
0 1 2(a+ n) . . . (n− 1)(a+ n) · · · (a+ 2n− 3)




= det




1 2(a+ 1) . . . (n− 1)(a+ 1) · · · (a+ n− 2)
...

...
...

...
1 2(a+ n− 1) . . . (n− 1)(a+ n− 1) · · · (a+ 2n− 4)
1 2(a+ n) . . . (n− 1)(a+ n) · · · (a+ 2n− 3)




= (n− 1)! det




1 (a+ 1) . . . (a+ 1) · · · (a+ n− 2)
...

...
...

...
1 (a+ n− 1) . . . (a+ n− 1) · · · (a+ 2n− 4)
1 (a+ n) . . . (a+ n) · · · (a+ 2n− 3)




= (n− 1)!F (a+ 1, n− 1) .

Iterating, we conclude

F (n, a) = (n− 1)!F (a+ 1, n− 1) = · · · = (n− 1)! · · · 2!F (a+ n− 2, 2) =
n−1∏

k=1

k!

since

F (a+ n− 2, 2) = det

[
1 a+ n− 2
1 a+ n− 1

]
= 1 .

�
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We may identify

s1 = W = Hom(V1,V0) =Ml,l′(C),

so that τ(w) = wiwt and J(w) = −iw, w ∈ Ml,l′(C), is a compatible positive complex
structure on W contained in g. Then (165) implies that

〈J(w), w〉 = Re tr(Jτ(w)) = tr(wwt).

Hence our normalization of the Lebesgue measure dw on W is such that for each entry,

dz = dx dy if z = x+ iy ∈ C. In particular, if we let Φ(w) = e− tr(wwt) then
∫

W

Φ(w) dw = πll′ .

Lemma 55. With the above notation,

∫

h2
1

|πs0/h21(w
2)|
∫

G×G′

Φ(s.w) ds dw2 = vol(G) vol(G′)
l∏

k=0

k!
l−1∏

k=0

(k + l′ − l)! . (219)

Consequently,
∫

W

f(w) dw = C

∫

h2
1

|πs0/h21(w
2)|
∫

GG′

f(s.w) ds dw2 (f ∈ Cc(W)) ,

where

C =
πll′

vol(G) vol(G′)
∏l

k=0 k!
∏l−1

k=0(k + l′ − l′)!
. (220)

Proof. By G×G′-invariance,
∫

G×G′

Φ(s.w) ds = vol(G) vol(G′)Φ(w) .

Moreover,

|πs0/h21(w
2)| = |πg′/h′(τ ′(w))||πg/z(τ(w))| .

Using (58) and (61), up to a constant of absolute value one,
∫

h2
1

|πs0/h21(w
2)|
∫

GG′

Φ(s.w) ds dw2

=

∫

(R+)l

∏

1≤j<k≤l

(xj − xk)2
( l∏

j=1

xl
′−l
j

)
e−x1−···−xl dx1 · · · dxl . (221)

Recall that ∫ ∞

0

xαe−x dx = α! .
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Since
∏

1≤j<k≤l

(xj − xk)2 =
(∑

s∈Σl

sgn(s) x
s(1)−1
1 · · · xs(l)−1

l

)2

=
∑

s,t∈Σl

sgn(st) x
s(1)+t(1)−2
1 · · · xs(l)+t(l)−2

d′ ,

formula (221) is equal to

∑

s,t∈Σl

sgn(st)

∫

(R+)l
x
s(1)+t(1)+l′−l−2
1 · · · xs(l)+t(l)+l′−l−2

l e−x1−···−xl dx1 · · · dxl

=
∑

s,t∈Σl

sgn(st)
(
s(1) + t(1) + l′ − l − 2

)
! · · ·

(
s(l) + t(l) + l′ − l − 2

)
!

= |Σl|
∑

s∈Σl

sgn(s)
l∏

j=1

(
s(j) + j + l′ − l − 2

)
!

= l! det
[(
k + j + l′ − l − 2

)
!
]l
j,k=1

. (222)

Applying Lemma 54, we obtain

l! det
[(
k + j + l′ − l − 2

)
!
]l
j,k=1

= l!
l−1∏

k=0

(k + l′ − l))!F (3 + (l′ − l − 2), l) =
l−1∏

k=0

(k + l′ − l)!
l∏

k=0

k! ,

which proves the lemma. �

One can relate the Haar measure on the group to the Lebesgue measure on the Lie
algebra via the following formulas

dc♯−(x) = 2l
2

ch−2l(x) dx (x ∈ g), (223)

dc♯−(x) = 2l ch−2(x) dx (x ∈ h) .

Also, we have the following, easy to verify, equation

πg/h(x) = 2−
l(l−1)

2 ∆(c♯−(x)) ch
l−1(x) (x ∈ h) . (224)

Lemma 56. The constant C in (178), with the roles of G and G′ reversed, is equal to

2−(l′−l)(l′−l+1)/2 vol(H′′♯
o) .

Proof. This follows from (224) and (223) with l′ − l in place of l. �

Lemma 57. The constant cΠ in Proposition 49 is equal in absolute value to

(2π)l21−l′l+
l(l+1)

2
∂(πg/h)

(
πg/h

)

|W (G, h)|
vol(G)

vol(H)
π− l(l−1)

2 = (2π)l21+l(l−l′) . (225)
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Proof. The value of the constant cΠ is obtained by repeating the computation in the
proof of Proposition 49 keeping track of the constants, and the following formula, due to
Macdonald [Mac80, p. 95]:

∂(πg/h)
(
πg/h

)

|W (G, h)|
vol(G)

vol(H)
= (2π)N , (226)

where N = l(l−1)
2

is the number of positive roots. �

Lemma 58. For every smooth function F : h→ C

(
∂(πg/h)(πg/hF )

)
(0) =

( l∏

k=0

k!
)
F (0) . (227)

Proof. In terms of the coordinates xj = iyj (1 ≤ j ≤ l),

∂(πg/h) =
∏

1≤j<k≤l

(∂xj
− ∂xk

) =
∑

s∈Σl

sgn(s)∂s(1)−1
x1

· · · ∂s(l)−1
xl

. (228)

By the product rule,
(
∂(πg/h)(πg/hF )

)
(0) = ∂(πg/h)(πg/h)F (0) .

Moreover, if δs,t denotes Kronecker’s delta, then

∂(πg/h)(πg/h) =
∑

s∈Σl

sgn(s)∂s(1)−1
x1

· · · ∂s(l)−1
xl

(∑

t∈Σl

sgn(t)x1
t(1)−1 · · · xlt(l)−1

)

=
∑

s∈Σl

sgn(s)
(∑

t∈Σl

sgn(t) δs,t

l∏

k=1

(t(k)− 1)!
)

= |Σl|
l∏

k=1

(k − 1)!

=
l∏

k=0

k! (229)

�

Lemma 59. The following equality holds

dimΠ′ =
1

∏l
j=1(l

′ − j)!

l∏

j=1

(δ + µj − 1)!

(µj − δ)!
∏

1≤j<k≤l

(µj − µk) . (230)

Proof. By Weyl’s dimension formula,

dimΠ′ =
∏

α>0

〈µ′, α〉
〈ρ, α〉 =

∏l′

k=2(µ
′
1 − µ′

k) · · ·
∏l′

k=l+1(µ
′
l − µ′

k)∏l′

k=2(k − 1) · · ·∏l′

k=l+1(k − l)
, (231)
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where 〈·, ·〉 is the form on h′∗ induced by (any nonzero multiple) of the Killing form on
g′. Indeed, recall that, in our conventions, the positive roots of (g′C, h

′
C) are of the form

αj,k(x) = xj − xk (1 ≤ j < k ≤ l′ , x ∈ h′) ,

and

ρ′ = (ρ′1, . . . , ρ
′
l′) with ρ′j =

1
2
(l′ − 2j + 1) for 1 ≤ j ≤ l′ .

Let ρ′′ be the ρ-function for ud−d′ . Let us fix the form on h′∗ associated with the trace
form 〈x, y〉 = − tr(xy) on h′. Then

〈ρ, αj,k〉 = k − j .

Recall that

µ′
j = δ + nj (1 ≤ j ≤ l , nj ∈ Z+) (232)

µ′
j = ρ′′j−l =

1
2
(l′ − l + 1− 2(j − l)) = δ − j + l (l + 1 ≤ j ≤ l′) . (233)

Hence

〈µ′, αj,k〉 = k − j (l + 1 < j < k ≤ l′) .

This proves the second equality in (231). Observe now that

l′∏

k=j

(k − j) =
l′−j∏

k=1

k = (l′ − j)! .

The denominator of (231) is therefore equal to

l∏

j=1

(l′ − j)!
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For the numerator of (231), using (233), we have

l′∏

k=2

(µ′
1 − µ′

k) · · ·
l′∏

k=l+1

(µ′
l − µ′

k)

= (µ′
1 − µ′

2) (µ′
1 − µ′

3) · · · (µ′
1 − µ′

l) (µ′
1 − µ′

l+1) · · · (µ′
1 − µ′

l′)
× (µ′

2 − µ′
3) · · · (µ′

2 − µ′
l) (µ′

2 − µ′
l+1) · · · (µ′

2 − µ′
l′)

× . . .
...

× (µ′
l−1 − µ′

l)(µ
′
l−1 − µ′

l+1) · · · (µ′
l−1 − µ′

l′)
× (µ′

l − µ′
l+1) · · · (µ′

l − µ′
l′)

=
∏

1≤j<k≤l

(µ′
j − µ′

k)
∏

1≤j≤l

l+1≤k≤l′

(µ′
j − µ′

k)

=
∏

1≤j<k≤l

(µ′
j − µ′

k)
∏

1≤j≤l

l+1≤k≤l′

(nj + k − l)

=
∏

1≤j<k≤l

(µ′
j − µ′

k)
∏

1≤j≤l

∏

1≤k≤l′−l

(nj + k)

=
∏

1≤j<k≤l

(µ′
j − µ′

k)
l∏

j=1

(2δ + nj − 1)!

nj!

�

Proposition 60. Up to a constant of absolute value one,

T (Θ̌Π)(0) = vol(G̃) · dimΠ′ . (234)

Equivalently, Π⊗ Π′ is contained in ω exactly once.

Proof. The projection of ω onto its isotypic component of type Π is given by

vol(G̃) · PΠ = dimΠ ·
∫

G̃

Θ̌Π(g̃)ω(g̃) dg̃

= dimΠ ·
∫

G̃

Θ̌Π(g̃)OP(K(T (g̃))) dg̃

= dimΠ ·OP ◦K
(∫

G̃

Θ̌Π(g̃)T (g̃) dg̃
)

= dimΠ ·OP ◦K
(
T (Θ̌Π)

)
.

Also, with K = K
(
T (Θ̌Π

)
, we have

tr(OP(K)) =

∫

X

K(x, x) dx = T (Θ̌Π)(0) .
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It follows that the dimension of the isotypic component of type Π is

tr(PΠ) = dimΠ · tr
(
OP

(
K(T (Θ̌Π)

)) 1

vol(G̃)

= dimΠ · T (Θ̌Π)(0)

vol(G̃)
. (235)

Hence Π⊗ Π′ is contained in ω exactly once if and only if (234) holds.
Notice first that, by definition, (b − 1)!Pa,b,2(ξ) is a polynomial function of a and b.

Hence, using (206), we have that

l∏

j=1

(−µj − δ)! T (Θ̌Π)(0)

is polynomial function of (µ1, µ2, . . . , µl). It therefore suffices to prove (234) for −µj

satisfying (204).
By Lemma 58, T (Θ̌Π)(0) can be computed from (227) by evaluating at 0 the function

e
π
4
〈Jw,w〉T (Θ̌Π′)(w)

determined in Proposition 49. Set xj = πyj and ∂j = ∂xj
. Then, by (206), (225) and

(227),

(∏

k=0

k!
)
T (Θ̌Π)(0)

= cΠ∂(πg/h)
( ∑

t∈W (G,h)

sgn(t)
l∏

j=1

P(tµ)j−δ+1,−(tµ)j−δ+1,−2(πyj)
)
(0)

= cΠ(−iπ)
l(l−1)

2

∏

1≤j<k≤l

(∂j − ∂k)
( ∑

t∈W (G,h)

sgn(t)
l∏

j=1

P(tµ)j−δ+1,−(tµ)j−δ+1,−2(xj)
)
(0)

= cΠ(−iπ)
l(l−1)

2

∑

t∈W (G,h)

sgn(t)
∑

s∈W (G/h)

sgn(s)
l∏

j=1

(
∂
s(j)−1
j P(tµ)j−δ+1,−(tµ)j−δ+1,−2

)
(0)

= cΠ(−iπ)
l(l−1)

2

∑

t,s∈W (G,h)

sgn(ts)
l∏

j=1

(
∂
s(j)−1
j P(tµ)j−δ+1,−(tµ)j−δ+1,−2

)
(0)

= cΠ(−iπ)
l(l−1)

2 |W (G, h)|
∑

s∈W (G,h)

sgn(s)
l∏

j=1

(
∂
s(j)−1
j Pµj−δ+1,−µj−δ+1,−2

)
(0) . (236)
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According to Lemma C.8, we have

∂
s(j)−1
j Pµj−δ+1,−µj−δ+1,−2(0)

= Pµj−s(j)−δ+2,−µj−δ+1,−2(0)

= (−1)µj−δ−s(j)+2 2s(j)+2(δ−1)

(
µj + δ − 1

s(j) + 2(δ − 1)

)
, (237)

where last equality holds under the assumption (204). Notice that

l∏

j=1

(
µj + δ − 1

s(j) + 2(δ − 1)

)
=

l∏

j=1

(µj + δ − 1)!

(s(j) + 2(δ − 1))!(µj − s(j)− δ + 1)!

=
l∏

j=1

1

(j + 2(δ − 1))!

l∏

j=1

(µj + δ − 1)!

(µj − s(j)− δ + 1)!

=
l∏

j=1

1

(l′ − j)!

l∏

j=1

(µj + δ − 1)!

(µj − s(j)− δ + 1)!
. (238)

Hence, omitting constants of absolute value one, we have

∑

s∈W (G,h)

sgn(s)
l∏

j=1

∂
s(j)−1
j Pµj−δ+1,−µj−δ+1,−2(0) (239)

= 2ll
′− l(l+1)

2

∑

s∈W (G,h)

sgn(s)

(
µj + δ − 1

s(j) + 2(δ − 1)

)

= 2ll
′− l(l+1)

2

l∏

j=1

(µj + δ − 1)!

(l′ − j)!
∑

s∈W (G,h)

sgn(s)
l∏

j=1

1

(µj − s(j)− δ + 1)!

By (218),

∑

s∈W (G,h)

sgn(s)
l∏

j=1

(µj − δ)!
(µj − s(j)− δ + 1)!

=
∏

1≤j<k≤l

(µj − µk) . (240)

Comparing Lemma 59, (236), (239) and (240), we deduce the following equality

( l∏

k=0

k!
)
T (Θ̌Π)(0) = CΠ(iπ)

l(l−1)
2 2ll

′− l(l+1)
2 |W (G, h)| dimΠ′ . (241)
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We therefore conclude that T (Θ̌Π)(0) = KΠ dimΠ′, where

|KΠ| = CΠπ
l(l−1)

2 2ll
′− l(l+1)

2
|W (G, h)|
∏l

k=0 k!

= 2
(2π)

l(l−1)
2

∏l−1
k=0 k!

(2π)l

= 2 vol(G) (242)

= vol(G̃) .

In (242) we have used (226), (229) and that vol(H) = (2π)l. �

8. Limits of orbital integrals in the stable range.

The results on the limits of the orbital integrals obtained in the previous section did
not make any assumption on the relative sizes of the groups G and G′. They are based on
the adaptation to orbital integrals on the symplectic space W of Harish-Chandra’s study
of orbital integrals on a Lie algebra. However, if we restrict ourselves to the stable range,
we may obtain the same results without any reference to Harish-Chandra’s work. This is
another indication on how natural is the stable range assumption in the theory of reductive
dual pairs. For instance, recently Lock and Ma, [LM13], computed the correspondence of
the associated varieties under this assumption. This is equivalent to computing the wave
front set correspondence by the work of Schmid and Vilonen, [SV00].

Lemma 61. The following inequality holds

dimW − dimO′
m − dim g− dim h ≥ 0. (243)

The two sides of (243) are equal if and only if

(G,G′) = (O2, Sp2l′(R)); (O3, Sp2l′(R)); (U1,Up,q), 1 ≤ p ≤ q. (244)

Proof. Let F (d) denote The quantity (243) as a function of d = dimV0 ≥ m. This is a
concave down quadratic function. We know from (103) that F (m) = dim g− dim h ≥ 0.
Also, (102) gives the following explicit formula

F (d) =





2dm−m2 −m− d2

2
if G = O2l, d′ = 2m,

2dm−m2 −m− d2−1
2

if G = O2l+1, d′ = 2m,
2dd′ − 2md′ + 2m2 − d2 − d if G = Ud,
8dm− 4m2 + 2m− 2d2 − 2d if G = Spd, d′ = 2m.

Hence, F (d′) ≥ 0 if G 6= O2l+1 and F (d′ + 1) ≥ 0 if G = O2l+1. This verifies (243).
Since m ≤ d ≤ d′ if G 6= O2l+1, and m ≤ d ≤ d′ + 1 if G = O2l+1, the equality in (243)

implies that F (m) = 0. But F (m) = dim g− dim h. Hence, (244) follows. �

Lemma 62. Assume d′ ≥ 2r. If the pair (G,G′) is in the stable range with G-the smaller
member, then one may normalize the positive orbital integral µOm so that

lim
y→0

1

Ch1
πg/h(y)

fφ(y) = µOm(φ) (φ ∈ S(W)),
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where the limit is taken over y ∈ hreg. (The stable range assumption implies d′ ≥ 2r.)
If the pair (G,G′) is not in the stable range with G-the smaller member then the limit is
zero.

Proof. Since G is compact, the orbit G ·y ⊆ g is compact and hence the Fourier transform

µ̂G.y(x) =

∫

g

e−iB(z,x) dµG.y(z) (x ∈ g)

is a uniformly bounded function as y varies through h. Furthermore, by (99)
∫

g

ch−d′(x) dx =

∫

h

|πg/h(x)|2 ch−d′(x) dx ≤
∫

h

ch−d′+2r−2ι(x) dx (245)

≤
∫

h

ch−2ι(x) dx <∞.

Hence, by van der Corput estimate (154) for φ ∈ S(W), the consecutive integrals in the
following computation are absolutely convergent:

∫

g

µ̂G.y(x)

∫

W

χx(w)φ(w) dw dx (246)

= C1

∫

h

µ̂G.y(x)πg/h(x)πg/h(x)

∫

W

χx(w)φ
G(w) dw dx

= C2

∫

h

1

πg/h(y)

∑

s∈W (G,h)

sgng/h(s)e
−iB(y,sx)

∫

h

eiB(x,z)fφ(z) dz dx

= C2

∫

h

1

πg/h(y)

∑

s∈W (G,h)

e−iB(y,sx)

∫

h

eiB(x,z)fφ(sz) dz dx

= C2

∫

h

1

πg/h(y)

∑

s∈W (G,h)

e−iB(y,sx)

∫

h

eiB(sx,z)fφ(z) dz dx

= C2|W (G, h)|
∫

h

1

πg/h(y)
e−iB(y,x)

∫

h

eiB(x,z)fφ(z) dz dx

= C3
1

πg/h(y)
fφ(y),

where C1, C2 and C3 are some constants and in the second equality we used Lemmas 34
and 35. Hence,

lim
y→0

C3
1

πg/h(y)
fφ(y) = lim

y→0

∫

g

µ̂G.y(x)

∫

W

χx(w)φ(w) dw dx (247)

=

∫

g

µ̂0(x)

∫

W

χx(w)φ(w) dw dx =

∫

g

∫

W

χx(w)φ(w) dw dx.

By definition of fφ, (247) is a limit of S-invariant measures. Hence it is an S-invariant
measure. The last expression shows that this measure is homogeneous of degree −2 dim g.
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Hence, by (129), the image of it under the map τ ′∗ is G′-invariant and homogeneous of
degree 1

2
(dim W − 2 dim g) − dim g′. Therefore that image is a multiple of a nilpotent

orbital integral over a nilpotent orbit of dimension dim W − 2 dim g, (see [BV80]).
Under the assumption d′ ≥ 2r, if our pair is not in the stable range then D = C, i.e.

the pair consists of the unitary groups. In this case Lemma 61 shows that

dim W − 2 dim g = dimO′
k where k = d or d′ − d.

But the case k = d is impossible, because k ≤ m and we assume that m < d. Hence
the limit is a possibly zero multiple of the orbital integral over the orbit Od′−d, assuming
d′ − d ≤ m. But the assumption d′ ≥ 2r means that d′ ≥ 2d. Hence, d′ − d ≥ d > m.
Thus the limit is zero.

Suppose our pair is in the stable range. Then 0 ∈Wg. Furthermore, by Lemma 11 and
the continuity of the pull-back τ ∗,

1

Ch1
πg′/z′(y)

fφ(y) = τ ∗(µG.y)(φ) →
y→0

τ ∗(δ0)(φ) = µOm(φ) (φ ∈ C∞
c (Wg)).(248)

Clearly, (248) implies that the restriction of that measure to Wg is a multiple of µO|Wg
.

Also, the map τ ′∗ is injective (on invariant distributions). Hence, (248) is a non-zero
multiple of µOm . Notice that the left hand side of (248) is a non-negative measure. Thus
our lemma follows. �

The two lemmas below shed some light at the connection of our limit formula in Lemma
62 and Rossmann’s result [Ros90] concerning limts of nilpotent orbital integrals.

Lemma 63. Suppose the pair (G,G′) is in the stable range with G-the smaller member.
Define a polynomial pO′ ∈ C[h′] by

pO′(y + y′′) =

{
πg/h(y)πz′′/h′′(y

′′) if G 6= O2l+1,
πg/h(y)π

short
z′′/h′′(y

′′) if G = O2l+1,

where y ∈ h, y′′ ∈ h′′ and πshort
z′′/h′′ is the product of the short roots of h′′ in z′′C. Then pO′

generates the representation of the Weyl group W (G′
C, h

′
C) corresponding to the orbit O′

C

via Springer correspondence, as explained in [AKP13, sec.4].

Proof. We see from (58) that the polynomial in question is equal to
(∏

1≤j<k≤l i(−yj + yk)
)
·
(∏

l<j<k≤l′ i(−yj + yk)
)

if D = C,(∏
1≤j<k≤l(−y2j + y2k) ·

∏l
j=1 2iyj

)
·
(∏

l<j<k≤l′(−y2j + y2k)
)

if D = H,(∏
1≤j<k≤l(−y2j + y2k)

)
·
(∏

l<j<k≤l′(−y2j + y2k) ·
∏l′

j=l+1 2iyj

)
if D = R and g = so2l,(∏

1≤j<k≤l(−y2j + y2k) ·
∏l

j=1 iyj

)
·
(∏

l<j<k≤l′(−y2j + y2k)
)

if D = R and g = so2l+1,

(249)
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where the parenthesis separate the factors in the definition of pO′ . In terms of [AKP13,
sec.3] the above products may be rewritten, up to a constant multiple, as

∆(1l)(y1, . . . , yl)∆(1l′−l)(yl+1, . . . , yl′) if D = C,

∆(∅,1l)(y1, . . . , yl)∆(1l
′−l,∅)(yl+1, . . . , yl′) if D = H,

∆(1l,∅)(y1, . . . , yl)∆(∅,1l′−l)(yl+1, . . . , yl′) if D = R and g = so2l,

∆(∅,1l)(y1, . . . , yl)∆(1l
′−l,∅)(yl+1, . . . , yl′) if D = R and g = so2l+1,

(250)

Hence the lemma follows from [AKP13, Theorem 12]. �

Observe that for dual pairs in the stable range and for ψ ∈ S(g′) Rossmann’s formula,
[Ros90] indicates that

lim
y′→0

∂(pO′)πg′/h′(y
′)

∫

G′

ψ(g.y′) dy = C1µO′(ψ) (251)

and Lemma 62 shows that

lim
y→0

1

πg/h(y)
lim
y′′→0

∂(π̃z′′/h′′)

(
πg′/h′(y + y′′)

∫

G′

ψ(g.(y + y′′)) dy

)
= C2µO′(ψ), (252)

where y ∈ τ(h1reg), π̃z′′/h′′ = πz′′/h′′ if G 6= O2l+1, and π̃z′′/h′′ = πshort
z′′/h′′ if G = O2l+1. In fact

(252) is a stronger version of (251) because, in general, if p is a product of linear factors
vanishing at 0 and F has limit F (0) at 0, then [∂(p)(pF )](0) = ∂(p)(p)F (0).

Appendix A: A few facts about nilpotent orbits

Let g′ be a semisimple Lie algebra over C. Then there is a unique non-zero nilpotent
orbit in g′ of minimal dimension which is contained in the closure of any non-zero nilpotent
orbit, [CM93, Theorem 4.3.3, Remark 4.3.4]. The dimension of that orbit is equal to one
plus the number of positive roots not orthogonal to the highest root, relative to a choice
of a Cartan subalgebra and a choice of positive roots, [CM93, Lemma 4.3.5]. Thus in the
case g′ = sp2l(C), the dimension of the minimal non-zero nilpotent orbit is equal to 2l.
This is precisely the dimension of the defining module for the symplectic group Sp2l(C),
which may be viewed as the symplectic space for the dual pair (O1, Sp2l(C)).

Consider the dual pair (G,G′) = (O1, Sp2l(R)), with the symplectic space W and the
unnormalized moment map τ ′ : W→ g′. Since W\{0} is a single G′-orbit, so is τ ′(W\{0}).
Further, dim(τ ′(W\{0})) = dim(W) = 2l. Hence, τ ′(W\{0}) ⊆ g′ is a minimal non-zero
G′-orbit. In fact, there are only two such orbits, [CM93, Theorem 9.3.5]. In terms of dual
pairs, the second one is obtained from the same pair, with the symplectic form replaced by
its negative (or equivalently the symmetric form on the defining module for O1 replaced
by its negative).

Consider an irreducible dual pair (G,G′) with G compact. Denote by l the dimension
of a Cartan subalgebra of g and by l′ the dimension of a Cartan subalgebra of g′. Let us
identify the corresponding symplectic space W with Hom(V1,V0) as in [Prz91, sec.2].
Recall that Wg denotes the maximal subset of W on which the restriction of the un-

normalized moment map τ : W → g is a submersion. Then [Prz91, Lemma 2.6] shows
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that Wg consists of all the elements w ∈W such that for any x ∈ g,

xw = 0 implies x = 0 . (A.1)

The condition (A.1) means that x restricted to the image of w is zero. But in that case
x preserves the orthogonal complement of that image. Thus we need to know that the
Lie algebra of the isometries of that orthogonal complement is zero. This happens if w is
surjective or if G is the orthogonal group and the dimension of the image of w in V0 is
≥ dim(V0)− 1. Thus

Wg 6= ∅ if and only if l ≤ l′. (A.2)

Consider in particular the dual pair (G,G′) = (O3, Sp2l′(R)) with 1 ≤ l′. We see from the
above discussion that Wg consists of elements of rank ≥ 2. Hence, W\(Wg∪{0}) consists
of elements w or rank equal 1. By replacing V0 with the image of w we may consider w as
an element of the symplectic space for the pair (O1, Sp2l′). Hence the image of w under
the moment map generates a minimal non-zero nilpotent orbit in g′.
If (G,G′) = (O2, Sp2l′(R)), with 1 ≤ l′, then Wg consists of elements of rank ≥ 1.

Therefore W \Wg = {0}.

Appendix B: Pull-back of a distribution via a submersion

We collect here some textbook results which are attributed to Ranga Rao in [BV80] and
in [Har11]. These results date back to the time before the textbook [Hör83] was available.
We shall use the definition of a smooth manifold and a distribution on a smooth manifold

as described in [Hör83, sec. 6.3]. Thus, if M is a smooth manifold of dimension m and

M ⊇Mκ
κ→ M̃κ ⊆ Rm

is any coordinate system onM , then a distribution u onM is the collection of distributions
uκ ∈ D′(M̃κ) such that

uκ1 = (κ ◦ κ−1
1 )∗uκ. (B.1)

Suppose W is another smooth manifold of dimension n and v is a distribution on W .
Thus for any coordinate system

W ⊇ Wλ
λ→ W̃λ ⊆ Rn

we have a distribution vλ ∈ D′(W̃λ) such that the condition (B.1) holds. Suppose

σ :M → W

is a submersion. Then for every κ there is a unique distribution uκ ∈ D′(M̃κ) such that

uκ|(λ◦σ◦κ−1)−1(W̃λ)
= (λ ◦ σ ◦ κ−1)∗vλ. (B.2)

Since

(κ ◦ κ−1
1 )∗(λ ◦ σ ◦ κ−1)∗vλ = (λ ◦ σ ◦ κ−1 ◦ κ ◦ κ−1

1 )∗vλ = (λ ◦ σ ◦ κ−1
1 )∗vλ

the uκ satisfy the condition (B.1). The resulting distribution u is denoted by σ∗v and is
called the pullback of v from W to M via σ.
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Proposition B.1. Let M and W be smooth manifolds and let σ :M → W be a surjective
submersion. Suppose un ∈ D′(W ) is a sequence of distributions such that

lim
n→∞

σ∗un = 0 in D′(M). (B.3)

Then
lim
n→∞

un = 0 in D′(W ). (B.4)

In particular the map σ∗ : D′(W )→ D′(M) is injective.
More generally, if un ∈ D′(W ) and ũ ∈ D′(M) are such that

lim
n→∞

σ∗un = ũ in D′(M), (B.5)

then there is a distribution u ∈ D′(W ) such that

lim
n→∞

un = u in D′(W ) (B.6)

and ũ = σ∗u.

Proof. By the definition of a distribution on a manifold, as in [Hör83, sec.6.3], we may
assume that M is an open subset of Rm and W is an open subset of Rn.
We recall the definition of the pull-back

σ∗ : D′(W )→ D′(M) (B.7)

from the proof of Theorem 6.1.2 in [Hör83]. Fix a point x0 ∈ M and a smooth map
g :M → Rm−n such that

σ ⊕ g :M → Rn × Rm−n

has a bijective differential at x0. By Inverse Function Theorem there is an open neigh-
borhood M0 of x0 in M such that

(σ ⊕ g) |M0 :M0 → Y0

is a diffeomerphism onto an open neighborhood Y0 of σ ⊕ g(x0) = (σ(x0), g(x0)) in Rn ×
Rm−n. Let

h : Y0 →M0

denote the inverse. For φ ∈ C∞
c (M0) define Φ ∈ C∞

c (Y0) by

Φ(y) = φ(h(y))| det h′(y)| (y ∈ Y0). (B.8)

Then
σ∗u(φ) = u⊗ 1(Φ) (u ∈ D′(W ), φ ∈ C∞

c (M0)). (B.9)

By localization this gives the pull-back (B.7).
Let W0 be an open neighborhood of σ(x0) in W and let X0 be an open neighborhood

of g(x0) in Rm−n such that
W0 ×X0 ⊆ Y0.

Fix a function η ∈ C∞
c (X0) such that

∫

X0

η(x) dx = 1.
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Given ψ ∈ C∞
c (W0) define φ ∈ C∞

c (M0) by

Φ(x′, x′′) = ψ(x′)η(x′′) (x′ ∈ W0, x
′′ ∈ X0),

where Φ is related to φ via (B.8). Then

σ∗u(φ) = u(ψ).

Hence the assumption (B.3) implies

lim
n→∞

un(ψ) = 0 (ψ ∈ C∞
c (W0)).

Thus, by [Hör83, Theorem 2.1.8],

lim
n→∞

un|W0 = 0

in D′(W0). Since the point x0 ∈M is arbitrary, the claim (B.4) follows by localization.
Similarly, the assumption (B.5) implies that for any ψ ∈ C∞

c (W0)

lim
n→∞

un(ψ) = lim
n→∞

σ∗un(φ) = ũ(φ)

exists. Thus, by [Hör83, Theorem 2.1.8], there is u ∈ D′(W0) such that

lim
n→∞

un|W0 = u.

By the continuity of σ∗, σ∗u = ũ. Again, since the point x0 ∈ M is arbitrary, the claim
follows by localization. �

Lemma B.2. Let M and W be smooth manifolds and let σ : M → W be a surjective
submersion. Then for any smooth differential operator D on W there is, not necessary
unique, smooth differential operator σ∗D on M such that

σ∗(u ◦D) = (σ∗u) ◦ (σ∗D) (u ∈ D′(W )).

If D annihilates constants then so does σ∗D. The operator σ∗D is unique if σ is a
diffeomerphism.

Proof. Suppose σ is a diffeomerphism between two open subsets of Rn. Then

σ∗u(φ) = u(φ ◦ σ−1| det((σ−1)′)|) (φ ∈ C∞
c (M)).

Let
(σ∗D)(φ) = (D(φ ◦ σ−1)) ◦ σ (φ ∈ C∞

c (M)).

Hence

σ∗(u ◦D)(φ) = (u ◦D)(φ ◦ σ−1| det((σ−1)′)|)
= u(D(φ ◦ σ−1| det((σ−1)′)|))
= u(((D(φ ◦ σ−1) ◦ σ) ◦ σ−1| det((σ−1)′)|))

Using the local classification of the submersions modulo the diffeomerphism [Die71,
16.7.4], we may assume that σ is a linear projection

σ : Rm+n ∋ (x, y)→ x ∈ Rn,
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in which case the lemma is obvious. �

Suppose M is a Lie group. Then there are functions mκ ∈ C∞(M̃κ) such that the
formula

∫

M

φ ◦ κ(y) dµM(y) =

∫

M̃κ

φ(x)mκ(x) dx (φ ∈ C∞
c (M̃κ)) (B.10)

defines a left invariant Haar measure on M . We shall tie the normalization of the Haar
measure dµM(y) on M to the normalization of the Lebesgue measure dx on Rm by re-
quiring that near the identity,

mexp−1(x) = det

(
1− e−ad(x)

ad(x)

)
, (B.11)

as in [Hel84, Theorem 1.14, page 96]. Collectively, the distributions mκ(x) dx ∈ D′(M̃κ)
form a distribution density onM . (See [Hör83, sec. 6.3] for the definition of a distribution
density.)

Suppose W is another Lie group with the left Haar measure given by

∫

W

ψ ◦ λ(y) dµW (y) =

∫

W̃λ

φ(x)wλ(x) dx (ψ ∈ C∞
c (W̃λ)),

and let σ : M → W be a submersion. Given any distribution density vλ ∈ D′(W̃λ)
we associate to it a distribution on W given by 1

wλ
vλ ∈ D′(W̃λ). We may pullback this

distribution to M and obtain another distribution. Then we multiply by the mκ and
obtain a distribution density. Thus, if σ :Mκ → Wλ then

(σ∗v)κ = mκ(λ ◦ σ ◦ κ−1)∗(
1

wλ

vλ). (B.12)

Distribution densities on W are identified with the continuous linear forms on C∞
c (W ) by

v(ψ ◦ λ) = vλ(ψ) (ψ ∈ C∞
c (W̃λ)).

(Here v stands for the corresponding continuous linear form.) In particular if F ∈ C(W ).
then FµW is a continuous linear form on C∞

c (W ) and for ψ ∈ C∞
c (W̃λ),

(FµW )λ(ψ) = (FµW )(ψ ◦ λ) =
∫

W

ψ ◦ λ(y)F (y) dµW (y)

=

∫

W̃λ

ψ(x)F ◦ λ−1(x)wλ(x) dx.
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Hence, for φ ∈ C∞
c (M̃κ), with σ :Mκ → Wλ,

(σ∗(FµW ))κ(φ) = (λ ◦ σ ◦ κ−1)∗(
1

wλ

(FµW )λ)(mκφ)

=

∫

M̃κ

mκ(x)φ(x)F ◦ λ−1 ◦ (λ ◦ σ ◦ κ−1)(x) dx

=

∫

M̃κ

φ(x)(F ◦ σ) ◦ κ−1(x)mκ(x) dx

=

∫

M

φ ◦ κ(y)(F ◦ σ)(y) dµM(y)

Thus
σ∗(FµW ) = F ◦ σµM . (B.13)

As explained above, we identify D′(M) with the space of the continuous linear forms on
C∞

c (M) and similarly for W and obtain

σ∗ : D′(M)→ D′(W ) (B.14)

as the unique continuous extension of (B.13). Our identification of distribution densities
with continuous linear forms on on the space of the smooth compactly supported functions
applies also to submanifolds of Lie groups.
Let S be a Lie group acting on another Lie group W and let U ⊆ W be a submanifold.

(In our applications W is going to be a vector space.) We shall consider the following
function

σ : S× U ∋ (s, u)→ su ∈ W. (B.15)

The following fact is easy to check

Lemma B.3. If O ⊆ W is an S-orbit then σ−1(O) = S× (O ∩ U).
Assume that the map (B.15) is submersive. Let us fix Haar measures on S and on W

so that the pullback
σ∗ : D′(W )→ D′(S× U)

is well defined, as in (B.14). Denote by SU ⊆ S the stabilizer of U .

Lemma B.4. Assume that the map (B.15) is submersive and surjective. Let O ⊆ W
be an S-orbit and let µO ∈ D′(W ) be an S-invariant positive measure supported on the
closure on O. Let µO|U ∈ D′(U) be the restriction of µO to U in the sense of [Hör83, Cor.
8.2.7]. Then µO|U is a positive SU -invariant measure supported on the closure of O ∩ U
in U . Moreover,

σ∗µO = µS ⊗ µO|U . (B.16)

Proof. Let s ∈ SU . Then
s∗ (µO|U) = (s∗µO) |U = µO|U .

Hence the distribution µO|U is SU -invariant. Lemma B.1 implies that µO|U 6= 0 and
Lemma B.3 that µO|U is supported in the closure of O ∩ U in U . Since the pullback of
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a positive measure is a non-negative measure, µO|U is a positive SU -invariant measure
supported on the closure of O ∩ U in U .

Theorem 3.1.4’ in [Hör83] implies that there is a positive measure µO∩U on U such that

σ∗µO = µS ⊗ µO∩U .

Consider the embedding
σ1 : U ∋ u→ (1, u) ∈ S× U.

Then σ ◦ σ1 : U → W is the inclusin of U into W . Hence,

(σ ◦ σ1)∗µO = µO|U .
The conormal bundle to σ1, as defined in [Hör83, Theorem 8.2.4], is equal to

Nσ1 = T ∗
{1}×U = T ∗(S)× 0 ⊆ T ∗(S)× T ∗(U) = T ∗(S× U).

By the S-invariance of σ∗µO,

WF (µS ⊗ µO∩U) ⊆ 0× T ∗(U) ⊆ T ∗(S× U).
Hence

Nσ1 ∩WF (µS ⊗ µO∩U) = 0.

Therefore
µO|U = (σ ◦ σ1)∗µO = σ∗

1 ◦ σ∗µO = σ∗
1(µS ⊗ µO∩U) = µO∩U .

This implies (B.16). �

Appendix C: Some confluent hypergeometric polynomials

For two integers a and b define the following functions in the real variable ξ,

Pa,b,2(ξ) =

{ ∑b−1
k=0

a(a+1)...(a+k−1)
k!(b−1−k)!

2−a−kξb−1−k if b ≥ 1

0 if b ≤ 0,
(C.1)

Pa,b,−2(ξ) =

{
(−1)a+b−1

∑a−1
k=0

b(b+1)...(b+k−1)
k!(a−1−k)!

(−2)−b−kξa−1−k if a ≥ 1

0 if a ≤ 0,
(C.2)

where a(a+ 1)...(a+ k − 1) = 1 if k = 0. Notice that

Pa,b,−2(ξ) = Pb,a,2(−ξ) (ξ ∈ R, a, b ∈ Z). (C.3)

Set

Pa,b(ξ) = 2π(Pa,b,2(ξ)IR+(ξ) + Pa,b,−2(ξ)IR−(ξ)) (C.4)

= 2π(Pa,b,2(ξ)IR+(ξ) + Pb,a,2(−ξ)IR+(−ξ)),
where IS denotes the indicator function of the set S. Also, let

Qa,b(iy) = 2π





0 if a+ b ≥ 1,∑−a
k=b

a(a+1)...(a+k−1)
k!

2−a−k(1− iy)k−b if − a > b− 1 ≥ 0,∑−b
k=a

b(b+1)...(b+k−1)
k!

2−b−k(1 + iy)k−a if − b > a− 1 ≥ 0,
(1 + iy)−a(1− iy)−b if a ≤ 0 and b ≤ 0.

(C.5)
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Proposition C.1. For any a, b ∈ Z, the formula∫

R

(1 + iy)−a(1− iy)−bφ(y) dy (φ ∈ S(R)) (C.6)

defines a tempered distribution on R. The restriction of the Fourier transform of this
distribution to R \ {0} is a function given by∫

R

(1 + iy)−a(1− iy)−be−iyξ dy = Pa,b(ξ)e
−|ξ|. (C.7)

The right hand side of (C.7) is an absolutely integrable function on the real line and thus
defines a tempered distribution on R. Furthermore,

(1 + iy)−a(1− iy)−b =
1

2π

∫

R

Pa,b(ξ)e
−|ξ|eiyξ dy +

1

2π
Qa,b(iy) (C.8)

and hence, ∫

R

(1 + iy)−a(1− iy)−be−iyξ dy = Pa,b(ξ)e
−|ξ| +Qa,b(−

d

dξ
)δ0(ξ). (C.9)

Proof. Since, |1± iy| =
√

1 + y2, (C.6) is clear. The integral (C.7) is equal to

1

i

∫

iR

(1 + z)−a(1− z)−be−zξ dz (C.10)

= 2π(−IR+(ξ) resz=1(1 + z)−a(1− z)−be−zξ + IR−(ξ) resz=−1(1 + z)−a(1− z)−be−zξ).

The computation of the two residues is straightforward and (C.7) follows.
Since ∫ ∞

0

e−ξeiξy dξ = (1− iy)−1,

we have∫ ∞

0

ξme−ξeiξy dξ =

(
d

d(iy)

)m

(1− iy)−1 = m!(1− iy)−m−1 (m = 0, 1, 2, ...). (C.11)

Thus, if b ≥ 1, then
∫ ∞

0

Pa,b,2(ξ)e
−ξeiξy dξ =

b−1∑

k=0

a(a+ 1)...(a+ k − 1)

k!
2−a−k(1− iy)−b+k

= (1− iy)−b2−a

b−1∑

k=0

(−a)(−a− 1)...(−a− k + 1)

k!

(
−1

2
(1− iy)

)k

.

Also, if a ≤ 0, then

2a(1 + iy)−a =

(
1− 1

2
(1− iy)

)−a

=
−a∑

k=0

(
−a
k

)(
−1

2
(1− iy)

)k

=
−a∑

k=0

(−a)(−a− 1)...(−a− k + 1)

k!

(
−1

2
(1− iy)

)k

.
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Hence,
∫ ∞

0

Pa,b,2(ξ)e
−ξeiξy dξ − (1 + iy)−a(1− iy)−b (C.12)

= (1− iy)−b2−a

(
b−1∑

k=0

(−a)(−a− 1)...(−a− k + 1)

k!

(
−1

2
(1− iy)

)k

−
−a∑

k=0

(−a)(−a− 1)...(−a− k + 1)

k!

(
−1

2
(1− iy)

)k
)
.

Recall that Pa,b,−2 = 0 if a ≤ 0. Hence, (C.7) shows that (C.12) is the inverse Fourier
transform of a distribution supported at {0} - a polynomial.

Suppose −a < b− 1. Then (C.12) is equal to

2−a

b−1∑

k=−a+1

(−a)(−a− 1)...(−a− k + 1)

k!

(
−1

2

)k

(1− iy)k−b,

which tends to zero if y goes to infinity. The only polynomial with this property is the
zero polynomial. Thus in this case (C.12) is zero. If −a = b− 1, then (C.12) is obviously
zero.

Suppose −a > b− 1. Then (C.12) is equal to

−2−a

−a∑

k=b

(−a)(−a− 1)...(−a− k + 1)

k!

(
−1

2

)k

(1− iy)k−b. (C.13)

As in (C.11) we have

∫ 0

−∞

ξmeξeiξy dξ =

(
d

d(iy)

)m

(1 + iy)−1 = (−1)mm!(1 + iy)−m−1 (m = 0, 1, 2, ...).

Suppose a ≥ 1. Then

∫ 0

−∞

Pa,b,−2(ξ)e
ξeiξy dξ = (−1)a+b−1

a−1∑

k=0

b(b+ 1)...(b+ k − 1)

k!
(−2)−b−k(−1)a−1+k(1 + iy)−a+k

= (1 + iy)−a2−b

a−1∑

k=0

(−b)(−b− 1)...(−b− k + 1)

k!

(
−1

2
(1 + iy)

)k

.

Also, if b ≤ 0, then

2b(1− iy)−b =
−b∑

k=0

(−b)(−b− 1)...(−b− k + 1)

k!

(
−1

2
(1 + iy)

)k

.
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Hence,
∫ 0

−∞

Pa,b,−2(ξ)e
ξeiξy dξ − (1 + iy)−a(1− iy)−b (C.14)

= (1 + iy)−a2−b

(
a−1∑

k=0

(−b)(−b− 1)...(−b− k + 1)

k!

(
−1

2
(1 + iy)

)k

−
−b∑

k=0

(−b)(−b− 1)...(−b− k + 1)

k!

(
−1

2
(1 + iy)

)k
)
.

As before, we show that (C.14) is zero if −b ≤ a− 1. If −b > a− 1, then (C.14) is equal
to

−2−b

−b∑

k=a

(−b)(−b− 1)...(−b− k + 1)

k!

(
−1

2

)k

(1 + iy)k−a.

If a ≥ 1 and b ≥ 1, then our computations show that
∫ ∞

0

Pa,b,2(ξ)e
−ξeiξy dξ +

∫ 0

−∞

Pa,b,−2(ξ)e
ξeiξy dξ − (1 + iy)−a(1− iy)−b (C.15)

is a polynomial which tends to zero if y goes to infinity. Thus (C.15) is equal zero. This
completes the proof of (C.8). The statement (C.9) is a direct consequence of (C.8). �

The test functions which occur in Proposition C.1 don’t need to be in the Schwartz
space. In fact the test functions we shall use in our applications are not necessarily
smooth. Therefore we’ll need a more precise version of the formula (C.9). This requires
a definition and two well known lemmas.

Following Harish-Chandra denote by S(R×) the space of the smooth complex valued
functions defined on R× whose all derivatives are rapidly decreasing at infinity and have
limits at zero from both sides. For ψ ∈ S(R×) let

ψ(0+) = lim
x→0+

ψ(ξ), ψ(0+) = lim
x→0−

ψ(ξ), 〈ψ〉0 = ψ(0+)− ψ(0−).

In particular the condition 〈ψ〉0 = 0 means that ψ extends to a continuous function on R.

Lemma C.2. Let c = 0, 1, 2, . . . and let ψ ∈ S(R×). Suppose

〈ψ〉0 = · · · = 〈ψ(c−1)〉0 = 0. (C.16)

(The condition (C.16) is empty if c = 0.) Then∣∣∣∣
∫

R×

e−iyξψ(ξ) dξ

∣∣∣∣ ≤ min{1, |y|−c−1}(|〈ψ(c)〉0|+ ‖ ψ(c+1) ‖1 + ‖ ψ ‖1) (C.17)

Proof. Integration by parts shows that for z ∈ C×

∫

R+

e−zξψ(ξ) dξ = z−1ψ(0+) + · · ·+ z−c−1ψ(c)(0+) + z−c−1

∫

R+

e−zξψ(c+1)(ξ) dξ,

∫

R−

e−zξψ(ξ) dξ = −z−1ψ(0−)− · · · − z−c−1ψ(c)(0−) + z−c−1

∫

R−

e−zξψ(c+1)(ξ) dξ.
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Hence,
∫

R×

e−zξψ(ξ) dξ

= z−1〈ψ〉0 + · · ·+ z−c〈ψ(c−1)〉0 + z−c−1〈ψ(c)〉0 + z−c−1

∫

R×

e−zξψ(c+1)(ξ) dξ

and (C.17) follows. �

Lemma C.3. Under the assumptions of Lemma C.2, with 1 ≤ c,
∫

R

∫

R×

(iy)ke−iyξψ(ξ) dξ dy = 2πψ(k)(0) (0 ≤ k ≤ c− 1),

where each consecutive integral is absolutely convergent.

Proof. Since ∫

R

|y|c−1 min{1, |y|−c−1} dy <∞,

the absolute convergence follows from Lemma C.2. Since the Fourier transform of ψ is
absolutely integrable and since ψ is continuous at zero, Fourier inversion formula [Hör83,
(7.1.4)] shows that ∫

R

∫

R×

e−iyξψ(ξ) dξ dy = 2πψ(0). (C.18)

Also, for 0 < k,
∫

R×

(iy)ke−iyξψ(ξ) dξ =

∫

R×

(−∂ξ)
(
(iy)k−1e−iyξ

)
ψ(ξ) dξ

=

∫

R+

(−∂ξ)
(
(iy)k−1e−iyξ

)
ψ(ξ) dξ +

∫

R−

(−∂ξ)
(
(iy)k−1e−iyξ

)
ψ(ξ) dξ

= (iy)k−1ψ(0+) +

∫

R+

(iy)k−1e−iyξψ′(ξ) dξ

− (iy)k−1ψ(0−) +
∫

R−

(iy)k−1e−iyξψ′(ξ) dξ

= (iy)k−1〈ψ〉0 +
∫

R×

(iy)k−1e−iyξψ′(ξ) dξ.

Hence, by induction on k and by our assumption
∫

R×

(iy)ke−iyξψ(ξ) dξ = (iy)k−1〈ψ〉0 + (iy)k−2〈ψ′〉0 + · · ·+ 〈ψ(k−1)〉0

+

∫

R×

e−iyξψ(k)(ξ) dξ

=

∫

R×

e−iyξψ(k)(ξ) dξ.

Therefore our lemma follows from (C.18). �
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The following proposition is an immediate consequence of Lemmas C.2, C.3, and the
formula (C.8).

Proposition C.4. Fix two integers a, b ∈ Z and a function ψ ∈ S(R×). Let c = −a− b.
If c ≥ 0 assume that

〈ψ〉0 = · · · = 〈ψ(c)〉0 = 0. (C.19)

Then ∫

R

∫

R×

(1 + iy)−a(1− iy)−be−iyξψ(ξ) dξ dy (C.20)

=

∫

R×

Pa,b(ξ)e
−|ξ|ψ(ξ) dξ +Qa,b(∂ξ)ψ(ξ)|ξ=0

=

∫

R

(
Pa,b(ξ)e

−|ξ| +Qa,b(−∂ξ)δ0(ξ)
)
ψ(ξ) dξ , .

where δ0 denotes the Dirac delta at 0.
(Recall that Qa,b = 0 if c < 0 and Qa,b is a polynomial of degree if c, if c ≥ 0.)

Let S(R+) be the space of the smooth complex valued functions whose all derivatives
are rapidly decreasing at infinity and have limits at zero. Then S(R+) may be viewed
as the subspace of the functions in S(R×) which are zero on R−. Similarly we define
S(R−). The following proposition is a direct consequence of Proposition C.4. We sketch
an independent proof below.

Proposition C.5. There is a seminorm p on the space S(R+) such that
∣∣∣∣
∫

R+

e−zξψ(ξ) dξ

∣∣∣∣ ≤ min{1, |z|−1}p(ψ) (ψ ∈ S(R+), Re z ≥ 0). (C.21)

For any integers a, b ∈ Z such that a+ b ≥ 1 and any function ψ ∈ S(R+)
∫

R

(1 + iy)−a(1− iy)−b

∫

R+

e−iyξψ(ξ) dξ dy = 2π

∫

R+

Pa,b,2(ξ)e
−ξψ(ξ) dξ, (C.22)

and ∫

R

(1 + iy)−a(1− iy)−b

∫

R−

e−iyξψ(ξ) dξ dy = 2π

∫

R−

Pa,b,−2(ξ)e
ξψ(ξ) dξ, (C.23)

where each consecutive integral is absolutely convergent.
Let a, b, c ∈ Z, c ≥ 0, be such that a+ b+ c ≥ 0. Suppose ψ ∈ S(R+) is such that

ψ(0) = ψ′(0) = · · · = ψ(c)(0). (C.24)

Then the equalities (C.22) and (C.23) hold too.

Proof. Clearly ∣∣∣∣
∫

R+

e−zξψ(ξ) dξ

∣∣∣∣ ≤
∫

R+

e−Re zξ|ψ(ξ)| dξ ≤‖ ψ ‖1 .
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Integration by parts shows that for z 6= 0,

∫

R+

e−zξψ(ξ) dξ = z−1ψ(0) + z−1

∫

R+

e−zξψ′(ξ) dξ.

Hence (C.21) follows with p(ψ) = |ψ(0)|+ ‖ ψ ‖1 + ‖ ψ′ ‖1.
Let a, b ∈ Z be such that a+ b ≥ 1. Then the function

(1 + z)−a(1− z)−b

∫

R+

e−zξψ(ξ) dξ

is continuous on Re z ≥ 0 and meromorphic on Re z > 0 and (C.21) shows that it
is dominated by |z|−2. Therefore Cauchy’s Theorem implies that the left hand side of
(C.22) is equal to

−2π resz=1

(
(1 + z)−a(1− z)−b

∫

R+

e−zξψ(ξ) dξ

)
.

The computation of this residue is straightforward. This verifies (C.22) The proof of
(C.23) is entirely analogous.
Integration by parts shows that under the assumption (C.24)

∫

R+

e−zξψ(ξ) dξ = z−c−1

∫

R+

e−zξψ(c+1)(ξ) dξ (Re z ≥ 0, z 6= 0).

Hence, the above argument caries over and verifies the equalities (C.22) and (C.23). �

Proposition C.6. Suppose a, b, c ∈ Z are such that

b ≥ 1, a+ b+ c = 1 and c ≥ 0. (C.25)

Then

Pa,b,2(ξ)ξ
c =

(b+ c− 1)!

(b− 1)!2c
Pa+c,b+c,2(ξ). (C.26)

Suppose now that

a ≥ 1, a+ b+ c = 1 and c ≥ 0. (C.27)

Then

Pa,b,−2(ξ)ξ
c = (−1)c (a+ c− 1)!

(a− 1)!2c
Pa+c,b+c,−2(ξ). (C.28)
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Proof. Because of (C.3), it is enough to prove (C.30). We compute

Pa,b,2(ξ)ξ
c =

b−1∑

k=0

a(a+ 1) . . . (a+ k − 1)

k!(b− 1− k)! 2−a−kξb+c−1−k

=
b−1∑

k=0

(−1)k (−a)(−a− 1) . . . (−a− k + 1)

k!(b− 1− k)! 2−a−kξb+c−1−k

=
b−1∑

k=0

(−1)k (−a)!
k!(b− 1− k)!(−a− k)!2

−a−kξb+c−1−k

=
b−1∑

k=0

(−1)k (b+ c− 1)!

k!(b− 1− k)!(b+ c− 1− k)!2
−a−kξb+c−1−k

and

Pa+c,b+c,2(ξ) =
b+c−1∑

k=0

(a+ c)(a+ c+ 1) . . . (a+ c+ k − 1)

k!(b+ c− 1− k)! 2−a−c−kξb+c−1−k

=
b−1∑

k=0

(a+ c)(a+ c+ 1) . . . (a+ c+ k − 1)

k!(b+ c− 1− k)! 2−a−c−kξb+c−1−k

=
b−1∑

k=0

(−1)k (−a− c)(−a− c− 1) . . . (−a− c− k + 1)

k!(b+ c− 1− k)! 2−a−c−kξb+c−1−k

=
b−1∑

k=0

(−1)k (b− 1)(b− 1− 1) . . . (b− k)
k!(b+ c− 1− k)! 2−a−c−kξb+c−1−k

=
b−1∑

k=0

(−1)k (b− 1)(b− 1− 1) . . . (b− k)
k!(b+ c− 1− k)! 2−a−c−kξb+c−1−k

=
b−1∑

k=0

(−1)k (b− 1)!

k!(b+ c− 1− k)!(b− 1− k)!2
−a−c−kξb+c−1−k

and the claim follows. �

By combining Proposition C.6 with (C.3) we obtain the following proposition.

Proposition C.7. Suppose a, b, c ∈ Z are such that

a ≥ 1, a+ b+ c = 1 and c ≥ 0. (C.29)

Then

Pa,b,−2(ξ)(−ξ)c =
(a+ c− 1)!

(a− 1)!2c
Pa+c,b+c,−2(ξ). (C.30)
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The following lemma is an immediate consequence of the definition of Pa,b,2, Pa,b,−2 and
their relation (C.3).

Lemma C.8. Suppose a, b ∈ Z. Then

P ′
a,b,2(ξ) = Pa,b−1,2(ξ) and P ′

a,b,−2(ξ) = Pa−1,b,−2(ξ) . (C.31)

If b ≥ 1 then

Pa,b,2(0) = 21−a−b a(a+ 1) . . . (a+ b− 2)

(b− 1)!
. (C.32)

If, moreover, a ≤ 0 and a+ b ≤ 1, then

Pa,b,2(0) = (−1)b 21−a−b

( −a
−a− b+ 1

)
. (C.33)

If a ≥ 1 then

Pa,b,−2(0) = 21−a−b b(b+ 1) . . . (b+ a− 2)

(a− 1)!
. (C.34)

If, moreover, b ≤ 0 and a+ b ≤ 1, then

Pa,b,−2(0) = (−1)a 21−a−b

( −b
−a− b+ 1

)
. (C.35)

Appendix C: Wave front set of an asymptotically homogeneous
distribution

Let

Ff(x) =
∫

Rn

f(y)e−ix·y dy

denote the usual Fourier transform on Rn. Recall that for t > 0 the functionMt : R
n → Rn

is defined by Mt(x) = tx.

Lemma C.1. Suppose f, u ∈ S∗(Rn) and u is homogeneous of degree d ≤ 0. Suppose

tdM∗
t−1f(ψ) →

t→0+
u(ψ) (ψ ∈ S(Rn)). (C.1)

Then

WF0(F−1f) ⊇ supp u. (C.2)

Proof. Suppose Φ ∈ C∞
c (Rn) is such that Φ(0) 6= 0. We need to show that the localized

Fourier transform

F((F−1f)Φ)

is not rapidly decreasing in any open cone Γ which has a non-empty intersection with
supp u. (See [Hör83, Definition 8.1.2].) In order to do it, we’ll choose a function ψ ∈
C∞

c (Γ) such that u(ψ) 6= 0 and show that
∫

Rn

(t−1)−dF((F−1f)Φ)(t−1x)ψ(x) dx →
t→0+

u(ψ). (C.3)
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Let φ = ⊕. We may assume that
∫
Rn φ(x) dx = 1. Notice that

tdM∗
t−1(f ∗ φ) = (tdM∗

t−1f) ∗ (t−nM∗
t−1φ), (C.4)

so that, by setting ψ̌(x) = ψ(−x), we have
∫

Rn

(t−1)−dF((F−1f)Φ)(t−1x)ψ(x) dx (C.5)

= tdM∗
t−1(f ∗ φ) ∗ ψ̌(0) = (tdM∗

t−1f) ∗
(
(t−nM∗

t−1φ) ∗ ψ̌
)
(0).

We’ll check that for an arbitrary ψ ∈ S(Rn)

(t−nM∗
t−1φ) ∗ ψ →

t→0+
ψ (C.6)

in the topology of ψ ∈ S(Rn). This, together with (C.5) and Banach-Steinhaus Theorem,
[Rud91, Theorem 2.6], will imply (C.3). Explicitly,

(
(t−nM∗

t−1φ) ∗ ψ
)
(x)− ψ(x) =

∫

Rn

φ(y)(ψ(x− ty)− ψ(x)) dy. (C.7)

Fix N = 0, 1, 2, . . . and ǫ > 0. Choose R > 0 so that
∫

|y|≥R

|φ(y)| dy · 2 sup
x∈Rn

(1 + |x|)N |ψ(x)| < ǫ. (C.8)

Let 0 < t ≤ 1. Then

(1 + |x|)N
∫

|y|≥R

|φ(y)||ψ(x− ty)| dy (C.9)

≤
∫

|y|≥R

|φ(y)|(1 + |ty|)N(1 + |x− ty|)N |ψ(x− ty)| dy

≤
∫

|y|≥R

|φ(y)|(1 + |y|)N dy · sup
x∈Rn

(1 + |x|)N |ψ(x)|

and

(1 + |x|)N
∫

|y|≥R

|φ(y)||ψ(x)| dy (C.10)

≤
∫

|y|≥R

|φ(y)| dy · sup
x∈Rn

(1 + |x|)N |ψ(x)|

so that, by (C.8),

(1 + |x|)N
∣∣∣∣
∫

|y|≥R

φ(y)(ψ(x− ty)− ψ(x)) dy
∣∣∣∣ < ǫ (0 < t ≤ 1, x ∈ Rn). (C.11)

Choose r > 0 so that

(1 + |x|)N
∣∣∣∣
∫

|y|≤R

φ(y)(ψ(x− ty)− ψ(x)) dy
∣∣∣∣ < ǫ (0 < t ≤ 1, |x| ≥ r). (C.12)
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Since the function ψ is uniformly continuous,

limsup
t→0+

sup
|x|≤r

∣∣∣∣
∫

|y|≤R

φ(y)(ψ(x− ty)− ψ(x)) dy
∣∣∣∣ = 0. (C.13)

Hence,

limsup
t→0+

sup
x∈Rn

(1 + |x|)N
∣∣∣∣
∫

|y|≤R

φ(y)(ψ(x− ty)− ψ(x)) dy
∣∣∣∣ ≤ ǫ. (C.14)

By combining (C.11) and (C.14) we see that

limsup
t→0+

sup
x∈Rn

(1 + |x|)N
∣∣∣∣
∫

Rn

φ(y)(ψ(x− ty)− ψ(x)) dy
∣∣∣∣ ≤ 2ǫ. (C.15)

Since the ǫ > 0 is arbitrary, (C.15) and (C.7) show that

limsup
t→0+

sup
x∈Rn

(1 + |x|)N
∣∣(t−nM∗

t−1φ) ∗ ψ(x)− ψ(x)
∣∣ = 0. (C.16)

Since the differentiation commutes with the convolution, (C.16) implies (C.6) and we are
done. �

Appendix E: A proof of a cocycle property

Here we proof the formula (38). Consider g1, g2 ∈ SpJ as elements of End(W+
C ) by

restriction. They preserve the positive definite hermitian form H(·, ·), (27). Let K1 =
Ker(g1− 1), K2 = Ker(g2− 1), K12 = Ker(g1g2− 1), U1 = (g1− 1)W+

C , U2 = (g2− 1)W+
C ,

U12 = (g1g2 − 1)W+
C and U = U1 ∩ U2.

We assume in this appendix that K1 = {0}. In this case U = U2. Moreover,

K2 ∩K12 = K1 ∩K2 = {0}.
Hence there is a subspace W2 ⊆W+

C such that

W+
C = K12 ⊕W2 ⊕K2. (E.1)

Recall that
W+

C = U⊕K2 (E.2)

is an orthogonal direct sum decomposition. Define an element h ∈ GL(W+
C ) by

h|K12⊕W2 = (g−1
1 − 1)−1(g2 − 1), h|K2 = (g−1

1 − 1)−1 . (E.3)

Fix a basis wi of W
+
C so that wi ∈ K12 if i ≤ a, wi ∈W2 if a < i ≤ b and wb+1, wb+2, . . .

is a basis of K2 that is orthonormal with respect to H. Then

hwi = wi (i ≤ a). (E.4)

Lemma E.1. The following equalities hold:

det(H((g1g2 − 1)wi, hwj)a<i,j) (E.5)

= det(H(
1

2
(c(g1) + c(g2))(g2 − 1)wi, (g2 − 1)wj)a<i,j≤b)

= det(H((g1g2 − 1)wi, wj)a<i,j)det(h).



92 M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

Moreover, we have

det(H(wi, (g
−1
1 − 1)hwj)i,j) = det(H((g2 − 1)wi, wj)i,j≤b), (E.6)

so that

det(h) =
det(H((g2 − 1)wi, wj)i,j≤b)

det(H(wi, (g
−1
1 − 1)wj)i,j)

. (E.7)

Proof. Notice that both

c(g1) = (g1 + 1)(g1 − 1)−1 : W+
C →W+

C ,

c(g2) = (g2 + 1)(g2 − 1)−1 : U→W+
C

are well defined on the space U and

(g1 − 1)
1

2
(c(g1) + c(g2))(g2 − 1) (E.8)

=
1

2
((g1 + 1)(g2 − 1) + (g1 − 1)(g2 + 1))

= g1g2 − 1.

Suppose a < i, j ≤ b. Then (E.8) and (E.2) show that

H((g1g2 − 1)wi, hwj) = H((g1g2 − 1)wi, (g
−1
1 − 1)−1(g2 − 1)wj) (E.9)

= H((g1 − 1)−1(g1g2 − 1)wi, (g2 − 1)wj)

= H((g1 − 1)−1(g1 − 1)
1

2
(c(g1) + c(g2))(g2 − 1)wi, (g2 − 1)wj)

= H(
1

2
(c(g1) + c(g2))(g2 − 1)wi, (g2 − 1)wj).

Suppose j ≤ b < i. Then (g1g2 − 1)wi = (g1 − 1)wi. Hence,

H((g1g2 − 1)wi, hwj) = H((g1 − 1)wi, (g
−1
1 − 1)−1(g2 − 1)wj) (E.10)

= H(wi, (g2 − 1)wj)

= H((g−1
2 − 1)wi, wj)

= H(−g−1
2 (g2 − 1)wi, wj)

= H(0, wj)

= 0.

If b < i, j, then

H((g1g2 − 1)wi, hwj) = H((g1 − 1)wi, hwj). (E.11)

Notice that

det(H((g1 − 1)wi, hwj)b<i,j) = det(H(wi, (g
−1
1 − 1)hwj)b<i,j) (E.12)

= det(H(wi, wj)b<i,j) = 1.

The first equality in (E.5) follows from relations (E.9), (E.10), (E.11) and (E.12).
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Since h preserves the subspace K12, it makes sense to define h̃ ∈ GL(W+
C/K12) by

h̃(w +K12) = hw (w ∈W+
C ).

Then

det(H((g1g2 − 1)wi, hwj)a<i,j) = det(H((g1g2 − 1)wi, wj)a<i,j)det(h̃).

But (E.4) implies det(h̃) = det(h). Hence the second equality in (E.5) follows.
Also, if j ≤ b < i, then

H(wi, (g
−1
1 − 1)hwj) = H(wi, (g2 − 1)wj) = 0

because of (E.2). Hence,

det(H(wi, (g
−1
1 − 1)hwj)i,j) = det(H(wi, (g

−1
1 − 1)hwj)i,j≤b) det(H(wi, (g

−1
1 − 1)hwj)b<i,j)

= det(H(wi, (g
−1
1 − 1)hwj)i,j≤b)

= det(H(wi, (g2 − 1)wj)i,j≤b)

= det(H((g2 − 1)wi, wj)i,j≤b).

This verifies (E.6). The formula (E.7) follows immediately from (E.6). �

Corollary E.2. With the notation of Lemma E.1

det(H(
1

2
(c(g1) + c(g2))(g2 − 1)wi, (g2 − 1)wj)a<i,j≤b)

=
det(H((g1g2 − 1)wi, wj)a<i,j)det(H((g2 − 1)wi, wj)i,j≤b)

det(H((g1 − 1)wi, wj)i,j)

Lemma E.3. Fix two elements g1, g2 ∈ Sp(W) and assume that K1 = {0}. Let V ⊆ U
denote the radical of the form H(1

2
(c(g1) + c(g2))·, ·)U and let H(1

2
(c(g1) + c(g2))·, ·)U/V

denote the resulting non-degenerate form on the quotient U/V. Then V = (g2−1)K12 and

det(g1g2 − 1)U12

det(g1 − 1)W+
C

det(g2 − 1)U
(E.13)

=
det(H(1

2
(c(g1) + c(g2))·, ·)U/V)

| det(g2 − 1: K12 → V)|2 ,

where | det(g2 − 1: K12 → V)| is the absolute value of the determinant of the matrix of
g2 − 1 with respect to any orthonormal basis of K12 and V.

Proof. We use the notation of Lemma E.1 and make the following additional assumptions:
W2 is the orthogonal complement of K12 +K2 in W+

C with respect to H, w1, w2, ... is a
basis of W+

C such that w1, w2, ..., wa is an orthonormal basis of K12, and wa+1, wa+2, ...,
wb is an orthonormal basis of W2.
Let Q ∈ GL(W+

C ) be such that

Qw1, Qw2, ... is an orthonormal basis of W+
C ,

Qwi = wi if i ≤ b,
Qwi is orthogonal to K12 +W2 if b < i.
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Define the matrix elements Qj,i by

Qwi =
∑

j

Qj,iwj.

Then

Qj,i = δj,i if i ≤ b.

Hence,

det(Q) = det((Qj,i)1≤j,i) = det((Qj,i)b<j,i) = det((Qj,i)a<j,i)

and

1 = det(H(Qwi, Qwj)1≤i,j) = | det(Q)|2 det(H(wi, wj)1≤i,j).

Therefore

| det((Qj,i)a<j,i|2 det(H(wi, wj)1≤i,j) = 1. (E.14)

It is easy to check from (E.8) that (g2 − 1)K12 = V. In particular, dimV = dimK12 = a.
Let u1, u2, ..., ub be an orthogonal basis of U such that u1, u2, ..., ua span V. Define the
matrix elements (g2 − 1)k,i by

(g2 − 1)wi =
b∑

k=1

(g2 − 1)k,iuk (1 ≤ i ≤ b).

Hence,

(g2 − 1)k,i = 0 if i ≤ a < k.

Therefore

det(((g2 − 1)k,i)1≤k,i≤b) (E.15)

= det(((g2 − 1)k,i)1≤k,i≤a) det(((g2 − 1)k,i)a<k,i≤b).

Define h ∈ GL(W+
C ) as in (E.3). Then, by (E.6),

det(h) = det((g−1
1 − 1)−1(g−1

1 − 1)h) (E.16)

= det(g−1
1 − 1)

−1
det((g−1

1 − 1)h)

= det(g−1
1 − 1)

−1
det(H(wi, (g

−1
1 − 1)hwj)1≤i,j) det(H(wi, wj)1≤i,j)

−1

= det(g−1
1 − 1)

−1
det(H((g2 − 1)wi, wj)i,j≤b) det(H(wi, wj)1≤i,j)

−1

Also,

det(H(
1

2
(c(g1) + c(g2))(g2 − 1)wi, (g2 − 1)wj)a<i,j≤b) (E.17)

= det(H(
1

2
(c(g1) + c(g2))uk, ul)a<k,l≤b) | det(((g2 − 1)k,i)a<k,i≤b|2.
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Since W+
C is the orthogonal direct sum of K12 and U12, the vectors Qwj, a < j, form an

orthonormal basis of U12, so that

det(g1g2 − 1)U12 = det(H((g1g2 − 1)Qwi, Qwj)a<i,j) (E.18)

= | det((Qi,j)a<i,j)|2 det(H((g1g2 − 1)wi, wj)a<i,j).

Define an element q ∈ GL(W+
C ) by

qwi = ui if i ≤ b,
qwi = wi if b < i.

Then qw1, qw2, . . ., qwb is an orthonormal basis of U so that

det(g2 − 1)U = det(H((g2 − 1)qwi, qwj)i,j≤b).

Define the coefficients qi,j by

qwi =
∑

j

qj,iwj.

Then

qj,i = δj,i if b < i

so that

det(q) = det((qj,i)1≤i,j) = det((qj,i)1≤i,j≤b).

Also,

(g2 − 1)qwi =
∑

j

qj,i(g2 − 1)wj =
∑

j≤b

qj,i(g2 − 1)wj (i ≤ b).

Therefore,

det(H((g2 − 1)qwi, qwj)i,j≤b) = | det(q)|2 det(H((g2 − 1)wi, wj)i,j≤b).

Define the coefficients q−1
i,j of the inverse map q−1 by

wi = q−1(qwi) =
∑

j

q−1
i,j qwj.

Since, the qwi form an orthonormal basis of W+
C ,

q−1
i,j = H(q−1qwi, qwj) = H(wi, qwj) = H(qwj, wi),

so that

q−1
i,j =





H(uj, wi) if j ≤ b,

H(wj, wi) if j > b,

H(wj, wi) = δi,j if i, j > b.

In particular,

q−1
i,j = 0 if j ≤ b < i

so that

det(q)−1 = det(q−1) = det((q−1
i,j )i,j≤b) = det(H(uj, wi)i,j≤b).
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Thus

det(H((g2 − 1)wi, wj)i,j≤b) det(g2 − 1: U→ U) (E.19)

= det(H((g2 − 1)wi, wj)i,j≤b) det(H((g2 − 1)wi, wj)i,j≤b) | det(q)|2
= | det(H((g2 − 1)wi, wj)i,j≤b)|2| det(q)|2

= | det(H(
b∑

k=1

(g2 − 1)k,iuk, wj)i,j≤b)|2 | det(q)|2

= | det((g2 − 1)k,i)k,i≤b) det(H(uk, wj)k,j≤b)|2 | det(q)|2
= | det((g2 − 1)k,i)k,i≤b)|2
= | det((g2 − 1)k,i)k,i≤a)|2| det((g2 − 1)k,i)a<k,i≤b)|2,

where the last equality follows from (E.15). Notice also that

det(g−1
1 − 1) = det(H((g−1

1 − 1)Qwj, Qwk)1≤j,k) (E.20)

= det(H(Qwj, (g1 − 1)Qwk)1≤j,k)

= det(H((g1 − 1)Qwk, Qwj)1≤j,k)

= det(g1 − 1).

The formula (E.13) follows from (E.5) and (E.14) - (E.19) via a straightforward compu-
tation:

det(g1g2 − 1: U12 → U12)

det(g1 − 1: W+
C →W+

C ) det(g2 − 1: U→ U)

=
| det((Qi,j)a<i,j)|2 det(H((g1g2 − 1)wi, wj)a<i,j)

det(g1 − 1: W+
C →W+

C ) det(g2 − 1: U→ U)

=
| det((Qi,j)a<i,j)|2 det(H(1

2
(c(g1) + c(g2))uk, ul)a<k,l≤b) | det(((g2 − 1)k,i)a<k,i≤b)|2

det(h) det(g1 − 1) det(g2 − 1: U→ U)

=
| det((Qi,j)a<i,j)|2 det(H(1

2
(c(g1) + c(g2))uk, ul)a<k,l≤b) | det(((g2 − 1)k,i)a<k,i≤b)|2

det(g−1
1 − 1)

−1
det(H((g2 − 1)wi, wj)i,j≤b) det(H(wi, wj)1≤i,j)−1 det(g1 − 1) det(g2 − 1: U→ U)

=
det(H(1

2
(c(g1) + c(g2))uk, ul)a<k,l≤b) | det(((g2 − 1)k,i)a<k,i≤b)|2

det(g−1
1 − 1)

−1
det(H((g2 − 1)wi, wj)i,j≤b) det(g1 − 1) det(g2 − 1: U→ U)

=
det(H(1

2
(c(g1) + c(g2))uk, ul)a<k,l≤b) | det(((g2 − 1)k,i)a<k,i≤b)|2

det(H((g2 − 1)wi, wj)i,j≤b) det(g2 − 1: U→ U)

=
det(H(1

2
(c(g1) + c(g2))uk, ul)a<k,l≤b) | det(((g2 − 1)k,i)a<k,i≤b)|2
| det((g2 − 1)k,i)k,i≤a)|2| det((g2 − 1)k,i)a<k,i≤b)|2

=
det(H(1

2
(c(g1) + c(g2))uk, ul)a<k,l≤b)

| det((g2 − 1)k,i)k,i≤a)|2
.

�
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Since, in terms of (37),

det(H(1
2
(c(g1) + c(g2))·, ·)U/V)

| det(H(1
2
(c(g1) + c(g2))·, ·)U/V)|

=
det(H(i(−i)1

2
(c(g1) + c(g2))·, ·)U/V)

| det(H(i(−i)1
2
(c(g1) + c(g2))·, ·)U/V)|

= isgnhg1,g2 ,

the formula (38) follows from (E.13).

References

[AB95] J. Adams and D. Barbasch. Reductive dual pairs correspondence for complex groups. J. Funct.
Anal., 132:1–42, 1995.

[ABP+07] J. Adams, D. Barbasch, A. Paul, P. Trapa, and D. A. Vogan. Unitary Shimura corresondence
for split real groups. Journal of the AMS, 20:701–751, 2007.

[Ada83] J. Adams. Discrete spectrum of the dual pair (O(p, q), Sp(2m,R). Invent. Math, 74:449–475,
1983.

[Ada87] J. Adams. Unitary highest weight modules. Adv. in Math, 63:113–137, 1987.
[Ada98] J. Adams. Lifting of characters on orthogonal and metaplectic groups. Duke Math. J., 92(1):129–

178, 1998.
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[DKP97] A. Daszkiewicz, W. Kraśkiewicz, and T. Przebinda. Nilpotent Orbits and Complex Dual Pairs.

Journal of Algebra, 190:518–539, 1997.
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60. Birkhäuser Boston, Boston, MA, 1990.

[EHW83] T. J. Enright, R. Howe, and N. R. Wallach. A classification of unitary highest weight modules.
Proceedings of Utah Conference, 1982, pages 97–143, 1983.

[GZ13] R. Gomez and C. Zhu. Local theta lifting of generalized Whittaker models associated to nilpo-
tent orbits. Preprint to appear in Geom. Funct. Ana.. arXiv:1302.3744, 2013.

[Har55] Harish-Chandra. Representations of Semisimple Lie Groups IV. Amer. J. Math., 77:743–777,
1955.

[Har57a] Harish-Chandra. Differential operators on a semisimple Lie algebra. Amer. J. Math., 79:87–120,
1957.



98 M. MCKEE, A. PASQUALE, AND T. PRZEBINDA

[Har57b] Harish-Chandra. Fourier Transform on a semsimple Lie algebra I. Amer. J. Math., 79:193–257,
1957.

[Har65] Harish-Chandra. Invariant Eigendistributions on a Semisimple Lie algebra. Pubi. Math. IHES,
27:5–54, 1965.

[Har11] B. Harris. Fourier transforms of nilpotent orbits, limit formulas for reductive Lie groups and
wave fron cycles for tempered representations. MIT thesis, 2011.

[He03] H. He. Unitary Representations and Theta Correspondence for Type I Classical Groups. J.
Funct. Anal., 199:92–121, 2003.

[Hel84] S. Helgason. Groups and Geometric Analysis, Integral Geometry, Invariant Differential Opera-
tors, and Spherical Functions. Academic Press, 1984.
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