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Abstract Physical phenomena are observed in many fields (science and engineer-
ing) and are often studied by time-consuming computer codes. These codes are
analyzed with statistical models, often called emulators. In many situations, the
physical system (computer model output) may be known to satisfy inequality con-
straints with respect to some or all input variables. Our aim is to build a model
capable of incorporating both data interpolation and inequality constraints into
a Gaussian process emulator. By using a functional decomposition, we propose a
finite-dimensional approximation of Gaussian processes such that all conditional
simulations satisfy the inequality constraints in the entire domain. The inequality
mean and mode (i.e. mean and maximum a posteriori) of the conditional Gaus-
sian process are calculated and prediction intervals are quantified. To show the
performance of the proposed model, some conditional simulations with inequality
constraints such as boundedness, monotonicity or convexity conditions in one and
two dimensions are given. A simulation study to investigate the efficiency of the
method in terms of prediction and uncertainty quantification is included.

Keywords Gaussian process emulator · inequality constraints · finite-dimensional
approximation · uncertainty quantification · design and modeling of computer
experiments

1 Introduction

In the engineering activity, runs of a computer code can be expensive and time-
consuming. One solution is to use a statistical surrogate for conditioning computer
model outputs at some input locations (design points). Gaussian process (GP) em-
ulator is one of the most popular choices [35]. The reason comes from the property
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2 Hassan Maatouk, Xavier Bay

of the GP that uncertainty can be quantified. Furthermore, it has several nice
properties. For example, the conditional GP at observation data (linear equality
constraints) is still a GP [9]. Additionally, some inequality constraints (such as
monotonicity and convexity) of output computer responses are related to partial
derivatives. In such cases, the partial derivatives of the GP are also Gaussian
Processes (GPs) (see e.g. [9] and [28]). Incorporating an infinite number of linear
inequality constraints into a GP emulator, the problem becomes more difficult.
The reason is that the resulting conditional process is not a GP.

In the literature of interpolation with inequality constraints, we find two types
of methods. The first one is deterministic and based on splines, which have the
advantage that inequality constraints are satisfied in the entire domain (see e.g.
[14], [27], [37], [38] and [39]). The second one is based on the simulation of the
conditional GP by using the subdivision of the input set (see e.g. [1], [10], [16], [32]
and [40]). In that case, the inequality constraints are satisfied in a finite number of
input locations. However, uncertainty can be quantified. In this framework, con-
strained Kriging has been studied in the domain of geostatistics (see e.g. [13] and
[21]). In previous work, some methodologies have been based on the knowledge of
the derivatives of the GP at some input locations (see e.g. [16], [32] and [40]). For
monotonicity constraints with noisy data, a Bayesian approach was developed in
[32]. In [16] the problem is to build a GP emulator by using the prior monotonicity
information of the computer model response with respect to some inputs. Their
idea is based on an approach similar to [32] placing the derivatives information at
specified input locations, by forcing the derivative process to be positive at these
points. In such methodology, monotonicity constraints are not guaranteed in the
entire domain. Recently, a methodology based on a discrete-location approxima-
tion for incorporating inequality constraints into a GP emulator was developed in
[10]. Again, the inequality constraints are not guaranteed in the entire domain.

On the other hand, Villalobos and Wahba [37] used splines to estimate an
interpolation smooth function satisfying a finite number of linear inequality con-
straints. In term of estimation of monotone smoothing functions, using B-splines
was firstly introduced by Ramsay [30]. The idea is based on the integration of
B-splines defined on a properly set of knots with positive coefficients to ensure
monotonicity constraints. A similar approach is applied to econometrics in [11].
Xuming [41] takes the same approach and suggests the calculation of the coeffi-
cients by solving a finite linear minimization problem. A comparison to monotone
kernel regression and an application to decreasing constraints are included.

Our aim in this paper is to build a GP emulator incorporating the advantage
of splines approach in order to ensure that inequality constraints are satisfied in
the entire domain. We propose a finite-dimensional approximation of Gaussian
Processes that converges uniformly pathwise. Usually, finite-dimensional approxi-
mations of Gaussian Processes (see e.g. [36]) are truncated Karhunen-Loève decom-
positions, where the random coefficients are independent and the basis functions
are the eigenfunctions of the covariance function describing the Gaussian process.
It is not the case in this paper, the finite-dimensional model is also a linear de-
composition of deterministic basis functions with Gaussian random coefficients
but the coefficients are not independent. We show that the basis functions can be
chosen such that inequality constraints of the GP are equivalent to constraints on
the coefficients. Therefore, the inequality constraints are reduced to a finite num-
ber of constraints. Furthermore, any posterior sample of coefficients leads to an
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interpolating function satisfying the inequality constraints in the entire domain.
Finally, the problem is reduced to simulate a Gaussian vector (random coefficients)
restricted to convex sets which is a well-known problem with existing algorithms
(see e.g. [5], [7], [12], [13],[15], [24], [29] and [33]).

The article is structured as follows : in Sect. 2, we briefly recall Gaussian pro-
cess modeling for computer experiments and the choice of covariance functions.
In Sect. 3, we propose a finite-dimensional approximation of GPs capable of in-
terpolating computer model outputs and incorporating inequality constraints in
the entire domain, and we investigate its properties. In Sect. 4, the performance
of the proposed model in terms of prediction and uncertainty quantification using
the simulation study in [16] is investigated. In Sect. 5, we show some simulated
examples of the conditional GP with inequality constraints (such as boundedness,
monotonicity or convexity conditions) in one and two dimensions. Additionally,
two cases of truncated simulations are studied. We end up this paper by some
concluding remarks and future work.

2 Gaussian process emulators for computer experiments

We consider the model y = f(x), where the simulator response y is assumed to be a
deterministic real-valued function of the d-dimensional variable x = (x1, . . . , xd) ∈
R
d. We suppose that the real function is continuous and evaluated at n design

points given by the rows of the n× d matrix X =
(

x(1), . . . ,x(n)
)⊤

, where x(i) ∈

R
d, 1 ≤ i ≤ n. In practice, the evaluation of the function is expensive and must

be considered highly time-consuming. The solution is to estimate the unknown
function f by using a GP emulator also known as “Kriging”. In this framework, y
is viewed as a realization of a continuous GP,

Y (x) := η(x) + Z(x),

where the deterministic continuous function η : x ∈ R
d −→ η(x) ∈ R is the

mean and Z is a zero-mean GP with continuous covariance function

K : (u, v) ∈ R
d × R

d −→ K(u, v) ∈ R.

Conditionally to the observation y =
(

y
(

x(1)
)

, . . . , y
(

x(n)
))⊤

the process is still

a GP :
Y (x) | Y (X) = y ∼ N

(

ζ(x), τ2(x)
)

, (1)

where
ζ(x) = η(x) + k(x)⊤K

−1 (y − µ)

τ2(x) = K(x,x)− k(x)⊤K
−1k(x)

and µ = η(X) is the vector of trend values at the experimental design points,

Ki,j = K
(

x(i),x(j)
)

, i, j = 1, . . . , n is the covariance matrix of Y (X) and k(x) =
(

K
(

x,x(i)
))

is the vector of covariance between Y (x) and Y (X). Additionally,

the covariance function between any two inputs can be written as :

C(x,x′) := Cov
(

Y (x), Y (x′)
∣

∣ Y (X) = y
)

= K(x,x′)− k(x)⊤K
−1

k(x′),
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where C is the covariance function of the conditional GP. The mean ζ(x) is called
Simple Kriging (SK) mean prediction of Y (x) based on the computer model out-
puts Y (X) = y, [19].

2.1 The choice of covariance function

The choice of K has crucial consequences specially in controlling the smoothness of
the Kriging metamodel. It must be chosen in the set of definite and positive kernels.
Some popular kernels are the Gaussian kernel, Matérn kernel (with parameter
λ = 3/2, 5/2, . . .) and exponential kernel (Matérn kernel with parameter λ = 1/2).
Notice that these kernels are placed in order of smoothness, the Gaussian kernel
corresponding to C∞ function1 and the exponential kernel to continuous one (see
[31] and Table 1). In the running examples of this paper, we will consider the
Gaussian kernel defined by

K(x,x′) := σ2
d
∏

k=1

exp

(

−

(

xk − x′
k

)2

2θ2k

)

,

for all x, x′ ∈ R
d, where σ2 and θ = (θ1, . . . , θd) are parameters.

Table 1: Some popular kernel functions used in Kriging methods.

Name Expression Class

Gaussian σ
2 exp

(

−
(x−x′)2

2θ2

)

C∞

Matérn 5/2 σ
2
(

1 +
√

5|x−x′|
θ

+
5(x−x′)2

3θ2

)

exp
(

−

√
5|x−x′|

θ

)

C2

Matérn 3/2 σ
2
(

1 +
√

3|x−x′|
θ

)

exp
(

−

√
3|x−x′|

θ

)

C1

Exponential σ
2 exp

(

−
|x−x′|

θ

)

C0

2.2 Derivatives of Gaussian processes

In this paragraph, we assume that the paths of Y (x) are of class Cp (i.e. the space
of functions that admit derivatives up to order p). This can be guaranteed if K
is smooth enough, and in particular if K is of class C∞ (see [9]). The linearity of
the differentiation operation ensures that the order partial derivatives of a GP are
also GPs [9], with (see e.g. [28]) :

E (∂p
xk
Y (x)) =

∂p

∂xp
k

E (Y (x)) ,

Cov
(

∂p
xk
Y
(

x
(i)
)

, ∂q
xℓ
Y
(

x
(j)
))

=
∂p+q

∂xp
k∂(x

′
ℓ)

q
K
(

x
(i),x(j)

)

.

1 The space of functions that admit derivatives of all orders.
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3 Gaussian process emulators with inequality constraints

In this section, we assume that the real function (physical system) may be known
to satisfy inequality constraints (such as boundedness, monotonicity or convexity
conditions) in the entire domain. Our aim is to incorporate both interpolation
conditions and inequality constraints into a Gaussian process emulator.

3.1 Formulation of the problem

Without loss of generality, the input x is in [0, 1]d ⊂ R
d. We assume that the real

function f is evaluated at n distinct locations in the input set,

f
(

x
(i)
)

= yi, i = 1, . . . , n.

Let (Y (x))x∈[0,1]d be a zero-mean GP with covariance function K and C0
(

[0, 1]d
)

the space of continuous function on [0, 1]d. We denote by C the subset of C0
(

[0, 1]d
)

corresponding to a given set of linear inequality constraints. We aim to get the con-
ditional distribution of Y given interpolation conditions and inequality constraints
respectively as

Y
(

x(i)
)

= yi, i = 1, . . . , n,

Y ∈ C.

3.2 Gaussian process approximation

To handle the conditional distribution incorporating both interpolation conditions
and inequality constraints, we propose a finite-dimensional approximation of Gaus-
sian processes of the form :

Y N (x) :=

N
∑

j=0

ξjφj(x), x ∈ R
d, (2)

where ξ = (ξ0, . . . , ξN )⊤ is a zero-mean Gaussian vector with covariance matrix
ΓN and φ = (φ0, . . . , φN )⊤ is a vector of basis functions. The choice of these basis
functions and ΓN depend on the type of inequality constraints. Notice that Y N

is a zero-mean GP with covariance function

KN (x,x′) = φ(x)⊤ΓNφ(x′).

The advantage of the proposed model (2) is that the simulation of the conditional
GP is reduced to the simulation of the Gaussian vector ξ given that

N
∑

j=0

ξjφj

(

x
(i)
)

= yi, i = 1, . . . , n, (3)

ξ ∈ Cξ, (4)

where Cξ =
{

c ∈ R
N+1 :

∑N
j=0 cjφj ∈ C, c = (c0, . . . , cN )⊤

}

. Hence the prob-

lem is equivalent to simulate a Gaussian vector restricted to (3) and (4). In the
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following sections, we give some examples of the choice of the basis functions and
we explain how we compute the covariance matrix ΓN of the Gaussian vector ξ to
ensure the convergence of the finite-dimensional approximation Y N to the original
GP Y .

Note that the finite-dimensional model (2) does not correspond to a truncated
Karhunen-Loève expansion Y (x) =

∑+∞
j=0 Zjej(x) (see e.g. [31]) since the coeffi-

cients ξj are not independent (unlike the coefficients Zj) and the basis functions
φj are not the eigenfunctions ej of the Mercer kernel K(x,x′).

3.3 One dimensional cases

3.3.1 Boundedness constraints

We assume that the real function defined in the unit interval is continuous and
respects boundedness constraints (i.e. a ≤ f(x) ≤ b, x ∈ [0, 1]), where −∞ ≤ a <
b ≤ +∞. In that case, the convex set C is the space of bounded functions and is
defined as

C :=
{

f ∈ C0 ([0, 1]) : a ≤ f(x) ≤ b, x ∈ [0, 1]
}

.

Let us begin by constructing the functions hj , j = 0, . . . , N that will be used in
the proposed model. We first descretize the input set as 0 = u0 < u1 < . . . <
uN = 1, and on each knot we build a function. For the sake of simplicity, we use
a uniform subdivision of the input set, but the methodology can be adapted for
any subdivision. For example at the jth knot uj = j∆N = j/N , the associated
function is

hj(x) = h

(

x− uj

∆N

)

, j = 0, . . . , N, (5)

where ∆N = 1/N and h(x) := (1− |x|) 1(|x|≤1), x ∈ R, see Figures 1a and
1b below for N = 4. Notice that the hj ’s are bounded between 0 and 1 and
∑N

j=0 hj(x) = 1 for all x in [0, 1]. Additionally, the value of these functions at any
knot ui, i = 0, . . . , N is equal to the Kronecker’s delta (hj(ui) = δij), where δij
is equal to one if i = j and zero otherwise.

The philosophy of the proposed method is presented in the following proposition :

Proposition 1 With the notations introduced before, the finite-dimensional ap-
proximation of GPs (Y N (x))x∈[0,1] is defined as

Y N (x) :=

N
∑

j=0

Y (uj)hj(x) =

N
∑

j=0

ξjhj(x), (6)

where ξj = Y (uj), j = 0, · · · , N . If the realizations of the original GP Y are con-
tinuous, then we have the following properties :

– Y N is a finite-dimensional GP with covariance function KN (x, x′) = h(x)⊤ΓNh(x′),
where h(x) = (h0(x), . . . , hN (x))⊤, ΓN

i,j = K(ui, uj), i, j = 0, . . . , N and K
the covariance function of the original GP Y .
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Fig. 1: The basis functions hj , 0 ≤ j ≤ 4 (Figure 1a) and the function h (Fig-
ure 1b).

– Y N converges uniformly pathwise to Y when N tends to infinity (with proba-
bility 1).

– Y N is in C if and only if the (N +1) coefficients Y (uj) are contained in [a, b].

The advantage of this model is that the infinite number of inequality constraints of
Y N are equivalent to a finite number of constraints on the coefficients (Y (uj))0≤j≤N .
Therefore the problem is reduced to simulate the Gaussian vector ξ = (Y (u0), . . . , Y (uN))⊤

restricted to the convex subset formed by the two constraints (3) and (4), where
Cξ = {ξ ∈ R

N+1 : a ≤ ξj ≤ b, j = 0, . . . , N}.

Proof (Proof of Proposition 1) Since Y (uj), j = 0, . . . , N are Gaussian variables,
then Y N is a GP with dimension equal to N + 1 and covariance function

Cov
(

Y N (x), Y N (x′)
)

=

N
∑

i,j=0

Cov (Y (ui), Y (uj))hi(x)hj(x
′) =

N
∑

i,j=0

K(ui, uj)hi(x)hj(x
′).

To prove the pathwise convergence of Y N to Y , write more explicitly, for any
ω ∈ Ω

Y N (x;ω) :=

N
∑

j=0

Y (uj;ω)hj(x).

Hence, the sample paths of the approximating process Y N are piecewise linear
approximations of the sample paths of the original process Y . From hj ≥ 0 and
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∑N
j=0 hj(x) = 1, for all x ∈ [0, 1], we get

∣

∣

∣
Y N (x;ω)− Y (x;ω)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

N
∑

j=0

(Y (uj ;ω)− Y (x;ω)hj(x)

∣

∣

∣

∣

∣

∣

≤
N
∑

j=0

sup
|x−x′|≤∆N

∣

∣Y (x′;ω)− Y (x;ω)
∣

∣hj(x) = sup
|x−x′|≤∆N

∣

∣Y (x′;ω)− Y (x;ω)
∣

∣ .(7)

By uniformly continuity of sample paths of the process Y on the compact interval
[0, 1], this last inequality (7) shows that

sup
x∈[0,1]

∣

∣

∣
Y N (x;ω)− Y (x;ω)

∣

∣

∣
−→

N→+∞
0

with probability 1. Now, if the (N +1) coefficients Y (uj)0≤j≤N are in the interval
[a, b] then the piecewise linear approximation Y N is in C. Conversely, suppose that
Y N is in C then

Y N (ui) =
N
∑

j=0

Y (uj)hj(ui) =
N
∑

j=0

Y (uj)δij = Y (ui) ∈ [a, b],

i = 0, . . . , N , which completes the proof of the last property, and hence concludes
the proof of the proposition. ⊓⊔

Simulated paths. As shown in Proposition 1, the simulation of the finite-dimensional
approximation of Gaussian processes Y N conditionally to given data and bound-
edness constraints (Y N ∈ I ∩ C) is reduced to simulate the Gaussian vector ξ

restricted to Iξ ∩ Cξ :

Iξ =
{

ξ ∈ R
N+1 : Aξ = y

}

,

Cξ =
{

ξ ∈ R
N+1 : a ≤ ξj ≤ b, j = 0, . . . , N

}

,

where the n× (N + 1) matrix A is defined as Ai,j := hj

(

x(i)
)

. The interpolation

system Aξ = y admits solutions only if N + 1 − n ≥ 1 (number of degrees of
freedom).

The sampling scheme can be summarized in two steps : first of all, we com-
pute the conditional distribution of the Gaussian vector ξ with respect to data
interpolation

ξ | Aξ = y ∼ N

(

(

AΓN
)⊤ (

AΓNA⊤
)−1

y, ΓN −
(

AΓN
)⊤ (

AΓNA⊤
)−1

AΓN

)

.

(8)
Then, we simulate the Gaussian vector ξ with the above distribution (8) and, us-
ing an improved rejection sampling [24], we select only random coefficients in the
convex set [a, b]. The sample paths of the conditional Gaussian process are gener-
ated by equation (6), hence satisfy both interpolation conditions and boundedness
constraints in the entire domain (see the R package developed in [25] for more
details).
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3.3.2 Monotonicity constraints

In this section, the real function f is assumed to be of class C1. The convex set C
is the space of non-decreasing functions and is defined as

C :=
{

f ∈ C1([0, 1]) : f ′(x) ≥ 0, x ∈ [0, 1]
}

.

Since the monotonicity is related to the sign of the derivative, then the proposed
model is adapted from model (6). The basis functions are defined as the primitive
functions of hj ,

φj(x) :=

∫ x

0

hj(t)dt, x ∈ [0, 1].

Remark that the derivative of the basis functions φj at any knot ui, i = 0, . . . , N
is equal to the Kronecker’s delta (φ′

j(ui) = δij). In Figure 2a, we illustrate the
basis functions φj , 0 ≤ j ≤ 4. Notice that all these functions are non-decreasing
and starting from 0. In Figure 2b, we plot the basis function φ2 and the associate
function h2 for N = 4.
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Fig. 2: The basis functions φj , 0 ≤ j ≤ 4 (Figure 2a) and the function h2 with
the corresponding function φ2 (Figure 2b).

Similarly to Proposition 1, we have the following results.

Proposition 2 Suppose that the realizations of the original GP Y are almost
surely continuously differentiable. Using the notations introduced before, the finite-
dimensional approximation of Gaussian processes (Y N (x))x∈[0,1] is defined as

Y N (x) := Y (0) +
N
∑

j=0

Y ′(uj)φj(x) = ζ +
N
∑

j=0

ξjφj(x), (9)
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where ζ = Y (0) and ξj = Y ′(uj), j = 0, · · · , N . Then we have the following prop-
erties :

– Y N is a finite-dimensional GP with covariance function

KN (x, x′) =
(

1, φ(x)⊤
)

ΓN
new

(

1, φ(x′)⊤
)⊤

,

where φ(x) = (φ0(x), . . . , φN (x))⊤ and ΓN
new is the covariance matrix of the

Gaussian vector (ζ, ξ) =
(

Y (0), Y ′(u0), . . . , Y
′(uN )

)⊤
which is equal to :

ΓN
new =





K(0, 0) ∂K
∂x′ (0, uj)

∂K
∂x

(ui, 0) ΓN
i,j





0≤i,j≤N

,

with ΓN
i,j = ∂2K

∂x∂x′ (ui, uj), i, j = 0, . . . , N and K the covariance function of
the original GP Y .

– Y N converges uniformly to Y when N tends to infinity (with probability 1).

– Y N is non-decreasing if and only if the coefficients (Y ′(uj))0≤j≤N are all non-
negative.

From the last property, the problem is reduced to simulate the Gaussian vector
(ζ, ξ) restricted to the convex set formed by the interpolation conditions and the
inequality constraints respectively,

Y N
(

x(i)
)

= ζ +
N
∑

j=0

ξjφj

(

x(i)
)

= yi, i = 1, . . . , n,

(ζ, ξ) ∈ Cξ =
{

(ζ, ξ) ∈ R
N+2 : ξj ≥ 0, j = 0, . . . , N

}

.

Proof (Proof of Proposition 2) The first property is a consequence of the fact that
the derivative of a GP is also a GP. For all x, x′ ∈ [0, 1],

KN (x, x′) = Cov
(

Y N (x), Y N (x′)
)

= Var (Y (0)) +

N
∑

i=0

∂K

∂x
(ui, 0)φi(x)

+
N
∑

j=0

∂K

∂x′ (0, uj)φj(x) +
N
∑

i,j=0

∂2K

∂x∂x′ (ui, uj)φi(x)φj(x
′).

To prove the pathwise convergence of Y N to Y , let us write that for any ω ∈ Ω,

Y N (x;ω) = Y (0;ω) +

∫ x

0





N
∑

j=0

Y ′(uj;ω)hj(t)



 dt.

From Proposition 1,
∑N

j=0 Y
′(uj ;ω)hj(x) converges uniformly pathwise to Y ′(x;ω)

since the realizations of the process are almost surely continuously differentiable.
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One can conclude that Y N converges uniformly to Y for almost all ω ∈ Ω. Now, if
Y ′(uj), j = 0, . . . , N are all nonnegative then Y N is non-decreasing since the basis
functions (φj)0≤j≤N are non-decreasing. Conversely, if Y N is non-decreasing, we
have

0 ≤
(

Y N
)′

(ui) =

N
∑

j=0

Y ′(uj)hj(ui) = Y ′(uj),

i = 0, . . . , N , which completes the proof of the last property and the proposition.
⊓⊔

Simulated paths. As shown in Proposition 2, the simulation of the finite-dimensional
approximation of Gaussian processes Y N conditionally to given data and mono-
tonicity constraints (Y N ∈ I∩C) is reduced to simulate the Gaussian vector (ζ, ξ)
restricted to Iξ ∩ Cξ :

Iξ =
{

(ζ,ξ) ∈ R
N+2 : A(ζ,ξ) = y

}

,

Cξ =
{

(ζ, ξ) ∈ R
N+2 : ξj ≥ 0, j = 0, . . . , N

}

,

where the n× (N + 2) matrix A is defined as

Ai,j :=

{

1 for i = 1, . . . , n and j = 1,

φj−2

(

x(i)
)

for i = 1, . . . , n and j = 2, . . . , N + 2.

We simulate the Gaussian vector (ζ,ξ) with the conditional distribution defined
in (8), where ΓN is replaced by ΓN

new. Then, using an improved rejection sam-
pling [24], we select the nonnegative coefficients ξj . Finally, the sample paths of
the conditional Gaussian process are generated by equation (9) which satisfy both
interpolation conditions and monotonicity constraints in the entire domain.

Remark 1 (Monotonicity of continuous but non-derivable functions) If the real
function is of class C0 only (but possibly not derivable) and non-decreasing in the
entire domain, then the proposed model defined in (6) is non-decreasing if and
only if the sequence of coefficients (Y (uj))j , j = 0, . . . , N is non-decreasing (i.e.
Y (uj−1) ≤ Y (uj), j = 1, . . . , N). The simulated paths are generated using the
same strategy in Sect. 3.3.1, where Cξ = {ξ ∈ R

N+1 : ξj−1 ≤ ξj , j = 1, . . . , N}.

3.3.3 Convexity constraints

In this section, the real function is supposed to be two times differentiable. Since
the functions hj , j = 0, . . . , N defined in (5) are all nonnegative, then the basis
functions ϕj are taken as the two times primitive functions of hj ,

ϕj(x) :=

∫ x

0

(
∫ t

0

hj(u)du

)

dt.

In Figure 3a, we illustrate the basis functions ϕj , (0 ≤ j ≤ 4). Notice that all
these functions are convex and pass through the origin. Moreover, the derivatives
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Fig. 3: The basis functions ϕj , 0 ≤ j ≤ 4 (Figure 3a) and the function h2 with
the corresponding function ϕ2 (Figure 3b).

at the origin are equal to zero. In Figure 3b, we illustrate the basis function ϕ2

and the associate function h2.

Similarly to the monotonicity case, the second derivative of the basis functions
ϕ′′
j at any knot ui, (0 ≤ i ≤ N) is equal to Kronecker’s delta (ϕ′′

j (ui) = δij).
We assume here that the realizations of the original GP Y are at least two times
differentiable. The finite-dimensional approximation defined as

Y N (x) := Y (0) + Y ′(0)x+
N
∑

j=0

Y ′′(uj)ϕj(x) = ζ + κx+
N
∑

j=0

ξjϕj(x), (10)

is convex if and only if the (N + 1) random coefficients ξj = Y ′′(uj) are all non-
negative, where ζ = Y (0) and κ = Y ′(0). Thus, the problem is reduced to generate

the Gaussian vector (ζ, κ, ξ) =
(

Y (0), Y ′(0), Y ′′(u0), . . . , Y
′′(uN )

)⊤
restricted to

the convex set Iξ ∩ Cξ, where

Iξ =







(ζ, κ, ξ) ∈ R
N+3 : ζ + κx(i) +

N
∑

j=0

ξjϕj

(

x(i)
)

= yi, i = 1, . . . , n







,

Cξ =
{

(ζ, κ, ξ) ∈ R
N+3 : ξj ≥ 0, j = 0, . . . , N

}

.

Its (N + 3)× (N + 3) covariance matrix ΓN
new is given by

ΓN
new =













Var(ζ) Cov(ζ, κ) Cov(ζ, ξ)

Cov(κ, ζ) Var(κ) Cov(κ, ξ)

Cov(ξ, ζ) Cov(ξ, κ) Cov(ξ, ξ)













=















K(0,0) ∂K
∂x′ (0, 0)

∂2K
∂(x′)2 (0, uj)

∂K
∂x

(0, 0) ∂2K
∂x∂x′ (0, 0)

∂3K
∂x∂(x′)2 (0, uj)

∂2K
∂x2 (ui, 0)

∂3K
∂x2∂x′ (ui, 0) ΓN

i,j















0≤i,j≤N

,
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where

ΓN
i,j = Cov(ξi, ξj) = Cov(Y ′′(ui), Y

′′(uj)) =
∂4K

∂x2∂(x′)2
(ui, uj), i, j = 0, . . . , N.

Finally, the covariance function of the finite-dimensional approximation of GPs is
equal to :

KN (x, x′) =
(

1, x, ϕ(x)⊤
)

ΓN
new

(

1, x′, ϕ(x′)⊤
)⊤

,

where ϕ(x) = (ϕ0(x), . . . , ϕN (x))⊤.

Simulated paths. As shown in this section, the simulation of the finite-dimensional
approximation of Gaussian processes Y N conditionally to given data and convexity
constraints (Y N ∈ I ∩ C) is reduced to simulate the Gaussian vector (ζ, κ, ξ)
restricted to Iξ ∩ Cξ :

Iξ =
{

(ζ, κ, ξ) ∈ R
N+3 : A(ζ, κ, ξ) = y

}

,

Cξ =
{

(ζ, κ, ξ) ∈ R
N+3 : ξj ≥ 0, j = 0, . . . , N

}

,

where the n× (N + 3) matrix A is defined as

Ai,j :=











1 for i = 1, . . . , n and j = 1,

x(i) for i = 1, . . . , n and j = 2,

ϕj−3

(

x(i)
)

for i = 1, . . . , n and j = 3, . . . , N + 3.

We simulate the Gaussian vector (ζ, κ, ξ) with the conditional distribution defined
in (8), where ΓN is replaced by ΓN

new. Then, using an improved rejection sampling
[24], we select the nonnegative coefficients ξj . Finally, the sample paths of the
conditional Gaussian process are generated by equation (10) which satisfy both
interpolation conditions and convexity constraints in the entire domain.

Now, we consider the problem dimension d ≥ 2. For boundedness constraints,
our model can be easily extended to multidimensional cases. In the following, we
are interested in studying isotonicity constraints.

3.4 Isotonicity in two dimensions

We now assume that the input is x = (x1, x2) ∈ R
2 and without loss of generality is

in the unit square. The real function f is supposed to be monotone (non-decreasing
for example) with respect to the two input variables :

x1 ≤ x′
1 and x2 ≤ x′

2 ⇒ f(x1, x2) ≤ f(x′
1, x

′
2).

The idea is the same as the one-dimensional case. We construct the basis functions
such that monotonicity constraints are equivalent to constraints on the coefficients.
Firstly, we discretize the unit square (e.g. uniformly to (N + 1)2 knots, see below
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Figure 10 for N = 7). Secondly, on each knot we build a basis function. For
instance, the basis function at the knot (ui, uj) is defined as

Φi,j(x) := hi(x1)hj(x2),

where hj , j = 0, . . . , N are defined in (5). We have

Φi,j(uk, uℓ) = δi,kδj,ℓ, k, ℓ = 0, . . . , N.

Proposition 3 Using the notations introduced before, the finite-dimensional ap-
proximation of Gaussian processes (Y N (x))x∈[0,1]2 is defined as

Y N (x1, x2) :=
N
∑

i,j=0

Y (ui, uj)hi(x1)hj(x2) =
N
∑

i,j=0

ξi,jhi(x1)hj(x2), (11)

where ξi,j = Y (ui, uj) and the functions hj , j = 0, . . . , N are defined in (5). Then,
we have the following properties :

– Y N is a finite-dimensional GP with covariance function KN (x,x′) = Φ(x)⊤ΓNΦ(x′),
where Φ(x)⊤ = (hi(x1)hj(x2))i,j, Γ

N
(i,j),(i′,j′) = K ((ui, uj), (ui′, uj′)) and K

is the covariance function of the original GP Y .

– Y N converges uniformly to Y when N tends to infinity (with probability 1).

– Y N is non-decreasing with respect to the two input variables if and only if the
(N + 1)2 random coefficients ξi,j, i, j = 0, . . . , N verify the following linear
constraints :

1. ξi−1,j ≤ ξi,j and ξi,j−1 ≤ ξi,j, i, j = 1, . . . , N .
2. ξi−1,0 ≤ ξi,0, i = 1, . . . , N .
3. ξ0,j−1 ≤ ξ0,j , j = 1, . . . , N .

From the last property, the problem is reduced to simulate the Gaussian vector
ξ = (ξi,j)i,j restricted to the convex set Iξ ∩ Cξ, where

Iξ =







ξ ∈ R
(N+1)2 : Y N

(

x
(i)
1 , x

(i)
2

)

=

N
∑

i,j=0

ξi,jhi

(

x
(i)
1

)

hj

(

x
(i)
2

)

= yi







,

Cξ =
{

ξ ∈ R
(N+1)2such that ξi,j verify the constraints 1. 2. and 3.

}

.

Proof (Proof of Proposition 11) The proof of the first two properties is similar to
the one-dimensional case. Now, if the (N + 1)2 coefficients ξi,j, i, j = 0, · · · , N
verify the above linear constraints 1. 2. and 3. then Y N is non-decreasing since
Y N is a piecewise linear function for x1 or x2 directions. Conversely, if Y N is
non-decreasing then Y N (ui, uj) = ξi,j , i, j = 0, . . . , N satisfy the constraints 1. 2.
and 3. . ⊓⊔
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Remark 2 (Isotonicity in two dimensions with respect to one variable) If the func-
tion is non-decreasing with respect to the first variable only, then the proposed
GP defined as

Y N (x1, x2) :=

N
∑

i,j=0

Y (ui, uj)hi(x1)hj(x2) =

N
∑

i,j=0

ξi,jhi(x1)hj(x2), (12)

is non-decreasing with respect to x1 if and only if the random coefficients ξi−1,j ≤
ξi,j , i = 1, . . . , N and j = 0, . . . , N .

3.5 Isotonicity in multidimensional cases

The d-dimensional case is a simple extension of the two-dimensional case. The
finite-dimensional approximation of Gaussian processes Y N can be written as

Y N (x) :=
N
∑

i1,...,id=0

Y (ui1 , . . . , uid)
∏

σ∈{1,...,d}
hiσ(xσ) =

N
∑

i1,...,id=0

ξi1,...,id
∏

σ∈{1,...,d}
hiσ(xσ),

where ξi1,...,id = Y (ui1, . . . , uid). Remark 2 can be extended as well, for the case
of a monotonicity with respect to a subset of variables. For instance, the mono-
tonicity of Y N with respect to the ℓth dimension input xℓ is equivalent to the fact
that ξi1,...,iℓ−1,...,id ≤ ξi1,...,iℓ,...,id , iℓ = 1, . . . , N and i1, . . . , iℓ−1, iℓ+1, . . . , id =
0, . . . , N .

3.6 Simulation of GPs conditionally to equality and inequality constraints

For the sake of simplicity and without loss of generality, we suppose that the
proposed finite-dimensional approximation of GPs is of the form

Y N (x) =
N
∑

j=0

ξjφj(x), x ∈ R
d,

where ξ = (ξ0, . . . , ξN )⊤ is a zero-mean Gaussian vector with covariance matrix
ΓN and φ = (φ0, . . . , φN )⊤ are deterministic basis functions. For instance, the con-
stant term Y (0) in model (9) can be written as ξ0φ0(x), where φ0(x) = 1. The space

of interpolation conditions is Iξ =
{

ξ ∈ R
N+1 :

∑N
j=0 ξjφj

(

x(i)
)

= yi, i = 1, . . . , n
}

and the set of inequality constraints Cξ is a convex set (for instance, the non-
negative quadrant ξj ≥ 0, j = 0, . . . , N for non-decreasing constraints in one
dimension). We are interested in the calculation of the mean, mode (maximum a
posteriori) of Y N conditionally to ξ ∈ Iξ ∩Cξ and in the quantification of predic-
tion intervals. Note that their analytical forms except for the mode are not easy to
find, hence we need simulation. As explained in Sect. 3.3.1, the problem is reduced
to simulate the Gaussian vector ξ = (ξ0, . . . , ξN )⊤ restricted to convex sets. In
that case, several algorithms can be used (see e.g. [5], [7], [15], [22], [24], [29] and
[33]).
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In this section, we introduce some notations that will be used in Sect. 5, and
emphasize the two cases of truncated simulations. We note ξI the mean of ξ con-
ditionally to ξ ∈ Iξ without inequality constraints (see equation (8)). Then by
linearity of the conditional expectation, the so-called usual (unconstrained) Krig-
ing mean is equal to

mN
K (x) := E

(

Y N (x)
∣

∣

∣
Y N

(

x
(i)
)

= yi, i = 1, . . . , n
)

=
N
∑

j=0

(ξI)jφj(x),

where ξI = E (ξ | ξ ∈ Iξ) = ΓNA⊤ (AΓNA⊤)−1
y ∈ R

N+1 and the matrix A
is formed by the values of the basis functions at the observations (i.e. Ai,j =

φj

(

x(i)
)

). Similarly to the Kriging mean of the original GP (see equation (1)),

the Kriging mean mN
K of the finite-dimensional approximation of GPs Y N can be

written as

mN
K (x) = kN (x)⊤K

−1
N y,

where kN (x) =
(

KN

(

x,x(i)
))

i
=
(

AΓNφ(x)
)

is the vector of covariance be-

tween Y N (x) and Y N (X) and (KN )i,j = KN

(

x(i),x(j)
)

i,j
=
(

AΓNA⊤), i, j =

1, . . . , n is the covariance matrix of Y N (X) = y.

Definition 1 Denote ξ
C
as the mean of the Gaussian vector ξ restricted to Iξ∩Cξ

(i.e. the posterior mean). Then, the inequality Kriging mean (mean a posteriori)
is defined as

mN
IK(x) := E

(

Y N (x)
∣

∣

∣
Y N

(

x
(i)
)

= yi, ξ ∈ Cξ

)

=

N
∑

j=0

(ξ
C
)jφj(x),

where ξ
C
= E (ξ | ξ ∈ Iξ ∩ Cξ).

Finally, let µ be the maximum of the probability density function (pdf) of ξ re-
stricted to Iξ ∩Cξ. It is the solution of the following convex optimization problem

µ := arg min
c∈Iξ∩Cξ

(

1

2
c
⊤
(

ΓN
)−1

c

)

, (13)

where ΓN is the covariance matrix of the Gaussian vector ξ. In fact, µ corresponds
to the mode2 of the Gaussian vector ξ restricted to Iξ ∩Cξ and its numerical cal-
culation is a standard problem in the minimization of positive quadratic forms
subject to convex constraints, see e.g. [6] and [18]. Let us mention that in all sim-
ulation examples illustrated in this paper, the R Package ‘solve.QP’ described in
[17] and [18] is used to compute the mode of the truncated Gaussian vector (i.e.
to solve the quadratic convex optimization problem (13)).

2 The maximum of the probability density function.
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Definition 2 The so-called inequality mode or Maximum A Posteriori (MAP) of
the finite-dimensional approximation of GPs Y N conditionally to given data and
inequality constraints is equal to

MN
IK(x) :=

N
∑

j=0

µjφj(x), x ∈ R
d,

where µ = (µ0, . . . , µN )⊤ is defined in (13).

Remark 3 The inequality modeMN
IK defined in Definition 2 does not depend on the

variance parameter σ of the covariance function K since the vector µ and the basis
functions φj do not depend on it as well. Also, it does not depend on the simulation
but on the length hyper-parameters of the covariance function θ = (θ1, . . . , θd).

Remark 4 The inequality mode or MAP (Maximum A Posteriori) of the con-
ditional GP MN

IK converges uniformly to the constrained interpolation function
defined as the solution of the following convex optimization problem :

arg min
h∈H∩I∩C

‖h‖2H ,

where H is a Reproducing Kernel Hilbert Space (RKHS) associated to the positive
type kernel K [2], I is the set of functions verify interpolation conditions and the
convex set C is the space of functions which verify the inequality constraints (see
[3], [4] and [23] for more details).

This extends to the case of interpolation conditions and inequality constraints
the correspondence established by Kimeldorf and Wahba [20] between Bayesian
estimation on stochastic process and smoothing by splines.

In practice, we have two cases in the simulation of truncated multivariate nor-
mal distributions (see Figures 4a and 4b for example in one dimension). In the
first case (Figure 4a), we have ξI = µ and so mN

K = MN
IK and they are different

from mN
IK. In this case, ξI is inside Cξ (for instance the nonnegative quadrant) and

the usual (unconstrained) Kriging mean respects the inequality constraints. The
second one, where the three are different (Figure 4b). In this case, ξI is outside
Cξ and the usual (unconstrained) Kriging mean does not respect the inequality
constraints.

4 Simulation study

The aim of this section is to illustrate the performance of the proposed model in
terms of prediction and uncertainty quantification. To do this, we take the real
increasing function f(x) = log(20x + 1) used in [16] (black lines in Figure 5).
Suppose that f is evaluated at X = (0, 0.1,0.2, 0.3,0.4, 0.9, 1). As mentioned in
[16], this is a challenge situation for unconstrained GP since we have a large gap
between the fifth and sixth design points (i.e. 0.4 < x < 0.9). In Figure 5a, the
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Fig. 4: Two cases of truncated normal variables. The mean is inside (respectively
outside) the acceptance region Figure 4a (respectively Figure 4b).

sample paths are taken from unconstrained GP using the Matérn 5/2 covariance
function (see Table 1), where the hyper-parameters σ and θ are estimated by
the Maximum Likelihood Estimator (MLE) [34]. Notice that the simulated paths
are not monotone and the prediction interval is quite large between 0.4 and 0.9
(Figure 5b). In Figure 5c, prediction intervals and inequality mode taken from
model (9) conditionally to given data and monotonicity constraints are shown.
The Matérn 5/2 covariance function is used. Applying a suited cross validation
method to estimate covariance hyper-parameters [8] and [26], we get σ = 335.5
and θ = 4.7. The predictive uncertainty is reduced (Figure 5c). Furthermore, con-
trarily to the model described in [16], we do not need to add derivative points to
ensure monotonicity constraints in the entire domain since the condition simula-
tion of the finite-dimensional approximation of Gaussian processes is equivalent
to the simulation of a Gaussian vector restricted to convex sets. Finally, in [16],
the posterior mean is used as a predictive estimator whereas two estimators are
computed by the methodology described in this paper (inequality mean and mode
of the posterior distribution). Moreover, the last one (inequality mode) can be seen
as the constrained interpolation function, and then generalizes the correspondence
established by Kimeldorf and Wahba [20] for constrained interpolation (see [4] and
[23]).

5 Illustrative examples

The aim of this section is to illustrate the proposed method with certain constraints
such as boundedness, monotonicity and convexity and to show the difference be-
tween prediction functions (unconstrained Kriging mean, inequality Kriging mean
and inequality mode). The simulation results are obtained by using Gaussian and
Matérn 3/2 covariance functions, where the constrained evaluations are not taken
from constrained functions. We consider first one-dimension monotonicity, bound-
edness and convexity constraints examples. In two dimensions, we consider the



Gaussian Process Emulators for Computer Experiments with Inequality Constraints 19

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

y(
x)

GP sample paths
true function
posterior mean

(a)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

y(
x)

true function
posterior mean

(b)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

x

m
on

ot
on

e 
G

P

true function
inequality mode

(c)

Fig. 5: The real function evaluated at seven design points used in [16] : (a) 100 sam-
ple paths taken from unconstrained GP with posterior mean, (b) posterior mean
and 95% prediction intervals from unconstrained GP, and (c) the inequality mode
and 95% prediction intervals from model (9) conditionally to both interpolation
conditions and monotonicity constraints.

monotonicity (non-decreasing) case with respect to the two input variables and to
only one variable.

5.1 Monotonicity in one dimensional case

We begin with two monotonicity examples in one-dimension (Figure 6). In Fig-
ure 6a, the 11 design points are given byX = (0, 0.05,0.1, 0.3,0.4, 0.45,0.5,0.8, 0.85,0.9, 1)
and the corresponding output y = (0, 0.6,1.1, 5.5,
7.2, 8, 9.1, 15, 16.3,17, 20). We choose N = 50 and generate 40 sample paths taken
from model (9) conditionally to given data and monotonicity (non-decreasing)
constraints (Y ′(uj) ≥ 0, j = 0, . . . , N). The Gaussian covariance function is
used with the hyper-parameters (σ2, θ) fixed to (202, 0.14). Notice that the sim-
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ulated paths (gray lines) are non-decreasing in the entire domain, as well as
the increasing Kriging mean mN

IK (solid line). The usual (unconstrained) Krig-
ing mean mN

K and the inequality mode MN
IK (dash-dotted line) coincide and are

also non-decreasing. This is because ξI is inside the acceptance region Cξ. In
Figure 6b, the input is X = (0, 0.3, 0.4, 0.5,0.9) and the corresponding output
is y = (0, 4, 6, 6.6, 10). Again, the Gaussian covariance is used with the parame-
ters (σ2, θ) fixed to (202, 0.25). The increasing Kriging mean (solid line) and the
inequality mode satisfy monotonicity (non-decreasing) constraints, contrarily to
the usual (unconstrained) Kriging mean (dash-dotted line) : it corresponds to the
situation where ξI lies outside the acceptance region Cξ.
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Fig. 6: Simulated paths drawn from model (9) respecting non-decreasing con-
straints in the entire domain. The usual Kriging mean (dash-dotted line) coincides
with the inequality mode and respects the monotonicity in Figure 6a, but not in
Figure 6b.

5.2 Monotonicity of continuous but non-derivable functions

The constrained evaluations are given by the input vectorX = (0.1,0.2,0.3, 0.6,0.9, 1)
and the corresponding output y = (−1, 1, 2, 3, 4.5, 8) (Figure 7). We chooseN = 50
then we have 51 knots and we generate 40 sample paths drawn from the finite-
dimensional approximation of GPs defined in (6) conditionally to data interpola-
tion and monotonicity constraints given in Remark 1. The Matérn 5/2 covariance
function is used with the parameters fixed to (σ2, θ) = (402, 1.2). The sample paths
(gray solid lines) are continuous (non-derivable) and non-decreasing in the entire
domain, contrarily to the usual (unconstrained) Kriging mean. The inequality
mode (maximum a posteriori) and the increasing Kriging mean (mean a poste-
riori) verify monotonicity (non-decreasing) constraints in the entire domain. It
corresponds to the situation where ξI lies outside the acceptance region Cξ.
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Fig. 7: Simulated paths drawn from model (6) using Remark 1. Notice that the
simulated paths are continuous (non-derivable) and non-decreasing in the entire
domain.

5.3 Boundedness constraints in one dimensional case

Now, we consider the positive and boundedness constraints (Figure 8). We choose
N = 50 and generate 100 sample paths taken from the finite-dimensional approx-
imation defined in (6) conditionally to given data and boundedness constraints.
In both figures, the Gaussian covariance function is used with the parameters
(σ2, θ) = (42, 0.13) (Figure 8a) and (σ2, θ) = (252, 0.2) (Figure 8b). In Figure 8a,
ξI is inside the acceptance region and the usual (unconstrained) Kriging mean co-
incides with the inequality mode and respects boundedness constraints, contrarily
to Figure 8b, where ξI lies outside the acceptance region. Notice that the simu-
lated paths satisfy the inequality constraints in the entire domain (nonnegative
(Figure 8a)) and are bounded between -20 and 20 (Figure 8b). From Figure 8b,
one can remark that the degree of smoothness of the inequality mode is related to
one of the covariance function K of the original GP, see Remark 4.

5.4 Convexity constraints in one dimensional case

The constrained evaluations in Figure 9 are given byX = (0, 0.05,0.2, 0.5, 0.85,0.95)
and the corresponding output y = (20, 15, 3,−5, 7, 15). We choose N = 50 and
generate 25 sample paths taken from model (10) conditionally to given data and
convexity constraints (ξj ≥ 0, j = 0, . . . , N). The Gaussian covariance function is
used with the parameters fixed to (σ2, θ) = (102, 0.2). The simulated paths, the
inequality mode (maximum a posteriori) and the convex Kriging mean (mean a
posteriori) are convex in the entire domain, contrarily to the usual (unconstrained)
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Fig. 8: Simulated paths drawn from model (6) respecting positivity constraints
(Figure 8a) and boundedness constraints (Figure 8b). The usual (unconstrained)
Kriging mean and the inequality mode coincide in Figure 8a, but not in Figure 8b.

Kriging mean (dash-dotted line). It corresponds to the situation where ξI lies out-
side the acceptance region Cξ.
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Fig. 9: Simulated paths drawn from model (10) respecting convexity constraints
in the entire domain (Figure 9a). 95% prediction intervals together with three
estimators : unconstrained Kriging mean, inequality mode and convex Kriging
mean (Figure 9b).
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5.5 Isotonicity in two dimensions

In two dimensions, the aim is to interpolate a 2D-function defined on [0, 1]2 and
non-decreasing with respect to the two inputs. In that case, and by the uniform
subdivision of the input set the number of knots and basis functions is (N + 1)2.
In Figures 10, 11 and 12, we choose N = 7, then we have 64 knots and basis func-
tions. Suppose that the real function is evaluated at four design points given by

the rows of the 4× 2 matrix X =

[

0.1 0.9 0.5 0.8
0.4 0.3 0.6 0.9

]⊤
and the corresponding out-

put y = (5, 12, 13, 25). The output values respect monotonicity (non-decreasing)
constraints in two dimensions. The two-dimensional Gaussian kernel is used

K(x,x′) = σ2 exp

(

−
(x1 − x′

1)
2

2θ21

)

× exp

(

−
(x2 − x′

2)
2

2θ22

)

,

where the variance parameter σ is fixed to 10 and the length parameters (θ1, θ2)
to (1, 1). We generate 5 simulation surfaces taken from model (11) conditionally
to given data and monotonicity (non-decreasing) constraints with respect to the
two input variables (Figure 11a). The two red surfaces are the 95% prediction in-
terval. To check visually the isotonicity, we plot in Figure 11b the contour levels of
one simulation surface. The blue points represent the interpolation input locations
(design points). If we fix one of the variables and we draw the vertical or horizontal
line, it must not intersect a contour level two times.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Fig. 10: Design points for the monotone 2D interpolation problem (black points)
and knots (ui, uj)0≤i,j≤7 used to define the basis functions.
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Fig. 11: Simulated surfaces drawn from model (11) respecting monotonicity con-
straints for the two input variables Figure 11a. Contour levels for one simulated
surface Figure 11b.

In Figure 12, we draw some simulated surfaces taken from the example used
in Figure 11a. All the simulated surfaces are non-decreasing with respect to the
two input variables.

In Figure 13, a simulation surface of the conditional GP at four design points
including monotonicity (non-decreasing) constraints with respect to the first in-
put variable only is shown. In that case, we choose N = 23, so we have (N + 1)2

basis functions and knots. The two-dimensional Gaussian covariance function is
used with the variance parameter σ2 fixed to 102 and the length hyper-parameters
(θ1, θ2) fixed to (0.5,0.45).

6 Numerical convergence

In order to investigate the convergence rate of the proposed model when N tends
to infinity, we plot in Figure 14a the inequality mode and the usual (unconstrained)
Kriging mean in the situation where they are different. It corresponds to the case
where the usual Kriging mean does not respect boundedness constraints (i.e. ξI /∈
Cξ). In Figure 14b, we illustrate the inequality mode MN

IK of the finite-dimensional
approximation defined in (6) whenN = 500. The dashed-line representsMN

IK when
N = 20, which is close to one generated from N = 500. Let us specify that the
Matérn 3/2 covariance function is used with the length parameter θ = 0.25 (see
Table 1).

The convergence when N tends to infinity of the finite-dimensional approxi-
mation defined in (9) with monotonicity constraints is studied in Figure 15. In
Figure 15a, the case where the unconstrained Kriging mean and the inequality
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Fig. 12: Simulated surfaces drawn from the example used in Figure 11a respecting
monotonicity constraints for the two input variables.
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Fig. 13: Simulated surface drawn from model (12) respecting monotonicity (non-
decreasing) constraints for the first variable only, and the associated contour levels.
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Fig. 14: In both figures, the solid line represents the inequality mode MN
IK when

N = 500 which respects boundedness constraints in the entire domain. The dashed-
line in Figure 14a (resp. Figure 14b) represents the usual Kriging mean (resp. the
inequality mode when N = 20).

mode are different is considered. In both figures, the solid line represents the in-
equality mode MN

IK of the finite-dimensional approximation when N = 500. The
Gaussian covariance function is used with the length parameter θ = 0.3. In Fig-
ure 15b, the dashed-line corresponds to the inequality mode when N = 20, which
is close to one generated from N = 500.
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Fig. 15: In both figures, the solid line represents the inequality mode MN
IK when

N = 500 which respects monotonicity constraints in the entire domain. The
dashed-line in Figure 15a (resp. Figure 15b) represents the usual Kriging mean
(resp. the inequality mode when N = 20).
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7 Conclusion

In this article, we propose a new model for incorporating both interpolation con-
ditions and inequality constraints into a Gaussian process emulator. Our method
ensures that the inequality constraints are respected not only in a discrete subset
of the input set but also in the entire domain. We suggest a finite-dimensional
approximation of Gaussian processes which converges uniformly pathwise. It is
constructed by incorporating deterministic basis functions and Gaussian random
coefficients. We show that the basis functions can be chosen such that inequality
constraints of Y N are equivalent to a finite number of constraints on the coeffi-
cients. So, the initial problem is equivalent to simulate a Gaussian vector restricted
to convex sets. This model has been applied to real data in assurance and finance to
estimate a term-structure curve and default probabilities (see [8] for more details).

Now, the problem is open to substantial future work. For practical applications,
estimating parameters should be investigated and Cross Validation techniques can
be used. The suited Cross Validation method to inequality constraints described in
[26] can be developed. As input dimension increases, the efficiency of the method
will become low. In fact, the size of the Gaussian vector of random coefficients
in the approximation model increases exponentially. However, the choice of knots
(subdivision of the input set) can be improved to reduce the cost of simulation, as
well as the number of basis functions. This problem is also related to the choice
of the basis functions with respect to a prior information on the regularity of the
real function. Additionally, the simulation of the truncated Gaussian vector can
be accelerated by Markov chain Monte Carlo (McMC) methods or Gibbs sampling
(see e.g. [15] and [33]).
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