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GAUSSIAN PROCESS EMULATORS FOR COMPUTER EXPERIMENTS

WITH INEQUALITY CONSTRAINTS

Hassan Maatouk† ‡ § and Xavier Bay†

Abstract. Physical phenomena are observed in many fields (science and engineering) and are often studied
by time-consuming computer codes. These codes are analyzed with statistical models, often called
emulators. In many situations, the physical system (computer model output) may be known to
satisfy inequality constraints with respect to some or all input variables. Our aim is to build a model
capable of incorporating both data interpolation and inequality constraints into a Gaussian process
emulator. By using a functional decomposition, we propose a finite-dimensional approximation of
Gaussian processes such that all conditional simulations satisfy the inequality constraints in the
entire domain. The inequality mean and mode (i.e. mean and maximum a posteriori) of the
conditional Gaussian process are calculated and prediction intervals are quantified. To show the
performance of the proposed model, some conditional simulations with inequality constraints such
as boundary, monotonicity or convexity conditions in one and two dimensions are given. A simulation
study to investigate the efficiency of the method in terms of prediction and uncertainty quantification
is included.

Key words. Gaussian process emulator, inequality constraints, finite-dimensional approximation, splines, un-
certainty quantification, design and modeling of computer experiments

AMS subject classifications. 60G15, 60G25

1. Introduction. In the engineering activity, runs of a computer code can be expensive and
time-consuming. One solution is to use a statistical surrogate for conditioning computer model
outputs at some input locations (design points). Gaussian process (GP) emulator is one of the
most popular choices [32]. The reason comes from the property of the GP that uncertainty can
be quantified. Furthermore, it has several nice properties. For example, the conditional GP at
observation data (linear equality constraints) is still a GP [7]. Additionally, some inequality
constraints (such as monotonicity and convexity) of output computer responses are related to
partial derivatives. In such cases, the partial derivatives of the GP are also Gaussian Processes
(GPs) (see e.g. [7] and [26]). Incorporating an infinite number of linear inequality constraints
into a GP emulator, the problem becomes more difficult. The reason is that the resulting
conditional process is not a GP.

In the literature of interpolation with inequality constraints, we find two types of methods.
The first one is deterministic and based on splines, which have the advantage that inequality
constraints are satisfied in the entire domain (see e.g. [12], [25], [34], [35] and [36]). The second
one is based on the simulation of the conditional GP by using the subdivision of the input set
(see e.g. [1], [8], [14], [30] and [37]). In that case, the inequality constraints are satisfied in a
finite number of input locations. However, uncertainty can be quantified. In this framework,
constrained Kriging has been studied in the domain of geostatistics (see e.g. [11] and [20]).
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2 H. MAATOUK and X. BAY

In previous work, some methodologies have been based on the knowledge of the derivatives
of the GP at some input locations (see e.g. [14], [30] and [37]). For monotonicity constraints
with noisy data, a Bayesian approach was developed in [30]. In [14] the problem is to build
a GP emulator by using the prior monotonicity information of the computer model response
with respect to some inputs. Their idea is based on an approach similar to [30] placing the
derivatives information at specified input locations, by forcing the derivative process to be
positive at these points. In such methodology, monotonicity constraints are not guaranteed
in the entire domain. Recently, a methodology based on a discrete-location approximation
for incorporating inequality constraints into a GP emulator was developed in [8]. Again, the
inequality constraints are not guaranteed in the entire domain.

On the other hand, Villalobos and Wahba [34] used splines to estimate an interpolation
smooth function satisfying a finite number of linear inequality constraints. In term of estima-
tion of monotone smoothing functions, using B-splines was firstly introduced by Ramsay [28].
The idea is based on the integration of B-splines defined on a properly set of knots with positive
coefficients to ensure monotonicity constraints. A similar approach is applied to econometrics
in [9]. Xuming [38] takes the same approach and suggests the calculation of the coefficients
by solving a finite linear minimization problem. A comparison to monotone kernel regression
and an application to decreasing constraints are included.

Our aim in this paper is to build a GP emulator incorporating the advantage of splines
approach in order to ensure that inequality constraints are satisfied in the entire domain.
We propose finite-dimensional approximations of Gaussian Processes that converge uniformly
pathwise. Usually, finite-dimensional approximations of Gaussian Processes (see e.g. [17] and
[33]) are truncated Karhunen-Loève decompositions, where the random coefficients are inde-
pendent and the basis functions are the eigenfunctions of the covariance function describing
the Gaussian process. It is not the case in this paper, the finite-dimensional model is also a
linear decomposition of deterministic basis functions with Gaussian random coefficients but
the coefficients are not independent. We show that the basis functions can be chosen such
that inequality constraints of the GP are equivalent to constraints on the coefficients. There-
fore the inequality constraints are reduced to a finite number of constraints. Furthermore,
any posterior sample of coefficients leads to an interpolating function satisfying the inequality
constraints in the entire domain. Finally, the problem is reduced to simulate a Gaussian vector
(random coefficients) restricted to convex sets which is a well-known problem with existing
algorithms (see e.g. [4], [6], [10], [11],[13], [22], [27] and [31]).

The article is structured as follows : in § 2, we briefly recall Gaussian process model-
ing for computer experiments and the choice of covariance functions. In § 3, we propose a
finite-dimensional approximation of GPs capable of interpolating computer model outputs and
incorporating inequality constraints in the entire domain, and we investigate its properties.
In § 4, the performance of the proposed model in terms of prediction and uncertainty quan-
tification using the simulation study in [14] is investigated. In § 5, we show some simulated
examples of the conditional GP with inequality constraints (such as boundary, monotonicity
or convexity conditions) in one and two dimensions. Additionally, two cases of truncated
simulations are studied. We end up this paper by some concluding remarks and future work.
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2. Gaussian process emulators for computer experiments. We consider the model y =
f(x), where the simulator response y is assumed to be a deterministic real-valued function
of the d-dimensional variable x = (x1, . . . , xd) ∈ R

d. We suppose that the real function is
continuous and evaluated at n design points given by the rows of the n × d matrix X =
(

x(1), . . . ,x(n)
)⊤

, where x(i) ∈ R
d, 1 ≤ i ≤ n. In practice, the evaluation of the function

is expensive and must be considered highly time-consuming. The solution is to estimate the
unknown function f by using a GP emulator also known as “Kriging”. In this framework, y
is viewed as a realization of a continuous GP,

Y (x) := η(x) + Z(x),

where the deterministic continuous function η : x ∈ R
d −→ η(x) ∈ R is the mean and Z is

a zero-mean GP with continuous covariance function

K : (u,v) ∈ R
d × R

d −→ K(u,v) ∈ R.

Conditionally to the observation y =
(

y
(

x(1)
)

, . . . , y
(

x(n)
))⊤

the process is still a GP :

(2.1) Y (x) | Y (X) = y ∼ N
(

ζ(x), τ2(x)
)

,

where
ζ(x) = η(x) + k(x)⊤K

−1 (y − µ)
τ2(x) = K(x,x)− k(x)⊤K

−1k(x)

and µ = η(X) is the vector of trend values at the experimental design points, Ki,j =
K
(

x(i),x(j)
)

, i, j = 1, . . . , n is the covariance matrix of Y (X) and k(x) =
(

K
(

x,x(i)
))

is the vector of covariance between Y (x) and Y (X). Additionally, the covariance function
between any two inputs can be written as :

C(x,x′) := Cov
(

Y (x), Y (x′)
∣

∣ Y (X) = y
)

= K(x,x′)− k(x)⊤K
−1k(x′),

where C is the covariance function of the conditional GP. The mean ζ(x) is called Simple
Kriging (SK) mean prediction of Y (x) based on the computer model outputs Y (X) = y, [18].

2.1. The choice of covariance function. The choice of K has crucial consequences spe-
cially in controlling the smoothness of the Kriging metamodel. It must be chosen in the set
of definite and positive kernels. Some popular kernels are the Gaussian kernel, Matérn ker-
nel (with parameter λ = 3/2, 5/2, . . .) and exponential kernel (Matérn kernel with parameter
λ = 1/2). Notice that these kernels are placed in order of smoothness, the Gaussian kernel
corresponding to C∞ function∗ and the exponential kernel to continuous one (see [29] and
Table 1). In the running examples of this paper, we will consider the Gaussian kernel defined
by

K(x,x′) := σ2
d
∏

k=1

exp

(

−
(xk − x′k)

2

2θ2k

)

,

for all x, x′ ∈ R
d, where σ2 and θ = (θ1, . . . , θd) are parameters.

∗The space of functions that admit derivatives of all orders.
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Table 1: Some popular kernel functions used in Kriging methods.

Name Expression Class

Gaussian σ2 exp
(

− (x−x′)2

2θ2

)

C∞

Matérn 5/2 σ2
(

1 +
√
5|x−x′|

θ
+ 5(x−x′)2

3θ2

)

exp
(

−
√
5|x−x′|

θ

)

C2

Matérn 3/2 σ2
(

1 +
√
3|x−x′|

θ

)

exp
(

−
√
3|x−x′|

θ

)

C1

Exponential σ2 exp
(

− |x−x′|
θ

)

C0

2.2. Derivatives of Gaussian processes. In this paragraph we assume that the paths of
Y (x) are of class Cp (i.e. the space of functions that admit derivatives up to order p). This
can be guaranteed if K is smooth enough, and in particular if K is of class C∞ (see [7]). The
linearity of the differentiation operation ensures that the order partial derivatives of a GP are
also GPs [7], with (see e.g. [26]) :

E
(

∂p
xk
Y (x)

)

=
∂p

∂xpk
E (Y (x)) ,

Cov
(

∂p
xk
Y
(

x(i)
)

, ∂q
xl
Y
(

x(j)
))

=
∂p+q

∂xpk∂(x
′
l)
q
K
(

x(i),x(j)
)

.

3. Gaussian process emulators with inequality constraints. In this section, we assume
that the real function (physical system) may be known to satisfy inequality constraints (such
as boundary, monotonicity or convexity conditions) in the entire domain. Our aim is to
incorporate both interpolation conditions and inequality constraints into a Gaussian process
emulator.

3.1. Formulation of the problem. Without loss of generality, the input x is in [0, 1]d ⊂ R
d.

We assume that the real function f is evaluated at n distinct locations in the input set,

f
(

x(i)
)

= yi, i = 1, . . . , n.

Let (Y (x))
x∈[0,1]d be a zero-mean GP with covariance function K and C

(

[0, 1]d
)

the space

of continuous function on [0, 1]d. We denote by C the subset of C
(

[0, 1]d
)

corresponding to
a given set of linear inequality constraints. We aim to get the conditional distribution of Y
given interpolation conditions and inequality constraints respectively as

Y
(

x(i)
)

= yi, i = 1, . . . , n,
Y ∈ C.

3.2. Gaussian process approximation. To handle the conditional distribution incorporat-
ing both interpolation conditions and inequality constraints, we propose a finite-dimensional
approximation of Gaussian processes of the form :

(3.1) Y N (x) :=
N
∑

j=0

ξjφj(x), x ∈ R
d,
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where ξ = (ξ0, . . . , ξN )⊤ is a zero-mean Gaussian vector with covariance matrix ΓN and
φ = (φ0, . . . , φN )⊤ is a vector of basis functions. The choice of these basis functions and
ΓN depend on the type of inequality constraints. Notice that Y N is a zero-mean GP with
covariance function

KN (x,x′) = φ(x)⊤ΓNφ(x′).

The advantage of the proposed model (3.1) is that the simulation of the conditional GP is
reduced to the simulation of the Gaussian vector ξ given that

N
∑

j=0

ξjφj

(

x(i)
)

= yi, i = 1, . . . , n,(3.2)

ξ ∈ Cξ,(3.3)

where Cξ =
{

c ∈ R
N+1 :

∑N
j=0 cjφj ∈ C, c = (c0, . . . , cN )⊤

}

. Hence the problem is equiv-

alent to simulate a Gaussian vector restricted to (3.2) and (3.3). In the following sections,
we give some examples of the choice of the basis functions and we explain how we compute
the covariance matrix ΓN of the Gaussian vector ξ to ensure the convergence of the finite-
dimensional approximation Y N to the original GP Y .

Note that the finite-dimensional model (3.1) does not correspond to a truncated Karhunen-
Loève expansion Y (x) =

∑+∞
j=0 Zjej(x) (see e.g. [29]) since the coefficients ξj are not indepen-

dent (unlike the coefficients Zj) and the basis functions φj are not the eigenfunctions ej of
the Mercer kernel K(x, x′).

3.3. One dimensional cases.

3.3.1. Boundary constraints. We assume that the real function defined in the unit inter-
val is continuous and bounded (a ≤ f(x) ≤ b, x ∈ [0, 1]), where −∞ ≤ a < b ≤ +∞. In that
case, the convex set C is the space of bounded functions and is defined as

C := {f ∈ C ([0, 1]) , a ≤ f(x) ≤ b, x ∈ [0, 1]} .

Let us begin by constructing the functions hj , j = 0, . . . , N that will be used in the proposed
model. We first descretize the input set as 0 = u0 < u1 < . . . < uN = 1, and on each knot
we build a function. For the sake of simplicity, we use a uniform subdivision of the input
set, but the methodology can be adapted for any subdivision. For example at the jth knot
uj = j∆N = j/N the associated function is

(3.4) hj(x) = h

(

x− uj
∆N

)

, j = 0, . . . , N,

where ∆N = 1/N and h(x) := (1− |x|) 1(|x|≤1), x ∈ R, see Figures 1a and 1b below for

N = 4. Notice that the hj ’s are bounded between 0 and 1 and
∑N

j=0 hj(x) = 1 for all x in
[0, 1]. Additionally, the value of these functions at any knot ui, i = 0, . . . , N is equal to the
Kronecker’s delta (hj(ui) = δij), where δij is equal to one if i = j and zero otherwise.
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Figure 1: The basis functions hj , (0 ≤ j ≤ 4) (Figure 1a) and the function h (Figure 1b).

The philosophy of the proposed method is presented in the following proposition :

Proposition 3.1. With the notations introduced before, the finite-dimensional approximation
of GP (Y N (x))x∈[0,1] is defined as

(3.5) Y N (x) :=

N
∑

j=0

Y (uj)hj(x) =

N
∑

j=0

ξjhj(x),

where ξj = Y (uj), j = 0, · · · , N . If the realizations of the original GP Y are continuous, then
we have the following properties :

• Y N is a finite-dimensional GP with covariance function KN (x, x′) = h(x)⊤ΓNh(x′),
where h(x) = (h0(x), . . . , hN (x))⊤, ΓN

i,j = K(ui, uj), i, j = 0, . . . , N and K the covari-
ance function of the original GP Y .

• Y N converges uniformly pathwise to Y when N tends to infinity (with probability 1).

• Y N is in C if and only if the (N + 1) coefficients Y (uj) are contained in [a, b].

The advantage of this model is that the infinite number of inequality constraints of Y N are
equivalent to a finite number of constraints on the coefficients (Y (uj))0≤j≤N . Therefore the
problem is reduced to simulate the Gaussian vector ξ = (Y (u0), . . . , Y (uN ))⊤ restricted to the
convex subset formed by the two constraints (3.2) and (3.3), where Cξ = [a, b]N+1.
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Proof. [Proof of Proposition 3.1] Since Y (uj), j = 0, . . . , N are Gaussian variables, then
Y N is a GP with dimension equal to N + 1 and covariance function

Cov
(

Y N (x), Y N (x′)
)

=

N
∑

i,j=0

Cov (Y (ui), Y (uj)) hi(x)hj(x
′) =

N
∑

i,j=0

K(ui, uj)hi(x)hj(x
′).

To prove the pathwise convergence of Y N to Y , write more explicitly, for any ω ∈ Ω

Y N (x;ω) :=

N
∑

j=0

Y (uj ;ω)hj(x).

Hence, the sample paths of the approximating process Y N are piecewise linear approximations
of the sample paths of the original process Y . From hj ≥ 0 and

∑N
j=0 hj(x) = 1, for all

x ∈ [0, 1], we get

∣

∣Y N (x;ω)− Y (x;ω)
∣

∣ =

∣

∣

∣

∣

∣

∣

N
∑

j=0

(Y (uj;ω)− Y (x;ω)hj(x)

∣

∣

∣

∣

∣

∣

≤
N
∑

j=0

sup
|x−x′|≤∆N

∣

∣Y (x′;ω)− Y (x;ω)
∣

∣ hj(x) = sup
|x−x′|≤∆N

∣

∣Y (x′;ω)− Y (x;ω)
∣

∣(3.6)

By uniformly continuity of sample paths of the process Y on the compact interval [0, 1], this
last inequality (3.6) shows that

sup
x∈[0,1]

∣

∣Y N (x;ω)− Y (x;ω)
∣

∣ −→
N→+∞

0.

with probability 1. Now, if the (N + 1) coefficients Y (uj)0≤j≤N are in the interval [a, b] then
the piecewise linear approximation Y N is in C. Conversely, suppose that Y N is in C then

Y N (ui) =

N
∑

j=0

Y (uj)hj(ui) =

N
∑

j=0

Y (uj)δij = Y (ui) ∈ [a, b],

i = 0, . . . , N , which completes the proof of the last property, and hence concludes the proof
of the proposition.

Simulated paths. As shown in Proposition 3.1, the simulation of the finite-dimensional
approximation of Gaussian processes Y N conditionally to given data and boundary constraints
(Y N ∈ I ∩C) is reduced to simulate the Gaussian vector ξ restricted to Iξ ∩ Cξ :

Aξ = y,

ξ ∈ Cξ = [a, b]N+1,

where the n × (N + 1) matrix A is defined as Ai,j := hj
(

x(i)
)

. The interpolation system
Aξ = y admits solutions only if N + 1− n ≥ 1 (number of degrees of freedom).
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The sampling scheme can be summarized in two steps : first of all, we compute the
conditional distribution of the Gaussian vector ξ with respect to data interpolation

(3.7) ξ | Aξ = y ∼ N

(

(

AΓN
)⊤ (

AΓNA⊤
)−1

y,ΓN −
(

AΓN
)⊤ (

AΓNA⊤
)−1

AΓN

)

.

Then, we simulate the Gaussian vector ξ with the above distribution (3.7) and, using an
improved rejection sampling [22], we select only random coefficients in the convex set [a, b].
The sample paths of the conditional Gaussian process are generated by Equation (3.5), hence
satisfy both interpolation conditions and boundary constraints in the entire domain (see the
R package developed in [23] for more details).

3.3.2. Monotonicity constraints. In this section the real function f is assumed to be of
class C1. The convex set C is the space of non-decreasing functions and is defined as

C :=
{

f ∈ C1([0, 1]) : f ′(x) ≥ 0, x ∈ [0, 1]
}

.

Since the monotonicity is related to the sign of the derivative then the proposed model is
adapted from model (3.5). The basis functions are defined as the primitive functions of hj ,

φj(x) :=

∫ x

0
hj(t)dt, x ∈ [0, 1].

Remark that the derivative of the basis functions φj at any knot ui, i = 0, . . . , N is equal to the
Kronecker’s delta (φ′

j(ui) = δij). In Figure 2a we illustrate the basis functions φj, (0 ≤ j ≤ 4).
Notice that all these functions are non-decreasing and starting from 0. In Figure 2b we plot
the basis function φ2 and the associate function h2 for N = 4.
Similarly to Proposition 3.1, we have the following results.

Proposition 3.2. Suppose that the realizations of the original GP Y are almost surely con-
tinuously differentiable. Using the notations introduced before, the finite-dimensional approx-
imation of Gaussian processes (Y N (x))x∈[0,1] is defined as

(3.8) Y N (x) := Y (0) +
N
∑

j=0

Y ′(uj)φj(x) = ζ +
N
∑

j=0

ξjφj(x),

where ζ = Y (0) and ξj = Y ′(uj), j = 0, · · · , N . Then we have the following properties :

• Y N is a finite-dimensional GP with covariance function

KN (x, x′) =
(

1, φ(x)⊤
)

ΓN
new

(

1, φ(x′)⊤
)⊤

,

where φ(x) = (φ0(x), . . . , φN (x))⊤ and ΓN
new is the covariance matrix of the Gaussian

vector (ζ, ξ) = (Y (0), Y ′(u0), . . . , Y ′(uN ))⊤ which is equal to :

ΓN
new =





K(0, 0) ∂K
∂x′ (0, uj)

∂K
∂x

(ui, 0) ΓN
i,j





0≤i,j≤N

,
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Figure 2: The basis functions φj , (0 ≤ j ≤ 4) (Figure 2a) and the function h2 with the
corresponding function φ2 (Figure 2b).

with ΓN
i,j =

∂2K
∂x∂x′ (ui, uj), i, j = 0, . . . , N and K the covariance function of the original

GP Y .

• Y N converges uniformly to Y when N tends to infinity (with probability 1).

• Y N is non-decreasing if and only if the coefficients (Y ′(uj))0≤j≤N are all non-negative.

From the last property, the problem is reduced to simulate the Gaussian vector (ζ, ξ) restricted
to the convex set formed by the interpolation conditions and the inequality constraints re-
spectively,

Y N
(

x(i)
)

= ζ +

N
∑

j=0

ξjφj

(

x(i)
)

= yi, i = 1, . . . , n,

(ζ, ξ) ∈ Cξ =
{

(ζ, ξ) ∈ R
N+2 : ξj ≥ 0, j = 0, . . . , N

}

.

Proof. [Proof of Proposition 3.2] The first property is a consequence of the fact that the
derivative of a GP is also a GP. For all x, x′ ∈ [0, 1],

KN (x, x′) = Cov
(

Y N (x), Y N (x′)
)

= Var (Y (0)) +

N
∑

i=0

∂K

∂x
(ui, 0)φi(x)

+
N
∑

j=0

∂K

∂x′
(0, uj)φj(x) +

N
∑

i,j=0

∂2K

∂x∂x′
(ui, uj)φi(x)φj(x

′).
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To prove the pathwise convergence of Y N to Y , let us write that for any ω ∈ Ω,

Y N (x;ω) = Y (0;ω) +

∫ x

0





N
∑

j=0

Y ′(uj ;ω)hj(t)



 dt.

From Proposition 3.1,
∑N

j=0 Y
′(uj;ω)hj(x) converges uniformly pathwise to Y ′(x;ω) since the

realizations of the process are almost surely continuously differentiable. One can conclude that
Y N converges uniformly to Y for almost all ω ∈ Ω. Now, if Y ′(uj), j = 0, . . . , N are all non-
negative then Y N is non-decreasing since the basis functions (φj)0≤j≤N are non-decreasing.
Conversely, if Y N is non-decreasing, we have

0 ≤
(

Y N
)′
(ui) =

N
∑

j=0

Y ′(uj)hj(ui) = Y ′(uj),

i = 0, . . . , N , which completes the proof of the last property and the proposition.

Simulated paths. As shown in Proposition 3.2, the simulation of the finite-dimensional
approximation of Gaussian processes Y N conditionally to given data and monotonicity con-
straints (Y N ∈ I ∩C) is reduced to simulate the Gaussian vector (ζ, ξ) restricted to Iξ ∩Cξ :

A(ζ, ξ) = y,

(ζ, ξ) ∈ Cξ =
{

(ζ, ξ) ∈ R
N+2 : ξj ≥ 0, j = 0, . . . , N

}

,

where the n× (N + 2) matrix A is defined as

Ai,j :=

{

1 for i = 1, . . . , n and j = 1,

φj−2

(

x(i)
)

for i = 1, . . . , n and j = 2, . . . , N + 2.

We simulate the Gaussian vector (ζ, ξ) with the conditional distribution defined in (3.7),
where ΓN is replaced by ΓN

new. Then, using an improved rejection sampling [22], we select
the non-negative coefficients ξj . Finally, the sample paths of the conditional Gaussian process
are generated by Equation (3.8) which satisfy both interpolation conditions and monotonicity
constraints in the entire domain.

Remark 3.3 (Monotonicity of continuous but non-derivable functions). If the real function is
of class C0 only (but possibly not derivable) and non-decreasing in the entire domain, then the
proposed model defined in (3.5) is non-decreasing if and only if the sequence of coefficients
(Y (uj))j , j = 0, . . . , N is non-decreasing (i.e. Y (uj−1) ≤ Y (uj), j = 1, . . . , N). The simulated
paths are generated using the same strategy in § 3.3.1, where Cξ = {ξ0 ≤ ξ1 ≤ . . . ≤ ξN}.

3.3.3. Convexity constraints. In this section the real function is supposed to be two times
differentiable. Since the functions hj , j = 0, . . . , N defined in (3.4) are all non-negative, then
the basis functions ϕj are taken as the two times primitive functions of hj ,

ϕj(x) :=

∫ x

0

(∫ t

0
hj(u)du

)

dt.
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In Figure 3a we illustrate the basis functions ϕj , (0 ≤ j ≤ 4). Notice that all these
functions are convex and pass through the origin. Moreover, the derivatives at the origin are
equal to zero. In Figure 3b we illustrate the basis function ϕ2 and the associate function h2.
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0.0 0.2 0.4 0.6 0.8 1.0
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1.
0

x

h2
φ2

(b)

Figure 3: The basis functions ϕj , (0 ≤ j ≤ 4) (Figure 3a) and the function h2 with the
corresponding function ϕ2 (Figure 3b).

Similarly to the monotonicity case, the second derivative of the basis functions ϕ′′
j at any

knot ui, (0 ≤ i ≤ N) is equal to Kronecker’s delta (ϕ′′
j (ui) = δij). We assume here that the

realizations of the original GP Y are at least two times differentiable. The finite-dimensional
approximation defined as

(3.9) Y N (x) := Y (0) + xY ′(0) +
N
∑

j=0

Y ′′(uj)ϕj(x) = ζ + κx+

N
∑

j=0

ξjϕj(x),

is convex if and only if the (N + 1) random coefficients ξj = Y ′′(uj) are all non-negative,
where ζ = Y (0) and κ = Y ′(0). Thus, the problem is reduced to generate the Gaussian vector
(ζ, κ, ξ) = (Y (0), Y ′(0), Y ′′(u0), . . . , Y ′′(uN ))⊤ restricted to the convex set Iξ ∩ Cξ, where

Iξ =
{

(ζ, κ, ξ) ∈ R
N+3 : Y N

(

x(i)
)

= yi, i = 1, . . . , n
}

,

Cξ =
{

(ζ, κ, ξ) ∈ R
N+3 : ξj ≥ 0, j = 0, . . . , N

}

.
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Its (N + 3)× (N + 3) covariance matrix ΓN
new is given by

ΓN
new =













Var(ζ) Cov(ζ, κ) Cov(ζ, ξ)

Cov(κ, ζ) Var(κ) Cov(κ, ξ)

Cov(ξ, ζ) Cov(ξ, κ) Cov(ξ, ξ)













=















K(0, 0) ∂K
∂x′ (0, 0)

∂2K
∂(x′)2 (0, uj)

∂K
∂x

(0, 0) ∂2K
∂x∂x′ (0, 0)

∂3K
∂x∂(x′)2

(0, uj)

∂2K
∂x2 (ui, 0)

∂3K
∂x2∂x′ (ui, 0) ΓN

i,j















0≤i,j≤N

,

where

ΓN
i,j = Cov(ξi, ξj) = Cov(Y ′′(ui), Y

′′(uj)) =
∂4K

∂x2∂(x′)2
(ui, uj), i, j = 0, . . . , N.

Finally, the covariance function of the finite-dimensional approximation is equal to :

KN (x, x′) =
(

1, x, ϕ(x)⊤
)

ΓN
new

(

1, x, ϕ(x′)⊤
)⊤

,

where ϕ(x) = (ϕ0(x), . . . , ϕN (x))⊤.

Simulated paths. As shown in this section, the simulation of the finite-dimensional ap-
proximation of Gaussian processes Y N conditionally to given data and convexity constraints
(Y N ∈ I ∩C) is reduced to simulate the Gaussian vector (ζ, κ, ξ) restricted to Iξ ∩ Cξ :

A(ζ, κ, ξ) = y,

(ζ, κ, ξ) ∈ Cξ =
{

(ζ, κ, ξ) ∈ R
N+3 : ξj ≥ 0, j = 0, . . . , N

}

,

where the n× (N + 3) matrix A is defined as

Ai,j :=







1 for i = 1, . . . , n and j = 1,

x(i) for i = 1, . . . , n and j = 2,

ϕj−3

(

x(i)
)

for i = 1, . . . , n and j = 3, . . . , N + 3.

We simulate the Gaussian vector (ζ, κ, ξ) with the conditional distribution defined in (3.7),
where ΓN is replaced by ΓN

new. Then, using an improved rejection sampling [22], we select
the non-negative coefficients ξj . Finally, the sample paths of the conditional Gaussian process
are generated by Equation (3.9) which satisfy both interpolation conditions and convexity
constraints in the entire domain.

Now we consider the problem dimension d ≥ 2. For boundary constraints, our model can
be easily extended to multidimensional cases. In the following we are interested in studying
isotonicity constraints.

3.4. Isotonicity in two dimensions. We now assume that the input is x = (x1, x2) ∈ R
2

and without loss of generality is in the unit square. The real function f is supposed to be
monotone (non-decreasing for example) with respect to the two input variables :

x1 ≤ x′1 and x2 ≤ x′2 ⇒ f(x1, x2) ≤ f(x′1, x
′
2).
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The idea is the same as the one-dimensional case. We construct the basis functions such that
monotonicity constraints are equivalent to constraints on the coefficients. Firstly, we discretize
the unit square (e.g. uniformly to (N + 1)2 knots, see below Figure 10 for N = 7). Secondly,
on each knot we build a basis function. For instance, the basis function at the knot (ui, uj) is
defined as

Φi,j(x) := hi(x1)hj(x2),

where hj , j = 0, . . . , N are defined in (3.4). We have

Φi,j(uk, ul) = δi,kδj,l, k, l = 0, . . . , N.

Proposition 3.4. Using the notations introduced before, the finite-dimensional approxima-
tion of Gaussian processes (Y N (x))

x∈[0,1]2 is defined as

Y N (x1, x2) :=
N
∑

i,j=0

Y (ui, uj)hi(x1)hj(x2) =
N
∑

i,j=0

ξi,jhi(x1)hj(x2),(3.10)

where ξi,j = Y (ui, uj) and the functions hj , j = 0, . . . , N are defined in (3.4). Then we have
the following properties :

• Y N is a finite-dimensional GP with covariance function KN (x,x′) = Φ(x)⊤ΓNΦ(x′),
where Φ(x)⊤ = (hi(x1)hj(x2))i,j, Γ

N
(i,j),(i′,j′) = K

(

(ui, uj), (ui′ , uj′)
)

and K is the co-
variance function of the original GP Y .

• Y N converges uniformly to Y when N tends to infinity (with probability 1).

• Y N is non-decreasing with respect to the two input variables if and only if the (N+1)2

random coefficients ξi,j, i, j = 0, . . . , N verify the following linear constraints :

1. ξi−1,j ≤ ξi,j and ξi,j−1 ≤ ξi,j, i, j = 1, . . . , N .
2. ξi−1,0 ≤ ξi,0, i = 1, . . . , N .
3. ξ0,j−1 ≤ ξ0,j, j = 1, . . . , N .

From the last property, the problem is reduced to simulate the Gaussian vector ξ = (ξi,j)i,j
restricted to the convex set Iξ ∩ Cξ, where

Iξ =







ξ ∈ R
(N+1)2 : Y N

(

x
(i)
1 , x

(i)
2

)

=
N
∑

i,j=0

ξi,jhi

(

x
(i)
1

)

hj

(

x
(i)
2

)

= yi







,

Cξ =
{

ξ ∈ R
(N+1)2such that ξi,j verify the constraints 1. 2. and 3.

}

.
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Proof. [Proof of Proposition 3.10] The proof of the first two properties is similar to the one-
dimensional case. Now, if the (N +1)2 coefficients ξi,j, i, j = 0, · · · , N verify the above linear
constraints 1. 2. and 3. then Y N is non-decreasing since Y N is a piecewise linear function for
x1 or x2 directions. Conversely, if Y

N is non-decreasing then Y N (ui, uj) = ξi,j, i, j = 0, . . . , N
satisfy the constraints 1. 2. and 3..

Remark 3.5 (Isotonicity in two dimensions with respect to one variable). If the function is non-
decreasing with respect to the first variable only, then the proposed GP defined as

(3.11) Y N (x1, x2) :=

N
∑

i,j=0

Y (ui, uj)hi(x1)hj(x2) =

N
∑

i,j=0

ξi,jhi(x1)hj(x2),

is non-decreasing with respect to x1 if and only if the random coefficients ξi−1,j ≤ ξi,j, i =
1, . . . , N and j = 0, . . . , N .

3.5. Isotonicity in multidimensional cases. The d-dimensional case is a simple extension
of the two-dimensional case. The finite-dimensional approximation of Gaussian processes Y N

can be written as

Y N (x) :=
N
∑

i1,...,id=0

Y (ui1 , . . . , uid)
∏

σ∈{1,...,d}
hiσ(xσ) =

N
∑

i1,...,id=0

ξi1,...,id
∏

σ∈{1,...,d}
hiσ(xσ),

where ξi1,...,id = Y (ui1 , . . . , uid). Remark 3.5 can be extended as well, for the case of a mono-
tonicity with respect to a subset of variables. For instance, the monotonicity of Y N with re-
spect to the lth dimension input xl is equivalent to the fact that ξi1,...,il,...,id ≥ ξi1,...,il−1,...,id , il =
1, . . . , N and i1, . . . , il−1, il+1, . . . , id = 0, . . . , N .

3.6. Simulation of GPs conditionally to equality and inequality constraints. For the sake
of simplicity and without loss of generality, we suppose that the proposed finite-dimensional
approximation of GPs is of the form

Y N (x) =

N
∑

j=0

ξjφj(x), x ∈ R
d,

where ξ = (ξ0, . . . , ξN )⊤ is a zero-mean Gaussian vector with covariance matrix ΓN and
φ = (φ0, . . . , φN )⊤ are deterministic basis functions. For instance, the constant term Y (0) in
model (3.8) can be written as ξ0φ0(x), where φ0(x) = 1. The space of interpolation conditions

is Iξ =
{

c ∈ R
N+1 such that

∑N
j=0 cjφj

(

x(i)
)

= yi, i = 1, . . . , n
}

and the set of inequality

constraints Cξ is a convex set (for instance, the non-negative quadrant ξj ≥ 0, j = 0, . . . , N
for non-decreasing constraints in one dimension). We are interested in the calculation of the
mean, mode (maximum a posteriori) of Y N conditionally to ξ ∈ Iξ ∩ Cξ and in the quantifi-
cation of prediction intervals. Note that their analytical forms except for the mode are not
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easy to find, hence we need simulation. As explained in § 3.3.1, the problem is reduced to
simulate the Gaussian vector ξ = (ξ0, . . . , ξN )⊤ restricted to convex sets. In that case, several
algorithms can be used (see e.g. [4], [6], [13], [21], [22], [27] and [31]).

In this section we introduce some notations that will be used in § 5, and emphasize the
two cases of truncated simulations. We note ξI the mean of ξ conditionally to ξ ∈ Iξ without
inequality constraints (see Equation (3.7)). Then by linearity of the conditional expectation,
the so-called usual (unconstrained) Kriging mean is equal to

mN
K (x) := E

(

Y N (x)
∣

∣

∣
Y N

(

x(i)
)

= yi, i = 1, . . . , n
)

=

N
∑

j=0

(ξI)jφj(x),

where ξI = E (ξ | ξ ∈ Iξ) = ΓNA⊤ (AΓNA⊤)−1
y ∈ R

N+1 and the matrix A is formed by the

values of the basis functions at the observations (i.e. Ai,j = φj

(

x(i)
)

). Similarly to the Kriging
mean of the original GP (see Equation (2.1)), the Kriging mean mN

K of the finite-dimensional
approximation process Y N can be written as

mN
K (x) = kN (x)⊤K

−1
N y,

where kN (x) =
(

KN

(

x,x(i)
))

i
=
(

AΓNφ(x)
)

is the vector of covariance between Y N (x) and

Y N (X) and (KN )i,j = KN

(

x(i),x(j)
)

i,j
=
(

AΓNA⊤), i, j = 1, . . . , n is the covariance matrix

of Y N (X) = y.

Definition 3.6. Denote ξC as the mean of the Gaussian vector ξ restricted to Iξ ∩Cξ. Then
the inequality Kriging mean (mean a posteriori) is defined as

mN
IK(x) := E

(

Y N (x)
∣

∣

∣
Y N

(

x(i)
)

= yi, ξ ∈ Cξ

)

=
N
∑

j=0

(ξC)jφj(x),

where ξC = E (ξ | ξ ∈ Iξ ∩ Cξ).

Finally, let µ be the maximum of the probability density function (pdf) of ξ restricted to
Iξ ∩Cξ. It is the solution of the following convex optimization problem

(3.12) µ := arg min
c∈Iξ∩Cξ

(

1

2
c⊤
(

ΓN
)−1

c

)

,

where ΓN is the covariance matrix of the Gaussian vector ξ. In fact, µ corresponds to the
mode† of the Gaussian vector ξ restricted to Iξ ∩ Cξ and its numerical calculation is a stan-
dard problem in the minimization of positive quadratic forms subject to convex constraints,
see e.g. [5] and [16]. Let us mention that in all simulation examples illustrated in this paper,

†The maximum of the probability density function.



16 H. MAATOUK and X. BAY

the R Package ‘solve.QP’ described in [15] and [16] is used to compute the mode of the trun-
cated Gaussian vector (i.e. to solve the quadratic convex optimization problem (3.12)).

Definition 3.7. The so-called inequality mode or Maximum A Posteriori (MAP) of the
finite-dimensional approximation process Y N conditionally to given data and inequality con-
straints is equal to

MN
IK(x) :=

N
∑

j=0

µjφj(x), x ∈ R
d,

where µ = (µ0, . . . , µN )⊤ is defined in (3.12).

Remark 3.8.The inequality mode MN
IK defined in Definition 3.7 does not depend on the

variance parameter σ of the covariance function K since the vector µ and the basis functions
φj do not depend on it as well. Also, it does not depend on the simulation but on the length
hyper-parameters of the covariance function θ = (θ1, . . . , θd).

Remark 3.9. The inequality mode or MAP (Maximum A Posteriori) of the conditional GP
MN

IK converges uniformly to the ‘constrained interpolation splines’ [3], which are defined as
functions minimizing the following convex optimization problem (see [25]) :

min
h∈H∩I∩C

‖h‖2H ,

where H is a Reproducing Kernel Hilbert Space (RKHS) associated to the positive type kernel
K [2], I is the set of functions verify interpolation conditions and the convex set C is the space
of functions which verify the inequality constraints. Furthermore, a comparison with existing
monotone cubic splines interpolation algorithms in terms of linearized energy criterion is given
(see [3] for more details).

This extends to the case of inequality constraints the correspondence established by Kimel-
dorf and Wahba [19] between Bayesian estimation on stochastic process and smoothing by
splines.

In practice, we have two cases in the simulation of truncated multivariate normal distri-
butions (see Figures 4a and 4b for example in one dimension). In the first case (Figure 4a),
we have ξI = µ and so mN

K = MN
IK and they are different from mN

IK. In this case, ξI is inside
Cξ (for instance the non-negative quadrant) and the usual (unconstrained) Kriging mean re-
spects the inequality constraints. The second one, where the three are different (Figure 4b).
In this case, ξI is outside Cξ and the usual (unconstrained) Kriging mean does not respect the
inequality constraints.

4. Simulation study. The aim of this section is to illustrate the performance of the pro-
posed model in terms of prediction and uncertainty quantification. To do this, we take the
real increasing function f(x) = log(20x + 1) used in [14] (black lines in Figure 5). Suppose
that f is evaluated at X = (0, 0.1, 0.2, 0.3, 0.4, 0.9, 1). As mentioned in [14], this is a challenge
situation for unconstrained GP since we have a large gap between the fifth and sixth design
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Figure 4: Two cases of truncated normal variables. The mean is inside (respectively outside)
the acceptance region Figure 4a (respectively Figure 4b).

points (i.e. 0.4 < x < 0.9). In Figure 5a, the sample paths are taken from unconstrained GP
using the Matérn 5/2 covariance function (see Table 1), where the hyper-parameters σ and
θ are estimated by Maximum Likelihood Estimator (MLE). Notice that the simulated paths
are not monotone and the prediction interval is quite large between 0.4 and 0.9 (Figure 5b).
In Figure 5c, prediction intervals and inequality mode taken from model (3.8) conditionally
to given data and monotonicity constraints are shown. The Matérn 5/2 covariance function is
used. Applying a suited cross validation method to estimate covariance hyper-parameters [24]
(or the R package [23]), we get σ = 38.1 and θ = 4.7. The predictive uncertainty is reduced
(Figure 5c). Furthermore, contrarily to the model described in [14], we do not need to add
derivative points to ensure monotonicity constraints in the entire domain since the condition
simulation of the finite-dimensional approximation of Gaussian processes is equivalent to the
simulation of a Gaussian vector restricted to convex sets. Finally, in [14], the posterior mean
is used as a predictive estimator whereas two estimators are computed by the methodology
described in this paper (inequality mean and mode of the posterior distribution). Moreover,
the last one (inequality mode) can be seen as the constrained interpolation spline, and then
generalizes the result established by Kimeldorf and Wahba [19].

5. Illustrative examples. The aim of this section is to illustrate the proposed method
with certain constraints such as monotonicity, boundary and convexity and to show the dif-
ference between prediction functions (unconstrained Kriging mean, constrained Kriging mean
and inequality mode). The simulation results are obtained by using Gaussian and Matérn
3/2 covariance functions, where the constrained evaluations are not taken from constrained
functions. We consider first one-dimension monotonicity, convexity and boundary constraints
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Figure 5: The real function evaluated at seven design points used in [14] : (a) 100 sample paths
taken from unconstrained GP with posterior mean, (b) posterior mean and 95% prediction
intervals from unconstrained GP, and (c) the inequality mode and 95% prediction intervals
from model (3.8) conditionally to both interpolation conditions and monotonicity constraints.

examples. In two dimensions, we consider the monotonicity (non-decreasing) case with respect
to the two input variables and to only one variable.

5.1. Monotonicity in one dimensional case. We begin with two monotonicity exam-
ples in one-dimension (Figure 6). In Figure 6a, the 11 design points are given by X =
(0, 0.05, 0.1, 0.3, 0.4, 0.45, 0.5, 0.8, 0.85, 0.9, 1) and the corresponding output y = (0, 0.6, 1.1, 5.5,
7.2, 8, 9.1, 15, 16.3, 17, 20). We choose N = 50 and generate 40 sample paths taken from
model (3.8) conditionally to given data and monotonicity (non-decreasing) constraints (Y ′(uj) ≥
0, j = 0, . . . , N). The Gaussian covariance function is used with the hyper-parameters (σ2, θ)
fixed to (100, 0.2). Notice that the simulated paths (gray lines) are non-decreasing in the



GAUSSIAN PROCESS EMULATOR WITH INEQUALITY CONSTRAINTS 19

entire domain, as well as the increasing Kriging mean mN
IK (solid line). The usual (uncon-

strained) Kriging mean mN
K and the inequality mode MN

IK (dash-dotted line) coincide and
are also non-decreasing. This is because ξI is inside the acceptance region Cξ. In Figure 6b
the input is X = (0, 0.3, 0.4, 0.5, 0.9) and the corresponding output is y = (0, 4, 6, 6.6, 10).
Again, the Gaussian covariance is used with the parameters (σ2, θ) fixed to (100, 0.29). The
increasing Kriging mean (solid line) and the inequality mode satisfy monotonicity constraints,
contrarily to the usual (unconstrained) Kriging mean (dash-dotted line) : it corresponds to
the situation where ξI lies outside the acceptance region Cξ.
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Figure 6: Simulated paths drawn from model (3.8) respecting non-decreasing constraints in
the entire domain. The usual Kriging mean (dash-dotted line) coincides with the inequality
mode and respects the monotonicity in Figure 6a, but not in Figure 6b.

5.2. Monotonicity of continuous but non-derivable functions. The constrained evalu-
ations are given by the input vector X = (0.1, 0.2, 0.3, 0.6, 0.9, 0.95) and the corresponding
output y = (−1, 1, 2, 3, 4, 5.5) (Figure 7). We choose N = 20 then we have 21 knots and we
generate 40 sample paths drawn from the finite-dimensional approximation defined in (3.5)
conditionally to data interpolation and monotonicity constraints given in Remark 3.3. The
Gaussian (resp. Matérn 3/2) covariance function is used in Figure 7a (resp. Figure 7b) with
the same value of parameters fixed to (σ2, θ) = (1.69, 0.6). In both figures, the sample paths
are continuous (non-derivable) and non-decreasing in the entire domain, contrarily to the
usual (unconstrained) Kriging mean. The inequality mode (maximum a posteriori) and the
increasing Kriging mean (mean a posteriori) verify monotonicity (non-decreasing) constraints
in the entire domain. It corresponds to the situation where ξI lies outside the acceptance
region Cξ.
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Figure 7: Simulated paths drawn from model (3.5) using Remark 3.3. Notice that the sim-
ulated paths are continuous (non-derivable) and non-decreasing in the entire domain. The
Gaussian covariance function is used (Figure 7a) and the Matérn 3/2 one (Figure 7b).

5.3. Boundary constraints in one dimensional case. Now we consider the positive and
boundary constraints (Figure 8). We choose N = 50 and generate 100 sample paths taken
from the finite-dimensional approximation defined in (3.5) conditionally to given data and
boundary constraints. In both figures, the Gaussian covariance function is used with the
parameters (σ2, θ) = (16, 0.2) (Figure 8a) and (σ2, θ) = (100, 0.19) (Figure 8b). In Figure 8a,
ξI is inside the acceptance region and the usual (unconstrained) Kriging mean coincides with
the inequality mode and respects boundary constraints, contrarily to Figure 8b, where ξI
lies outside the acceptance region. Notice that the simulated paths satisfy the inequality
constraints in the entire domain (non-negative (Figure 8a)) and are bounded between -20 and
20 (Figure 8b). From Figure 8b, one can remark that the inequality mode is smoother than
the bounded Kriging mean. The degree of smoothness of the inequality mode is related to
one of the covariance function K of the original GP, see Remark 3.9.

5.4. Convexity constraints in one dimensional case. The constrained evaluations in
Figure 9 are given by X = (0, 0.05, 0.2, 0.5, 0.85, 0.95) and the corresponding output y =
(20, 15, 3,−5, 7, 15). We choose N = 50 and generate 25 sample paths taken from model (3.9)
conditionally to given data and convexity constraints (ξj ≥ 0, j = 0, . . . , N). The Gaussian
covariance function is used with the parameters fixed to (σ2, θ) = (100, 0.2). The simulated
paths, the inequality mode (maximum a posteriori) and the convex Kriging mean (mean a
posteriori) are convex in the entire domain, contrarily to the usual (unconstrained) Kriging
mean (dash-dotted line). It corresponds to the situation where ξI lies outside the acceptance
region Cξ.
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Figure 8: Simulated paths drawn from model (3.5) respecting positivity constraints (Figure 8a)
and boundary constraints (Figure 8b). The usual (unconstrained) Kriging mean and the
inequality mode coincide in Figure 8a, but not in Figure 8b.
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Figure 9: Simulated paths drawn from model (3.9) respecting convexity constraints in the
entire domain (Figure 9a). 95% prediction intervals together with three estimators : uncon-
strained Kriging mean, inequality mode and convex Kriging mean (Figure 9b).
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5.5. Isotonicity in two dimensions. In two dimensions, the aim is to interpolate a 2D-
function defined on [0, 1]2 and non-decreasing with respect to the two inputs. In that case,
and by the uniform subdivision of the input set the number of knots and basis functions is
(N + 1)2. In Figures 10, 11 and 12, we choose N = 7, then we have 64 knots and basis
functions. Suppose that the real function is evaluated at four design points given by the

rows of the 4 × 2 matrix X =

[

0.1 0.9 0.5 0.8
0.4 0.3 0.6 0.9

]⊤
and the corresponding output

y = (5, 12, 13, 25). The output values respect monotonicity constraints in two dimensions.
The two-dimensional Gaussian kernel is used

K(x,x′) = σ2 exp

(

−
(x1 − x′1)

2

2θ21

)

× exp

(

−
(x2 − x′2)

2

2θ22

)

,

where the variance parameter σ is fixed to 10 and the length parameters (θ1, θ2) to (1, 1). We
generate 5 simulation surfaces taken from model (3.10) conditionally to given data and mono-
tonicity constraints with respect to the two input variables (Figure 11a). The two red surfaces
are the 95% prediction interval. To check visually the isotonicity, we plot in Figure 11b the
contour levels of one simulation surface. The blue points represent the interpolation input
locations (design points). If we fix one of the variables and we draw the vertical or horizontal
line, it must not intersect a contour level two times.
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x1

x2

Figure 10: Design points for the monotone 2D interpolation problem (black points) and knots
(ui, uj)0≤i,j≤7 used to define the basis functions.

In Figure 12 we draw some simulated surfaces taken from the example used in Figure 11a.
All the simulated surfaces are non-decreasing with respect to the two input variables.
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Figure 11: Simulated surfaces drawn from model (3.10) respecting monotonicity constraints
for the two input variables Figure 11a. Contour levels for one simulated surface Figure 11b.

In Figure 13 a simulation surface of the conditional GP at four design points including
monotonicity constraints with respect to the first input variable only is shown. In that case,
we choose N = 23, so we have (N + 1)2 basis functions and knots. The two-dimensional
Gaussian covariance function is used with the variance parameter σ fixed to 10 and the length
hyper-parameters (θ1, θ2) fixed to (0.5, 0.45).

6. Numerical convergence. In order to investigate the convergence rate of the proposed
model when N tends to infinity, we plot in Figure 14a the inequality mode and the usual
(unconstrained) Kriging mean in the situation where they are different. It corresponds to the
case where the usual Kriging mean does not respect boundary constraints (i.e. ξI /∈ Cξ). In
Figure 14b, we illustrate the inequality mode MN

IK of the finite-dimensional approximation
defined in (3.5) when N = 500. The dashed-line represents MN

IK when N = 20, which is close
to one generated from N = 500. Let us specify that the Matérn 3/2 covariance function is
used with the length parameter θ = 0.25 (see Table 1).

The convergence when N tends to infinity of the finite-dimensional approximation defined
in (3.8) with monotonicity constraints is studied in Figure 15. In Figure 15a, the case where
the unconstrained Kriging mean and the inequality mode are different is considered. In both
figures, the solid line represents the inequality mode MN

IK of the finite-dimensional approxi-
mation when N = 500. The Gaussian covariance function is used with the length parameter
θ = 0.3. In Figure 15b, the dashed-line corresponds to the inequality mode when N = 20,
which is close to one generated from N = 500.
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Figure 12: Simulated surfaces drawn from the example used in Figure 11a respecting mono-
tonicity constraints for the two input variables.

7. Conclusion. In this article, we propose a new model for incorporating both interpo-
lation conditions and inequality constraints into a Gaussian process emulator. Our method
ensures that the inequality constraints are respected not only in a discrete subset of the input
set but also in the entire domain. We suggest a finite-dimensional approximation of a Gaussian
process which converges uniformly pathwise. It is constructed by incorporating determinis-
tic basis functions and Gaussian random coefficients. We show that the basis functions can
be chosen such that inequality constraints of Y N are equivalent to a finite number of con-
straints on the coefficients. So, the initial problem is equivalent to simulate a Gaussian vector
restricted to convex sets.

Now, the problem is open to substantial future work. For practical applications, estimating
parameters should be investigated and Cross Validation techniques can be used. The suited
Cross Validation method to inequality constraints described in [24] can be developed. As
input dimension increases, the efficiency of the method will become low. In fact, the size of
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Figure 13: Simulated surface drawn from model (3.11) respecting monotonicity (non-
decreasing) constraints for the first variable only, and the associated contour levels.
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Figure 14: In both figures, the solid line represents the inequality mode MN
IK when N = 500

which respects boundary constraints in the entire domain. The dashed-line in Figure 14a (resp.
Figure 14b) represents the usual Kriging mean (resp. the inequality mode when N = 20).
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Figure 15: In both figures, the solid line represents the inequality mode MN
IK when N = 500

which respects monotonicity constraints in the entire domain. The dashed-line in Figure 15a
(resp. Figure 15b) represents the usual Kriging mean (resp. the inequality mode when N =
20).

the Gaussian vector of random coefficients in the approximation model increases exponentially.
However, the choice of knots (subdivision of the input set) can be improved to reduce the cost
of simulation, as well as the number of basis functions. This problem is also related to the
choice of the basis functions with respect to a prior information on the regularity of the real
function. Additionally, the simulation of the truncated Gaussian vector can be accelerated by
Markov chain Monte Carlo (McMC) methods or Gibbs sampling (see e.g. [13] and [31]).
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