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GAUSSIAN PROCESS EMULATORS FOR COMPUTER EXPERIMENTS

WITH INEQUALITY CONSTRAINTS

Hassan Maatouk† and Xavier Bay†

Abstract. Physical phenomena are observed in many fields (sciences and engineering) and are often studied
by time-consuming computer codes. These codes are analyzed with statistical models, often called
emulators. In many situations, the physical system (computer model output) may be known to
satisfy inequality constraints with respect to some or all input variables. Our aim is to build a
model capable of incorporating both data interpolation and inequality constraints into a Gaussian
process emulator. By using a functional decomposition, we propose to approximate the original
Gaussian process by a finite-dimensional Gaussian process such that all conditional simulations
satisfy the inequality constraints in the whole domain. The mean, mode (maximum a posteriori) and
prediction intervals (uncertainty quantification) of the conditional Gaussian process are calculated.
To investigate the performance of the proposed model, some conditional simulations with inequality
constraints such as boundary, monotonicity or convexity conditions are given.

Key words. Gaussian process emulator, inequality constraints, finite-dimensional Gaussian process, splines,
uncertainty quantification, design and modeling of computer experiments

AMS subject classifications. 60G15, 60G25

1. Introduction. In the engineering activity, runs of a computer code can be expensive
and time-consuming. One solution is to use a statistical surrogate for conditioning computer
model outputs at some input locations (design points). Gaussian process (GP) emulator is
one of the most popular choices [23]. The reason comes from the property of the GP that
uncertainty quantification can be calculated. Furthermore, it has several nice properties. For
example, the conditional GP at observation data (linear equality constraints) is still a GP
[5]. Additionally, some inequality constraints (such as monotonicity and convexity) of output
computer responses are related to partial derivatives. In such cases, the partial derivatives of
the GP are also GPs. Incorporating an infinite number of linear inequality constraints into a
GP emulator, the problem becomes more difficult. The reason is that the resulting conditional
process is not a GP.

In the literature of interpolation with inequality constraints, we find two types of meth-
ods. The first one is deterministic and based on splines, which have the advantage that the
inequality constraints are satisfied in the whole input domain (see e.g. [16], [24] and [25]).
The second one is based on the simulation of the conditional GP by using the subdivision of
the input set (see e.g. [1], [6] and [11]). In that case, the inequality constraints are satisfied
in a finite number of input locations. Notice that the advantage of such method is that un-
certainty quantification can be calculated. In previous work, some methodologies have been
based on the knowledge of the derivatives of the GP at some input locations ([11], [21] and
[26]). For monotonicity constraints with noisy data, a Bayesian approach was developed in
[21]. In [11] the problem is to build a GP emulator by using the prior monotonicity infor-
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mation of the computer model response with respect to some inputs. Their idea is based on
an approach similar to [21] placing the derivatives information at specified input locations,
by forcing the derivative process to be positive at these points. In such methodology, the
monotonicity constraint is not guaranteed in the whole domain. Recently, a methodology
based on a discrete-location approximation for incorporating inequality constraints into a GP
emulator was developed in [6]. Again, the inequality constraints are not guaranteed in the
whole domain.

On the other hand, Villalobos and Wahba [24] used splines to estimate an interpolation
smooth function satisfying a finite family of linear inequality constraints. In term of estimation
of monotone smoothing functions, using B-splines was firstly introduced by Ramsay [19].
The idea is based on the integration of B-splines defined on a properly set of knots with
positive coefficients to ensure the monotonicity constraint. A similar approach is applied to
econometrics in [7]. Xuming [27] takes the same approach and suggests the calculation of the
coefficients by solving a finite linear minimization problem. A comparison to monotone kernel
regression and an application to decreasing constraints are included.

Our aim in this paper is to build a GP emulator incorporating the advantage of splines
approach in order to ensure that the inequality constraints are satisfied in the whole input
domain. We propose to approximate the original GP by a finite-dimensional GP that converges
uniformly to the original one. It is constructed by incorporating Gaussian random coefficients
and deterministic basis functions. We show that the basis functions can be chosen such that the
inequality constraints of the GP are equivalent to constraints on the coefficients. Therefore
the inequality constraints are reduced to a finite number of constraints. Furthermore, any
posterior sample of coefficients leads to an interpolating function satisfying the inequality
constraints in the whole domain. Finally, the problem is reduced to simulate a Gaussian
vector (random coefficients) restricted to convex sets which is a well-known problem with
existing algorithms (see e.g. [2], [4], [8], [9],[10], [15], [18] and [22]).

The article is structured as follows: in §2, we briefly recall Gaussian process modeling
for computer experiments and the choice of covariance functions. In §3, we propose a finite-
dimensional GP capable of interpolating computer model outputs and incorporating inequality
constraints in the whole domain, and we investigate its properties. In §4, we show some
simulated examples of the conditional GP with inequality constraints (such as boundary,
monotonicity or convexity conditions) in one and two dimensions. We end up this paper by
some concluding remarks and future work.

2. Gaussian process emulators for computer experiments. We consider the model y =
f(x), where the simulator response y is assumed to be a deterministic real-valued function
of the d-dimensional variable x = (x1, . . . , xd) ∈ R

d. We suppose that the real function is
continuous and evaluated at n design points given by the rows of the n × d matrix X =
(x(1), . . . ,x(n))⊤, where x(i) ∈ R

d, 1 ≤ i ≤ n. In practice, the evaluation of the function is
expensive and must be considered highly time-consuming. The solution is to estimate the
unknown function f by using a GP emulator also known as “Kriging”. In this framework, y
is viewed as a realization of a continuous GP,

(2.1) Y (x) := η(x) + Z(x),
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where the deterministic continuous function η : x ∈ R
d −→ η(x) ∈ R is the mean and Z is

a centered GP with continuous covariance function

(2.2) K : (u,v) ∈ R
d × R

d −→ K(u,v) ∈ R.

Conditionally to the observation y = (y(x(1)), . . . , y(x(n)))⊤ the process is still a GP:

(2.3) Y (x)
∣

∣Y (X) = y ∼ N
(

ζ(x), τ2(x)
)

,

where

ζ(x) = η(x) + k(x)⊤K
−1 (y − µ)

τ2(x) = K(x,x)− k(x)⊤K
−1k(x)

and µ = η(X) is the vector of trend values at the experimental design points, Ki,j =
K

(

x(i),x(j)
)

, i, j = 1, . . . , n is the covariance matrix of Y (X), and k(x) =
(

K
(

x,x(i)
))

is the vector of covariance between Y (x) and Y (X). The mean ζ(x) is called Simple Kriging
(SK) mean prediction of Y (x) based on the computer model outputs Y (X) = y, [13].

2.1. The choice of covariance function. The choice of K has crucial consequences spe-
cially in controlling the smoothness of the Kriging metamodel. It must be chosen in the set
of definite and positive kernels. Some popular kernels are the Gaussian kernel, Matérn ker-
nel (with parameter λ = 3/2, 5/2, . . .) and exponential kernel (Matérn kernel with parameter
λ = 1/2). Notice that these kernels are placed in order of smoothness, the Gaussian kernel
corresponding to C∞ function and the exponential kernel to continuous one (see [20]). In the
running examples of this paper, we will consider the Gaussian kernel defined by

(2.4) K(x,x′) = σ2Πd
k=1e

−
(xk−x′

k
)2

2θk ,

for all x, x′ ∈ R
d, where σ2 and θ = (θ1, . . . , θd) are parameters.

2.2. Derivatives of Gaussian processes. In this paragraph we assume that the paths of
Y (x) are of class Cp. This can be guaranteed if K is smooth enough, and in particular if K
is of class C∞ (see [5]). The linearity of the differentiation operation ensures that the order
partial derivatives of a GP are also GPs [5], with (see e.g. [17]):

E
(

∂p
xk
Y (x)

)

=
∂p

∂xpk
E (Y (x)) ,(2.5)

Cov
(

∂p
xk
Y (x(i)), ∂q

xl
Y (x(j)))

)

=
∂p+q

∂xpk∂(x
′
l)
q
K

(

x(i),x(j)
)

.(2.6)

3. Gaussian process emulators with inequality constraints. In this section we assume
that the real function (physical system) may be known to satisfy inequality constraints (such
as boundary, monotonicity or convexity conditions) in the whole domain. Our aim is to
incorporate both interpolation conditions and inequality constraints into a Gaussian process
emulator.
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3.1. Formulation of the problem. Without loss of generality the input x is in [0, 1]d ⊂ R
d.

We assume that the real function f is evaluated at n distinct locations in the input set,

(3.1) f(x(i)) = yi, i = 1, . . . , n.

Let (Y (x))
x∈[0,1]d be a centered GP with covariance function K and C([0, 1]d) the space of

continuous function on [0, 1]d. We denote by C the subset of C([0, 1]d) corresponding to a
given set of inequality constraints. We aim to get the conditional distribution of Y given
interpolation conditions and linear inequality constraints respectively as

(3.2)
Y
(

x(i)
)

= yi, i = 1, . . . , n,
Y ∈ C.

3.2. Gaussian process approximation. To handle the conditional distribution incorpo-
rating both interpolation conditions and inequality constraints, we propose to approximate
the original GP Y by a finite-dimensional process of the form

(3.3) Y N (x) :=

N
∑

j=0

ξjφj(x),

where ξ = (ξ0, . . . , ξN )⊤ is a centered Gaussian vector with covariance matrix ΓN and φ =
(φ0, . . . , φN )⊤ is a vector of basis functions. The choice of these basis functions and ΓN depend
on the type of the inequality constraints. Notice that Y N is a centered GP with covariance
function

(3.4) KN (x,x′) = φ(x)⊤ΓNφ(x′).

The advantage of the proposed model (3.3) is that the original problem is reduced to simulate
the Gaussian vector ξ given that

N
∑

j=0

ξjφj(x
(i)) = yi, i = 1, . . . , n,(3.5)

ξ ∈ Cξ,(3.6)

where Cξ =
{

c ∈ R
N+1 :

∑N
j=0 cjφj ∈ C, c = (c0, . . . , cN )⊤

}

. Hence the problem is equiva-

lent to simulate a truncated Gaussian vector restricted to (3.5) and (3.6).

3.3. One dimensional cases.
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3.3.1. Boundary constraint. We assume that the real function defined in the unit interval
is continuous and bounded (a ≤ f(x) ≤ b, x ∈ [0, 1]), where −∞ ≤ a < b ≤ +∞. In that
case, the convex set C is the space of bounded functions and is defined as

(3.7) C := {f ∈ C([0, 1]), a ≤ f(x) ≤ b, x ∈ [0, 1]} .

Let us begin by constructing the functions hj , j = 0, . . . , N that will be used in the proposed
model. We first descretize the input set as 0 = u0 < u1 < . . . < uN = 1, and on each knot
we build a function. For the sake of simplicity, we use a uniform subdivision of the input
set but the methodology can be adapted for any subdivision. For example at the jth knot
uj = jδ = j/N the associated function is

(3.8) hj(x) = h

(

x− uj
δ

)

, j = 0, . . . , N,

where h(x) := (1− |x|) 1(|x|≤1), x ∈ R, see Figures 1a and 1b below for N = 4. Notice that the

hj’s are bounded between 0 and 1 and
∑N

j=0 hj(x) = 1 for all x in [0, 1]. Additionally, the value
of these functions at any knot ui, i = 0, . . . , N is equal to the delta function (hj(ui) = δij),
where δij is equal to one if i = j and zero otherwise.
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Figure 1: The basis functions hj , (0 ≤ j ≤ 4) (Figure 1a) and the function h (Figure 1b).

The philosophy of the proposed method is presented in the following proposition:

Proposition 3.1. With the notations introduced before, we define the finite-dimensional pro-
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cess (Y N (x))x∈[0,1] as

(3.9) Y N (x) =
N
∑

j=0

Y (uj)hj(x) =
N
∑

j=0

ξjhj(x),

where we denote ξj = Y (uj), j = 0, · · · , N . Then we have the following properties:

• Y N is a finite-dimensional GP with covariance function KN (x, x′) = h(x)⊤ΓNh(x′),
where h(x) = (h0(x), . . . , hN (x))⊤, ΓN

i,j = K(ui, uj), i, j = 0, . . . , N and K the covari-
ance function of the original GP Y .

• Y N converges uniformly to Y when N tends to infinity (with probability 1).
• KN converges uniformly to K when N tends to infinity.
• Y N is in C if and only if the (N + 1) coefficients Y (uj) are contained in [a, b].

The advantage of this model is that the infinite number of inequality constraints of Y N are
reduced to a finite number of constraints on the coefficients (Y (uj))0≤j≤N . Therefore the
problem is reduced to simulate the Gaussian vector ξ = (Y (u0), . . . , Y (uN ))⊤ restricted to the
convex subset of R

N+1, Cξ = [a, b]N+1.

Proof. [Proof of Proposition 3.1] Since Y (uj), j = 0, . . . , N are Gaussian variables, then
Y N is a GP with dimension equal to N + 1 and covariance function

(3.10)

cov
(

Y N (x), Y N (x′)
)

=
N
∑

i,j=0

cov (Y (ui), Y (uj)) hi(x)hj(x
′) =

N
∑

i,j=0

K(ui, uj)hi(x)hj(x
′).

Denote by EN := span {h0, . . . , hN} the approximation space spanned by the functions hj ,
0 ≤ j ≤ N . Let fN be a function defined as

(3.11) fN (x) =

N
∑

j=0

f(uj)hj(x) ∈ EN ,

where f is any continuous function. Hence the piecewise linear function fN converges uni-
formly to f when N tends to infinity. This is a consequence of the fact that a continuous
function is uniformly continuous on a compact set. Consequently, the second property is
done as the GP Y is assumed to be continuous. From (3.10) and by a similar argument
to show the uniform convergence of fN to f , we get the third property. Now observe that
∑N

j=0 hj(x) = 1, x ∈ [0, 1]. If the (N + 1) coefficients Y (uj)0≤j≤N are in the interval [a, b]

then Y N is in C. Conversely, suppose that YN is in C then

(3.12) Y N (ui) =
N
∑

j=0

Y (uj)hj(ui) =
N
∑

j=0

Y (uj)δij = Y (ui) ∈ [a, b],
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i = 0, . . . , N , which completes the proof of the last property, and hence concludes the proof
of the proposition.

3.3.2. Monotonicity constraint. In this section the real function f is assumed to be of
class C1. The convex set C is the space of non-decreasing functions and is defined as

(3.13) C :=
{

f ∈ C1([0, 1]) : f ′(x) ≥ 0, x ∈ [0, 1]
}

.

Since the monotonicity is related to the sign of the derivative then the proposed model is
adapted from model (3.9). The basis functions are defined as the primitive functions of hj ,

(3.14) φj(x) :=

∫ x

0
hj(t)dt, x ∈ [0, 1].

Remark that the derivative of the basis functions φj at any knot ui, i = 0, . . . , N is equal to
the delta function (φ′

j(ui) = δij). In Figure 2a we illustrate the basis functions φj, (0 ≤ j ≤ 4).
Notice that all these functions are non-decreasing and starting from 0. In Figure 2b we plot
the basis function φ2 and the associate function h2 for N = 4.
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Figure 2: The basis functions φj , (0 ≤ j ≤ 4) (Figure 2a) and the function h2 with the
corresponding function φ2 (Figure 2b).

Similarly to Proposition 3.1, we have the following results.

Proposition 3.2. Using the notations introduced before, we define the finite-dimensional
process (Y N (x))x∈[0,1] as

(3.15) Y N (x) = Y (0) +
N
∑

j=0

Y ′(uj)φj(x) = ζ +
N
∑

j=0

ξjφj(x),
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where we denote ζ = Y (0) and ξj = Y ′(uj), j = 0, · · · , N . Then we have the following prop-
erties:

• Y N is a finite-dimensional GP with covariance function KN (x, x′) = φ(x)⊤ΓNφ(x′),

where φ(x) = (φ0(x), . . . , φN (x))⊤, ΓN
i,j = ∂2K

∂x∂x′ (ui, uj), i, j = 0, . . . , N and K the
covariance function of the original GP Y .

• Y N converges uniformly to Y when N tends to infinity (with probability 1).
• KN converges uniformly to K when N tends to infinity.
• Y N is non-decreasing if and only if the coefficients (Y ′(uj))0≤j≤N are all non-negative.

Consequently, the (N +2)× (N +2) covariance matrix ΓN
new

of the Gaussian vector (ζ, ξ)⊤ =
(Y (0), Y ′(u0), . . . , Y

′(uN )) is equal to

ΓN
new

=

[

K(0, 0) ∂K
∂x′ (0, ui)

∂K
∂x

(uj , 0) ΓN
i,j

]

0≤i,j≤N

.

From the last property, the problem is reduced to simulate the Gaussian vector (ζ, ξ)⊤ re-
stricted to the non-negative quadrant,

(

Cξ =
{

ξ ∈ R
N+1 : ξj ≥ 0, j = 0, . . . , N

})

.

Proof. The first property is a consequence of the fact that the derivative of a GP is also
a GP. We have for all x, x′ ∈ [0, 1],

(3.16) KN (x, x′) = cov
(

Y N (x), Y N (x′)
)

=

N
∑

i,j=0

∂2K

∂x∂x′
(ui, uj)φi(x)φj(x

′).

Let f and fN be two functions of class C1 given respectively as

f(x) = f(0) +

∫ x

0
f ′(t)dt,(3.17)

fN (x) = f(0) +

∫ x

0
f ′
N (t)dt.(3.18)

The convergence of fN to f is done by applying Proposition 3.1 to the following,

(3.19) |fN (x)− f(x)| =

∣

∣

∣

∣

∫ x

0
f ′
N(t)dt−

∫ x

0
f ′(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

0
(f ′

N (t)− f ′(t))dt

∣

∣

∣

∣

≤ ‖f ′
N − f ′‖∞,

and ‖fN −f‖∞ ≤ ‖f ′
N −f ′‖∞. The convergence of KN to K is a consequence of (3.16). Now if

Y ′(uj), j = 0, . . . , N are all non-negative then Y N is non-decreasing since the basis functions
(φj)0≤j≤N are non-decreasing. Conversely, if Y N is non-decreasing, we have

(3.20) 0 ≤ (Y N )′(ui) =
N
∑

j=0

Y ′(uj)hj(ui) = Y ′(uj),
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i = 0, . . . , N , which completes the proof of the last property and the proposition.

Remark 3.3 (Monotonicity of continuous but non-derivable functions). If the real function is
of class C0 only (but possibly not derivable) and non-decreasing in the whole domain, then the
proposed model defined in (3.9) is non-decreasing if and only if the sequence of coefficients
(Y (uj))j , j = 0, . . . , N is non-decreasing (i.e. Y (uj−1) ≤ Y (uj), j = 1, . . . , N).

3.3.3. Convexity constraint. In this section the real function is supposed to be two times
differentiable. Since the functions hj , j = 0, . . . , N defined in (3.8) are all non-negative, then
the basis functions φj are taken as the two times primitive functions of hj ,

(3.21) φj(x) :=

∫ x

0

(
∫ t

0
hj(u)du

)

dt.

In Figure 3a we illustrate the basis functions φj, (0 ≤ j ≤ 4). Notice that all these
functions are convex and pass through the origin. Moreover, the derivatives at the origin are
equal to zero. In Figure 3b we illustrate the basis function φ2 and the associate function h2.
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Figure 3: The basis functions φj , (0 ≤ j ≤ 4) (Figure 3a) and the function h2 with the
corresponding function φ2 (Figure 3b).

Similarly to the monotonicity case, the second derivative of the basis functions φ′′
j at any

knot ui, (0 ≤ i ≤ N) is equal to delta function (φ′′
j (ui) = δij). Consequently, the proposed

GP defined as

(3.22) Y N (x) = Y (0) + xY ′(0) +
N
∑

j=0

Y ′′(uj)φj(x) = ζ + κx+
N
∑

j=0

ξjφj(x),



10 H. MAATOUK and X. BAY

is convex if and only if the (N + 1) random coefficients ξj = Y ′′(uj) are all non-negative,
where we denote ζ = Y (0) and κ = Y ′(0). Thus the problem is simplified to gener-
ate the Gaussian vector (ζ, κ, ξ)⊤ restricted to the convex set Cξ (non-negative quadrant),
(

Cξ =
{

ξ ∈ R
N+1 : ξj ≥ 0, j = 0, . . . , N

})

. Its (N + 3)× (N + 3) covariance matrix ΓN
new is

given by

ΓN
new =





var(ζ) cov(ζ, κ) cov(ζ, ξ)
cov(κ, ζ) var(κ) cov(κ, ξ)
cov(ξ, ζ) cov(ξ, κ) cov(ξ, ξ)



 =







K(0, 0) ∂K
∂x′ (0, 0)

∂2K
∂(x′)2

(0, ui)
∂K
∂x

(0, 0) ∂2K
∂x∂x′ (0, 0)

∂3K
∂x∂(x′)2

(0, ui)
∂2K
∂x2 (uj , 0)

∂3K
∂x2∂x′ (uj , 0) ΓN

i,j







0≤i,j≤N

,

where

(3.23) ΓN
i,j = cov(ξi, ξj) = cov(Y ′′(ui), Y

′′(uj)) =
∂4K

∂x2∂(x′)2
(ui, uj), i, j = 0, . . . , N.

Now we consider the problem dimension d ≥ 2. For boundary constraints, our model can
be easily extended to multidimensional cases. In the following we are interested in studying
the monotonicity constraint.

3.4. Monotonicity in two dimensions. We now assume that the input is x = (x1, x2) ∈ R
2

and without loss of generality is in the unit square. The real function f is supposed to be
monotone (non-decreasing for example) with respect to the two input variables:

(3.24) x1 ≤ x′1 and x2 ≤ x′2 ⇒ f(x1, x2) ≤ f(x′1, x
′
2).

The idea is the same as the one-dimensional case. We construct the basis functions such
that the monotonicity constraint is equivalent to constraints on the coefficients. Firstly, we
discretize the unit square (e.g. uniformly to (N + 1)2 knots, see below Figure 9 for N = 7).
Secondly, on each knot we build a basis function. For instance, the basis function at the knot
(ui, uj) is defined as

(3.25) Φi,j(x) = hi(x1)hj(x2),

where hj , j = 0, . . . , N are defined in (3.8). We have

(3.26) Φi,j(uk, ul) = δi,kδj,l, k, l = 0, . . . , N.

Proposition 3.4. Using the notations introduced before, we define the finite-dimensional
process (Y N (x))

x∈[0,1]2 as

Y N (x1, x2) =
N
∑

i,j=0

Y (ui, uj)hi(x1)hj(x2) =
N
∑

i,j=0

ξi,jhi(x1)hj(x2),(3.27)



GAUSSIAN PROCESS EMULATOR WITH INEQUALITY CONSTRAINTS 11

where we denote ξi,j = Y (ui, uj) and the functions hj , j = 0, . . . , N are defined in (3.8). Then
we have the following properties:

• Y N is a finite-dimensional GP with covariance function KN (x,x′) = h(x)⊤ΓNh(x′),
where h(x)⊤ = (hi,j(x))i,j = (hi(x1)hj(x2))i,j, Γ

N
(i,j),(i′,j′) = K((ui, uj), (ui′ , uj′)) and

K the covariance function of the original GP Y .
• Y N converges uniformly to Y when N tends to infinity (with probability 1).
• KN converges uniformly to K when N tends to infinity.
• Y N is non-decreasing with respect to the two input variables if and only if the (N+1)2

random coefficients ξi,j, i, j = 0, . . . , N verify the following linear constraints:
1. ξi,j ≥ ξi−1,j and ξi,j ≥ ξi,j−1, i, j = 1, . . . , N .
2. ξ0,j ≥ ξ0,j−1, j = 1, . . . , N .
3. ξ0,i ≥ ξ0,i−1, i = 1, . . . , N .

From the last property, the problem is reduced to simulate the Gaussian vector ξ = (ξi,j)i,j re-

stricted to the convex set Cξ =
{

ξ⊤ ∈ R
(N+1)2such that ξi,j verify the constraints 1. 2. and 3.

}

.

Proof. The proof of the first three properties is similar to the one-dimensional case. Now
if the (N + 1)2 coefficients ξi,j, i, j = 0, · · · , N verify the above linear constraints 1. 2. and
3. then Y N is non-decreasing since Y N is a piecewise linear function for x1 and x2 directions.
Conversely, if Y N is non-decreasing then Y N (ui, uj) = ξi,j, i, j = 0, . . . , N satisfy the con-
straints 1. 2. and 3..

Remark 3.5 (Monotonicity in two dimensions with respect to one variable). If the function is
non-decreasing with respect to the first variable only, then the proposed GP defined as

(3.28) Y N (x1, x2) =

N
∑

i,j=0

Y (ui, uj)hi(x1)hj(x2) =

N
∑

i,j=0

ξi,jhi(x1)hj(x2),

is non-decreasing with respect to x1 if and only if the random coefficients ξi,j ≥ ξi−1,j, i =
1, . . . , N and j = 0, . . . , N .

3.5. Monotonicity in multidimensional cases. The d-dimensional case is a simple exten-
sion of the two-dimensional case. The finite-dimensional GP is written as

(3.29) Y N (x) =
N
∑

i1,...,id=0

Y (ui1 , . . . , uid)Πσ∈{1,...,d}hσ(xσ) =
N
∑

i1,...,id=0

ξi1,...,idΠσ∈{1,...,d}hσ(xσ),

where we denote ξi1,...,id = Y (ui1 , . . . , uid). Remark 3.5 can be extended as well, for the case
of a monotonicity with respect to a subset of variables. For instance, the monotonicity of
Y N with respect to the lth dimension input xl is equivalent to the fact that ξi1,...,il,...,id ≥
ξi1,...,il−1,...,id , il = 1, . . . , N and i1, . . . , il−1, il+1, . . . , id = 0, . . . , N .
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3.6. Simulation of GP conditionally to equality and inequality constraints. Let us re-
mark that in any cases the approximate GP Y N is of the form

(3.30) Y N (x) =

N
∑

j=0

ξjφj(x), x ∈ R
d,

where ξ = (ξ0, . . . , ξN )⊤ is a Gaussian vector with covariance matrix ΓN and φ = (φ0, . . . , φN )
are deterministic basis functions. For instance, the constant term Y (0) in model (3.15)
can be written as ξ0φ0(x), where φ0(x) = 1. The space of interpolation conditions is I =
{

c ∈ R
N+1 such that

∑N
j=0 cjφj(x

(i)) = yi, i = 1, . . . , n
}

and the set of inequality constraints

Cξ is a convex set (for instance, the non-negative quadrant ξj ≥ 0, j = 0, . . . , N for the non-
decreasing constraint in one dimension). We are interested in the calculation of the mean,
mode (maximum a posteriori) and prediction intervals (uncertainty quantification) of Y N con-
ditionally to ξ ∈ I ∩ Cξ. Note that their analytical forms except for the mode are not easy to
find, hence we need simulation. As explained in §3.3.1, the problem is reduced to simulate the
Gaussian vector ξ = (ξ0, . . . , ξN )⊤ restricted to convex sets. In that case, several algorithms
can be used (see e.g. [2], [4], [10], [14], [15], [18] and [22]).

In this section we introduce some notations that will be used in §4, and emphasize the
two cases of truncated simulations. We note ξc the mean of ξ conditionally to ξ ∈ I without
inequality constraints. Then by linearity of the conditional expectation, the so-called usual
(unconstrained) Kriging mean is equal to

(3.31) mK(x) := E
(

Y N (x)
∣

∣

∣
Y N

(

x(i)
)

= yi, i = 1, . . . , n
)

=

N
∑

j=0

(ξc)jφj(x),

where ξc = E (ξ|ξ ∈ I).

Definition 3.6. Denote ξm as the mean of the Gaussian vector ξ restricted to I ∩ Cξ. Then
the inequality Kriging mean is defined as

(3.32) mKI(x) := E
(

Y N (x)
∣

∣

∣
Y N

(

x(i)
)

= yi, ξ ∈ Cξ
)

=
N
∑

j=0

(ξm)jφj(x),

where ξm = E (ξ|ξ ∈ I ∩ Cξ).

Finally, let µ be the maximum of the pdf of ξ restricted to I ∩ Cξ. It is the solution of the
following convex optimization problem

(3.33) µ = arg min
c∈I∩Cξ

(

1

2
c⊤

(

ΓN
)−1

c

)

,
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where ΓN is the covariance matrix of the Gaussian vector ξ. In fact, µ corresponds to the
mode of the truncated Gaussian vector ξ restricted to I ∩ Cξ and its numerical calculation
is a standard problem in the minimization of positive quadratic forms subject to linear con-
straints, see e.g. [3] and [12].

Definition 3.7. The so-called mode (maximum a posteriori) is equal to

(3.34) MKI(x) =
N
∑

j=0

µjφj(x),

where µ = (µ0, . . . , µN )⊤ is defined in (3.33).

−2 −1 0 1 2 3 4
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f(
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ξc ξmµ

(b)

Figure 4: Two cases of truncated normal variables. The mean is inside (respectively outside)
the acceptance region Figure 4a (respectively Figure 4b).

In practice, we have two cases in the simulation of truncated multivariate normal distribu-
tions (see Figures 4a and 4b for example in one dimension). In the first case (Figure 4a), we
have ξc = µ and so mK = MKI and they are different from mKI . In this case, ξc is inside Cξ
(non-negative quadrant) and the usual (unconstrained) Kriging mean respects the inequality
constraints. The second one, where the three are different (Figure 4b). In this case, ξc is out-
side Cξ and the usual (unconstrained) Kriging mean does not respect the inequality constraints.

4. Illustrative examples. In this section the simulation results are obtained by using
the Gaussian covariance function. We consider first one-dimension monotonicity, convexity
and boundary constraints examples. In two dimensions, we consider the monotonicity (non-
decreasing) case with respect to the two input variables and to only one variable.
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Figure 5: Simulated paths (gray lines) drawn from the conditional Gaussian process respecting
the non-decreasing constraint in the whole domain [0, 1]. The usual Kriging mean (blue dash-
dotted line) coincides with the mode (maximum a posteriori) and respects the monotonicity
in Figure 5a, but not in Figure 5b. The red line defined as the mean of the simulated paths
respects the monotonicity constraint in the whole domain.
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Figure 6: Simulated paths (gray lines) drawn from the model (3.9) using Remark 3.3. Notice
that the simulated paths are continuous (non derivable) and non-decreasing in the whole
domain.
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We begin with two monotonicity examples in one-dimension (Figure 5). In Figure 5a the
real function is assumed to be non-decreasing and evaluated at 11 design points given by X =
(0, 0.05, 0.1, 0.3, 0.4, 0.45, 0.5, 0.8, 0.85, 0.9, 1) and the corresponding output y = (0, 0.6, 1.1, 5.5,
7.2, 8, 9.1, 15, 16.3, 17, 20). We choose N = 50 and generate 40 sample paths taken from model
(3.15) conditionally to given data and monotonicity (non-decreasing) constraints (Y ′(uj) ≥
0, j = 0, . . . , N). Notice that the simulated paths (gray lines) are non-decreasing in the
whole domain [0, 1], as well as the increasing Kriging mean mKI (red line). The usual (uncon-
strained) Kriging mean mK and the mode MKI (blue dash-dotted line) coincide and are also
non-decreasing. This is because ξc is inside the acceptance region. In Figure 5b the input is
X = (0, 0.3, 0.4, 0.5, 0.9) and the corresponding output is y = (0, 4, 6, 6.6, 10). The increasing
Kriging mean (red line) and the mode satisfy the monotonicity constraint, contrarily to the
usual (unconstrained) Kriging mean (blue dash-dotted line): it corresponds to the situation
where ξc lies outside the acceptance region.

Assume that the real function is continuous (but non-derivable), non-decreasing and
evaluated at 4 design points given by X = (0.1, 0.4, 0.9) and the corresponding output
y = (−5, 5, 10) (Figure 6). The simulated paths (gray lines) drawn from the finite dimensional
GP defined in (3.9) conditionally to data interpolation and monotonicity constraints given in
Remark 3.3. They are continuous (non-derivable) and non-decreasing in the whole domain,
contrarily to the usual (unconstrained) Kriging mean. The mode (maximum a posteriori)
and the increasing kriging mean (mean of gray lines) verify the monotonicity (non-decreasing)
constraint in the whole domain.

Now we consider the positive and boundary constraints (Figure 7). In Figure 7a ξc is
inside the acceptance region and the usual (unconstrained) Kriging mean coincides with the
mode and respects the inequality constraint, contrarily to Figure 7b, where ξc lies outside
the acceptance region. In both figures, the simulated paths (gray lines) satisfy the inequality
constraints in the whole domain.

Next we suppose that the real function is convex on [0, 1] and evaluated at three design
points (Figure 8). The input values are given by X = (0.2, 0.5, 0.9) and the corresponding
output is y = (3,−5, 8). We choose N = 50 and generate 25 sample paths taken from model
(3.22) conditionally to given data and convexity constraints (ξj ≥ 0, j = 0, . . . , N). These
paths (gray lines), the mode (maximum a posteriori) and the convex Kriging mean (mean of
gray lines) are convex in the whole domain, contrarily to the usual (unconstrained) Kriging
mean (blue dash-dotted line).

In two dimensions, the aim is to interpolate a 2D-function defined on [0, 1]2 and non-
decreasing with respect to the two inputs. In that case, and by the uniform subdivision of the
input set the number of knots and basis functions is (N+1)2. In Figures 9, 10 and 11, we choose
N = 7, then we have 64 knots and basis functions. Suppose that the real function is evaluated

at four design points given by the rows of the 4× 2 matrix X =

[

0.1 0.9 0.5 0.8
0.4 0.3 0.6 0.9

]⊤

and the corresponding output y = (5, 12, 13, 25). The output values respect the monotonicity
constraint in two dimensions. We generate 5 simulation surfaces taken from model (3.27)
conditionally to given data and monotonicity constraints (Figure 10a). The two red surfaces
are the 95% prediction intervals. To check visually the monotonicity in two dimensions, we
plot in Figure 10b the contour levels of one simulation surface. The blue points represent the
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Figure 7: Simulated paths (gray lines) drawn from the conditional GP respecting positivity
constraints Figure 7a and boundary constraints Figure 7b. The usual (unconstrained) Kriging
mean and the mode coincide in Figure 7a, but not in Figure 7b.
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Figure 8: Simulated paths drawn from the conditional GP respecting the convexity constraint
in the whole domain [0, 1]. The usual (unconstrained) Kriging mean (blue dash-dotted line)
does not respect the convexity constraint, contrarily to the mode and the convex kriging mean.
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interpolation input locations (design points). If we fix one of the variables and we draw the
vertical or horizontal line, it must not intersect a contour level two times.
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0.
6

0.
8

1.
0

x1

x2

Figure 9: Design points for the monotone 2D interpolation problem (black points) and knots
(ui, uj)0≤i,j≤7 used to define the basis functions.

In Figure 11 we draw some simulated surfaces taken from the example used in Figure 10a.
All the simulated surfaces are non-decreasing with respect to the two input variables.

In Figure 12 a simulation surface of the conditional GP at four design points (blue points)
including monotonicity constraints with respect to the first input variable only is shown.

In order to investigate the convergence rate of the proposed model when N tends to
infinity, we plot in Figure 13 the mode (maximum a posteriori) of the conditional GP with
both interpolation conditions and boundary constraints when N = 500 (blue line). We remark
that the red dashed line corresponding to the mode when N is small coincides quickly with
the blue line generated from N = 500.

5. Conclusion. In this article we propose a new model for incorporating both interpolation
conditions and inequality constraints into a Gaussian process emulator. Our method ensures
that the inequality constraints are respected not only in a discrete subset of the input set but
also in the whole domain. We suggest the approximation of the original Gaussian process by
a finite-dimensional Gaussian process Y N that converges uniformly to the original one. It is
constructed by incorporating deterministic basis functions and Gaussian random coefficients.
We show that the basis functions can be chosen such that the inequality constraints of Y N are
equivalent to constraints on the coefficients. Therefore the inequality constraints are reduced
to a finite number of constraints, and the initial problem is equivalent to simulate a truncated
Gaussian vector restricted to convex sets.

Now the problem is open to substantial future work. For practical application the pa-
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Figure 10: Simulated surfaces drawn from the conditional GP respecting the monotonicity
constraint for the two input variables Figure 10a. Contour levels for one simulated surface
Figure 10b.

rameter estimation should be investigated and Cross Validation techniques can be used. Fur-
thermore, the choice of knots (subdivision of the input set) should be improved to reduce
the simulations, as well as the number of basis functions. This problem is related to a prior
information on the real function such as variability.
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Figure 12: Simulated surface drawn from the conditional GP respecting the monotonicity
(non-decreasing) constraint for the first variable only, and the associated contour levels.
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Figure 13: The blue line represents the mode of the GP conditionally to both interpolation
conditions and boundary constraints when N = 500. The red dashed line is the mode for
N = 10 (Figure 13a) and N = 20 (Figure 13b). Notice that the red dashed line converges
quickly to the blue line.
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