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Abstract

Several algorithms of different domains in distributed systems are designed
over the principle of the Happened-Before Relation (HBR). One common as-
pect among them is that they intend to be efficient in their implementation by
identifying and ensuring the necessary and sufficient dependency constraints. In
this pursuit, some previous works talk about the use of a transitive reduction of
the causality. However, none of these works formally prove in a broad manner
that such transitive reduction is the minimal expression of the HBR. In this pa-
per, a formal study of the minimal binary relation (transitive reduction) of the
HBR is presented, which is called the Immediate Dependency Relation (IDR).
The study shows that since the transitive closure of the HBR is antisymmetric
and finite, it implies that the IDR is unique. This is important because it means
that all of the works that deal with a minimal expression of the HBR discuss
the same minimal binary relation. In addition, an extension to the IDR to iden-
tify causal immediate dependencies only among a subset of relevant events is
presented. Finally, as case of study, the extension of the IDR is applied to the
causal delivery of messages.

Keywords: Happened-Before Relation, Event Ordering, Partial Ordering,
Distributed Systems

1. Introduction

The Happened-Before Relation (HBR) introduced by Lamport [5], denoted
by “→”, without using global references establishes the conditions to determine
for any pair of single events a, b in a system if the event a causally occurs before
the event b (denoted by a → b). Several solutions in different domains are de-
signed over this principle. For example, the HBR was applied to ensure temporal
and causal dependencies among heterogeneous data in multimedia distributed
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systems such as telehealth systems [9]. One common aspect among works based
on the HBR is that most of them intend to be efficient in their implementation
by identifying and ensuring the necessary and sufficient dependency constraints
among events. In this pursuit, the present paper analyzes the minimal binary

relation (transitive reduction) of the HBR that is called the Immediate Depen-

dency Relation (IDR). The IDR, denoted in this paper by “↓”, identifies the
smallest set of causally related pair of events in a given distributed computation
Ê = (E,→), such that for every causal path between a pair of events established
with the HBR, there exists a causal path between those events established by the
IDR. This property means in graph theory that the (E,→) and the (E, ↓) ⊂ Ê

have the same reachability.
Some previous works for a particular domain deal with a transitive reduction

of the HBR; nevertheless, none of these works formally prove in a general way
that such transitive reduction is the minimal expression of the HBR. Some of the
most important works are: [2, 4] in causality tracking for relevant events, [7] for
context graphs, [11] and [8] for multicast and group communication, respectively,
and [10] for a consistent and compact representation of a distributed system. As
far as I know, the first work that indirectly talked about the transitive reduction
of the causality by considering only immediate causal predecessors was the work
presented by Peterson in [7].

In this paper, an abstract and general study of the IDR with the objective of
being independent of a particular domain is presented. The IDR is proven to be
the transitive reduction of the HBR. In particular, it is proven that the IDR has
the same transitive closure as does the HBR. Moreover, it is shown that since
the transitive closure of the HBR is antisymmetric and finite, it implies that the
IDR is unique. This property is important because it means that all present,
past or future works that deal with or will deal with a minimal expression or a
transitive reduction of the HBR discuss the same binary relation.

In addition, an extension to the IDR in order to identify causal immediate
dependencies only among a subset of relevant events1 is presented. This is
important since for a given distributed computation, usually only a subset of
events is taken into account according to the problem to be solved. For example,
for snapshot algorithms, a relevant event corresponds to the modification of a
local variable involved in a global predicate; and for checkpointing algorithms,
a relevant event is the definition of a local checkpoint [2].

The extension of the IDR applied to the set of relevant events for the causal
delivery of messages is presented as case of study. It is shown that ensuring the
IDR dependencies among the set of relevant events is necessary and sufficient

in order to ensure the causal delivery of messages in the system.
This paper proceeds as follows. In Section 2, the system model is presented,

as well as some order theory concepts and the Happened-Before Relation. In
Section 3, the immediate dependency relation is presented, along with its ex-
tension for relevant events. Next, in Section 4, the IDRs minimality proof is

1In general, the relevant events are also referred as observable events.
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Figure 1: A Distributed Computation Scenario

given. Finally, in Section 5, some conclusions are presented.

2. Preliminaries

System Model

Processes. The system (see Figure 1) is composed of a set of processes
P = {p1, p2, ..., pn}. The processes present an asynchronous execution and
communicate only by message passing.

Messages. There is a finite set of messages M , where each message m ∈ M

is sent considering an asynchronous reliable network that is characterized by no
transmission time boundaries, no order delivery, and no loss of messages. The
set of destinations of a message m is identified by Dest(m).

Events. There are two types of events under consideration: internal and
external events. An internal event is a unique action that occurs at a pro-
cess p in a local manner (denoted in this paper by internal(p)) and which
changes only the local process state. The finite set of internal events is de-
noted as Ei. On the other hand, while an external event is also a unique
action that occurs at a process, it is seen by other processes, thus, affect-
ing the global state of the system. The external events considered in this
paper are the send and delivery events. Let m be a message. send(m) de-
notes the emission event, while delivery(p, m) represents the delivery event
of m to participant p ∈ P . The set of events associated to M is the set
Em = {send(m) : m ∈ M} ∪ {delivery(p, m) : m ∈ M ∧ p ∈ P}. The whole
set of events in the system is the finite set E = Ei ∪ Em. Each event e ∈ E is
identified by a tuple e = (p, x), where p ∈ P is the producer of e, and x is the
local logical clock for events of p, when e is carried out.

2.1. Order Theory Concepts

Transitive Closure. The transitive closure in our domain establishes the
reachability between events. For a pair of events in the system, it is said that
an event a is reachable from an event b if a causal path exists between them.
The transitive closure is defined in general as follows [6].

Definition 1. The transitive closure of a binary relation R on a set W is the

smallest transitive relation on W that contains R.
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Property 1. If the original relation is transitive, the transitive closure will be

that same relation; otherwise, the transitive closure will be a different relation.

Transitive Reduction. The transitive reduction of a binary relation is
the minimal binary relation that expresses the same behavior (in this case,
distributed computation) with the smallest set of related pair of elements. Its
definition is as follows [1].

Definition 2. A transitive reduction of a binary relation R on a set W is a

minimal relation R′ on W , such that the transitive closure of R′ is the same as

the transitive closure of R.

Property 2. If the transitive closure of R is antisymmetric and finite, then R′

is unique.

However, neither existence nor uniqueness of transitive reduction are gener-
ally guaranteed .

Covering Relation. In the order theory, a covering relation is a binary
relation which holds between two comparable elements in a partially ordered
set if they are immediate neighbors [1]. The covering relation is commonly used
to graphically express the partial order by means of the Hasse diagram. Its
definition is as follows:

Definition 3. Let u and v be elements of a partially ordered set W . Then v

covers u, written as u <: v, if u < v and there is no element w ∈ W such that

u < w < v.

Property 3. If a partially ordered set (W, R) is finite, then its covering relation

R′ is the transitive reduction of the partial order relation R.

Only if Property 3 is accomplished, a partially ordered set (W, R) is com-
pletely described by its Hasse diagram. On the other hand, for example in a
dense order, such as in the case of the rational numbers, no element covers an-
other.

2.2. Happened-Before Relation

The Happened-Before Relation (HBR) was defined by Lamport [5]. It es-
tablishes logical precedence dependencies over a set of events. The HBR is a
strict partial order (transitive, irreflexive and antisymmetric) defined as follows:

Definition 4. The causal relation “→” is the smallest relation on a set of

events E satisfying the following properties:

1. If a and b are events belonging to the same process, and a was originated

before b, then a → b.
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Figure 2: Hasse Diagram for the IDR of the scenario in Figure 1 (the partial order is established
from left to right)

2. If a is the sending of a message by one process, and b is the reception of

the same message in another process, then a → b.

3. If a → b and b → c, then a → c.

By using Definition 4, one can say that a pair of events is concurrently related
“a||b ” only if ¬(a → b ∨ b → a).

The poset Ê = (E,→) constitutes the formal model adopted in this paper
for a distributed computation.

The Happened-Before Relation for Relevant Events (HBR-R). Usu-
ally for a given distributed computation Ê, only a subset of events R ⊆ E is

relevant. The HBR for relevant events denoted in this paper by “
R
→” has been

defined in [3] in the following way:

∀(a, b) ∈ R × R : (a
R
→ b) ⇔ (a → b)

The poset R̂ = (R,
R
→) ⊆ (E,→) constitutes the abstraction considered in

this paper of the distributed computation for the relevant events.

3. Immediate Dependency Relation

The Immediate Dependency Relation (IDR) is known in order theory as
a covering relation (see Definition 3). According to Property 3, if a partially
ordered set is finite, its covering relation is the transitive reduction of the partial
order relation. In this context, the IDR is then the covering relation of the HBR.
Moreover, according to Property 2, since the poset (E,→) is finite and the HBR
is a strict partial order, the IDR is unique. In this paper, the IDR is denoted
by “↓”, and its formal definition is as follows:

Definition 5. Two events a, b ∈ E have an immediate dependency relation

“a ↓ b” if the following restriction is satisfied.

a ↓ b if a → b and ∀c ∈ E,¬(a → c → b)

Thus, an event a causal immediately precedes an event b, if and only if no
other event c belonging to E exists (E is the set of events of the system), such
that c belongs to the causal future of a and to the causal past of b. In Section
4 it is proved that the IDR is the transitive reduction of the HBR.

Based on the IDR, the following property is presented.
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Property 4. For all a, b ∈ E, a 6= b

if ∃c ∈ E such that (a ↓ c and b ↓ c) or (c ↓ a and c ↓ b) then a||b

This means that for every pair of events a, b ∈ E with common IDR de-
pendencies, the events are concurrently related. This property is leveraged in
[10] in order to achieve a compact and consistent representation of a distributed
system.

Finally, it is noted that (E, ↓) ⊂ (E,→).

The Hasse diagram for the IDR of the scenario in Figure 1 is shown in Figure
2.

Immediate Dependency Relation for Relevant Events (IDR-R). As
for the HBR-R, the IDR must only reflect the IDR among the relevant events
that belong to R ⊆ E. For this case, the IDR is referred as IDR-R, and it is
denoted by “↓R”. It is defined over R̂ as follows:

a ↓R b if a
R
→ b and ∀c ∈ R,¬(a

R
→ c

R
→ b)

Remark 1. (R, ↓R) ⊂ (R,
R
→) ⊆ (E,→), but (R, ↓R) 6⊂ (E, ↓)

This means that the IDR-R is no longer a transitive reduction of the HBR.
Instead, the IDR-R is the transitive reduction of the HBR-R (the proof is similar
as for the IDR).

3.1. Case of Study: Message Causal Delivery

The selection of the set of relevant events must be determined according to
the problem to be solved. For message causal delivery, there are two possible
types of relevant events which are the send and the delivery events. It has been
shown in [8] and [11] for group and multicast communication, respectively, that
in order to ensure the causal delivery of messages in the system, it suffices to
ensure the causal delivery of immediately related send events. Therefore, in
general, to ensure message causal delivery for group and multicast communica-
tion, the set of relevant events is determined to be R = {send(m) : m ∈ M}
(see Figure 3). Formally, the message causal delivery based on the IDR-R can
be defined as follows:

Theorem 1. If ∀((send(m), send(m′)) ∈ R, send(m) ↓R send(m′) ⇒
∀p ∈ Dest(m)

⋂
Dest(m′) : delivery(p, m) → delivery(p, m′)

then

∀((send(m), send(m′)) ∈ R, send(m)
R
→ send(m′) ⇒

∀p ∈ Dest(m)
⋂

Dest(m′) : delivery(p, m) → delivery(p, m′)

The proof relies on the fact that for any pair send(m)
R
→ send(m′) if

send(m) ↓R send(m′) does not hold, then a message m′′ exists such that
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Figure 3: Relevants Events for Message Causal Delivery
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Figure 4: Hasse Diagram for the IDR-R of the Relevant Events Example in Figure 3

send(m)
R
→ send(m′′)

R
→ send(m′). Using inductive reasoning and the fact

that the event send(m′) may only have a finite number of “causes” or prede-
cessors for the causal relation, (at least) one sequence (send(mi), i = 0, 1, ..., h)
can be found, such that m = m0, m′ = mh and send(mi) ↓R send(mi+1),
for all i = 0, 1, ..., h − 1. For any participant p, we have delivery(p, mi) →
delivery(p, mi+1), and by transitivity, the required property is obtained.

Clearly, the causal delivery of messages ensured by the IDR-R is not only a
sufficient but also a necessary condition for the causal delivery of all causally
related messages. From an algorithmic point of view, if the reference of some
message m′ IDR-R related to a message m is not piggy-backed with m, the
causal delivery of m with respect to m′ may fail. Theorem 1 shows that this
information is sufficient. The Hasse diagram for the relevant events for message
causal delivery of the scenario example is shown in Figure 4.

4. Minimality Proof of the IDR

In this section a proof to demonstrate that the IDR is the transitive reduction
(minimal relation) of the HBR is given. In order to prove this, it must be
demonstrated that, according to Definition 2, the IDR must have the same
transitive closure as the HBR. By Property 1, which says that if the original
binary relation (in this case the HBR) is transitive, then the transitive closure
will be the same, one can conclude that the only property to demonstrate is
that the transitive closure of the IDR is the HBR. By using the graph theory,
the proof of this property is as follows.

Let Ê be a poset with strict partial order →. Then Ê can be viewed as a
directed graph where the vertex set is the ground set E, and the edge set is
defined by →.
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Proposition 1. Suppose every interval of Ê has a finite height. Then →
is the transitive closure of ↓.

Proof. This is proven by induction on height. By definition of ↓, if a → b and
the height of [a, b] is 1, then a ↓ b.

Assume by induction that whenever a → b and the height of [a, b] is at
most n, then (a, b) is in the transitive closure of ↓. Suppose that a → b and
that the height of [a, b] is n + 1. Since every chain in [a, b] is finite, it contains
an element c which is strictly larger than a and minimal with respect to this
property. Therefore [a, c] = {a, c}, from which it is concluded that a ↓ c. Since
the interval [c, b] is a proper subinterval of [a, b], it has a height of at most n,
so by the induction assumption one can conclude that (c, b) is in the transitive
closure of ↓ . Since (a, c) and (c, b) are in the transitive closure of ↓, so is (a, b).
Hence, whenever a → b and the height of [a, b] is at most n + 1, then (a, b) is in
the transitive closure of ↓.

�

5. Conclusions

A formal study of the minimal binary relation of the HBR (Happened-Before
Relation) which is called the Immediate Dependency Relation (IDR) is pre-
sented. In this paper, it is shown that the IDR identifies the smallest set of
causally related pair of events in a given distributed computation. One impor-
tant aspect is that because the HBR is a strict partial ordering, it implies that
the IDR is unique. In addition, the IDR-R relation to identify causal immediate
dependencies only among a subset of relevant events is introduced. As case of
study, the IDR-R was applied to the particular problem of causal delivery of
messages. The IDR-R has shown that it suffices to ensure the causal delivery of
messages with IDR-R related send events in order to ensure the causal delivery
of all messages in the system.
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