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ABSTRACT

A multi-scale (MS) decomposition method for contrast enhancement
of Micro Dose(MD) X-ray images is presented in this paper. First,
we get a denoised version of the input exploiting a non-localmeans
filter with adaptable parameters setting that we defined in a former
approach. Then, the MS representations of the input and of its de-
noised version are combined to obtain an optimal image in terms of
preservation of details and noise attenuation. The efficiency of the al-
gorithm is demonstrated by quantitative and qualitative assessments
on both phantoms and clinical MD images.

Index Terms— Micro Dose X-ray imaging, Multi-scale decom-
position, Non-local means filter

1. INTRODUCTION

Contrast enhancement is often applied on X-ray images because it
improves the local contrast, thus easing the diagnosis. In radiology,
while the large density variations occur mainly over low frequencies,
the most relevant details belong to high frequencies [1]. The linear
multi-scale (MS) methods, e.g. theLaplacian Pyramid[2], allow
separating an image in scales of spatial frequency. Thus, they can be
used to enhance X-ray images [1], [3]. However, they raise two is-
sues. The first problem is the creation of halo artifacts due to smooth-
ing of strong edges. In other image processing domains (e.g.digital
photography), edge-preserving algorithms [4] address this question.
In radiology, these artifacts constitute an actual problemin presence
of radio-opaque objects, e.g. prosthesis. Indeed, shadowsmay appear
around the prosthesis making difficult for the radiologist to evaluate
the health of the surrounding tissues. Excluding this case,the halo
artifacts are very limited and can, thus, be tolerated [3]. This is an
assumption made in this paper. The second problem concerns the
analysis of noisy images. The noise is represented at fine levels of the
decomposition and, so, mixed up with details relevant for the diagno-
sis. Thus, the challenge consists in enhancing the fine details while
avoiding boosting the noise. A common solution is thenoise contain-
ment[1]: the noisy coefficients are not enhanced, but not attenuated
either, which guarantees to preserve all the information.

In this project we processMicro Dose(MD) images acquired with
the X-ray system EOS. This system is based on Charpak’s high en-
ergy particle detector [5]. Frontal and lateral images of the full body
of the patient can be acquired in upright position. EOS has been
shown to provide spine radiographs at 6 to 9 times less dose than
computer radiography [6], which is why we callLow Dose(LD) the
normally exposed EOS images.Micro Dose is a new EOS feature
that allows a further dose reduction equal to 5 to 7 times w.r.t. LD ac-
quisitions. The amount of dose delivered to the patient during a MD
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exam is comparable to 5 to 10 days of natural exposure. This feature
is clearly of great interest given the increasing concerns on patients
health due to over-exposed acquisitions [7]. These images are mainly
useful for follow-up exams (e.g. measure of scoliosis angletrending).
Nevertheless, the reduction of the flux of photons implies a rise of the
amount of noise. So, since the noise propagates through coarser levels
than the first one, the aforementioned noise containment technique is
not optimal anymore. Then, a possible method consists in denoising
the image before enhancing the local contrast [8], [9]. Nevertheless,
this kind of approach could lead to an artificial look of structures at
medium frequencies, e.g. the edges of the vertebrae. So, at present,
MD images are processed in clinical routine with the same family of
algorithms used on LD images.

Our contribution consists in optimizing the visualizationof MD
images in terms of: noise reduction, contrast enhancement and preser-
vation of their natural aspect. We define a new MS decomposition that
is not biased by the presence of noise that affects the input image. For
this aim, we combine the decomposition of the original imageand
of its denoised version, including the denoising directly into the en-
hancement loop. The denoised image is obtained using a Non-Local
means (NL-means) filter [10], [11] with an adaptable parameter con-
trol related to X-ray absorption that we described in [9]. Wewant to
stress that the proposed method is not just a MS denoising technique.
Indeed, since we aim at obtaining a well contrasted output image, the
reduction of the noise represents only half of the whole matter.

The method is explained in Section 2. In Section 3 we validateour
algorithm by testing it on phantoms and MD images. Conclusions
and future developments are outlined in Section 4.

2. CONTRAST ENHANCEMENT OF NOISY IMAGES

The algorithm is divided into three main steps (see Fig. 1) : the adap-
tive NL-means filter (block 1), the MS analysis (block 2) and the MS
synthesis (block 3).

2.1. Adaptive NL-means denoising

The NL-means filter denoises an image through a representation in
sub-regions called patches. The interest of working with patches lies
in the robustness to noise and good representation of texture [11].
Formally, given a noisy imageI , the denoised pixel at the spatial lo-
cationxi is estimated as a weighted sum:

Î (xi) =
∑|Ω|

j=1 ςi, j I
(

x j
)

∑|Ω|
j=1 ςi, j
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−
d
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)

α

)
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whereΩ is the size of a window centered at pixelxi that determines
which pixels have to be averaged. The weightsςi, j are defined in



Fig. 1: Architecture of the proposed method.I = input image;Î = denoised
image;Di

I = detail image at leveli from the decomposition of the imageI .

function of the similarity between the patchesPi andPj centered re-
spectively at the pixelsxi andx j . The distance functiond(.) is defined
according to the type of noise that corrupts the image. It is generally
the Euclidean distance, but other functions can be defined when the
noise is not Gaussian [11]. Finally,α is the bandwidth of the expo-
nential kernel.
In a former work [9], we pointed out that the choice of one value of
α on a full body X-ray image is sub-optimal: there is a strong risk of
loosing anatomical information in low absorption regions,e.g. bone
textures. Thus, considering that the noise is stronger in low incident
X-ray dose areas [1], we defined a map of different values empiri-
cally related to the thickness of the body of the patient. In this work
we exploit the same idea. However the definition of the alpha map
is simplified. First, the envelop of the body is segmented by thresh-
olding the image in the linear domain1. Then, using the cumulative
histogram of gray levels of the previously segmented image,we de-
fine a given number of regions of increasing thickness. Subsequently,
we compute the local standard deviation image and label eachregion
with the most frequent value in it, obtaining the noise levelimage.
Finally, the alpha map is proportional to this noise level image.
Even if the noise model could be described as Poisson/Gaussian mix-
ture, we employ an Euclidean distance to compare the patches. The
signal dependent nature of the noise is taken into account through
the alpha map that changes in function of the thickness. Thus, the
estimation of the noise free image is practically unbiased.

2.2. Analysis of noise corrupted images

The analysis step is the core of the algorithm. The termanalysisindi-
cates the decomposition in scale levelsS0

I ,S
1
I , . . . ,S

n
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D0
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1
I , . . . ,D

n−1
I . The scale levelSi
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I (with S0
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(
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I

)

where fi(.) is a Gaussian-like

filter. We exploit an undecimated decomposition to avoid aliasing ar-
tifacts due to non-linear processing in the reconstruction. We use a
simpler decomposition technique than the wavelets becausethis last
one has been proven to be inappropriate for the contrast enhancement
of medical images [3]. The detail level is the output of a band-pass
filter: Di−1

I = Si−1
I −Si

I .
We define the optimal decomposition using the levels obtained from
the original imageI and its denoised version̂I . Precisely, the out-
put detail levelDi

O is the weighted mean of the noisy detail levelDi
I

and the denoised detail levelDi
Î
. The decomposition of̂I has the

advantage of representing only details proper to the signal, avoiding

1The image in the linear domain is obtained after the calibration that is the
first step of the image processing reconstruction chain. Then, considering that
the X-rays follow an exponential law, the image is convertedto the logarithmic
domain and we obtainI .

the propagation of noise at levelsi > 0. Nevertheless, the attenua-
tion of coefficients can entail an excessive regularizationof the out-
come. However, thanks to the adaptive NL-means filter, we canpre-
serve the information in low absorption regions and the edges are not
smoothed. Then, we can detect these spots of the image and usethe
coefficients from the noisy decomposition to represent them. On the
contrary, the flat regions are represented by the coefficients from the
denoised image. This idea is formalized by the following weighting
function:

wi =

(

|∇(SI
i)|

|∇(SI
i)|+ |∇(Si

Î
)|

)β

,β > 1 (2)

where|∇(I)| is the gradient magnitude of an imageI andβ is a user-
defined parameter. The value ofwi is low when the gradient of the
scale image obtained from the denoised image is higher than the gra-
dient of the scale image obtained from the noisy image. This happens
when an edge is preserved and the noise around it is reduced. In
this case, we have detected an edge and, so, we give a higher weight
to the coefficients from the noisy image. Conversely, high values of
wi(.) imply a reduction of noise in smooth regions and the denoised
coefficients are retained. The parameterβ controls the power of the
denoising: the higher it is, the lower are the weights. For example,
assuming that the gradients are equivalent in a locationx, if β = 1
then the coefficients have the same importance (w(x) = 0.5), instead
if β = 2 the noisy coefficients are more relevant (w(x) = 0.25). Note
that the values ofwi(.) are lower and lower at coarser scales because
the power of the noise gets less and less important. Finally,the output
levels are obtained asDi

O =wiDi
Î
+(1−wi)Di

I , resulting in a denoised
image but preserving the coefficients from strong edges.

2.3. Synthesis of noise corrupted images

The synthesis is the process that rebuilds the image from thedetail
levels and the low frequency (LF) residuals obtained duringthe anal-
ysis step. The enhanced image is obtained by summation:

Ie =
n−1

∑
i=0

bi

(

Di
O

)

+ lut(Sn
Î
) (3)

The detailsDi
O are boosted by the non linear functionbi . In this paper,

we use the boosting function defined by Stahl et al. [1]:

bi(d) =

{

Gi

(

1− |d|
d0

)pi
+1 if|d|6 d0

1 if|d|> d0
(4)

whereGi is the maximum gain,pi controls how fast the amplification
decreases toward 1 andd0 is the amplitude value after which the coef-
ficients are not enhanced. The value ofd0 is defined according to the
binary levels used to encode the image. Instead,Gi andpi are defined
according to the scanned anatomical region and the application [1].
To treat the LF residual, we apply a sigmoid-like function (lut) that
attenuates the low values of the LF residual and preserves the strong
ones. We defineγ ∈ [0,1) as the strongest attenuation. The point
where the function changes of convexity is fixed from the intersec-
tion of the cumulative histogram of the LF residual with the cumula-
tive histogram of an ideal uniform distribution. On an X-rayimage
this allows maximizing the dynamic of the image.

3. VALIDATION OF THE METHOD

The proposed method was validated on phantoms and MD clinical
images encoded on 16 bits. The images of the phantom portraitall



the same object (standard PHD5000 fluoro phantom) but with differ-
ent acquisition parameters that are: the peak kilo voltage output of
the X-ray generator (kV), the X-ray tube current in mA (mA) and the
speed factor of the C-scan (C∈ {1,2, . . . ,8}, the higher it is the lower
is the speed). The phantoms are used to quantify the improvement
in terms of signal to noise ratio (SNR), contrast to noise ratio (CNR)
and dynamic (DYN) that represents the global contrast. Our clinical
data set includes 13 Micro Dose studies of spine acquired at the hos-
pital Robert Debré, Paris2. The minimum and maximum values of
dose (Air Kerma) are 7.37 µGy and 29.44 µGy and 17.43 µGy and
55.13 µGy for, respectively, frontal and lateral acquisitions.

The parameters used in the algorithm are mostly defined in func-
tion of the content of the image. Indeed, the alpha map is proportional
to the noise level map (see Sec 2.1); for all the results reported here
the proportionality factor is equal to 4. The patches and thewindows
of the NL-means filter are respectively of size 7×7 and 21×21. In
the analysis the only parameter to be defined isβ (see Sec. 2.2). This
parameter allows weighting the contribution of the denoising and it
is the only one that needs to be changed as a function of dose. Thus,
for our tests we usedβ = 1.5 andβ = 3 respectively on MD and LD
data. Finally, the synthesis parameters are practically defined on the
basis of the type of study [1]. For all our tests, even those onphan-
toms, we opted for parameters that aim at enhancing the details of the
spine. Thus, the high/medium frequency detail levels (i ∈ [1,3]) are
the most enhanced. Besides, we setγ = 0.5 to process the LF resid-
ual.
The method was compared with two noise containment based algo-
rithms that are usually used by EOS in clinical routine. One is em-
ployed on LD images and the other on MD images; they will be re-
spectively named hereafter EOS-LD and EOS-MD. This last oneis
specifically designed to enhance the spine, which is why we chose
this category of study.

3.1. Results on phantoms

The SNR is given by the ratio of the mean signal on the standardde-
viation in a constant region. The CNR is the ratio of the difference
of signal between the first disk from the left in Fig. 2 and the back-
ground, on the standard deviation of this last one. Then, DYNis the
difference of the average signal of the white and black tablets (see
the upper zone of the image in Fig. 2). The results obtained with the
proposed approach are better for all the metrics both in the LD and
MD cases as shown, respectively, in Tab. 1 and 2. In details, with

Params. EOS-LD Prop.
kV mA C DoseµGy SNR CNR DYN SNR CNR DYN
70 200 4 79.36 18.81 0.92 55% 35.05 3.70 61%
90 200 4 124.04 26.92 1.57 51% 49.73 5.82 60%
120 200 4 197.94 39.82 2.12 53% 67.21 7.30 61%

Table 1: Quantitative assessment on phantoms: Low Dose

Params. EOS-MD Prop.
kV mA C DoseµGy SNR CNR DYN SNR CNR DYN
60 80 3 10.29 12.93 2.2 62% 16.22 3.51 70%
65 80 4 16.97 15.75 1.37 56% 22.31 2.58 63%
72 125 4 34.08 19.29 2.30 58% 26.99 3.80 64%

Table 2: Quantitative assessment on phantoms: Micro Dose

2We would like to thank the Professor G. Sebag and the Doctor M.Alison
from the hospital Robert Debré for providing the anonymized RAW images
and agreeing to use them for our research purposes

LD images, the SNR, the CNR and the DYN are improved on aver-
age by, respectively,×1.80,×3.72 and 8 points. Besides, the details
are totally preserved as observed in Fig. 2, e.g. see the highcontrast
resolution grid and the writing. These results suggest thateven in
some cases with a sufficient amount of dose, the methods basedon
noise containment can fail in avoiding the noise boosting. Instead,
the method that we propose proves to be more robust. As for theMD

(a) (b)

Fig. 2: Crop of the phantom 70kV and 200mA: (a) EOS-nD, (b) Proposed

case, the SNR, the CNR and the DYN are improved on average by,
respectively,×1.36,×1.71 and 7 points. The improvement in terms
of SNR and CNR is still significant even if it is less importantw.r.t.
the statistics obtained in the LD case because the noise is stronger.
However, the scores of the DYN reveal a much better global contrast
offered by our solution. Finally, the spatial resolution isnot reduced
in this case either.

3.2. Results on Micro Dose spine images

The validation of the method on clinical images was done firstby
a subjective comparison between the three enhancement algorithms.
In details, we study the lumbar region cropped from one of theMD
images composing our clinical data set. The image enhanced with
EOS-LD (Fig. 3(b)) has not an ideal global contrast. For example,
the spine and the surrounding soft tissues have nearly the same gray
level. Besides, the presence of noise is evident. This probably im-
plies that the medium frequency details are not sufficientlyenhanced
and that the noise containment is not efficient. The solutionoffered
by EOS-MD (Fig. 3(c)) is better, which justifies the current choice of
this algorithm in the MD context. However, we can clearly seeback-
ground noise in smooth regions. This is due to the inability of the MS
decomposition to confine the noise at the finest level. Our algorithm
(Fig. 3(d)) allows smoothing the most regular regions by reducing the
visibility of the noise, while preserving the shapes of the vertebrae,
i.e. only the relevant information of the image is enhanced.Finally,
the global contrast is well balanced.
We used Average Local Variance (ALV) metrics as objective assess-
ment [12]. This approach consists in, first, classifying each pixel in
three categories of regions, i.e. smooth, details and edges. Then,
the average standard deviation is computed in each region obtaining,
respectively, ALVS, ALVD and ALVE. Generally, the best contrast
enhancement algorithm has low values of ALVS and ALVE, which
quantify respectively the noise enhancement and the presence of ha-
los, and high ALVD, which quantifies the details boosting. For every
image of the clinical data set, we defined the three regions bya ba-
sic threshold classification of the detail levelsDi

Î
and we computed

the scores on the input image and on the outputs of the compared
contrast enhancement algorithms. The averages of the metrics ob-
tained on the whole data set are reported in Tab. 3. The algorithms



(a) (b)

(c) (d)

Fig. 3: Crop from a spine image; dose= 14.64 µGy: (a) Low contrast and
noisy image, (b) EOS-LD, (c) EOS-MD, (d) Our method.

EOS-LD and EOS-MD have similar scores: the significant enhance-
ment of the details coincides with an even bigger enhancement in
smooth regions. Indeed, with EOS-MD, ALVS and ALVD are in-
creased w.r.t the scores of the input image by respectively×2.73 and
×2.51. The proposed approach has lower ALVD compared to the
other two methods. However, the smooth regions are much lessen-
hanced too. Indeed, ALVS and ALVD are increased w.r.t the scores
of the input image by respectively×2.03 and×2.18. Thus, thanks to
the proposed algorithm we are able to enhance more the details than
the noise. Finally, we did not notice halo artifacts on any outcomes
of the three compared algorithms. However, the lowest ALVE value
was obtained with the proposed method, which suggests that it may
be less prone to this issue too.

ALVS ALVD ALVE
Input 442.98 561.93 848.83

EOS-LD 1175.18 1375.49 1792.57
EOS-MD 1210.09 1411.26 1756.96

Prop. 899.55 1227.70 1657.70

Table 3: Average ALV scores on the clinical data set

4. CONCLUSIONS

In this paper we proposed an original method to decompose anden-
hance X-ray MD images that exploits the information provided by
our adaptive NL means filter directly in the MS decompositionloop.
An optimal representation of the details levels is obtainedto limit the
enhancement to relevant information of the image while avoiding too
regular outcomes. The efficiency of the algorithm is demonstrated by
quantitative and qualitative assessments on both phantomsand clini-

cal MD images. As shown by the scores obtained on the phantoms,
it seems possible to extend the method to LD images too. Thus,we
intent to fulfill our study with tests on clinical LD images. Besides,
we want to quantify how much we can decrease the amount of dose
and still be able, thanks to the proposed method, to obtain a diagnos-
tic image that targets other applications than follow-up exams. In this
perspective, we are going to involve radiologists in the study to get a
quantitative clinical assessment of the image quality.
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