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ABSTRACT

A multi-scale (MS) decomposition method for contrast ereament

- mdelplanque @eos-imaging.com

exam is comparable to 5 to 10 days of natural exposure. Tatare
is clearly of great interest given the increasing concemgatients
health due to over-exposed acquisitions [7]. These imagemainly

of Micro Dose(MD) X-ray images is presented in this paper. Firsf,qoq | for follow-up exams (e.g. measure of scoliosis atrgieding).

we get a denoised version of the input exploiting a non-locahns
filter with adaptable parameters setting that we defined ioradr

approach. Then, the MS representations of the input and afeit

noised version are combined to obtain an optimal image imgeof

preservation of details and noise attenuation. The effigienthe al-

gorithm is demonstrated by quantitative and qualitativeeasments
on both phantoms and clinical MD images.

Index Terms— Micro Dose X-ray imaging, Multi-scale decom-

position, Non-local means filter

1. INTRODUCTION

Contrast enhancement is often applied on X-ray images beciu
improves the local contrast, thus easing the diagnosisadioiogy,
while the large density variations occur mainly over lowgiiencies,
the most relevant details belong to high frequencies [1]e Tiear
multi-scale (MS) methods, e.g. theplacian Pyramid[2], allow
separating an image in scales of spatial frequency. Thag,dan be
used to enhance X-ray images [1], [3]. However, they raiseisw
sues. The first problem is the creation of halo artifacts digrtooth-
ing of strong edges. In other image processing domains deial
photography), edge-preserving algorithms [4] addressdbestion.
In radiology, these artifacts constitute an actual probilepresence
of radio-opaque objects, e.g. prosthesis. Indeed, shacayappear
around the prosthesis making difficult for the radiologtsevaluate
the health of the surrounding tissues. Excluding this cteehalo
artifacts are very limited and can, thus, be tolerated [3}isTs an

Nevertheless, the reduction of the flux of photons impliéseaf the
amount of noise. So, since the noise propagates througberdavels
than the first one, the aforementioned noise containmehnigge is
not optimal anymore. Then, a possible method consists inisiery
the image before enhancing the local contrast [8], [9]. Kibedess,
this kind of approach could lead to an artificial look of stures at
medium frequencies, e.g. the edges of the vertebrae. Soesam,
MD images are processed in clinical routine with the samelyaoi
algorithms used on LD images.

Our contribution consists in optimizing the visualizatiohMD
images in terms of: noise reduction, contrast enhancemelir@ser-
vation of their natural aspect. We define a new MS decompaositiat
is not biased by the presence of noise that affects the inpage. For
this aim, we combine the decomposition of the original imagd
of its denoised version, including the denoising directifoithe en-
hancement loop. The denoised image is obtained using a NoakL
means (NL-means) filter [10], [11] with an adaptable parameon-
trol related to X-ray absorption that we described in [9]. Wt to
stress that the proposed method is not just a MS denoisihgitpee.
Indeed, since we aim at obtaining a well contrasted outpaganthe
reduction of the noise represents only half of the whole enatt

The method is explained in Section 2. In Section 3 we validate
algorithm by testing it on phantoms and MD images. Conchsio
and future developments are outlined in Section 4.

2. CONTRAST ENHANCEMENT OF NOISY IMAGES

assumption made in this paper. The second problem condeensTihe algorithm is divided into three main steps (see Fig. hg:adap-

analysis of noisy images. The noise is represented at fieéslefthe
decomposition and, so, mixed up with details relevant ferdiagno-
sis. Thus, the challenge consists in enhancing the finelslethile

avoiding boosting the noise. A common solution istioése contain-

ment[1]: the noisy coefficients are not enhanced, but not attexua

either, which guarantees to preserve all the information.

In this project we proceddicro Dose(MD) images acquired with
the X-ray system EOS. This system is based on Charpak’s lnigh
ergy particle detector [5]. Frontal and lateral images effiil body

tive NL-means filter (block 1), the MS analysis (block 2) ahd MS
synthesis (block 3).

2.1. Adaptive NL-means denoising

The NL-means filter denoises an image through a represemtati
sub-regions called patches. The interest of working witlchpes lies
B the robustness to noise and good representation of eeftui.

of the patient can be acquired in upright position. EOS hanbecationy; is estimated as a weighted sum:
shown to provide spine radiographs at 6 to 9 times less dase th

computer radiography [6], which is why we calbw Dose(LD) the
normally exposed EOS image&icro Doseis a new EOS feature
that allows a further dose reduction equal to 5to 7 times$.\W.D ac-
quisitions. The amount of dose delivered to the patientrdua MD

The PhD work of P. Irrera is supported by a grant from ANRT.

Formally, given a noisy imagk the denoised pixel at the spatial lo-
Q
s a(x)

j=1Gi.]
whereQ is the size of a window centered at pix¢lthat determines
which pixels have to be averaged. The weights are defined in

d(R,P)
a



the propagation of noise at levdls> 0. Nevertheless, the attenua-
—— (D7 .; D'} tion of coefficients can entail an excessive regularizatibthe out-
<_1_'_>— come. However, thanks to the adaptive NL-means filter, weptan
' DY;..; DI} serve the information in low absorption regions and the sdge not

Weighting | () smoothed. Then, we can detect these spots of the image arleuse
operator synthesis

T coefficients from the noisy decomposition to represent themthe
<i>__—> anzfl‘jsis

contrary, the flat regions are represented by the coeffieom the
denoised image. This idea is formalized by the followinggiding
. i B
Fig. 1. Architecture of the proposed method= input image;l = denoised W = |‘|:|(S1 )| ] B>1 (2)
image;D; = detail image at level from the decomposition of the image : |0(S ')| + \D(Sr)\ e

function:

where|O(1)] is the gradient magnitude of an imagendp is a user-
function of the similarity between the patch@sandP; centered re- defined parameter. The valuewof is low when the gradient of the
spectively at the pixels andx;. The distance functiod(.) is defined scale image obtained from the denoised image is higher tteagra-
according to the type of noise that corrupts the image. leigegally dient of the scale image obtained from the noisy image. Tappbns
the Euclidean distance, but other functions can be defineshwie When an edge is preserved and the noise around it is reduced. |
noise is not Gaussian [11]. Finally, is the bandwidth of the expo- thiS case, we have detected an edge and, so, we give a higigét we
nential kernel. to thg coefficients fr.om the noisy image. Conyersely, hlghemof.
In a former work [9], we pointed out that the choice of one eati w;(.) .mjply a reductlpn of noise in smooth regions and the denoised
a on a full body X-ray image is sub-optimal: there is a strosgg of coefficients are retained. The paramefierontrols the power of the
loosing anatomical information in low absorption regioasy. bone denoising: the higher it is, the lower are the weights. Fameple,
textures. Thus, considering that the noise is strongeniriaident 2SSUming that the gradients are equivalent in a locajgh 8 = 1
X-ray dose areas [1], we defined a map of different values lémp_fhen the coefficients have the same importamge)(= 0.5), instead

cally related to the thickness of the body of the patienthis work I B =2 the noisy coefficients are more relevantX) = 0.25). Note
we exploit the same idea. However the definition of the alpla@ mthat the values ofi(.) are lower and lower at coarser scales because

is simplified. First, the envelop of the body is segmentedHoggh- the power of the noise gets less and less important. Finaéyutput
olding the image in the linear domainThen, using the cumulative 1els are obtained &, = w; Dy + (1—wi)Dj, resulting in a denoised
histogram of gray levels of the previously segmented imagede- image but preserving the coefficients from strong edges.

fine a given number of regions of increasing thickness. Syuesgly,

we compute the local standard deviation image and labelreggbn 2.3. Synthesis of noise corrupted images

with the most frequent value in it, obtaining the noise lewehge. . . . .
Finally, the alpha map is proportional to this noise leveage. The synthesis is the process that rebuilds the image frondetel

Even if the noise model could be described as Poisson/Gaussk- Ieyels and the low frequer_lcy (LF.) resid_uals obtained dmhmganal-
ture, we employ an Euclidean distance to compare the patdies ysis step. The enhanced image is obtained by summation:
signal dependent nature of the noise is taken into accouatgh n-1 )

the alpha map that changes in function of the thickness. ,Tthes le = Z)bi (D'o) +lut(§) 3)
estimation of the noise free image is practically unbiased. i=

The detaiIsDiO are boosted by the non linear functian In this paper,

2.2. Analysis of noise corrupted images we use the boosting function defined by Stahl et al. [1]:

The analysis step is the core of the algorithm. The tenalysisindi- G (1 d b +1 ifldl <d

cates the decomposition in scale leviflsS', ..., §' and detail levels bi(d) = ' ( 0) ;f:d: ; do (4)
DY, Df,...,DPL. The scale leve§ is the smoothed version of scale 0

i—1 (i i i ¢ (cQ-1 N e WhereG; is the maximum gainp; controls how fast the amplification
S WithP=1).ie.§ = f (S ) wherefi(.) is a Gaussian-like decreases toward 1 adglis the amplitude value after which the coef-
ficients are not enhanced. The valualgfis defined according to the
binary levels used to encode the image. Inst&andp; are defined
according to the scanned anatomical region and the applicdi].

To treat the LF residual, we apply a sigmoid-like functidut) that
attenuates the low values of the LF residual and presereestibng
ones. We defing/ € [0,1) as the strongest attenuation. The point
the original imaige! and its .denoised version Prepisely, t.he out- \t/i\/:ﬁ :)ef ttrk:g éldrr]T::S'g?iVCGhgg?ggsr:;cgfnt\:%xt)é Iﬁagi)((jidalf:/f/)iww ttmg-
put detail levelDy, is the weighted mean of the noisy detail le§l e pisiogram of an ideal uniform distribution. On an X-riayage
and the denoised detail levBl.. The decomposition of has the thjs allows maximizing the dynamic of the image.

advantage of representing only details proper to the sigvaiding

filter. We exploit an undecimated decomposition to avoidstig ar-
tifacts due to non-linear processing in the reconstructidfe use a
simpler decomposition technique than the wavelets bedhiséast
one has been proven to be inappropriate for the contrasheaheent
of medical images [3]. The detail level is the output of a bpads
filter: Dt =971-9.

We define the optimal decomposition using the levels obtafrem

1The image in the linear domain is obtained after the caliitmathat is the 3. VALIDATION OF THE METHOD

first step of the image processing reconstruction chainn;T¢ensidering that ) o
the X-rays follow an exponential law, the image is convettetie logarithmic The proposed method was validated on phantoms and MD dlinica

domain and we obtaih images encoded on 16 bits. The images of the phantom paattait



the same objecs{andard PHD5000 fluoro phantgrbut with differ- LD images, the SNR, the CNR and the DYN are improved on aver-
ent acquisition parameters that are: the peak kilo voltagpud of age by, respectivelyx1.80, x3.72 and 8 points. Besides, the details
the X-ray generator (kV), the X-ray tube current in mA (mAyjlghe are totally preserved as observed in Fig. 2, e.g. see thecoiginast
speed factor of the C-scan€d1,2,...,8}, the higher it is the lower resolution grid and the writing. These results suggest ¢heh in
is the speed). The phantoms are used to quantify the impmvensome cases with a sufficient amount of dose, the methods lbased
in terms of signal to noise ratio (SNR), contrast to nois®mr@@NR) noise containment can fail in avoiding the noise boostingstdad,
and dynamic (DYN) that represents the global contrast. @mical the method that we propose proves to be more robust. As fdvilhe
data set includes 13 Micro Dose studies of spine acquirdueatas-
pital Robert Debré, Pafs The minimum and maximum values of
dose (Air Kerma) are .87 uGy and 2944 uGy and 1743 uGy and
55.13 uGyfor, respectively, frontal and lateral acquisitions.

The parameters used in the algorithm are mostly defined ic- fun
tion of the content of the image. Indeed, the alpha map isqrtmmal
to the noise level map (see Sec 2.1); for all the results tegdrere
the proportionality factor is equal to 4. The patches andatimelows
of the NL-means filter are respectively of size7 and 21x 21. In
the analysis the only parameter to be definel {(see Sec. 2.2). This
parameter allows weighting the contribution of the demgjsand it
is the only one that needs to be changed as a function of dbses, T
for our tests we usefl = 1.5 andf3 = 3 respectively on MD and LD
data. Finally, the synthesis parameters are practicafipel® on the
basis of the type of study [1]. For all our tests, even thoselwm-

toms, we opted for parameters that aim at enhancing thdslefahe case, the SNR, the CNR and the DYN are improved on average by,
spine. Thus, the high/medium frequency detail levels [1,3]) are respectively,x1.36, x1.71 and 7 points. The improvement in terms
the most enhanced. Besides, weset 0.5 to process the LF resid-of SNR and CNR s still significant even if it is less importamt.t.

ual. . ) i the statistics obtained in the LD case because the noiseoisgst.

The method was compared with two noise containment based algowever, the scores of the DYN reveal a much better globarasn

rithms that are usually used by EOS in clinical routine. G%iem- ftered by our solution. Finally, the spatial resolutiomis reduced
ployed on LD images and the other on MD images; they will be rg; this case either.

spectively named hereafter EOS-LD and EOS-MD. This lastisne
specifically designed to enhance the spine, which is why veseh
this category of study.

Fig. 2: Crop of the phantom 70kV and 200mA: (a) EOS-nD, (b) Proposed

3.2. Results on Micro Dose spine images

The validation of the method on clinical images was done byst
a subjective comparison between the three enhancemenitiahys.

In details, we study the lumbar region cropped from one ofi\iie
The SNR is given by the ratio of the mean signal on the standierd images composing our clinical data set. The image enhanitbd w

3.1. Results on phantoms

viation in a constant region. The CNR is the ratio of the défee
of signal between the first disk from the left in Fig. 2 and tlels
ground, on the standard deviation of this last one. Then, ride
difference of the average signal of the white and black tak{gee
the upper zone of the image in Fig. 2). The results obtain¢kl thie

EOS-LD (Fig. 3(b)) has not an ideal global contrast. For gxam
the spine and the surrounding soft tissues have nearly the geay
level. Besides, the presence of noise is evident. This bighm-

plies that the medium frequency details are not sufficiestiiyanced
and that the noise containment is not efficient. The solutibered

proposed approach are better for all the metrics both in hehd by EOS-MD (Fig. 3(c)) is better, which justifies the currehbize of
MD cases as shown, respectively, in Tab. 1 and 2. In detaits, whis algorithm in the MD context. However, we can clearly baek-
ground noise in smooth regions. This is due to the inabifithe MS

Params. EOS-LD Prop. decomposition to confine the noise at the finest level. Owrdhgn
kv | mA | C | DoseuGy | SNR | CNR | DYN | SNR | CNR | DYN (Fig. 3(d)) allows smoothing the most regular regions byioéag the
70 {200 | 4| 7936 | 1881 ] 0.92 | 55% | 35.05| 3.70 | 61% visibility of the noise, while preserving the shapes of tleetebrae,
90 [ 200 | 4 | 124.04 | 26.92| 157 | 51% | 49.73| 5.82 | 60% i.e. only the relevant information of the image is enhandeaally,
120 | 200 | 4 | 19794 | 39.82| 2.12 | 53% | 67.21| 7.30 | 61% the global contrast is well balanced.

We used Average Local Variance (ALV) metrics as objectiveeas-
Table 1: Quantitative assessment on phantoms: Low Dose ment [12]. This approach consists in, first, classifyinghepixel in

PaaTs EOSD Frop three categories of regiorjs,. i.e: smooth, dgtails and e.dgt?en,
W TTATC boseuGy SWRTCR O/ SR CNR. VR the average standard deviation is computed in each regi@main,
80 3 099 12931 27 T 629% T 1627 351 0% respectively, ALVS,.ALVD and ALVE. Generally, the best coadt .
&5 2 16.97 15'75 1'37 ) 22'31 2.58 5 enhar)cement allgorlthm hag low values of ALVS and ALVE, which
AR 34.08 19'29 2'30 =5 26I99 3.80 o1 quantify respectively the noise enhancement and the presarha-

- - - : - los, and high ALVD, which quantifies the details boostingr Eeery

image of the clinical data set, we defined the three regions bg-

sic threshold classification of the detail Ievﬁl]; and we computed
the scores on the input image and on the outputs of the conhpare
contrast enhancement algorithms. The averages of thecset-
tained on the whole data set are reported in Tab. 3. The Higusi

Table 2 Quantitative assessment on phantoms: Micro Dose

2We would like to thank the Professor G. Sebag and the Doctakligon
from the hospital Robert Debré for providing the anonymiZAW images
and agreeing to use them for our research purposes



cal MD images. As shown by the scores obtained on the phantoms
it seems possible to extend the method to LD images too. Wels,
intent to fulfill our study with tests on clinical LD images.eBides,

we want to quantify how much we can decrease the amount of dose
and still be able, thanks to the proposed method, to obtaiagnds-

tic image that targets other applications than follow-uares. In this
perspective, we are going to involve radiologists in thelgtio get a

(@) (b)

(d)

Fig. 3: Crop from a spine image; dose 14.64 uGy. (a) Low contrast and
noisy image, (b) EOS-LD, (c) EOS-MD, (d) Our method.

EOS-LD and EOS-MD have similar scores: the significant ecéan
ment of the details coincides with an even bigger enhanceimen
smooth regions. Indeed, with EOS-MD, ALVS and ALVD are in-

creased w.r.t the scores of the input image by respectixv@ly3 and

quantitative clinical assessment of the image quality.

(1]

(2]

(3]

(4]

(5]

(6]

x2.51. The proposed approach has lower ALVD compared to the
other two methods. However, the smooth regions are mucteless
hanced too. Indeed, ALVS and ALVD are increased w.r.t theesco [7]

of the input image by respectively2.03 andx2.18. Thus, thanks to
the proposed algorithm we are able to enhance more theglttait

the noise. Finally, we did not notice halo artifacts on anjcomes

of the three compared algorithms. However, the lowest AL\dki&

was obtained with the proposed method, which suggeststthatyi

be less prone to this issue too.

Table 3: Average ALV scores on the clinical data set

4. CONCLUSIONS

(8]

[10]

[11]

In this paper we proposed an original method to decomposeiand

hance X-ray MD images that exploits the information prodidsy
our adaptive NL means filter directly in the MS decompositioop.
An optimal representation of the details levels is obtaiteelimit the
enhancement to relevant information of the image whiledingitoo
regular outcomes. The efficiency of the algorithm is denranst by
quantitative and qualitative assessments on both pharaohslini-

[12]
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