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ABSTRACT well known Gaussian denoising methods. An example is ging6]i
where multi-scale image representation is combined wigh\MBT.
The main drawback lies in the non-linear distortion of ndige ele-
ments introduced by the transformation. Besides, a mosimental
limit is the non-existence of a perfect variance stabitiziransform

A denoising method is proposed for full body X-ray imagesjaed
under low dose conditions. The suggested algorithm is based
non local means filter adapted to the statistics of PoisségendA
new feature of the method is to locally set the filtering pagters in S : : .
order to denoise while preserving details in low absorptiegions. for some distributions, like for example the Poisson one Edr this
Thus, we propose to adapt the denoising parameters for dgeh geason the VST step should be avoided in our context. ,

by exploiting a global noise level measure and the standarition Luiser et al. proposeo_l in [8] a_wavelets-based method toideno
image of the gradient magnitude. Quantitative and visugllte on €léments affected by Poisson noise, based on a powerfutidaen

phantom and real images show the interest of the method\dgbi technique that exploits an unbiased estimate of the meareseguror,
the objectives. called Poisson Unbiased Risk Estimate (PURE). This worktheis

) ) ) improved in [1] generalizing to the case of Poisson randogtore
Index Terms— Low dose X-Ray images, Poisson noise, Non Lqsorrupted by Gaussian noise. Another approach, directiggssing

cal Means filter, Adaptive parameters. the original data set elements, was proposed by Deledadle iet[7]
and [9]. The main difference is that this approach is baseNam
1. INTRODUCTION Local (NL) means, a nonlinear spatial filter that is gainingrecreas-

ing popularity in medical image processing for its perfonecea[10].
In this paper we propose a method to reduce the amount of noisén this paper, we propose a denoising method based on Pdidson
present in full body X-ray medical images, acquired under dmse means filter convenient to process EOS images and, theadhgtany
conditions. The statistical model of the noise is a mixtdr€aussian full body X-Ray image. The objective is to denoise the imadgiev
and Poisson distributions. However, when the number ofgrtotol- preserving details in low absorption regions, i.e. slightfected by
lected by the sensor is low, the quantum component is pregoi noise. In particular, the problem of preserving the bonautes while
[1]. This occurs typically for acquisitions performed onesk pa- reducing the global amount of noise is addressed in thisrpapes
tients or, more generally, for low-dose image acquisitions goal is achieved by designing an adaptive local setting afrpaters,
The method is applied to EOS images. EOS imaging is a Frerghan original feature of the proposed approach.
company based in Paris that uses Charpak’s high energglpaé- The method is part of a larger project which focuses on thégdes
tector to enable low dose X-ray acquisitions [2]. A full boilg- of specific algorithms for low dose X-Ray images. The dose is a
age with no vertical distortion can be obtained throughdineertical central matter in nowadays society as shown by an importadiaal
scan of the detector in just one acquisition and without thednof  literature on exposure and related risks of cancer, seedmnple [11]
stitching algorithms. The main application field of intdrissortho- and [12]. EOS imaging answers the demand of low dose aciguisit
pedics. Benchmark studies have shown that EOS system eth&ethanks to its unique system, but at the same time image [mioces
entrance dose for the patient compared to traditionalaligiidiogra- needs to be exploited in order to provide the best image tguaid
phy systems (CR, DR) with significant better image qualify fev- enable specific applications.
ertheless, increasing patient thickness or decreasing itheseases The way the method is adapted to our domain of interest ispted
the level of noise in the images. This is why we propose a nietitio in Section 2. In Section 3 results on phantom and real images a
denoise the images before applying other post-proceskjngthms, provided, along with visual and quantitative evaluaticdBenclusions
such as enhancement in low contrast regions. Obviouslyéheis- and future developments are outlined in Section 4.
ing process should avoid losing useful information, andhkaist de-
noising technique has then to be chosen, with parametepeatito
our context. 2. POISSON NL-MEANS WITH ADAPTIVE PARAMETER
Several Poisson denoising algorithms are based oAseombe CONTROL
variance-stabilizing transform (VST). This operatioroals associat-
ing the original data with a Gaussian statistical model. a¢ been 2.1. Poisson NL means
formulated by Anscombe in [4] and later generalized by Myitat . . .
al. in [5] to adapt it to contexts where Gaussian and Poissimeaare | ¢ key idea of NL means is that local is not always synonym of

mixed up. The final goal of this kind of method is to be able toleit similar. In this type of filter, the pixel values are combiretording
to an affinity or similarity measure and not to a simple neahlbod

The PhD work of P. Irrera is supported by a grant from ANRT. constraint. Thus, in a windo® centered at any pixe{, weightsw;




are defined for each pixedj in Q. Then, the denoised valug of

Here we want to define a matrix of values of alpha, the alpha

pixel x; is estimated using the following weighted mean of the noisyap We propose to exploit measures computed from the stanéard d

pixel valuesk(x;):
< 3w k)
A==l
PREALN
For robustness reasons [9], the weight is based on a pixel sim-
ilarity assessed between patchisaround the pixels; andx;, and
should be defined according to a suitable statistical mdsieen two
observations of a Poisson procdsgsandk,, two hypotheses are con-
sidered: either they share the same underlying noise-akeyi.e.
A1 = A = Ay, or they do not, i.e.A1 # A,. Thus, in the case of a

Poisson distribution, the similarity function evaluatbe tikelihood
ratio [13] corresponding to the two previous hypotheses [9]

)
)

Note that this formula replaces the Euclidean distance fse@aus-
sian distributions. Finally, the similarity function in Hation 2, is the
input of an exponential kernel of bandwidéhin order to obtain the
weightsw; j € [0, 1]:

Wi j = exp(

whereW; (respectivelyj) denotes the patch centeredxafrespec-
tively x;).

()

max, p(ki|Az =A)p(ko|A2 =A)
max, p(ky|Ar = A)max, p(kz[A2=A)
ki +ko
2

f(ky.k) = —log (
@

= kq logky +kzlogks — (k1 + ko) log (

in’Equ ZXi/eq—'j f(k(xi') k(xj/))
a

®)

2.2. Alpha Map

It has been shown that in the case of images with a low signalise
ratio, the quality of the denoising can be improved using actited
version of the input [14]. Hence in [9] Equation 3 is redefined
ing a pre-estimate of the noise-free image and includes diti@ahl
similarity term computed between the smoothed image vallibs
requires an additional filter parame{@y analogous t@. The main
aspect of the method proposed in [9] is to set jointly the peters
that control the shape of the exponential, iceand 3. In order to
achieve this task the authors estimate the two parametkosviiog
a risk minimization principle. In particular, PURE [8] ised since
the mean square error cannot be used when no prior knowledg
available.

The proposed method differs from Deledalle’s one [9] in twaim
aspects: (i) the smoothed version of the original image tstal@en
into account, and (ii) we create a map of local alpha valugserahan
exploiting a global value. The first decision is related te fifct that,
as we noticed after a few tests, with EOS images the advawtage
tained in performance is not that significant to justify thereasing
computation time. As for the second aspect, in medical imdgis
not trivial to define a global denoising parameter like ashréd ora
in our case. Indeed, without prior models, extremely |@&alistruc-
tures could fade away along with noise in the filtering preoes
Alike, these structures could be saved but with a disapjpgjref-
fect in other noisy regions. The interest of locally adagieztessing
has been also highlighted in different contexts. For irstaim [15]
Charnigo et al. proposed a semi-local paradigm for wavelrbising
of PET images exploiting a division of the image into suitablocks
that are, then, individually denoised.

viation image of the amplitude of the gradient (from here efierred
to asstd imageo). The alpha map is defined as follows:

a(x) =M(nl(a(x))) (4)

whereM is an average filter) is the noise level that gives a hint
on the amount of noise present in the image, &adlis a curve func-
tion of thestd imagevalue at pixel coordinates. The noise levef) is
computed as the maximum position of the histogram oftdémage
This is, basically, the standard deviation computed on go&ground
and provides an indication on the global amount of noise.sTFar

a given imagen is a constant value that modulat#@g). This curve

is composed of two growing branches that are interpolatety&-
splines to guarante@!-regularity. The first part is convex and grows
slower than the second one which is concave (see Figure 1. Th
shape of{(.) is controlled by four parameters. Three parameters de-
fine the initial, final andwitchamplitudes. The fourth parameter is a
percentage of the global energy of std imagecomputed on its his-
togram. This allows defining the end of the first branch. Ttegpstof
the ¢ curve allows controlling the strength of denoising on thage.
The first branch points to regions that correspond to thedracind
and low absorption parts of the body. In this way, the stnectide-
tails are preserved thanks to a low valuexdhat practically limits the
action of the NL-means filter. Then in the second bramchrows up
quickly to exploit the Poisson NL-means and, thus, to pre\adcu-
rate denoising. This non-linear mapping of the denoisingupater
allows solving the problem of poor performance of global mels
on textured images as already highlighted by Luiser et 4B]in

Fig. 1: { curve, as a function of thetd imagevalues. Initial value = 0.01;
ghift value = 0.1; final value = 10; shift position = 30%.

The alpha map is then post-processed via an average filtedén o
to avoid strong transitions and visible changes of spatsblution in
the output image. An example of alpha map, computed on thgéma
displayed in Figure 2(a), is presented in Figure 2(b). Fstaince, this
case shows clearly how our non-linear mappingrgberforms well
on a clinical image: low valuescéld colorg correspond mainly to
background and bone textures, while the highest valbesqolorg
are on the pelvis that is a not very much structured zonetafiiday a
significant amount of noise.

The output of the denoising algorithm may still be poor inadlst
so we have to enhance the contrast. We use in this case agtaoypri
algorithm based on decomposition in Laplace multiscaldthofigh
denoising and contrast enhancement are antagonist pigassps,
what we propose here is useful and relevant. Indeed, theasint
enhancement algorithm will benefit of a proper represetati the
input image.
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UG, 136.34uG, and 306.35uG. As for the denoising parameters,
the window size is fixed to 5 7 and the patch size t0>33. The
shape of the (.) curve, i.e. the alpha map (see Equation 4) is defined
according to the acquisition parameters: at lower dose atapthe
noise is more important and a stronger denoising is negessar
Three quantitative measures are considered: Signal toeNvédio
(SNR), Contrast to Noise Ratio (CNR) and Dynamic (DYN). The
SNR is computed as the ratio of the mean intensity value inpa su
posedly constant region on its standard deviation (Figurede 1).

The CNR is estimated in the fifth grey disk of the MediTest pgbam
(Figure 3 - zone 2). Finally, the DYN is computed as the percen
age (on the 65536 possible gray levels) of the differencerdoet the
mean intensities of zones 3 and 4 (Figure 3). A comparisondst
the results obtained using the classical and the proposéibdw®is
reported in Figure 4.
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Fig. 2 (a) Input image. (b) Alpha Mapcold colors — low a values to
preserve the detailfiot colors— stronga values to reduce noise.

oNR

3. EXPERIMENTAL RESULTS " e T /

The main goal of this section is to evaluate the interest aefulness o / ot
of a denoising step before the contrast enhancement. Theusyiliv L ' € i
compare the results obtained in a reconstruction pipélinéthout [
any denoising, and results obtained with the proposed igabnThe L - 1 ‘
contrast enhancement step is the same in both cases. Twodfpe Poakta T g gy
images are considered for our tests: a phantstamard PHD5000
fluoro phantorpused for image quality evaluations (Figure 3) and p
tient images (as the one in Figure 2(a)). Besides, for thgndistic
case analyzed in detail, we compared our method with the RU
LET denoising [8] and Poisson NL-means with global dengjgia-
rameters [9]. Note that for the tests here conducted wittgtbbal
Poisson NL-means, the pre-estimate noise free image usg?l is
neglected and we set=n.

g_ig. 4: Image quality metrics on the phantom image: left SNR, aeGieR,
fight DYN. Dotted lines: no specific processing for the np@mtinuous lines:
I£E3p056d NL-means filter with adaptive parameters.

Using the proposed approach, the SNR gains a factor two am a li
ear scale. The dynamics is reduced by 6% between the highést a
the lowest dose values rather than 11% using the classidhloche
The most remarkable improvement concerns the CNR: the Hask t
is identifiable with the original approach only at 306.8& is now
visible all along the considered range of doses since the iSNRger
than one.

Let us now illustrate the method on a lower limbs image. We de-
fined two regions of interest (ROI): the head of the femur (Fég5)
and the knee (Figure 6). For instance, the first ROI is immbrta
identify the anterior and posterior acetabufuiips. Instead, the sec-
ond ROI was chosen in order to verify that the method presahe
bone trabecular structures. The quality of the outputs enpéivis
ROI are quantitatively compared in Table 1. In addition te 8\NR
and CNR, to establish whether the loss of resolution is Baamit or
Fig. 3: Standard PHD5000 phantom and regions used for assessiimage not, we relied on a no reference sharpness measure badeatah
quality. Phase Coherengg.PC) proposed by Hassen et al. in [16]. This mea-
sure is bounded in the interv, 1] and we refer to it as Ig.. Both

The standard PHD5000 phantom is covered by a layer of 20cnilg PURE-LET and the global NL-means denoising provide semy
PMMA blocks in order to simulate the thickness of an adult hamilar results to those obtained using the classical pipeliree the
body. The peak kilo voltage of the X-Ray generator is fixed 2t §lobal parameters do not allow a sufficiently strong dengisn this
kV. Two parameters can be tuned: the X-Ray tube current amd BO!. On the contrary, the measures in Table 1 and the pictufegk
exposure time. For five different settings of these pararsgtiee cor- ure 5(b) show a significant improvement of the image quatignks

responding dose values were computed: 3}116863.48uG, 97.98 1O the proposed method. The sharpness of the result obtaitiethe
proposed method is reduced but not significantly at all.

Limage processing chain that processes the data acquirég Isginsor in
order to provide a display image that can be clinically ipteted.

2Cup-shaped cavity of the pelvis into which the head of theufiefits



Table 1. Pelvis ROI. Quantitative comparison of classical EOS Ipige
PURE-LET [8], global Poisson NL-means [9] and proposed weth

Classical EOS| PURE-LET [8] | Global NL-means [9]| Proposed
SNR 18.55 19.87 20.52 21.19
CNR 1.89 2.14 2.24 3.08
1Qipe 0.977 0.976 0.973 0.965
L]

Fig. 5: Pelvis ROI of a diagnostic image: (a) Pelvis without deimgs (b)
Pelvis after denoising using the proposed method.

As for the knee region, the results and the relative shagomesisures
(the only measure that really matters in this case) are regan Fig-
ure 6. The global Poisson NL-means, in this case, is not gbad a
because the bone textures fade completely away offering rizalis-
tic outcome. PURE-LET performs better for this ROI, whichkes
us guess that its global automatic parametrization [8]gefat our
images, to be quite conservative. Anyway, the proposed adeith
still the better among the studied denoising techniqueskth#o its
better ability to preserve fine details.

Fig. 6: Knee ROI of a diagnostic image: (a) Pelvis without den@jdiQy,c =
0.941, (b) PURE-LET denoising [8] I@ = 0.921, (c) Global Poisson NL-
Means [9] IQyc = 0.909, (d) Proposed methd@ |, = 0.937.

Finally, we are able to show that our method is suitable tangdty
adapt the strength of the denoising to different spots aeiieg the
drawbacks of other denoising methods. Indeed, the algoritalps
reducing the amount of noise in thick areas, e.g. the pelvisle
preserving the bone details in thinner zones, e.g. the k8eailar
results have been obtained on a series of 20 clinical images.

4. CONCLUSIONS

In this paper, we proposed a new denoising method, by adpibten
NL means filter for Poisson noise model introduced in [9] talioal
X-Ray images and in particular to those acquired with an E3S s
tem. The main feature of the proposed approach is a locataaft
the parameters. This allowed us to overcome the drawbacbtherf
Poisson denoising techniques thanks to the capacity otieglihe
amount of noise while preserving the bone textures in lovaysrab-
sorption regions. Quantitative and visual results on bbodmpom and
real images have shown the efficiency of the proposed method.

As future work, other potentialities of the technique cobé&lex-
ploited. For example, a contrast enhancement algorithnidcoe
designed in order to reach a better compatibility with thehtéque
introduced in this paper. Anyway, this paper representssadtep
towards our main goal: an optimized combination of hardware
quisition system and software processing to provide battdrmost
useful image quality achievable for the lower dose deligeethe
patient.
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