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ABSTRACT

A denoising method is proposed for full body X-ray images, acquired
under low dose conditions. The suggested algorithm is basedon a
non local means filter adapted to the statistics of Poisson noise. A
new feature of the method is to locally set the filtering parameters in
order to denoise while preserving details in low absorptionregions.
Thus, we propose to adapt the denoising parameters for each pixel
by exploiting a global noise level measure and the standard deviation
image of the gradient magnitude. Quantitative and visual results on
phantom and real images show the interest of the method, achieving
the objectives.

Index Terms— Low dose X-Ray images, Poisson noise, Non Lo-
cal Means filter, Adaptive parameters.

1. INTRODUCTION

In this paper we propose a method to reduce the amount of noise
present in full body X-ray medical images, acquired under low dose
conditions. The statistical model of the noise is a mixture of Gaussian
and Poisson distributions. However, when the number of photons col-
lected by the sensor is low, the quantum component is predominant
[1]. This occurs typically for acquisitions performed on obese pa-
tients or, more generally, for low-dose image acquisitions.

The method is applied to EOS images. EOS imaging is a French
company based in Paris that uses Charpak’s high energy particle de-
tector to enable low dose X-ray acquisitions [2]. A full bodyim-
age with no vertical distortion can be obtained through linear vertical
scan of the detector in just one acquisition and without the need of
stitching algorithms. The main application field of interest is ortho-
pedics. Benchmark studies have shown that EOS system reduces the
entrance dose for the patient compared to traditional digital radiogra-
phy systems (CR, DR) with significant better image quality [3]. Nev-
ertheless, increasing patient thickness or decreasing dose increases
the level of noise in the images. This is why we propose a method to
denoise the images before applying other post-processing algorithms,
such as enhancement in low contrast regions. Obviously the denois-
ing process should avoid losing useful information, and a robust de-
noising technique has then to be chosen, with parameters adapted to
our context.

Several Poisson denoising algorithms are based on theAnscombe
variance-stabilizing transform (VST). This operation allows associat-
ing the original data with a Gaussian statistical model. It has been
formulated by Anscombe in [4] and later generalized by Murtagh et
al. in [5] to adapt it to contexts where Gaussian and Poisson noises are
mixed up. The final goal of this kind of method is to be able to exploit
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well known Gaussian denoising methods. An example is given in [6]
where multi-scale image representation is combined with the VST.
The main drawback lies in the non-linear distortion of noise-free ele-
ments introduced by the transformation. Besides, a more fundamental
limit is the non-existence of a perfect variance stabilizing transform
for some distributions, like for example the Poisson one [7]. For this
reason the VST step should be avoided in our context.

Luiser et al. proposed in [8] a wavelets-based method to denoise
elements affected by Poisson noise, based on a powerful data-driven
technique that exploits an unbiased estimate of the mean square error,
called Poisson Unbiased Risk Estimate (PURE). This work wasthen
improved in [1] generalizing to the case of Poisson random vector
corrupted by Gaussian noise. Another approach, directly processing
the original data set elements, was proposed by Deledalle etal. in [7]
and [9]. The main difference is that this approach is based onNon-
Local (NL) means, a nonlinear spatial filter that is gaining an increas-
ing popularity in medical image processing for its performance [10].

In this paper, we propose a denoising method based on PoissonNL
means filter convenient to process EOS images and, theoretically, any
full body X-Ray image. The objective is to denoise the image while
preserving details in low absorption regions, i.e. slightly affected by
noise. In particular, the problem of preserving the bone textures while
reducing the global amount of noise is addressed in this paper. This
goal is achieved by designing an adaptive local setting of parameters,
as an original feature of the proposed approach.
The method is part of a larger project which focuses on the design
of specific algorithms for low dose X-Ray images. The dose is a
central matter in nowadays society as shown by an important medical
literature on exposure and related risks of cancer, see for example [11]
and [12]. EOS imaging answers the demand of low dose acquisition
thanks to its unique system, but at the same time image processing
needs to be exploited in order to provide the best image quality and
enable specific applications.
The way the method is adapted to our domain of interest is presented
in Section 2. In Section 3 results on phantom and real images are
provided, along with visual and quantitative evaluations.Conclusions
and future developments are outlined in Section 4.

2. POISSON NL-MEANS WITH ADAPTIVE PARAMETER
CONTROL

2.1. Poisson NL means

The key idea of NL means is that local is not always synonym of
similar. In this type of filter, the pixel values are combinedaccording
to an affinity or similarity measure and not to a simple neighborhood
constraint. Thus, in a windowΩ centered at any pixelxi , weightswi, j



are defined for each pixelx j in Ω. Then, the denoised valuêλi of
pixel xi is estimated using the following weighted mean of the noisy
pixel valuesk(x j ):

λ̂i =
∑|Ω|

j=1 wi, jk(x j )

∑|Ω|
j=1 wi, j

(1)

For robustness reasons [9], the weightwi j is based on a pixel sim-
ilarity assessed between patchesΨ around the pixelsxi andx j , and
should be defined according to a suitable statistical model.Given two
observations of a Poisson process,k1 andk2, two hypotheses are con-
sidered: either they share the same underlying noise-free value, i.e.
λ1 = λ = λ2, or they do not, i.e.λ1 6= λ2. Thus, in the case of a
Poisson distribution, the similarity function evaluates the likelihood
ratio [13] corresponding to the two previous hypotheses [9]:

f (k1,k2) =− log

(

maxλ p(k1|λ1 = λ )p(k2|λ2 = λ )
maxλ p(k1|λ1 = λ )maxλ p(k2|λ2 = λ )

)

= k1 logk1+k2 logk2− (k1+k2) log

(

k1+k2

2

) (2)

Note that this formula replaces the Euclidean distance usedfor Gaus-
sian distributions. Finally, the similarity function in Equation 2, is the
input of an exponential kernel of bandwidthα in order to obtain the
weightswi, j ∈ [0,1]:

wi, j = exp

(

−
∑x′i∈Ψi ∑x j ′∈Ψ j

f (k(xi′ ),k(x j ′))

α

)

(3)

whereΨi (respectivelyΨ j ) denotes the patch centered atxi (respec-
tively x j ).

2.2. Alpha Map

It has been shown that in the case of images with a low signal tonoise
ratio, the quality of the denoising can be improved using a smoothed
version of the input [14]. Hence in [9] Equation 3 is redefinedus-
ing a pre-estimate of the noise-free image and includes an additional
similarity term computed between the smoothed image values. This
requires an additional filter parameterβ , analogous toα. The main
aspect of the method proposed in [9] is to set jointly the parameters
that control the shape of the exponential, i.e.α andβ . In order to
achieve this task the authors estimate the two parameters following
a risk minimization principle. In particular, PURE [8] is used, since
the mean square error cannot be used when no prior knowledge is
available.

The proposed method differs from Deledalle’s one [9] in two main
aspects: (i) the smoothed version of the original image is not taken
into account, and (ii) we create a map of local alpha values rather than
exploiting a global value. The first decision is related to the fact that,
as we noticed after a few tests, with EOS images the advantageob-
tained in performance is not that significant to justify the increasing
computation time. As for the second aspect, in medical images it is
not trivial to define a global denoising parameter like a threshold orα
in our case. Indeed, without prior models, extremely localized struc-
tures could fade away along with noise in the filtering processing.
Alike, these structures could be saved but with a disappointing ef-
fect in other noisy regions. The interest of locally adaptedprocessing
has been also highlighted in different contexts. For instance, in [15]
Charnigo et al. proposed a semi-local paradigm for wavelet denoising
of PET images exploiting a division of the image into suitable blocks
that are, then, individually denoised.

Here we want to define a matrix of values of alpha, i.e.the alpha
map. We propose to exploit measures computed from the standard de-
viation image of the amplitude of the gradient (from here on referred
to asstd imageσ ). The alpha map is defined as follows:

α(xi) = M(ηζ (σ(xi))) (4)

whereM is an average filter,η is the noise level that gives a hint
on the amount of noise present in the image, andζ (.) is a curve func-
tion of thestd imagevalue at pixel coordinatesxi . The noise levelη is
computed as the maximum position of the histogram of thestd image.
This is, basically, the standard deviation computed on the background
and provides an indication on the global amount of noise. Thus, for
a given image,η is a constant value that modulatesζ (.). This curve
is composed of two growing branches that are interpolated using B-
splines to guaranteeC1-regularity. The first part is convex and grows
slower than the second one which is concave (see Figure 1). The
shape ofζ (.) is controlled by four parameters. Three parameters de-
fine the initial, final andswitchamplitudes. The fourth parameter is a
percentage of the global energy of thestd imagecomputed on its his-
togram. This allows defining the end of the first branch. The shape of
theζ curve allows controlling the strength of denoising on the image.
The first branch points to regions that correspond to the background
and low absorption parts of the body. In this way, the structured de-
tails are preserved thanks to a low value ofα that practically limits the
action of the NL-means filter. Then in the second branch,α grows up
quickly to exploit the Poisson NL-means and, thus, to provide accu-
rate denoising. This non-linear mapping of the denoising parameter
allows solving the problem of poor performance of global methods
on textured images as already highlighted by Luiser et al. in[8].

Fig. 1: ζ curve, as a function of thestd imagevalues. Initial value = 0.01;
shift value = 0.1; final value = 10; shift position = 30%.

The alpha map is then post-processed via an average filter in order
to avoid strong transitions and visible changes of spatial resolution in
the output image. An example of alpha map, computed on the image
displayed in Figure 2(a), is presented in Figure 2(b). For instance, this
case shows clearly how our non-linear mapping ofα performs well
on a clinical image: low values (cold colors) correspond mainly to
background and bone textures, while the highest values (hot colors)
are on the pelvis that is a not very much structured zone affected by a
significant amount of noise.

The output of the denoising algorithm may still be poor in details,
so we have to enhance the contrast. We use in this case a proprietary
algorithm based on decomposition in Laplace multiscales. Although
denoising and contrast enhancement are antagonist processing steps,
what we propose here is useful and relevant. Indeed, the contrast
enhancement algorithm will benefit of a proper representation of the
input image.



(a) (b)

Fig. 2: (a) Input image. (b) Alpha Map:cold colors→ low α values to
preserve the details,hot colors→ strongα values to reduce noise.

3. EXPERIMENTAL RESULTS

The main goal of this section is to evaluate the interest and usefulness
of a denoising step before the contrast enhancement. Thus, we will
compare the results obtained in a reconstruction pipeline1 without
any denoising, and results obtained with the proposed technique. The
contrast enhancement step is the same in both cases. Two types of
images are considered for our tests: a phantom (standard PHD5000
fluoro phantom) used for image quality evaluations (Figure 3) and pa-
tient images (as the one in Figure 2(a)). Besides, for the diagnostic
case analyzed in detail, we compared our method with the PURE-
LET denoising [8] and Poisson NL-means with global denoising pa-
rameters [9]. Note that for the tests here conducted with theglobal
Poisson NL-means, the pre-estimate noise free image used in[9] is
neglected and we setα = η.

Fig. 3: Standard PHD5000 phantom and regions used for assessing the image
quality.

The standard PHD5000 phantom is covered by a layer of 20cm of
PMMA blocks in order to simulate the thickness of an adult human
body. The peak kilo voltage of the X-Ray generator is fixed at 63
kV. Two parameters can be tuned: the X-Ray tube current and the
exposure time. For five different settings of these parameters, the cor-
responding dose values were computed: 31.68µG, 63.48µG, 97.98

1Image processing chain that processes the data acquired by the sensor in
order to provide a display image that can be clinically interpreted.

µG, 136.34µG, and 306.35µG. As for the denoising parameters,
the window size is fixed to 5× 7 and the patch size to 3× 3. The
shape of theζ (.) curve, i.e. the alpha map (see Equation 4) is defined
according to the acquisition parameters: at lower dose amounts, the
noise is more important and a stronger denoising is necessary.
Three quantitative measures are considered: Signal to Noise Ratio
(SNR), Contrast to Noise Ratio (CNR) and Dynamic (DYN). The
SNR is computed as the ratio of the mean intensity value in a sup-
posedly constant region on its standard deviation (Figure 3- zone 1).
The CNR is estimated in the fifth grey disk of the MediTest phantom
(Figure 3 - zone 2). Finally, the DYN is computed as the percent-
age (on the 65536 possible gray levels) of the difference between the
mean intensities of zones 3 and 4 (Figure 3). A comparison between
the results obtained using the classical and the proposed methods is
reported in Figure 4.

Fig. 4: Image quality metrics on the phantom image: left SNR, center CNR,
right DYN. Dotted lines: no specific processing for the noise; continuous lines:
proposed NL-means filter with adaptive parameters.

Using the proposed approach, the SNR gains a factor two on a lin-
ear scale. The dynamics is reduced by 6% between the highest and
the lowest dose values rather than 11% using the classical method.
The most remarkable improvement concerns the CNR: the disk that
is identifiable with the original approach only at 306.35µG is now
visible all along the considered range of doses since the CNRis larger
than one.

Let us now illustrate the method on a lower limbs image. We de-
fined two regions of interest (ROI): the head of the femur (Figure 5)
and the knee (Figure 6). For instance, the first ROI is important to
identify the anterior and posterior acetabulum2 lips. Instead, the sec-
ond ROI was chosen in order to verify that the method preserves the
bone trabecular structures. The quality of the outputs on the pelvis
ROI are quantitatively compared in Table 1. In addition to the SNR
and CNR, to establish whether the loss of resolution is significant or
not, we relied on a no reference sharpness measure based onLocal
Phase Coherence(LPC) proposed by Hassen et al. in [16]. This mea-
sure is bounded in the interval[0,1] and we refer to it as IQlpc. Both
the PURE-LET and the global NL-means denoising provide verysim-
ilar results to those obtained using the classical pipeline, i.e. the
global parameters do not allow a sufficiently strong denoising in this
ROI. On the contrary, the measures in Table 1 and the picture in Fig-
ure 5(b) show a significant improvement of the image quality thanks
to the proposed method. The sharpness of the result obtainedwith the
proposed method is reduced but not significantly at all.

2Cup-shaped cavity of the pelvis into which the head of the femur fits



Table 1: Pelvis ROI. Quantitative comparison of classical EOS pipeline,
PURE-LET [8], global Poisson NL-means [9] and proposed method.

Classical EOS PURE-LET [8] Global NL-means [9] Proposed
SNR 18.55 19.87 20.52 21.19
CNR 1.89 2.14 2.24 3.08
IQlpc 0.977 0.976 0.973 0.965

(a) (b)

Fig. 5: Pelvis ROI of a diagnostic image: (a) Pelvis without denoising, (b)
Pelvis after denoising using the proposed method.

As for the knee region, the results and the relative sharpness measures
(the only measure that really matters in this case) are reported in Fig-
ure 6. The global Poisson NL-means, in this case, is not good at all
because the bone textures fade completely away offering a not realis-
tic outcome. PURE-LET performs better for this ROI, which makes
us guess that its global automatic parametrization [8] tends, for our
images, to be quite conservative. Anyway, the proposed method is
still the better among the studied denoising techniques thanks to its
better ability to preserve fine details.

(a) (b)

(c) (d)

Fig. 6: Knee ROI of a diagnostic image: (a) Pelvis without denoising IQlpc =
0.941, (b) PURE-LET denoising [8] IQlpc = 0.921, (c) Global Poisson NL-
Means [9] IQlpc = 0.909, (d) Proposed methodIQ lpc = 0.937.

Finally, we are able to show that our method is suitable to optimally
adapt the strength of the denoising to different spots overcoming the
drawbacks of other denoising methods. Indeed, the algorithm helps
reducing the amount of noise in thick areas, e.g. the pelvis,while
preserving the bone details in thinner zones, e.g. the knee.Similar
results have been obtained on a series of 20 clinical images.

4. CONCLUSIONS

In this paper, we proposed a new denoising method, by adapting the
NL means filter for Poisson noise model introduced in [9] to medical
X-Ray images and in particular to those acquired with an EOS sys-
tem. The main feature of the proposed approach is a local control of
the parameters. This allowed us to overcome the drawbacks ofother
Poisson denoising techniques thanks to the capacity of reducing the
amount of noise while preserving the bone textures in low X-rays ab-
sorption regions. Quantitative and visual results on both phantom and
real images have shown the efficiency of the proposed method.

As future work, other potentialities of the technique couldbe ex-
ploited. For example, a contrast enhancement algorithm could be
designed in order to reach a better compatibility with the technique
introduced in this paper. Anyway, this paper represents a first step
towards our main goal: an optimized combination of hardwareac-
quisition system and software processing to provide betterand most
useful image quality achievable for the lower dose delivered to the
patient.
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