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New applications based on wireless sensor networks (WSN), such as person-locator services, harvest a large amount of data

streams that are simultaneously generated by multiple distributed sources. Specifically, in a WSN this paradigm of data gener-

ation/transmission is known as event-streaming. In order to be useful, all the collected data must be aligned so that it can be

fused at a later phase. To perform such alignment, the sensors need to agree on common temporal references. Unfortunately, this

agreement is difficult to achieve mainly due to the lack of perfectly-synchronized physical clocks and the asynchronous nature of

the execution. Some solutions tackle the issue of the temporal alignment; however, they demand extra resources to the network

deployment since they try to impose global references by using a centralized scheme. In this paper, we propose a temporal align-

ment model for data streams that identifies temporal relationships and which does not require: the use of synchronized clocks,

global references, centralized schemes or additional synchronization signals. The identification of temporal relationships without

the use of synchronized clocks is achieved by translating temporal dependencies based on a time-line to causal dependencies

among streams. Finally, we show the viability and the effectiveness of the model by simulating it over a sensor network with

multi-hop communication.

1 Introduction

Emerging applications based on wireless sensor networks

(WSN) such as remote monitoring of biosignals, multime-

dia surveillance systems and person locator services [1]

ubiquitously1 harvest a large amount of continuous time-

based data, as audio or video, that is generated from several

sensor nodes in a distributed and concurrent way [10, 6, 18].

Specifically, the adopted transmission paradigm in such en-

vironments is called event-streaming, which represents the

generation and the transmission of data as a continuous

stream of events reported by multiple sources [11]. In order

to be useful to the application, all the collected data require

a certain degree of post-processing (e.g. data fusion2).

For example, suppose that there is a network of fixed

cameras along an area, which aim to monitor a person (see

Figure 1). As each camera has a limited vision field, the

resultant single video must be formed from multiple possi-

ble video sequences, collected by different cameras. Thus,

all the collected video sequences will be processed/fused to

produce useful information (see Figure 1).

To perform some kind of analysis or processing, all the

data originated through the event-streaming must be tem-

1In this context, the term ubiquitous refers to the capacity to collect

information from several places at the same time.
2Data fusion refers to the alignment, association, correlation, filtration

and aggregation of the collected data [9, 3].

Figure 1: Scenario of a person monitoring system.

porally aligned in some way to make them functional and

coherent. To achieve this, the sensors in the network may

need to agree on some common temporal references to the

whole system [8, 4, 10, 14]. Unfortunately, the characteris-

tics and restrictions of a WSN make it difficult to establish

such references. This is mainly due to: 1) the resources’

constraints, 2) the channel variability, 3) the dynamicity in

the topology, 4) the lack of perfectly synchronized physical

clocks, 5) the absence of shared memory, and 6) the asyn-

chronous nature of the event-streaming [6].

In order to avoid the use of synchronized clocks, a clock-

free alignment approach for data streams was proposed in

[14]. This solution is based on the fact that in most sensor

networks, some sensor nodes act as intermediate nodes to

aggregate or to collect the data streams which are later sent

to another sensor or sink. Assuming the previous commu-
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nication scheme, the approach has shown that aligning the

data streams on the intermediate nodes without synchroniz-

ing the clocks of all sensors is sufficient. Nevertheless, this

solution requires a synchronization server that broadcasts

synchronization signals to the sensors to establish a global

reference, and it also needs dedicated devices (data servers)

to align the streams according to the broadcasted signals.

These two additional requirements imply extra network re-

sources.

In this paper, we propose a new model called Event-

Streaming Logical Mapping (ES-LM), for the temporal

data alignment in WSNs. The ES-LM model is based on

the event-streaming paradigm, the logical mapping model

[20] and the data alignment approach described in [17]. The

ES-LM uses pairwise interactions between nodes based on

the happened-before relation [12]. The ES-LM performs

the data alignment by translating temporal dependencies

among streams, based on a time-line, to causal dependen-

cies. Such translation allows us to construct a virtual time-

line. By using the resulting virtual time-line we can avoid:

1) the use of synchronized clocks, 2) the use of global ref-

erences, 3) the use of centralized schemes, and 4) the use

of additional synchronization signals. Finally, we show the

viability and the effectiveness of the model by simulating it

over a sensor network with multi-hop communication.

This paper is structured as follows. Section 2 presents the

system model and the background, including our definition

of the event-streaming as an abstract data type. Section 3

presents a description of the proposed temporal data align-

ment model for event-streaming. In Section 4 we present

the analysis of the model and the simulation results. Fi-

nally, Section 5 presents the conclusions.

2 Preliminaries

2.1 System model

We specify a WSN as a distributed system, which consists

of three main components:

• Processes. Each entity associated to the WSN (sen-

sors or sink) is represented as an individual process.

Hence, a WSN is a set of processes P = {pi, p j, ...} that

communicate with each other by message passing. A

process can only send one message at a time.

• Messages. We consider a finite set of messages M

sent by a process p ∈ P. Such messages contains the

samples of audio, video or many other physical signals

that each sensor collects. Henceforth, we will refer to

a sample as a message. For a message, the sample time

x is the time instant at which a process p conducts such

a sample. Thus, each message m ∈ M can be identified

as m(p, x).

• Events. An event represents an instant execution per-

formed by a process. For our problem of data align-

ment, we only consider the send and delivery events.

1. The send event refers to the emission of a mes-

sage executed by a process.

2. The delivery event refers to the execution per-

formed by a process to present the received in-

formation to an application or another process.

Let m be a message. We denote by send(m) the emis-

sion event and by delivery(p,m) the delivery of m to

the process p. The whole set of events in the sys-

tem is the finite set: E = {send(m) : m ∈ M} ∪

{delivery(p,m) : m ∈ M, p ∈ P}.

Furthermore, for the transmissions in a WSN we consider

two main characteristics:

• Transmission delay. For a message m ∈ M there is a

time period to contend for the transmission media and

the network propagation.

• Synchronization error of two samples. This refers

to the difference between the local time reference as-

signed at the reception, which can be used to estimate

the sample time, and the sample time of the source.

2.2 Background and Definitions

A suitable way to order events in an asynchronous dis-

tributed system is the happened-before relation (HBR) de-

fined by Leslie Lamport [12]. This relation establishes the

rules to determine whether an event is the cause or the effect

of another event, without using global references.

The HBR is a strict partial order on events, defined as

follows:

Definition 1 The happened-before relation, “→”, is the

smallest relation on a set of events E satisfying the follow-

ing conditions:

1. If a and b are events belonging to the same process,

and a was originated before b, then a→ b.

2. If a is the sending of a message by one process, and b is

the reception of the same message in another process,

then a→ b.

3. If a→ b and b→ c, then a→ c.

Based on Definition 1, Lamport defines that a pair of

events is concurrently related “a ∥ b” as follows:

Definition 2 Two events, a and b, are said to be concurrent

if a ↛ b and b ↛ a; it is denoted by a ∥ b [12].

Immediate dependency relation (IDR). The IDR is the

transitive reduction of the HBR [19]. The IDR is defined as

follows:

Definition 3 Two events a, b ∈ E have an immediate de-

pendency relation (denoted by “↓”) if:

a ↓ b if a→ b ∧ ∀c ∈ E,¬(a→ c→ b)

2



Note that an event a causally and immediately precedes an

event b, if and only if, there is no other event c ∈ E, such

that c belongs to the causal future of a and to the causal past

of b.

Intervals. An interval is a set of events which occur dur-

ing a period of time. If the events that compose an interval

satisfy a certain order, then such interval is called ordered

interval. The works of Shimamura et al. [21] and Pomares

et al. [20] define the following ordered interval composi-

tion.

Definition 4 Let X be an interval of sequentially-ordered

events at a process pi; X ⊂ E, and x−, e, x+ ∈ X; where x−

is the left endpoint and x+ is the right endpoint of interval

X, such that ∀e ∈ X, x− → e→ x+ and x− , e, x+ , e.

When |X| = 1, this implies that x− = x+; in this case, x−

and x+ are denoted indistinctly by x.

Happened-before relation for intervals. Lamport estab-

lishes in [13] that an interval A happens before another

interval B if all the elements that compose an interval A

causally precede all the elements of interval B.

Definition 5 The causal relation “→” is established at a

set level by satisfying the following conditions:

1. A→ B if a→ b, ∀(a, b) ∈ A × B,

2. A→ B if ∃ C | (A→ C ∧C → B).

According to Definition 4 and Pomares et al. [20], the

happened-before relation in regard to ordered intervals can

be expressed only in terms of the endpoints as follows:

Property 1 Let A, B and C be sets of sequentially-ordered

events. The set of events A occurs before the set of events B

if any of the following conditions are satisfied:

1. A→ B if a+ → b−

2. A→ B if ∃C, such that a+ → c− ∧ c+ → b−

Definition 6 Let A and B be two ordered intervals. A and

B are said to be simultaneous (denoted by A|||B) if the fol-

lowing condition is satisfied [20]:

A|||B i f a− ∥ b− ∧ a+ ∥ b+

The definition above means that one interval A can take

place at the “same time” as another interval B.

2.2.1 The logical mapping model

The logical mapping model introduced in [20] is useful to

represent pairwise interactions between processes. Such

model expresses temporal relations between sets of events

in terms of the happened-before relation for intervals.

Table 1: Logical mappings expressed by endpoints

Logical mappings expressed by end-

points

precedes: A→ B a+ → b−

simultaneous:C|||D c− ∥ d−, c+ ∥ d+

ends: A→ (C|||D)
a+ → c−, a+ → d−

c− ∥ d−, c+ ∥ d+

starts: (C|||D)→ B
c− ∥ d−, c+ ∥ d+

c+ → b−, d+ → b−

overlaps: A→ (C|||D)→ B

a+ → c−, a+ → d−

c− ∥ d−, c+ ∥ d+

c+ → b−, d+ → b−

The logical mapping translation involves every pair X,

Y of intervals of a temporal relation. Each pair is seg-

mented into four subintervals : A(X,Y), C(X,Y), D(X,Y),

and B(X,Y), as shown in Table 1.

The logical mapping model identifies five logical map-

pings, which are sufficient to represent all possible tem-

poral relations between continuous media (interval-interval

relations [2]), discrete media (point-to-point relations), and

discrete-continuous media relations [15].

2.2.2 Event-streaming abstract data type

We propose a definition of the event-streaming oriented

to the data alignment problem. Assuming that an event-

streaming is composed of several events, we begin by defin-

ing the concept of an atomic event.

Atomic event. An atomic event indicates that an entity

has sent or delivered a message containing a sample. In

other words, an atomic event indicates that a portion of data

has been collected from the environment.

Definition 7 An atomic event is a tuple e(p j,m(pi, x)),

where p j refers to the process where the event is executed

and m(pi, x) is a message (m ∈ M) originated by process

pi.

As we stated above, we consider only two types of events:

send and delivery. We denote the atomic delivery event by

delivery(p j,m(pi, x)), and we denote the atomic send event

only by send(m(pi, x)) since pi = p j.

Based on the concept of atomic event, for our solu-

tion we distinguish two kinds of data streams generated

by the nodes in a WSN: the local-streams and the event-

streamings.

Local-streams. In a WSN, each process generates a cer-

tain number of atomic events throughout the communica-

tion process. When some of these events are generated se-
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quentially by a process pi during a period of time, we say

that the process pi ∈ P has generated a local-stream. We

formally define a local-stream as follows:

Definition 8 A local-stream is a poset (S i,→i) where S i is

a finite set of atomic events S i = {e1, e2, ...en} generated

by the process pi ∈ P and arranged according to the local

causal relation→i.

A local-stream can be expressed by its endpoints, simi-

larly to the intervals (see Definition 4). For a local-stream

S i = {e1, e2, ...en}, the endpoints are S −
i
= e1 and S +

i
= en.

The endpoint S −
i

refers to the beginning of the local-stream,

while S +
i

refers to its end.

Event-streamings. An event-streaming is a collection of

subsets of local-streams generated by different processes.

Such subsets of local-streams are grouped and arranged ac-

cording to their causal dependencies into sets denoted as

Q
Rq

q , where Rq denotes the set of identifiers of the processes

that generated the events in Q
Rq

q . Thus, in a generic way, an

event-streaming ESΘ can be viewed as the general causal

structure:

ESΘ = Q
R1

1
→ Q

R2

2
→ · · · → Q

Rm−1

m−1
→ QRm

m

We formally define an event-streaming as follows:

Definition 9 An event-streaming is a poset (ESΘ,→)

where ESΘ is a finite set of subsets of events ESΘ =

{Q
R1

1
,Q

R2

2
, ...,Q

Rm
m } arranged according to the causal rela-

tion →; Θ is the set of the identifiers of the processes that

generated the events; and each Q
Rq

q ∈ ESΘ is a subset of

events generated by the processes whose identifiers form

the set Rq.

Within an event-streaming each set Q
Rq

q is a collection

of subsets of local-streams Ωi,Ω j, ...,Ωk, where Ωi ⊆ S i,

Ω j ⊆ S j and Ωk ⊆ S k such that Ωi|||Ω j||| · · · |||Ωk (i, j, ..., k ∈

Rq). Furthermore, the events in any set Ως are arranged

according to the local causal relation →ς, which form the

poset (Ως,→ς). For example, suppose that three processes

pi, p j and pk generated three local-steams as depicted in

Figure 2. When a process collects such local-streams, it

constructs four subsets: Q
{i}

1
containing events exclusively

generated by pi, Q
{i, j}

2
containing events generated by pi and

p j, Q
{i, j,k}

3
containing events generated by pi, p j and pk and

Q
{ j,k}

4
containing events generated by p j and pk.

pi

pj

pk

Q 
1

R1 Q 
2

R2 Q 
3

R3 Q 
4

R4

Figure 2: Representation of the subsets of an event-

streaming.

We note that in a similar way to the local-streams and the

intervals, each subset Q
Rq

q can be expressed by its endpoints.

However, unlike local-streams and intervals, the endpoints

of a subset Q
Rq

q are sets of events formed by the endpoints

of each set Ως ∈ Q
Rq

q , respectively. Thus, when a set Q
Rq

q

contains events generated by the processes pi, p j and pk,

we denote the left set endpoint as −Q
Rq

q which is composed

as follows: −Q
Rq

q = {ω
−
i
, ω−

j
, ω−

k
}, where ω−

i
∈ Ωi, ω

−
j
∈ Ω j

and ω−
k
∈ Ωk. Likewise, we denote the right set endpoint as

+Q
Rq

q which is composed as follows: +Q
Rq

q = {ω
+
i
, ω+

j
, ω+

k
},

where ω+
i
∈ Ωi, ω

+
j
∈ Ω j and ω+

k
∈ Ωk.

3 Temporal data alignment for event-

streaming

3.1 The problem of data alignment for event-

streaming

Based on the definition of the data stream alignment prob-

lem given in [14], we define the problem of data alignment

for event-streaming as follows.

Definition 10 Data alignment problem for event-

streaming: Given a set of local-streams: {S 1, S 2, S 3, ...},

and considering a certain maximum transmission delay,

the problem is to assign a temporal reference that can

be used as an estimated sample time for each interested

message, such that for every two messages m(pi, x) and

m(p j, y), their synchronization error is bounded.

For our solution, the messages of interest are the causal

messages sent within an event-streaming. Explicitly, they

are the endpoints of the subsets Q
Rq

q . In this sense, the

synchronization error establishes the temporal distance be-

tween the execution of a pair of messages of interest.

3.2 Event-streaming logical mapping model (ES-LM)

The native logical mapping identifies five logical mappings:

precedes, simultaneous, ends, starts and overlaps to deter-

mine how two intervals (local-streams) are related. How-

ever, for our problem this covers only the base case, which

is the alignment of streams whose events have all been gen-

erated by a single process. In the following sections, we

present an extension to the native logical mapping called

event-streaming logical mapping model (ES-LM). The ES-

LM establishes how an event-streaming ESΘ (a stream

composed by events generated by several processes) is re-

lated to a local-stream Yk in order to determine the events

that have causal dependencies and the subsets of events that

concur. To achieve this, it is necessary to determine how

each subset Q
Rq

q ∈ ESΘ is related to a local-stream Yk.

We note that any subset Q
Rq

q is considered as a sub-event-

streaming. In our ES-LM model, without loss of generality,

it is assumed that −Q
Rq

q → Y−
k

or −Q
Rq

q || Y−
k

. Therefore,

when a subset Q
Rq

q is aligned to a local-stream Yk, a new

sub-event-streaming is generated according to the left col-

umn of Table 2. The resultant sub-event-streaming has the

following general causal structure:
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QRa
a → Q

Rb

b
→ QRw

w

From this causal structure, five new logical mappings

are identified. These logical mappings represent all the

ways that an event-streaming can be related to a local-

stream. These new logical mappings are: s-precedes, s-

simultaneous, s-ends, s-overlaps and s-starts (see right col-

umn of Table 2).

The ES-LM is the core of the data alignment scheme that

we propose, which is presented in the following section.

3.3 Data alignment description

The data alignment process is described through four stages

as follows.

A.1 Initial stage: alignment of two local-streams Ini-

tially, we have two local-streams Xc and Yd (X−c → Y−
d

or

X−c || Y
−
d

). Applying the native logical mapping, we generate

the first event-streaming ESΘ as follows.

We construct a first subset Q
{c}

1
with the first non-

concurrent events in Xc (see Table 3). To determine those

non-concurrent events, we need to identify all the events

x ∈ Xc that precede the beginning of Yd (see Figure 3).

Then, according to Table 3, we proceed to construct a

second subset Q
{c,d}

2
with the concurrent events between Xc

and Yd. The concurrent segments of both local-streams will

be bounded by the beginning of Yd and the end of any of

the two local-streams (see Figure 4).

t

Yd 

X c 

Q 
1

{c}

Figure 3: Aligning the first subset of the first event-

streaming.

t

Yd 

X c 

Q 
2

{c,d}

Figure 4: Aligning the second subset of the first event-

streaming.

The last subset Q
{w}

3
is constructed depending upon which

local-stream finishes first. If Xc finishes first, the last subset

will contain the remaining events of Yd (see Table 3). Oth-

erwise, the last subset will contain the remaining events of

Xd (see Table 3). These two cases are illustrated in Figure

5.

t

Yd 

X c 

Q 
3

{d}

(a)

t

Yd 

X c 

Q 
3

{c}

(b)

Figure 5: Aligning the last subset of the first event-

streaming. (a) Xc finishes first (b) Yd finishes first.

Therefore, the first event-streaming has the general

causal structure ESΘ = Q
{c}

1
→ Q

{c,d}

2
→ Q

{w}

3
, where w

may be c or d.

Table 3: A.1 Alignment of two local-streams

Q
{c}

1
←

• if x− ∈ Xc, y
− ∈ Yd : x− → y−,

{x ∈ Xc : delivery(pd , x)→ send(y−)}

• otherwise, ∅

Q
{c,d}

2
←

• if x+ ∈ Xc, y
+ ∈ Yd : x+ → y+,

(Xc−Q
{c}

1
)∪(Yd−{y ∈ Yd : delivery(pd , x

+)→ send(y)})

• if x+ ∈ Xc, y
+ ∈ Yd : y+ → x+,

({x ∈ Xc : send(x)→ delivery(pc, y
+)} − Q

{c}

1
) ∪ Yd

• otherwise, (Xc − Q
{c}

1
) ∪ Yd

Q
{w}

3
←

• if x+ ∈ Xc, y
+ ∈ Yd : y+ → x+,

Xc − ({x ∈ Xc : send(x)→ delivery(pc, y
+)} − Q

{c}

1
)

• otherwise,

{y ∈ Yd : delivery(pd , x
+)→ send(y)})

Once the first stage has finished, we proceed to align two

streams: an event-streaming and a local-stream. The event-

streaming is labeled as the set Xβ, where β is the set of iden-

tifiers of the processes that generated the events, while the

local-stream is labeled as Yk, where k is the identifier of

the local process. Each resultant event-streaming is merged

with the next most-left local stream Yk according to the

causal dependencies among the events of Yk and the event-

streaming Xβ.

Using Xβ and Yk, we construct a new event-streaming

forming the subsets Q
Tq

q of the general causal structure

ESΘ = Q
T1

1
→ Q

T2

2
→ · · · → Q

Tn−1

n−1
→ Q

Tn
n by detecting

the concurrences between Xβ and Yk.

Assuming that the initial stage was accomplished, the

logical mapping proceeds according to the three stages that

are detailed below.

B.1 Aligning the first subsets of events without concur-

rences between an event-streaming and a local-stream

In the first step, we determine if there are some subsets

Q
Ra
a ∈ Xβ that precede the local-stream Yk to form the first

subsets of the new event-streaming (see stage B.1 of Table

4). These subsets have events that are not concurrent with

the events of Yk and are integrated directly to the new event-

streaming to form the first subsets Q
Ta
a ∈ ESΘ (see Figure

5



Table 2: Event-streaming logical mapping

Data alignment for event-streaming ES logical mappings

Q
Ra
a ←

• if ∀x− ∈ −Q
Rq

q ,∃y
− ∈ Yk : x− → y−,

s-precedes: Q
Ra
a → Q

Rw
w

{x ∈ Q
Rq

q : delivery(pk, x)→ send(y−)}

• otherwise, ∅

s-simultaneous: ∅ → Q
Rb

b

Q
Rb

b
←

• if y+ ∈ Yk : +Q
Rq

q → y
+,

(Q
Rq

q − Q
Ra
a ) ∪ (Yk − {y ∈ Yk : delivery(pk, x

+)→ send(y)})

• if ∀x+ ∈ +Q
Rq

q ,∃y
+ ∈ Yk : y+ → x+,

s-ends: Q
Ra
a → Q

Rb

b
({x ∈ Q

Rq

q : delivery(pk, x)→ send(y+)} − Q
Ra
a ) ∪ Yk

• otherwise, (Q
Rq

q − Q
Ra
a ) ∪ Yk

s-overlaps: Q
Ra
a → Q

Rb

b
→ Q

Rw
w

Q
Rw
w ←

• if ∀x+ ∈ +Q
Rq

q ,∃y
+ ∈ Yk : y+ → x+,

Q
Rq

q − {x ∈ Q
Rq

q : delivery(pk, x)→ send(y+)}

• otherwise,
s-starts: Q

Rb

b
→ Q

Rw
w

{y ∈ Yk : delivery(pk, x)→ send(y+)}

6).

t

Yk 

X ✁ 

Q 
1

R1 Q 
2

R2 Q 
3

R3

Q 
1

T1 Q 
2

T2 Q 
3

T3 Q 
4

T4

Figure 6: Aligning the first subsets of events of an event-

streaming

If a subset Q
Ra
a ∈ Xβ has events that are concurrent with a

part of the local-stream Yk, this subset is segmented to form

two new subsets for the new event-streaming ESΘ. The

new subset Q
Ta
a , the first of the two new subsets, will con-

tain the part of Q
Ra
a whose events have no concurrence. To

determine the events without concurrences, it is necessary

to identify the event x ∈ Q
Ra
a that immediately precedes the

beginning of the local-stream Yk, (see line 1.2 of Table 4).

For the example depicted in Figure 6, the new subset Q
Ta
a

corresponds to the subset Q
T3

3
. The remaining events of

Q
Ra
a are aligned as stated in the following stage.

B.2 Aligning the subsets of events with concurrences be-

tween an event-streaming and a local-stream If during

stage B.1 a subset Q
Ra
a was detected containing events con-

current with a portion of the local-stream Yk, such a portion

of Yk is attached to the part of Q
Ra
a with concurrent events

to form a new subset Q
Tc
c (see line 2.1 of Table 4).

Once the beginning of the concurrent parts of both

streams are detected, according to stage B.2 of Table 4

(lines 2.2 and 2.3), all the subsequent subsets Q
Rb

b
∈ Xβ are

attached with the corresponding concurrent events of Yk,

until one of the two streams finishes. This means that for

each subset Q
Rb

b
in the concurrent part of Xβ, a new subset

Q
Tc
c will be constructed for the new event-streaming ESΘ

(see Figure 7).

t
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Q 
3

R3 Q 
4

R4 Q 
5

R5 Q 
6

R6

Q 
3

T3 Q 
4

T4 Q 
5

T5 Q 
6

T6 Q 
7

T7

Figure 7: Aligning the subsets of events with concurrences.

The final subsets of the resulting event-streaming will be

constructed depending upon which stream finishes first.

If the local-stream Yk finishes first (y+ → X+
β

), the last

concurrent subset Q
Rb

b
∈ Xβ can contain some events that

are concurrent with Yk and other events that have no con-

currence (see Figure 8). If this is the case, Q
Rb

b
needs to be

segmented to construct two new subsets for the new event-

streaming ESΘ. The new subset Q
Tc
c , the first of the two

new subsets, will contain the concurrent part of Q
Rb

b
and

the concurrent events of Yk. To determine such concurrent

events, it is necessary to identify the event x ∈ Q
Rb

b
that im-

mediately precedes the end of the local-stream Yk and the

concurrent part of the local-stream (see line 2.4 in Table 4).

For the example depicted in Figure 8, the new subset Q
Tc
c

corresponds to subset Q
T7

7
. The remaining events of Q

Rb

b
are

aligned as stated in the following stage.

6



Table 4: Alignment process between an event-streaming and a local-stream

B.1

If ∀x− ∈ X−
β
,∃y− ∈ Yk : x− → y− a new set Q

Ta
a is created as follows:

Q
Ta
a ←

• for each Q
Ra
a ∈ Xβ : ¬(∃x ∈ Q

Ra
a : delivery(pk, x) ↓ send(y−)) 1.1

• if ∃x ∈ Q
Ra
a : delivery(pk, x) ↓ send(y−),

1.2
Q′ = {x ∈ Q

Ra
a : delivery(pk, x)→ send(y−)}

B.2

Case A. If Q
Ra
a − Q′ , ∅, a new set Q

Tc
c is created by:

Q
Tc
c ← (Q

Ra
a − Q′) ∪ (Yk − {y ∈ Yk : delivery(pk,

+ Q
Ra
a )→ send(y)}) 2.1

Case B. If ∀x+ ∈ X+
β
,∃y+ ∈ Yk : x+ → y+ a new set Q

Tc
c as follows:

Q
Tc
c ←

• for each Q
Rb

b
∈ Xβ − (Q

R1

1
∪ . . . ∪ Q

Ra
a ),

2.2
Q

Rb

b
∪ {(Yk − {y ∈ Yk : y ∈ Q

T1

1
∪ . . . ∪ Q

Tc−1

c−1
}) − {y ∈ Yk :

delivery(pk,
+ Q

Rb

b
)→ send(y)}}

Case C. If ∀x+ ∈ X+
β
,∃y+ ∈ Yk : y+ → x+ a new set Q

Tc
c is created for each Q

Rb

b
∈ Xβ − (Q

R1

1
∪ . . . ∪ Q

Ra
a ),

such that ∀x ∈ Q
Rb

b
: delivery(pk, x)→ send(y+), as follows:

Q
Tc
c ←

• for each Q
Rb

b
∈ Xβ : ¬(∃x ∈ Q

Rb

b
: delivery(pk, x) ↓ send(y+)),

2.3
Q

Rb

b
∪ {(Yk − {y ∈ Yk : y ∈ Q

T1

1
∪ . . . ∪ Q

Tc−1

c−1
}) − {y ∈ Yk :

delivery(pk,
+ Q

Rb

b
)→ send(y)}}

• if ∃x ∈ Q
Rb

b
: delivery(pk, x) ↓ send(y+),

2.4
Q′′ = {x ∈ Q

Rb

b
: delivery(pk, x) → send(y+)} ∪ (Yk − {y ∈ Yk : y ∈

Q
T1

1
∪ . . . ∪ Q

Ta
a })

B.3

Case A. If ∀x+ ∈ X+
β
,∃y+ ∈ Yk : y+ → x+ a new set Q

Td

d
as follows:

Q
Td

d
←
• if Q

Rb

b
− Q′′ , ∅, Q

Rb

b
− Q′′ 3.1

• otherwise, for each Q
Rc
c ∈ {Xβ − Q

T1

1
∪ . . . ∪ Q

Tn
n } 3.2

Case B. If ∀x+ ∈ X+
β
,∃y+ ∈ Yk : x+ → y+ a new set Q

Td

d
is created by:

Q
Td

d
← Yk − {y ∈ Yk : y ∈ Q

T1

1
∪ . . . ∪ Q

Tn
n } 3.3

B.3 Aligning the last subsets of events without concur-

rences This stage is explained through two cases.

Case A. Yk finishes before Xβ. If at the end of stage

B.2, the last subset Q
Rb

b
was segmented, the second created

subset, denoted as Q
Td

d
, will contain the remaining non-

concurrent events of Q
Rb

b
(see line 3.1 of Table 4). In the

example of Figure 8, such subset Q
Td

d
corresponds to the

subset Q
T8

8
.

The fact that the local-stream Yk finishes first (y+ → X+
β

)

implies that the concurrent parts of both streams finish

along with Yk. Therefore, according to line 3.2 of Table

4, the remaining subsets Q
Rc
c ∈ Xβ will become the last sub-

sets Q
Td

d
∈ ESΘ. In the example of Figure 8, the last subsets

Q
Td

d
are the subsets Q

T9

9
, Q

T10

10
and Q

T11

11
.

Case B. Xβ finishes before Yk. The fact that the event-

streaming Xβ finishes first (X+
β
→ y+, y+ ∈ Yk) means that

the concurrent parts of both streams finish along with the

event-streaming Xβ. After the last subset Q
Tc
c ∈ ESΘ was

constructed with the concurrent events of Xβ and Yk, only

one more subset Q
Td

d
is constructed according to line 3.3 of

Table 4. Such subset Q
Td

d
will contain the remaining events

of the local-stream Yk. In the example of Figure 9, the last

subset Q
Td

d
corresponds to the subset Q

T8

8
.

t
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Figure 8: Aligning the last subsets of events without con-

currences when y+ → X+
β

.

The event-streaming logical mapping will continue until

there are no more concurrent local-streams to be merged.

In terms of data alignment, we note that by the way in

which the subsets of events are constructed and causally

ordered, each resultant event-streaming ESΘ is a finite col-

lection of disjoint subsets Q
Tq

q arranged one after another

without interruption. This arrangement of subsets Q
Tq

q in an

ESΘ allows us to establish a relative time-line, where each

subset Q
Tq

q represents a unique time-slot. The fact that the
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Figure 9: Aligning the last subsets of events without con-

currences when X+
β
→ y+.

subsets Q
Tq

q are disjoint implies that each event in an event-

streaming belongs to a unique subset Q
Tq

q , and therefore it

is located at a specific time-slot.

4 Analysis and results

4.1 Proof of the temporal data alignment

In this section we prove that by following the ES-LM

model, the sequential arrangement of subsets of events that

compose an event-streaming establishes a virtual time-line,

where each subset represents a unique time-slot and each

event is aligned with respect to only one of them.

Theorem 1 The arrangement of subsets Q
Rq

q in an event-

streaming establishes a virtual time-line, where each subset

Q
Rq

q represents a unique time-slot and each event belongs to

a unique time-slot.

Proof. We divide this proof into two parts. In the first part

we prove that an event-streaming is a causal arrangement of

subsets of events that establishes a time-line. In the second

part we prove that each subset Q
Rq

q in an event-streaming

represents a unique time-slot.

Part I. To demonstrate that an event-streaming is a causal

arrangement of subsets of events that establishes a time-

line, we formulate and prove the following Lemma:

Lemma 1 An event-streaming is a causal arrangement of

subsets of events that establishes a time-line.

Before proving Lemma 1, we need to consider the fol-

lowing. Definition 8 states that a local-stream is a poset

(S i,→), where S i is a set of atomic events generated by the

same process. Thus, (S i,→) is a sequence S i = {eα →

eα+1 → · · · → en−1 → en}. The fact that the events of S i

are arranged by → implies that each event happens before

another at a different instant, which determines a chrono-

logically order. Therefore, a local-stream S i represents a

time-line for a process i.

Proof of Lemma 1 We demonstrate Lemma 1 by a di-

rect proof. According to the ES-LM (Tables 2, 3 and 4)

during the data alignment, the subsets of events that com-

pose a new event-streaming ES β, are formed by segment-

ing two streams (a local-stream and an event-streaming

or two local-streams). From Tables 3 and 4 (specifically,

stage B.1; cases B and C of stage B.2; and stage B.3) we

have that a segmentation is triggered by the identification

of an endpoint which determines the beginning or the end-

ing of an overlap between a pair of streams. Whichever

the case, each segmentation establishes the creation of two

new subsets Q
Ru−1

u−1
and Q

Ru
u . Let Yc be a local-stream and

let X denote a local-stream or an event-streaming such that

∀x− ∈ X,∃y− ∈ Yc : x− → y−. Assuming that e∗ (e∗ ∈ Yc

or e∗ ∈ X) is the endpoint (e∗ = y− ∨ e∗ = y+ ∨ e∗ = x+),

whose identification triggered the segmentation, ∀x+ ∈ X,

Q
Ru−1

u−1
and Q

Ru
u are constructed according to one of the three

following cases:

1. if e∗ ∈ Yc, e∗ = y−, and x− → y− then Q
Ru−1

u−1
= {x ∈

X : delivery(pc, x) → send(e∗)} and Q
Ru
u = {e

∗} ∪ {x ∈

X : send(e∗)→ delivery(pc, x)} ∪ {y ∈ Yc : send(y)→

delivery(pc, x
+)};

2. if e∗ ∈ X, e∗ = x+, and x+ → y+ then Q
Ru−1

u−1
= {e∗} ∪

{x ∈ X : delivery(pc, x) → delivery(pc, e
∗)} ∪ {y ∈

Yc : send(y) → delivery(pc, e
∗)} and Q

Ru
u = {y ∈ Yc :

delivery(pc, e
∗)→ send(y)};

3. if e∗ ∈ Yc, e∗ = y+, and y+ → x+ then Q
Ru−1

u−1
= {e∗} ∪

{x ∈ X : delivery(pc, x) → send(e∗)} ∪ {y ∈ Yc :

send(y) → send(e∗)} and Q
Ru
u = {x ∈ X : send(e∗) →

delivery(pc, x)}.

In each of these three cases, happened-before relation-

ships are established among the left endpoints of Q
Ru−1

u−1
and

the right endpoints of Q
Ru
u . This means that for a pair of

subsets Q
Ru−1

u−1
and Q

Ru
u (Q

Ru−1

u−1
,Q

Ru
u ∈ ES β) we have that

∀(ω+
i
, ω−

k
) ∈ +Q

Ru−1

u−1
× −Q

Ru
u : ω+

i
→ ω−

k
(i, k ∈ β). Further-

more, all the events that compose Q
Ru−1

u−1
and Q

Ru
u are ex-

tracted from local-streams by preserving their causal order.

Thus, let ωi and ω+
i

be two events such that ωi, ω
+
i
∈ Ωi,

Ωi ∈ Q
Ru−1

u−1
andΩi ⊆ S i (for any local-stream S i) if ωi , ω

+
i

then ωi → ω+
i
. By the transitive property of the HBR

we have that ωi → ω
−
k
, ∀ω−

k
∈ Q

Ru
u . Moreover, for any

event ωk ∈ Q
Ru
u , ωk , ω

−
k
, ω−

k
→ ωk; thereby, transitively

ωi → ωk. Therefore, by Definition 5 we have Q
Ru−1

u−1
→ Q

Ru
u .

Thus the subsets of an event-streaming are chronologically

ordered representing a time-line, where each subset Q
Rq

q is

a time-slot. □

Corollary 1 Each subset Q
Rq

q ∈ ESΘ represents a time-

slot.

Part II. To demonstrate that each subset Q
Rq

q in an event-

streaming represents a unique time-slot, we formulate and

prove the following Lemma:

Lemma 2 Each subset Q
Rq

q represents a unique time-slot,

therefore, any pair of subsets Q
Ru
u and Q

Rv
v , that compose

8



an event-streaming ESΘ, is disjoint.

∀ QRu
u ,Q

Rv
v ∈ ESΘ, u , v : QRu

u ∩ QRv
v = ∅

Proof of Lemma 2 We prove Lemma 2 by contradiction.

Therefore, we suppose that ∀ Q
Ru
u ,Q

Rv
v ∈ ESΘ, u , v : Q

Ru
u ∩

Q
Rv
v , ∅, i.e., ∃xµ : xµ ∈ Q

Ru
u ∧ xµ ∈ Q

Rv
v .

According to the ES-LM model, the subsets Q
Rq

q of

an event-streaming are created by aligning two local

streams or aligning a local stream with an event-streaming.

Whichever way an event-streaming is generated, a subset

Q
Ru
u must be related to another Q

Rv
v (u , v) according to

one of the five logical mappings described in Table 2. This

means that for any eµ ∈ Q
Ru
u and any cµ ∈ Q

Rv
v , eµ → cµ or

cµ → eµ. Thus, if there is xµ such that xµ ∈ Q
Ru
u ∧ xµ ∈ Q

Rv
v ,

implies that xµ → xµ is a contradiction, according to the

assumptions by which the happened-before relation are de-

fined (systems in which an event can happen before itself

do not seem to be physically meaningful). □

4.2 Simulation results

We have simulated the temporal data alignment model for

event-streaming using the Castalia simulator [5]. The simu-

lation scenario is within a set of 50 nodes that were arranged

into multi-hop paths, where the nodes are separated by dis-

tances between 5 and 10 meters in a field of 200 × 200 me-

ters. Through each multi-hop path, a node reaches the sink

helped by up to 10 relay nodes. With this arrangement, each

relay node aligns the streams generated by the predecessor

nodes in the path in such a way that if there exist nr nodes

behind a node pi, pi aligns at most nr streams.

For the simulation, we implemented the model using the

well-known vector clock structure [16, 7] to identify and

preserve the causal relations among events. Therefore, we

obtain a computational cost as well as communication and

storage overheads of O(nr), where nr is the number of nodes

that are related to a certain node during the data transmis-

sion.

To transmit a local-stream we use two types of causal

messages: begin and end, and a type of FIFO message:

f i f o p which does not carry any causal information. So,

a process pi generates a local-stream S i by sending a begin

message (S −
i

) followed by certain number of f i f o p mes-

sages. Finally, to notify a process p j that the transmission of

the local-streaming has been finished, the process pi sends

an end message (S +
i

).

The simulation was configured with the TMAC protocol

for the MAC sublayer and the CC2420 radio protocol for

wireless transmissions. The data payload for the Applica-

tion layer packets was fixed to 2000 bytes.

In the simulation scenario, each node generated a random

number of local-streams throughout the simulation. Each

generated local-stream was composed by a random number

of messages between 9 and 100, that were generated using

sampling rates between 25 and 1000 milliseconds.

In order to measure and to show that the synchronization

error is bounded, we took the simulation time as a global

clock. We note that the simulation time was not used in

the ES-LM. The ES-LM use only the causal dependencies

between the event-streamings to perform the data alignment

and do not use any kind of physical time.

At each hop we took the causal messages begin and end

exchanged during the transmissions of the local-streams

to determine the synchronization error between a pair of

streams.

Let e∗α denote the send event executed by process pi to

transmit the causal message m(pi, α) (begin or end), and

let e∗ρ be the send event executed by process p j to trans-

mit m(p j, ρ), which is the latest aligned message before the

reception of m(pi, α); when p j receives m(pi, α), the syn-

chronization error of a pair of local-streams is determined

by the difference between the sampling time of m(pi, α) and

m(p j, ρ).

For example, in the scenario depicted in Figure 10, pro-

cess pi sends the message m(pi, α) to p j, which indicates

the beginning of the local-stream S i. Assuming that p j

is generating the local-stream S j, the synchronization er-

ror between S i and S j is determined by the difference be-

tween the sampling time of m(pi, α) and the sampling time

of m(p j, ρ).

p j

p i

z5e ✁+1

e ✂+1

e ✁
 *

z5e ✁ -1

TS (   ) j e �
 *

e ✂
 *S  = i

-
✄

☎

e ✂
 *S  = i

-

TS (   ) j e ✆
 *

✝ (e  ,e  ) ✞
 *

 ✟
 *

 j

Figure 10: Example of the alignment of causal messages.

Thus, by considering the simulation time as a global

clock, the synchronization error is estimated by using the

following formula:

ε j(e
∗
α, e
∗
ρ) = |TS j(e

∗
ρ) − TS i(e

∗
α)| : e∗α ∈ S i, e

∗
ρ ∈ S j, e

∗
α ↓ e∗ρ

where ε j is the synchronization error measured at process

p j and TS x is a sample time at process px.

By using sampling rates between 25 and 1000 mil-

liseconds, we show that the synchronization error can be

bounded according to the transmission delay as shown in

Figure 11.

4.2.1 Analysis of the results

Based on the ES-LM, the data alignment is performed in

the intermediate nodes while the streams are propagated

through the network. In our case the data alignment is

achieved by ensuring at each intermediate node the syn-

chronization error ε j(e
∗
α, e
∗
ρ) is bounded by the transmission

delay for a pair of endpoints e∗α and e∗ρ. This means that the

execution of the send events of such pair of endpoints take

place at most at ε j(e
∗
α, e
∗
ρ) units of time one with respect to
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Figure 11: Difference between the synchronization error

and the transmission delay.

the another. This result is achieved as follows. When p j lo-

cally constructs an event-streaming, such event-streaming

is the output of the alignment of two or more local-streams

according to the causal relations established by ES-LM.

In such event-streaming, a pair of endpoints (e∗α, e
∗
ρ) is re-

lated at p j as shown in Figure 10. When such endpoints

are retransmitted/propagated to another node (final or in-

termediate), and because they have the same source, their

transmission delays will be affected by the same network

conditions and therefore the synchronization error remains

bounded according to the transmission delay of the current

hop. This phenomenon is quite similar to the relative veloc-

ity between two physical objects.

With respect to why the average synchronization error is

bounded between sampling rates of 75 ms to 830 ms we

present the following analysis (see Figure 11). The syn-

chronization error cannot be bounded lower than 75 ms be-

cause a faster sampling rate causes a greater saturation in

communication channels and indeterminism of the trans-

mission delay. The latter is mainly due to the signal-to-

noise ratio (SNR) as well as to the medium access con-

tention. On the other hand, the synchronization error can-

not be bounded when the sampling rates are greater than

830 ms by our solution since the temporal distance between

two consecutive local samples at a process p j is much larger

than the maximum transmission delay of the current hop.

5 Conclusions

A temporal alignment model for data streams in WSNs

called event-streaming logical mapping (ES-LM) has been

presented. One original aspect of our model is that the

data alignment is performed without using synchronized

clocks, global references, centralized schemes or additional

synchronization signals. This was achieved by translating

temporal dependencies based on a time-line to causal de-

pendencies among streams. The ES-LM model constructs

a virtual time-line by arranging the transmitted data into

causally-ordered sets of events. In terms of the problem of

temporal data alignment, it was proven that each ordered

set of events determines a specific and unique time slot.

An instantiation of the model was simulated over a sen-

sor network with multi-hop communication. The simula-

tion results show that the synchronization error is bounded

according to the transmission delay.
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