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Abstract
In view of potential  applications of magnetic particles in biomedicine and electromagnetic 
devices,  we  made  use  of  the  classical  Stöber  method  –  base-catalysed hydrolysis  and 
condensation of tetraethoxysilane (TEOS) – to encapsulate FeNi nanoparticles within a silica 
shell. An original stirring system under high power ultrasounds made possible to disperse the 
otherwise agglomerated particles. Sonication guaranteed particles to remain dispersed during 
the Stöber synthesis and also improved the efficiency of the method. The coated particles are 
characterized by electron microscopy (TEM) and spectroscopy (EDX) showing a core-shell 
structure  with  a  uniform layer  of  silica.  Silica-coating  does  not  affect  the  core  magnetic 
properties. Indeed, all samples are ferromagnetic at 77 K and room temperature and the Curie 
point  remains  unchanged.  Only the  coercive  force shows an  unexpected  non-monotonous 
dependence on silica layer thickness.

1. Introduction
Magnetic-metal nanoparticles encapsulated in a dielectric inorganic material are considered to 
have  practical  applications  in  electromagnetic  devices,  biology and  fundamental  study to 
improve  the  local  physical  investigation  of  magnetic  nanostructures.  In  the  core-shell 
structure, the core size-dependant magnetic susceptibility at room temperature combined with 
the chemical stability of the silica coatings suggests that the resulting nanocomposite may be 
a good candidate for biomedical applications, such as magnetic separation,  drug targeting, 
image contrast in magnetic resonance imaging and hyperthermia therapy [1,2,3]. Magnetic 
fluids dedicated for clinical applications are typically colloidal suspensions of iron, magnetite, 
iron-nickel and cobalt nanoparticles coated with biocompatible surfactants [4]. Actually, there 
are two fundamental criteria to prevent the catalysis of damaging reactions within cells, the 
reduction of the toxicity of the vector conveying the solution  due to its oxidative  alteration 
and its chemical time stability. Accordingly, the silica coating of magnetic nanoparticles is 
one  of  promising  tool  to  ensure  this  specific  biocompatibility  and  leads  to  low  toxicity 
material. 
Magnetic-dielectric nanocomposites have also attracted sustained interest over one century 
owing  to  their  unusual  combined  magnetic  and  electric  properties.  In  fact,  due  to  their 
metallic nature, eddy currents limit application of magnetic nanoparticles at high frequency. 
The coating by an insulating shell on the surface of soft magnetic nanoparticle cores such as 
FeNi confers to the material a high permeability independent of the frequency even in GHz 
range [5].  Such materials are typically suited for applications in telecommunication [6].  On 
the other hand, the ability to control magnetic interactions is an important consequence of the 
coating  of  magnetic  particles,  which  has  been  explored  in  details  by  several  authors for 
particles  in  solution  [7]  and close-packed  thin  films  [8].  Coating  thickness  controls  both 
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insulation  of  nanoparticles  and  interparticle  distance  and,  therefore,  the  interparticle 
interactions [9]. This provided substantially reliable results to study magnetic nanostructure of 
nanoparticles using electron holography [10].
Several synthetic routes for producing magnetic nanoparticles have been explored during the 
last  decade  including  chemical  vapor  condensation  (CPVD),  powder  pyrolysis  and 
sonochemical  synthesis  [11,12,13].  However,  nanoparticles  synthesized  by these  methods 
frequently display a relatively poor cristallinity or polydispersity in their shape or/and size, 
which  affects  their  magnetic  properties.  Evaporation–cryo-condensation  process  has  been 
developped to overcome some of these problems. In the present work, cryogenic melting has 
been  used  to  produce  Fe29.5Ni70.5 nanoparticles  and  consequently  to  guarantee  more 
cristallinity and a better stability in the elemental chemical composition.  Additionally, several 
approaches, such as the sol-gel process [14], co-precipitation [15,16,17], metal-dielectric co-
sputtering  deposition  [18]  or  metal  ion  deposition,  have  been  used  to  prepare  magnetic-
insulator nanocomposites. Our present approach is to start from metallic nanoparticles and to 
coat them with an inorganic-dielectric  polymer  in order to control the morphology of the 
shell. In this paper, a modified Stöber approach has been used to encapsulate in silica the as-
prepared metallic FeNi particles. In fact, we have introduced high-power sonochemistry not 
only in the dispersion step, but also during the synthesis to improve the effectiveness of the 
classical Stöber method [19,20].    

2. Experimental details
Synthesis of Fe29.5Ni70.5 nanoparticles

FeNi nanoparticles with well-defined morphology and homogeneous chemical composition 
were synthesised using the cryogenic melting technique. This method consists in sliding down 
a feeding bar of metal (Fe29.5Ni70.5) into a Radio Frequency (RF) reactor. A drop of molten 
metal  forms  at  the  edge  and  falls  onto  the  inductors  where  it  is  levitated  to  complete 
transformation into nanocrystalline powders. In order to have sufficient vapour pressure, the 
metal  must  be  heated  up  by several  hundred  degrees  over  its  melting  temperature  (over 
2000°C for Fe, Ni). The size of particle depends critically on the metal vapour pressure. The 
gas produced from the cryogenic  liquid carry the particles into a  canvas  filter.  Technical 
details  are  reported  in  [21].  The  as-obtained  iron-nickel  nanopowders  are  composed  of 
spherical  particles  with  an  average  diameter  of  about  55  nm (deduced from microscopy, 
standard deviation 20 nm).  From Electron  Energy Loss Spectroscopy (EELS) the chemical 
composition is homogeneous from one particle to another as well as inside the nanoparticles. 
The fraction of iron x = 0.295 is of particular interest since large amounts can be produced 
with  no  deviation  in  chemical  composition  [22]. Because  metallic  nanoparticles  are 
pyrophoric in air, they are collected in hexane where an oxide layer of approximately 2 nm 
forms, making possible their  manipulation without risk.  The  magnetization of as-prepared 
iron-nickel particles (75 Am2/kg) is 20% lower compared to the bulk alloy magnetization, 
which  confirms  the  non-magnetic  nature  of  the  oxide  layer  observed  from  electron 
microscopy and analysed using XPS (X-Ray Photoemission Spectroscopy). Essentially Nickel 
Hydroxides Ni(OOH) and Ni(OH2), iron oxide Fe2O3 and FeO were detected [22].
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Synthesis of Silica-coated Fe29.5Ni70.5 nanoparticles
The silica shell onto FeNi core was synthesized according to the Stöber method [23] (sol-gel 
reaction)  without  any silane  coupling  agent  (like  3-aminopropyltrimethoxysilane  which  is 
sometimes  used  for  noble  metals  nanoparticules  silica  coating  [24]).  Indeed,  oxide  shell 
covering FeNi nanoparticles is expected to enhance the SiO2 shell binding.
Ethanol  (95-96%  synthesis  grade)  and  Ammonia  solution  (28%  analytical  grade)  were 
purchased  from  SDS/CARLO  ERBA,  tetraethylorthosilicate  (TEOS)  ≥  98%  (GC)  from 
FLUKA. All reagents were used as received without further purification.
Ultrasonic dispersion was carried out with a Bandelin 200W (variable  from 10 to 100%) 
ultrasonic processor (Sonopuls HD 2200) fitted out with a horn of 13×3 mm. All experiments 
were made in glass flask equipped with a cooling jacket to keep the mixture temperature 
constant.
Typically,  80 mg of raw  Fe29.5Ni70.5 nanoparticles were first sonicated in 50 ml of ethanol 
during 90 minutes under a controlled ultrasonic power of 3 W/cm3. Then, various volumes of 
TEOS and ammonia 28% (NH4OH) were successively introduced into the suspension and the 
mixture was again sonicated for 90 minutes under a power of 0.5 W/cm3 to complete the sol-
gel reaction (Figure 1). Finally the suspensions are centrifuged at 3000 rpm for 10 minutes, 
the solvent is discarded, and the FeNi nanoparticles are ultrasonically redispersed in 50 ml of 
ethanol. This purification process (centrifugation/dispersion under sonication) was repeated 
three times. The particles were then transferred into ethanol to avoid any further growth or 
chemical modification of the silica layer. Subsequently, an amount of the coated nanoparticles 
were dried under reduced pressure and moderate temperature to remove remaining solvent 
and to prepare samples for the physical characterization. Four samples with different reagent 
concentrations have been produced (see table 1).  

Characterization and techniques
Thermal degradation analyses were made with a Perkin-Elmer Pyris 6-TGA instrument using 
standard ceramic crucibles and sample mass of 1-29mg. The samples were heated at a rate of 
10 °C min-1 from room temperature to 1000 °C in an air flow of 10 ml min -1 or an argon flow 
of 80 ml min-1. The analyser was coupled to a permanent magnet producing a gradient field in 
the crucible to measure the Curie temperature (Tc). These measurements are conducted under 
argon flow to avoid adventitious oxidation of the nanoparticles. Fourier Transform Infra-Red 
spectra  (FTIR)  were  recorded  with  a  Thermoelectron  Corporation  NEXUS  spectrometer 
equipped with an attenuated total reflectance probe (ATR) covering the wavenumber range 
4000-700 cm-1. The morphology and size of the particles were analysed by conventional and 
high resolution electron microscopy (HRTEM) using a TECNAI F20 microscope (operating 
at  200 kV with a point-to-point resolution of 0.24 nm),  on the powders deposited onto a 
microscopy grid coated with an amorphous carbon film. Powders were also characterized by 
Electron  Energy  Loss  Spectra  (EELS)  in  a  Gatan  Image  Filter  (GIF  2000)  spectrometer 
coupled to the TECNAI F20. Fitting and integration windows of 30 eV were used for all the 
chemical maps and the spectra were obtained with an energy resolution of 1.2 eV. Elemental 
chemical analysis of the nanocomposites was also performed using Energy Dispersive X-rays 
(EDX)  attached  to  the  same  system. The  quasi-static  hysteresis  loops  with  an  applied 
magnetic field of –300 kA/m < H < 300 kA/m were acquired using a home-made Vibrating 
Sample Magnetometer (VSM) between room and liquid nitrogen temperature. 

3



3. Results and discussion
Fourier Transform Infrared (FTIR) spectroscopy was used to identify the functional groups 
present  on  the  surface  of  FeNi@SiO2 nanoparticles.  Comparison  of  uncoated  and silica-
coated particles  FT-IR spectra (Figure 2) shows a pronounced change detected in the 1300-
700 cm-1  region, which clearly indicates the presence of the silica coating. The peaks at 970 
and 1070 cm-1 correspond to the characteristic Si-O-Si bond, typically attributed to the Si-O - 

symmetric stretching and Si-O-Si asymmetric stretching respectively, in agreement with [25]. 
Analysis  of  bonding configurations  from FTIR data  suggest  also the existence  of Si-O-C 
or/and ≡Si-O-Si≡ functions (bands under 1000 cm-1). Nevertheless, the spectra are obviously 
dominated by the Si-O-Si bonding vibrations,  for all coated samples. The presence of this 
type of strained bond is a clear evidence of the mechanical stress in the silica sheath, which in 
turn may strain the FeNi nanoparticles.   
The  chemical  composition  was  examined  using  Energy–Dispersive  X-ray  (EDX) 
spectroscopy, which shows a  Fe29.5Ni70.5 core coated by silica shell (Figure 3). The copper 
lines in this figure are due to the copper grid used as TEM sample holder. An atomic ratio of 
Si/O = 1/0.6 was obtained on the core-shell structure, indicating that the off-stoichiometric 
silica shell is silicon-rich in nature. The structural evolution study suggests that the silica layer 
grows without affecting the integrity of the FeNi core. Indeed, the spectra do not reveal other 
elements except those present initially in the FeNi core, the oxide layer, the silica shell and 
the copper grid.
Figure  4  shows  TEM  pictures  of  FeNi@SiO2 particles  synthesized  using  various  TEOS 
volumes. Observation of figure 4 images (a), (b), (c) and (d) clearly shows the shell thickness 
dependence  on  TEOS  concentration  (see  also  table  1).  Additionally  Energy  Filtered  in 
scanning TEM mode, which one can see an illustration on the inset (f) of figure 4, comes to 
support the elementary chemical nature of the silica-layer surrounding the nanoparticles. In 
fact, the image exhibits a chemical cartography obtained from EELS and undeniably shows 
the formation of silica uniformly on the FeNi core.

The  properties of oxidation-resistance of the FeNi@SiO2 composite  were tested by TGA. 
Figure  5  shows  the  typical  curves  of  thermal  analysis  of  metallic  materials  [26]. 
Correspondingly,  the weight increment  of the coated particles  (sample 5) caused by FeNi 
oxidation decreased from 28% to 5% relative to that of the uncoated FeNi particles (sample 
1). It is clear that a thicker shell of silica can protect the nickel-iron from oxidation more 
efficiently. For instance the oxidation of the FeNi core of FeNi@SiO2 composites (sample 4) 
proceeds at ~430 °C which is 250 °C higher than for as-prepared FeNi nanoparticles. The 
weight  loss,  observed  for  coated  samples  starting  from  RT,  is  attributed  to  the  surface 
dehydration  of  the silica  monolayer and the loss  of others  organic compounds  which  are 
volatile in this range of temperature [27].

For many applications of core-shell particles, such as electromagnetic devices [28], it is of 
essential  importance  to  control  precisely  the  thickness  of  the  shell.  In  the  system  under 
consideration,  the simplest  approach to vary shell thickness is to use different amounts of 
TEOS. Consequently,  we investigate  the  effect  of  adding various  amounts  of  TEOS in  a 
single step. Figure 4 (e), which features a typical high resolution image (HRTEM) for sample 
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4, reveals a core-shell structure with an uniform amorphous silica coating (thickness 15 nm). 
For comparison, the thickness of silica-shell is deduced from magnetic characterization. In 
fact, the volume of SiO2 can be estimated using 
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nanocomposite. The bulk Fe29.5Ni70.5 density was used (8450 kgm-3 [30]).
Figure 6 shows the dependence of the thickness of silica shell, deduced from TEM analysis 
and magnetic measurements, on TEOS volume. Interestingly, the two data are consistent with 
a quantitative silica formation on the nanoparticles for thin silica layer up to 20 nm. Above 
this limit tMAG presents a discrepancy compared to tTEM for thicker silica layer (beyond 20 nm). 
This could be explained by the presence of free silica nanoparticles synthesized when a large 
amount  of  TEOS is  added. After  centrifugation,  the  calculated  volumic amount  of  silica 
coating the nanoparticles  is  underrated and therefore, the deduced silica-shell  thickness  is 
erroneous.     

4.  Magnetic properties
The TGA recordings  under  constant  magnetic  field  are presented  in  figure 7.  Due to  the 
neutral atmosphere (argon flow), oxidation was inhibited. Up to 600 °C we observe a weak 
weight drop due to a chemical desorption from the silica shell for coated particles as reported 
in [27]. Comparable weight loss is observed for uncoated sample 1 due to the desorption of 
organic  chains  adsorbed  in  the  oxidized FeNi  surface  during  the  passivation step  of  the 
nanoparticles.  The TGA traces show a characteristic feature for all samples which reveals a 
typical ferromagnetic-to-paramagnetic transition at the Curie temperature (Tc). Noticeably, the 
nanocomposites (sample 2 to 5) exhibit a broaden transition. Obviously, this makes difficult 
the extraction of Tc which roughly maintains a stable value of 605 °C (± 5 °C) for all samples 
in agreement with the literature [31].

A comparative measurement of hysterisis loops at 300 K (RT) and 77 K was performed for 
both  uncoated  and  silica-coated  nanoparticles  using  VSM  as  mentioned  previously. 
Magnetization curves are reported in figure 8 and the main quantities are listed in table 2 
(specific saturation magnetization, remanent magnetization and coercivity at 77 K and RT). 
All curves at  RT saturate approximately at  the same applied field than those measured at 
77  K.  For  the  same  operating  temperature,  loops  for  coated  samples  appear  to  have  a 
component whose magnetization continues to increase with increasing field up to 200 kA/m, 
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whereas  the raw FeNi powder saturates  much faster than the nanocomposites.  In fact  the 
interparticle interactions are modulated by the thickness of the coating layer which isolates the 
particles.  As a  result the  nanocomposite  hardens  magnetically  and its  saturation  becomes 
difficult [6,18,32]. For all samples there is only a slight deviation regarding the saturation 
magnetization between 77 K and RT because RT/Tc ≈ 0.3. Furthermore, the coating quality is 
examined in saturation magnetization versus silica-layer thickness plots as an inset in figure 8 
(right side).  It is clearly seen that the specific magnetization decreases with increasing the 
thickness  of  silica-shell.  Accordingly  diamagnetic  contribution  of  silica  leads  to  a  lower 
saturation magnetization than the core-free FeNi particles (table 2). 

The inset, left side of figure 8, illustrates the coercive field versus the thickness of silica-shell 
at  77  K and RT.  Noticeably,  the  temperature  dependence  of  coercivity  indicates  a  slight 
increase for all samples when temperature decreases which is consistent with an increase of 
anisotropy regardless of its origin. On the one hand, for randomly oriented nanoparticles with 
cubic anisotropy, the coercive field should be  Hc ≈  0.64K1/Js [33]. If we consider the bulk 
Fe30Ni70 magnetocristalline  anisotropy  K1 ≈  700  J/m3

 [34] and  the  measured  saturation 
magnetization  Js =  0.8  T,  we  find  Hc  ≈  560  A/m which  is  in  disagreement  with  the 
experimental coercivity. On the other hand, the morphology and size effect are believed to be 
the reason of high coercivity observed for all samples (22 kA/m < Hc < 32 kA/m, see table 2). 
According  to  the  pioneering  work  of  Néel  [35],  for  soft  magnetic  nanoparticles 
a dissymmetry of  some atomic  layers  is  sufficient  in  order  to  make  the  contribution  of 
demagnetizing field becoming dominant and to  lead to an enhancement of the coercivity. 
Shape anisotropy effect is due to the asphericity of the nanoparticles below a critical size. 
The  coercive field in an elongated spheroidal single-domain particle is given by  Hc=2Ks/Js 

[36]  where  
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If we assume a coercive field  Hc  = 33 kA/m, we find an  asphericity  of 13%. The result is 
consistent with TEM observations (figure 4) where 0.80<γ<1.2 was found. The coercive field 
dependence on silica layer thickness shows a non-monotonous evolution. For thin silica-layer 
a sensitive drop in coercivity is observed followed by an increase before recovering the initial 
value. This is probably due to a competition between dipole-dipole interaction and magneto-
elastic anisotropy. In the one hand, dipolar interactions are reduced as the distance between 
magnetic cores is increasing. In the other hand, it has been shown by FTIR the existence of 
stress in the silica shell. As the thickness of the shell increases, the stress experienced at the 
surface of FeNi nanoparticles is enhanced yielding an increasing magneto-elastic anisotropy. 
These  two  contributions  balanced  for  a  thickness  of  ~15  nm.  Classically,  for  ultrafine 
nanoparticles  (~10 nm or less) dispersed in  non-magnetic  material,  anhysteretic  loops are 
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expected because of the superparamagnetic behavior of the nanoparticles, as already reported 
[38,39]. For the FeNi nanoparticles  described in  this paper, the shape anisotropy dominates 
the magnetocristalline anisotropy (Ks  = 20 kJ/m3  >>  K1)  so the critical  size for which the 
superparamagnetism is observed at room temperature is given by 

nm
K

Tk
D

s

B
sp 27

150
3 ≈=

π

compared with  nm
K

TkB 72
150

3

1

≈
π  [40], where  T is the measuring temperature and  kB the 

Boltzmann constant. Considering the mean size of the nanoparticles (55 nm), this is in line 
with the hysteresis observed for all samples (figure 8). Because part of the particles is smaller 
than  27  nm  and  because  some  are  nearly  spheroidal  (γ<1.05)  a  superparamagnetic 
contribution is not excluded.  Another  interesting feature is  the remarkable stability of the 
squareness ratio  regardless  of  temperature  and  coating  (see  table  2).  The  Mr/Ms ratio  is 
noticeably lower than 0.5 predicted for single domain particles according to Néel and Stoner 
[41,42]. Actually, this low value is typical of vortex-like magnetic structure composed of an 
out of the plane uniformly magnetized core  surrounded by a crown of curling spins [10]. 
Alternatively  to  a  coherent  rotation,  the  magnetization  process  consists  initially  into  an 
irreversible switch of the vortex core followed by a screw-like rotation of the external curling 
spins [43].

5. Conclusions and perspectives  
The preparation of silica-coated FeNi particles was successfully achieved by a combination of 
two original synthetic procedures, a cryogenic evaporation of master alloy Fe29.5Ni70.5 to obtain 
nanoparticles with well-defined size and composition, and subsequently a modified classical 
Stöber method which permits to encapsulate the latter within a silica shell. The coating can be 
accomplished through a direct, simple, one-step procedure. FTIR, EDX and EELS analysis 
are consistent with the presence of silica in the nanocomposites synthesized. Consequently the 
silica-shell thickness could be conveniently controlled through the TEOS volume added to the 
colloidal FeNi solution. Our study allowed us to correlate the shell-silica thickness with the 
evolution of the magnetic properties of the final nanocomposite. The magnetic investigations 
demonstrate  the  possibility  of  making  property-tunable  magnetic  nanoparticles  ready  for 
surface  engineering  in  particular  with  bioactive  molecules  or  for  electromagnetic  device 
applications  aiming  to  enhance  frequency  limits.  These  aspects  will  undoubtedly  require 
further longer-term ageing studies. In particular, the chemical stability must be ensured before 
any in-vivo applications  are  intended.  Electronic holography experiments  are  in course to 
confirm the expected vortex structure of the FeNi nanoparticles. 
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Figure Captions

Figure 1. Illustration of the silica-coated Fe29.5Ni70.5 nanoparticles stepwise synthesis protocol.

Figure 2. Thermal gravimetric curves (TGA) of FeNi@SiO2 nanocomposites (sample 1 to 5) 
under air flow. Thermal nanopowder alteration obviously depends on the amount of silica in 
the sample.  

Figure 3. FTIR spectra recorded from different samples FeNi@SiO2 (sample 1 to 5) related to 
various volumes of TEOS in range of 750-2500 cm-1. The main resonances are identified in 
the figure and discussed in the text in relation with the dominating Si-O-Si vibrations on solid 
surface. 

Figure 4. In the inset of top, EDX spectrum of Fe29.5Ni70.5 core-free nanoparticles. In the inset 
of bottom, EDX of silica portion of a FeNi@SiO2 nanoparticles when the beam was focused 
on silica edges.

Figure 5.  (a-d) Representative transmission electron micrographs of the silica-coated FeNi 
nanoparticles corresponding respectively to the sample 1, 2, 4, 5 (e) HRTEM pattern for the 
silica@FeNi (sample 3) which shows the presence of a 15 nm thick silica layer lying at the 
particle surface (f) Typical EFTEM analysis using metallic silicon as the silica source (Si K-
edge), displays the chemical cartography showing a silica-rich shell (sample 3). 

Figure 6.  Plot of silica-layer  thickness as function of various volume of precursor TEOS, 
estimated from HRTEM analysis (tTEM) and magnetic characterization (tMAG) (see also table 1).

Figure 7. Thermal gravimetric curves (TGA) of FeNi@SiO2 nanocomposites (sample 1 to 5) 
under argon flow. See table 2 for Curie temperatures assessed from curves.

Figure 8. Magnetic quasi-static hysterisis loops for samples with various silica-shells (sample 
1 to 5). On the left, magnetization curves recorded at 300 K. The inset on the lower right 
corner illustrates the changes in the Ms as a function of the silica-shell thickness. On the right 
the M–H curves recorded at 77 K. The inset on the lower right corner illustrates the changes 
in the coercive field as a function of the silica-shell thickness.

Table 1. Summary of the FeNi@SiO2 synthesis, presenting the various volumes of reagents 
used. The Silica-layer thickness was estimated using HRTEM analysis (tTEM) and magnetic 
investigation (tMAG). 
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Silica Coating (after dispersion 
under ultrasounds (3 w/cm3)) t (nm)

TEOS(µl) NH4OH(ml) tTEM tMAG

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5

0
50

100
200
500

0
0.35
0.7
1.4
3.5

0
3
8
15
33

0
4
9
17
24

Table 2. Magnetic properties for uncoated FeNi (sample 1) and silica-coated FeNi (sample 2 
to 5) nanoparticles. Ms is the specific saturation magnetization, Mr remanent magnetization, Tc 

Curie temperature and Hc coercive field.

Ms (Am2/kg) Mr /Ms Hc (kA/m)
Tc (°C)

77 K 300 K 77 K 300 K 77 K 300 K
Sample 1 80 76 0.32 0.34 33.9 31.8 598
Sample 2 72 65 0.30 0.30 28.2 22.1 608
Sample 3 58 54 0.26 0.28 28.8 24.4 607
Sample 4 40 39 0.27 0.28 33.8 31.1 607
Sample 5 32 29 0.28 0.31 34.3 32.2 607

FeNi@SiO2
FeNi

TEOS
NH4OH

Ultrasound
90 min

Ethanol

Ultrasound
90 min

FeNi

Si O
Si

O
Si

OH

OH

O

OH

O
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