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Abstract

We use the supergeometric formalism, more precisely, the so-called “big bracket”
(for which brackets and anchors are encoded by functions on some graded symplectic
manifold) to address the theory of Jacobi algebroids and bialgebroids (following mainly
Iglesias-Marrero [3] and Grabowski-Marmo [2] as a guideline). This formalism is in
particular efficient to define the Jacobi-Gerstenhaber algebra structure associated to
a Jacobi algebroid, to define its Poissonization, and to express the compatibility con-
dition defining Jacobi bialgebroids. Also, we claim that this supergeometric language
gives a simple description of the Jacobi bialgebroid associated to Jacobi structures,
and conversely, of the Jacobi structure associated to Jacobi bialgebroid.

1 Introduction.

Assume that we give ourself a Poisson structure P on a manifold X and an Euler vector
field (i.e. a vector field E on X such that LEP = P). A Lie-Poisson structure, taking for
E the usual Euler vector field, is an example of that situation. More generally, any weight
homogeneous Poisson structure [5], of weight k 6= 2, together with the weighted Euler
vector field divided by 2 − k gives an example. In this situation, for every hyper-surface
M ⊂ X transversal to E , i.e such that

TmM ⊕ REm = TmX ∀m ∈ M,

there exists, on the submanifold M , an unique bivector field π and an unique vector field
E such that:

Pm = πm + Em ∧ Em ∀m ∈ M.

It turns that the pair (π,E) satisfies the following two relations,

[π, π] = −2Eπ and [E, π] = 0.

A bivector field and a vector field on a given manifold M satisfying these conditions form
what is called a Jacobi structure on M . It can be shown that any Jacobi structure can
be obtained out of a Poisson structure (called “Poissonization”) by the above procedure.
Now, it is well-known that the cotangent T ∗X of a Poisson manifold (X,P) is endowed
with a Lie natural algebroid bracket with anchor P# : T ∗X → TX, whose restriction to
exact one-forms is given by [df, dg]P = dP[f, g]. Also, the pair (TX, T ∗X) is what is called
a Lie bialgebroid over X (one can consult, for instance, [7] for a detailed introduction to
these matters). A natural question, first addressed in [4], is to figure out whether a similar
construction can be done for Jacobi structures on M . The answer goes as follows: the
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restriction of T ∗X|M → M to M can again be endowed with a Lie algebroid structure
(which is not a Lie subalgebroid of T ∗X → X), that forms a Jacobi bialgebroid structure,
when paired with some natural algebroid structure that appears on the restriction to M of
TX. All these constructions can be extended from Poisson structures on Poisson manifolds
to Poisson structures on Lie algebroids without any difficulty.

In the continuation of [6, 9], and in the same spirit of unification and simplification, the
purpose of the present short note is to redo, with the help of the big bracket, the theory of
Jacobi manifolds and Jacobi (bi)-algebroids, exposed mainly in two articles, [3] by Iglesias
and Marrero, [2] by Grabowski and Marmo, and continued in [1] by Caseiro, de Nicola
and Nunes da Costa. The big bracket is the canonical Poisson structure on the graded
cotangent of a given vector bundle (considered itself as a graded manifold, see below). It
is an unifying tool of a remarkable efficiency when it comes to Lie algebroids or one of
the many closely related objects (i.e., for instance, bialgebroids, quasi-Lie bialgebroids,
triangular Lie bialgebroids, Courant algebroids, to mention a few), yielding both a nice
interpretation of their definitions and mechanical proofs of the theorems that they satisfy.
More precisely, our claim is that the big bracket reduces to mechanical (but somewhat
cumbersome) computations most known results about Jacobi manifolds, once the objects
that these articles deal with have been translated in terms of supermanifolds, a translation
that we present herein. By mechanical, we mean that it reduces proofs to a play of
substitutions involving the Jacobi and Leibnitz identity of the big bracket: we do not
claim, however, that the big bracket was the adequate context to guess them.

Acknowledgment. This work was partially supported by grant no. PTDC/MAT/
099880/2008 of the Fundação para a Ciência e a Tecnologia FCT. We would like to thank
Joana Nunes da Costa and David Iglesias-Ponte for useful discussions and comments.

2 The big bracket

2.1 Definitions

Let A → M be a vector bundle. There is a natural structure of graded 2-manifold on
T ∗ΠA (i.e. the cotangent space of the supermanifold ΠA) [9, 10]. Moreover, the (sheaf of)
algebra of functions FA := F(T ∗ΠA) is equipped with a graded Poisson structure which
is called the big bracket and denoted by {·,·}.

We do not intend to give the complete construction of this Poisson algebra, and refer
to [9] for a more involved introduction, but we recall a few facts on these structures. First,
the (sheaf of) algebra FA admits a (N× N)-valued bi-degree:

FA = ⊕k,l∈N×NF
k,l
A

and is graded commutative w.r.t. the total degree, i.e. F1F2 = (−1)(k1+l1)(k2+l2)F2F1

for every F1 ∈ Fk1,l1
A and F2 ∈ Fk2,l2

A . The big bracket is a (local) bilinear map FA ×

FA → FA, denoted (F1, F2) 7→ {F1, F2}, mapping Fk1,l1
A × Fk2,l2

A to Fk1+k2−1,l1+l2−1
A for

all k1, k2, l1, l2 ∈ N, (with the understanding that Fk,l
A = 0 if k < 0 or l < 0) and which

satisfies the following relations for every Fi ∈ Fki,li
A , i = 1, 2, 3,

{F1, F2} = −(−1)(k1+l1)(k2+l2) {F2, F1} (graded skew-symmetry)

{F1, F2F3} = {F1, F2}F3 + (−1)(k1+l1)(k2+l2)F2 {F1, F3} (Leibnitz rule) (2.1)

{F1, {F2, F3}} = {{F1, F2} , F3}+ (−1)(k1+l1)(k2+l2) {F2, {F1, F3}} (Jacobi) (2.2)
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Explicitly, upon fixing local coordinates xi, p
i, ξj , θ

j (with i = 1, . . . , n and j = 1, . . . , d), of
respective bi-degrees (0, 0), (1, 1), (0, 1) and (1, 0), the algebra of functions FA is the graded
commutative algebra in those variables, admitting a polynomial dependence in the even
variable p1, . . . , pn (by skew-symmetry, the dependence in the variables ξ1, θ

1, . . . , ξd, θ
d is

also polynomial). The big bracket is given in coordinates by:

{

pi, xi
}

=
{

θj, ξj
}

= 1 i = 1, . . . , n, j = 1, . . . , d

while all the remaining brackets of coordinate functions vanish.
In this article, we shall use mainly the following points:

1. There is a natural identification between the algebras F0,0
A and F(M).

2. There is a natural identification of graded algebra between
∑

k∈NFk,0
A and

∑

k∈N Γ(∧kA). The restriction of {., .} to this subalgebra is trivial.

3. There is a natural identification of graded algebra between
∑

k∈NF0,k
A and

∑

k∈N Γ(∧kA∗). The restriction of {., .} to this subalgebra is trivial.

4. There is therefore a natural inclusion of Γ(
∧

(A⊕A∗)) ≃ Γ(
∧

A⊗
∧

A∗) in FA. From
now, this inclusion shall be implicitly done, and no notational distinctions shall be
made between an element in Γ(

∧

(A⊕A∗)) and its image in FA.

5. The big bracket between a section of A and a section of A∗ is given by the natural
pairing; in equation {ξ, θ} = {θ, ξ} = ξ(θ), for every θ ∈ Γ(A), ξ ∈ Γ(A∗).

6. There is a canonical isomorphism of graded Poisson algebras Φ : FA ≃ FA∗ inter-
twining Fk,l

A and F l,k
A∗ for all k, l ∈ N,

7. Let F ∈ Fk,l
A , with k ≥ 1. If {{{F, a1} , . . .} , ak} = 0 for all a1, . . . , ak ∈ Γ(A), then

F = 0.

There exists an unique function in FA, that we shall denote idA, which corresponds
to the identity map of the vector bundle A, seen as an element of Γ(A∗ ⊗ A) ⊂ FA. It is
explicitly defined by the global section of Γ(A∗ ⊗A) given by

idA :=
d

∑

j=1

ξj θ
j, (2.3)

where ξ1, . . . , ξd and θ1, . . . , θd are local basis of A∗ and A dual to each other. Taking the
bracket with idA is a manner to count the bi-degree, more precisely, for every P ∈ Γ(∧kA),
Ψ ∈ Γ(∧lA∗),

{PΨ, idA} := (k − l)PΨ. (2.4)

Of course, one can also consider the function idA∗ ∈ FA∗ . Under the canonical isomorphism
Φ : FA ≃ FA∗ , both functions are related by:

Φ(idA) = −idA∗ . (2.5)
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2.2 Preliminary results

For a future purpose, we wish to establish several facts about the behaviour of the big
bracket when one adds a copy of R either to the base or to the fibers.

A. Enlarging the base. Let A → M be a vector bundle. Denote by p∗A → (M × R)
the pull-back of A → M through the projection onto the first component p : M ×R → M .
We denote by t ∈ F(M ×R) ⊂ Fp∗A the projection onto the second component. There is
a canonical inclusion i : FA →֒ Fp∗A. There exists an unique function ∂t ∈ Fp∗A such that

{

∂t, i(F )
}

= 0 for all F ∈ FA and
{

∂t, t
}

= 1. (2.6)

The bi-degree of this function is (1, 1). With a slight abuse of notations, we shall consider
FA as a subset of Fp∗A, erasing therefore the canonical inclusion i.

Notice that ∂t is an even function, and that, for every F0, . . . , Fk ∈ FA, the relation
∑k

i=0 Fi(∂
t)i = 0 holds if and only if F0 = · · · = Fk = 0.

B. Enlarging the fibers. Let B → M be a vector bundle. We call A = B⊕R → M the
direct sum of B with the trivial bundle R×M → M . There is a natural inclusion j : FB ⊂
FA, which preserves the big bracket. We define φ ∈ Γ(A∗) ⊂ FA to be the projection
onto the second component, i.e the section of A∗ = (B⊕R)∗ defined by φ(b, f) = f for all
b ∈ Γ(B), f ∈ F(M). The following is immediate:

{φ, j(F )} = 0 for all F ∈ FB and {φ, ǫ} = 1, (2.7)

where ǫ is the section of A := B ⊕ R → M given by m → (0m, 1) ∈ Am = Bm ⊕R (in the
previous 0m is the zero element in the vector space Bm). With a slight abuse of notations,
we shall consider FB as a subset of FA, erasing therefore the canonical inclusion j.

3 Lie and Jacobi algebroids, Lie bialgebroids and Jacobi
bialgebroids.

3.1 (Pre-)Jacobi algebroids.

Lie algebroids and pre-Lie algebroids are in general introduced through brackets and an-
chors, however, it is well-known that the supergeometric point of view is strictly equivalent
to those more classical ones, see [9].

Definition 3.1 Let A → M be a vector bundle. A pre-Lie algebroid (on A) is a function
in F1,2

A (i.e. a function of bi-degree (1, 2)).
The bracket of a pre-Lie algebroid µ is the bilinear endomorphism of Γ(

∧

A) :=
⊕k∈NΓ(∧

kA) defined, for all P,Q ∈ Γ(
∧

A) by

[P,Q]µ = {{P, µ} , Q} . (3.8)

The differential of a pre-Lie algebroid µ is the linear endomorphism of Γ(
∧

A∗) :=
⊕k∈NΓ(∧

kA∗), of degree +1, defined, for all Ψ ∈ Γ(
∧

A∗), by dµ(Ψ) := {µ,Ψ}.

Recall that the restriction to Γ(A)×F(M) → F(M) of the bracket [·, ·]µ is of the form

(a, f) 7→ ρµ(a) [f ] ∀a ∈ Γ(A), f ∈ F(M),
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for some vector bundle morphism ρµ : A → TM (over the identity of M) called the anchor
map. In the previous, the notation f 7→ X[f ] is used to denote the derivation of F(M)
associated to a vector field X on M (a notation that we shall also use for multi-vector
fields).

A pre-Lie algebroid µ (on A) is said to be a Lie algebroid (on A) if {µ, µ} = 0. It is a
classical result (see, for instance, [6, 9]) that a pre-Lie Algebroid is a Lie algebroid if and
only if one of the following equivalent conditions is satisfied: (i) (3.8) satisfies the Jacobi
identity (hence is a Gerstenhaber bracket) (ii) d

2
µ = 0 or, (iii), the restriction of [·, ·]µ to

Γ(A)× Γ(A) → Γ(A) is a Lie algebra bracket.
We now define pre-Jacobi algebroids.

Definition 3.2 Let A → M be a vector bundle. A pre-Jacobi algebroid (on A) is a
function of FA of the form µ + φ, with µ ∈ F1,2

A and φ ∈ F0,1
A (said differently µ is a

pre-Lie algebroid while φ is a section of A∗).
The bracket of a pre-Jacobi algebroid µ is the bilinear endomorphism of Γ(

∧

A) :=
⊕k∈NΓ(∧

kA) defined, for all P,Q ∈ Γ(
∧

A) by

[P,Q]µ,φ := {{P, µ + idAφ} , Q} − P {φ,Q}+ {P, φ}Q

(see section 2.1 for the definition of idA). The differential of a pre-Jacobi algebroid µ+ φ

is the linear endomorphism dµ,φ of Γ(
∧

A∗) := ⊕k∈NΓ(∧
kA∗) defined, for all Ψ ∈ Γ(

∧

A∗),
by dµ,φ(Ψ) := {µ,Ψ}+ φΨ.

Lemma 3.3 The bracket of a pre-Jacobi algebroid is given explicitly, by the following
formula, for all P ∈ Γ(∧kA), Q ∈ Γ(∧lA):

[P,Q]µ,φ = [P,Q]µ + (k − 1)P (ıφQ) + (−1)k(l − 1)(ıφP )Q (3.9)

Proof. Using the definitions of the pre-Lie brackets [·,·]µ,φ and [·,·]µ, we obtain:

[P,Q]µ,φ = {{P, µ} , Q}+ {{P, idAφ} , Q} − P {φ,Q}+ {P, φ}Q

= {{P, µ} , Q}+ {{P, idAφ} , Q} − PıφQ− (−1)k(ıφP )Q

= [P,Q]µ + {{P, idAφ} , Q} − PıφQ− (−1)k(ıφP )Q.

By making several use of the Leibnitz identity (2.1), one computes

{{P, idAφ} , Q} = {{P, idA}φ,Q}+ {{P, φ} idA,Q}

= k {Pφ,Q}+ {{P, φ} idA,Q} by (2.4)

= kP {φ,Q}+ {{P, φ} idA,Q}

= kP {φ,Q}+ {P, φ} {idA,Q}

= kP {φ,Q} − l {P, φ}Q by (2.4)

= kP ıφQ+ l(−1)k(ıφP )Q

This completes the computation. �

Remark In Theorem 3.5 [3] or Equation (25) [2], a bracket is constructed out of the
datae defining a Jacobi algebroid. Comparing their quite explicit formulas with formula
(3.9) above proves the coincidence of our bracket with theirs (more precisely, the match
is exact with [2], but is only up to signs with [3] where the Gerstenhaber bracket of a Lie
algebroid is given by P,Q 7→ {{µ, P} , Q} and not by (3.8)).
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We also easily deduce the following properties from those of the big bracket, for all
a ∈ Γ(∧kA), b ∈ Γ(∧lA), c ∈ Γ(∧mA):

[b, a]µ,φ = −(−1)kl [a, b]µ,φ
[a, bc]µ,φ = [a, b]µ,φ c+ (−1)lm [a, c]µ,φ b− {φ, a} bc

.

Definition 3.4 A pre-Jacobi algebroid µ+ φ (on A) is said to be a Jacobi algebroid (on
A) when {µ+ φ, µ+ φ} = 0.

Spelled out, the condition {µ+ φ, µ + φ} = 0 yields the two conditions {µ, µ} = 0
and {µ, φ} = dµφ = 0. The first of these conditions means that µ is a Lie algebroid,
and the second one means that φ is a cocycle of this Lie algebroid, i.e. that φ([a, b]µ) =
ρµ(a) [φ(b)] − ρµ(b) [φ(a)] for all a, b ∈ Γ(A) (ρµ : A → TM being the anchor map defined
above). In conclusion, a Jacobi algebroid is a Lie algebroid endowed with an algebroid
1-cocycle, which is the usual definition (compare with [3], where such an object is called
“Lie algebroid in the presence of a 1-cocycle”).

The next result appeared in both [3] and [2]: we prove it here with the help of super-
geometric formalism.

Proposition 3.5 Let A → M be a vector bundle. For every pre-Jacobi algebroid µ + φ

on A, the following are equivalent:

(i) µ+ φ is a Jacobi algebroid structure on A;

(ii) the operator dµ,φ squares to 0;

(iii) [·, ·]µ,φ satisfies the graded Jacobi identity:

(−1)km
[

[a, b]µ,φ , c
]

µ,φ
+ (−1)lk

[

[b, c]µ,φ , a
]

µ,φ
+ (−1)ml

[

[c, a]µ,φ , b
]

µ,φ
= 0,

for all homogeneous a, b, c ∈ Γ(
∧

A) of degrees k, l,m respectively.

Proof. The equivalence between (i) and (ii) follows from the relation d
2
µ,φ(Ψ) =

−1
2 {{µ+ φ, µ + φ} ,Φ}, together with the seventh result listed in section 2.1. Let us
prove the equivalence between (i) and (iii). A direct computation with the help of the
usual properties of the big bracket gives the following expression for the Jacobiator the
bracket [·, ·]µ,φ:

(−1)lm
[

[a, b]µ,φ , c
]

µ,φ
+ c.p. = (−1)lm

[

[a, b]µ , c
]

µ
+ c.p.

+(−1)lm(m− 1)(ıφ [a, b]µ − [ıφa, b]µ − [a, ıφb]y)c+ c.p.

(where + c.p. indicates that we add all the terms obtained by permuting the variables
a, b, c). Now, the Jacobi identity of the big bracket implies that:

ıφ [a, b]µ − [ıφa, b]µ − [a, ıφb]µ = ıφ {{a, µ} , b} − {{ıφa, µ} b} − {{a, µ} ıφb}

= {φ, {{a, µ} , b}} − {{{φ, a} , µ} , b}µ − {{a, µ} , {φ, b}}

= {{a, {φ, µ}} , b}
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As a consequence:

(−1)lm
[

[a, b]µ,φ , c
]

µ,φ
+c.p. = (−1)lm

[

[a, b]µ , c
]

µ
+(−1)lm(m−1) {{a, {φ, µ}} , b} c+ c.p.

If µ is a Lie algebroid, the first term on the right hand side vanishes, and if {φ, µ} = 0, the
second term vanishes as well, so that the graded Jacobi identity is satisfied. Conversely,
if the graded Jacobi identity is satisfied for all homogeneous a, b, c, then, choosing c = 1,
it follows from the previous identity that

{{a, {φ, µ}} , b} = 0

for all homogeneous a, b. Since {φ, µ} ∈ F0,2
A , this implies {φ, µ} = 0 (see the seventh

result listed in section 2.1). In turn, this implies that the bracket [·, ·]µ satisfies the graded
Jacobi identity, a property that holds true if and only if µ is a Lie algebroid. �

Given a pre-Jacobi algebroid µ + φ on A, we define a family indexed by a parameter
c ∈ R of pre-Lie algebroid structures, denoted µc

φ, by

µc
φ := e−ct(µ + φ(∂t + cidA))

where we use the notations of section 2.2-A, i.e.:

1. p∗A → (M × R) is the pull-back of A → M through the projection onto the first
component (M ×R) → M ,

2. t ∈ F(M × R) ⊂ Fp∗A is the parameter on R (i.e. the projection onto the second
component),

3. FA is considered as a subalgebra of Fp∗A,

4. ∂t ∈ F1,1
A is defined as in section 2.2-A.

The anchors and brackets of these structures correspond, for c = 0, 1, to (4.16-4.19) in [3].
The pre-Lie algebroid µ1

φ (on p∗A) is called the Poissonization of the pre-Jacobi algebroid

µ+ φ (on A). Notice also that µ0
φ = µ+ φ∂t.

Lemma 3.6 Define adt idA to be the linear endomorphism of FA defined by F 7→
{t idA,F}. For all c, x ∈ R, the following relation holds:

exp (ad−xt idA)µ
c
φ = µc+x

φ .

Proof. A direct computation gives

adt idAµ
0
φ = tµ0

φ − φidA and adt idAφidA = tφidA.

Now, it is a general fact that for every vector space E, every L ∈ End(E,E) and every
a, b ∈ E, if L(a) = ta − b and L(b) = tb, we have exp (−cL) a = e−tca + ce−tcb. Applied
to E := FA, L := adt idA , a := µ0

φ, b := φidA, this gives

exp (ad−ct idA)µ
0
φ = e−ctµ0

φ + ce−ctidAφ = µc
φ.

7



Applying exp (ad−xt idA) to both sides of this relation gives:

exp (ad−xt idA) exp (ad−ct idA)µ
0
φ = exp (ad−xt idA)µ

c
φ,

The relation

exp (ad−xt idA) exp (ad−ct idA)µ
0
φ = exp (ad−(x+c)t idA)µ

0
φ = µc+x

φ ,

now gives the required result. �

The next lemma is dealt with in [3] for the cases c = 0, 1.

Lemma 3.7 Let A → M be a vector bundle, µ + φ a pre-Jacobi algebroid on A → M .
The following are equivalent (p∗A,µc

φ being as defined above):

(i) µ+ φ is a Jacobi algebroid on A;

(ii) There exists c ∈ R such that the pre-Lie algebroid µc
φ is a Lie algebroid on p∗A;

(iii) For all c ∈ R, the pre-Lie algebroid µc
φ is a Lie algebroid on p∗A.

Proof. Using the usual properties of the big bracket, one computes

{

µ0
φ, µ

0
φ

}

=
{

µ+ φ∂t, µ+ φ∂t
}

= {µ, µ}+ 2 {µ, φ} ∂t

The vanishing of
{

µ0
φ, µ

0
φ

}

is therefore (in view of section 2.2-A) tantamount to the van-

ishing of both {µ, µ} and {µ, φ}. Hence µ0
φ is a Lie algebroid if and only if µ + φ is a

Jacobi algebroid. Now, in view of lemma 3.6, we have for all c ∈ R

{

µc
φ, µ

c
φ

}

=
{

exp (ad−ct idA)µ
0
φ, exp (ad−ct idA)µ

0
φ

}

= exp (ad−ct idA)
{

µ0
φ, µ

0
φ

}

In particular, µc
φ is a Lie algebroid if and only if µ0

φ is a Lie algebroid. This completes the
proof. �

3.2 Jacobi bialgebroids.

Upon identifying FA and FA∗ with the help of Φ, it is possible (since Φ intertwines Fk,l
A

and F l,k
A∗ for all k, l ∈ N, see section 2.1) to consider pre-Lie algebroids structures on A∗

as elements of F2,1
A and pre-Jacobi algebroids structure on A∗ as functions in FA of the

form ν +X, with ν ∈ F2,1
A and X ∈ F1,0

A .
Now, recall [6] that a Lie bialgebroid is a pair of pre-Lie algebroid structures µ, ν on

A → M and on A∗ → M respectively (i.e. functions µ ∈ F2,1
A and ν ∈ F1,2

A respectively),
such that {ν + µ, ν + µ} = 0. Requiring this condition is equivalent to require that both
pre-Lie algebroid structures are indeed Lie algebroids, and that the following compatibility
condition is satisfied:

dν [a, b]µ = [dνa, b]µ + (−1)k−1 [a, dνb]µ ∀a ∈ Γ(∧kA), b ∈ Γ(∧A)

where dν , [·, ·]µ are as in definition 3.1. Following the same idea, Jacobi bialgebroids are
introduced in [2] as follows.
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Definition 3.8 Let A → M be a vector bundle. A pre-Jacobi bialgebroid is a pair (µ +
φ, ν +X), where

1. µ+ φ is a pre-Jacobi algebroid structure on A,

2. ν +X is a pre-Jacobi algebroid structure on A∗,

such that the following compatibility condition is satisfied

dν,X [a, b]µ,φ = [dν,Xa, b]
µ,φ

+ (−1)k−1 [a, dν,Xb]
µ,φ

∀a ∈ Γ(∧kA), b ∈ Γ(∧A), (3.10)

where [·, ·]µ,φ , dν,X are as in definition 3.2. A Jacobi bialgebroid is a pre-Jacobi bialgebroid
(µ+ φ, ν +X) such that µ+ φ is a Jacobi algebroid and dν,X squares to 0.

We can now give the main result of this section, which is a characterization, in terms
of the big bracket, of Jacobi bialgebroid structures.

Theorem 3.9 Let A → M be a vector bundle, µ + φ a pre-Jacobi algebroid structure on
A and ν +X a pre-Jacobi algebroid structure on A∗. Set











♦ := {φ,X} = φ(X)
♣ := {µ,X}+ {ν, φ}

♠ := {µ, ν}+ µX + νφ− idA

(

−φX+ {µ,X}−{ν,φ}
2

)

.

(3.11)

1. The pair (µ+ φ, ν +X) is a pre-Jacobi bialgebroid if and only if

♦ = ♣ = ♠ = 0.

2. The pair (µ+ φ, ν +X) is a Jacobi bialgebroid if and only if

♦ = ♣ = ♠ = {µ+ φ, µ+ φ} = {ν +X, ν +X} = 0.

Proof. We prove the first item. The idea is to express, with the help of the big bracket,
the quantity

H⌊.,.⌋,D(a, b) := D⌊a, b⌋ − ⌊Da, b⌋ − (−1)k−1⌊a,Db⌋, a ∈ Γ(∧kA), b ∈ Γ(
∧

A)

where D stands either for adν :=
∧

A 7→
∧

A or for the left-multiplication by X, i.e.
mX(b) := Xb , and ⌊a, b⌋ stands either for the derived bracket [a, b]µ′ := {{a, µ′} , b}, with
µ′ := µ+ idAφ, or for the assignment ((a, b))φ := {a, φ} b− a {φ, b}. In fact, by definition,
dν,X := adν +mX, while [·, ·]µ,φ := [·, ·]µ + ((., .))φ, hence

dA∗,φ [a, b]A,φ − [dA∗,φa, b]A,φ
− (−1)k−1 [a, dA∗,φb]A,φ

=
(

H[·,·]µ′ ,adν
+H[·,·]µ′ ,mX

+H((.,.))φ,adν +H((.,.))φ,mX

)

(a, b)
(3.12)

A cumbersome but straightforward computation, involving only the Leibnitz and Jacobi
identity of the big bracket (and valid for arbitrary µ′ ∈ F1,2

A , ν ∈ F2,1
A ,X ∈ F1,0

A , φ ∈ F0,1
A ),

yields to the following results:


















H[·,·]µ′ ,adν
(a, b) = D(a, (−1)k {ν, µ′} , b)

H[·,·]µ′ ,mX
(a, b) = D(a, (−1)kµ′X, b) + E(a, (−1)k {X,µ′} , b)

H((.,.))φ,adν (a, b) = E(a, (−1)k {ν, φ} , b)

H((.,.))φ,mX
(a, b) = F(a, 2(−1)k+1 {φ,X} , b) + E(a,−(−1)kXφ, b)
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where, for all a, b ∈
∧

A, for all function F ∈ FA of bi-degree (1, 2),

D(a, F, b) := {{a, F} , b} , E(a, F, b) := {a, F} b− a {F, b} , F(a, F, b) := Fab.

Introducing these results in (3.12) yields

dA∗,φ [a, b]φ − [dA∗,φa, b]φ − (−1)k+1 [a, dA∗,φb]φ = (−1)kD(a, ♠̂, b)

+(−1)kE(a, ♣̂, b)

+(−1)kF(a, ♦̂, b)

(3.13)

where







♠̂ := {ν, µ′}+ µ′X = ♠− 1
2 idA♣

♣̂ := {X,µ′}+ {ν, φ} −Xφ = {µ,X}+ {ν, φ} + idA {X, φ} = ♣+ idA♦

♦̂ := −2 {φ,X} = −2♦.

(3.14)
From these expressions, it follows that, if ♦ = ♣ = ♠ = 0, then ♠̂ = ♣̂ = ♦̂ = 0, hence
(3.10) holds true, and the structure is a pre-Jacobi bialgebroid structure.

Let us prove the converse. First, notice that D(a, ♠̂, b) = 0 if a = 1 or b = 1, and
E(a, ♠̂, b) = 0 if a = b = 1. Hence, if condition (3.10) is satisfied, one sees by plugging
a = b = 1 in (3.13) that ♦̂ = 0. Then plugging a = 1 and letting b be an arbitrary

section of A, we conclude that
{

♣̂, b
}

= 0 for all b ∈ Γ(
∧

A). Since ♣̂ is of bidegree (1, 1),

according to the seventh item listed in section 2.1, we have ♣̂ = 0. For similar reasons, we

deduce from
{{

a, ♠̂
}

, b
}

= 0, valid for a, b arbitrary sections of A, that ♠̂ = 0. In view

of (3.14), we have ♦ = ♣ = ♠ = 0 which completes the proof.
The second item is an immediate consequence of the first one and of proposition 3.5 �

In the equations (3.11), the roles of A and A∗ are symmetric, i.e. applying the canonical
isomorphism Φ : FA ≃ FA∗ (and using (2.5)), one obtains equations of the same form,
which yields the next corollary, which already appears in both [3] and [2].

Corollary 3.10 Let A → M be a vector bundle, µ + φ a pre-Jacobi algebroid structure
on A, and ν + X a pre-Jacobi algebroid structure on A∗. The pair (µ + φ, ν + X) is a
pre-Jacobi bialgebroid structure on A if and only if the pair (ν +X,µ+ φ) is a pre-Jacobi
bialgebroid structure on A∗.

In lemma 3.7 we constructed, out of a Jacobi algebroid structure µ + φ on a vector
bundle B → M , a family indexed by c ∈ R of Lie algebroid structures on the pull-back
vector bundle p∗B → M×R (p : M×R → M being the projection on the first component).
We denoted these structures by µc

φ. Hence, provided that we give ourself µ+φ a pre-Jacobi
algebroid structure on a vector bundle A → M and ν+X a pre-Jacobi algebroid structure
on the dual bundle A∗ → M , we can construct, for every c, d ∈ R:

1. Lie algebroid structures µc
φ on p∗A → M ×R,

2. Lie algebroid structures νdX on the dual bundle p∗A∗ → M × R.

Since the vector bundles p∗A∗ ≃ (p∗A)∗ are dual one to the other, it is natural to ask
whether one can pair these previous structures to form Lie bialgebroids. The next corollary
gives an answer to this question, and generalizes results obtained in [2, 3] for c = 0, 1.
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Corollary 3.11 Let A → M be a vector bundle, µ + φ a pre-Jacobi algebroid structure
on A, and ν +X a pre-Jacobi algebroid structure on A∗. Choose an arbitrary c ∈ R.

1. The following are equivalent:

(i) the pair (µ + φ, ν +X) is a pre-Jacobi bialgebroid on A;

(ii)
{

µc
φ, ν

1−c
X

}

= 0.

2. The following are equivalent:

(i) the pair (µ + φ, ν +X) is a Jacobi bialgebroid on A;

(ii) the pair (µc
φ, ν

1−c
X ) is a Lie bialgebroid on p∗A.

Proof. Item 2) is a clear consequence of item 1), so we only include a proof of the first
item. First:

exp ad−ct idA

{

µc
φ, ν

1−c
X

}

=
{

exp ad−ct idA µc
φ, exp ad−ct idA ν1−c

X

}

=
{

exp ad−ct idA µc
φ, exp adct idA∗

ν1−c
X

}

=
{

µ0
φ, ν

1
X

}

(by lemma 3.6)

so that the vanishing of
{

µc
φ, ν

1−c
X

}

is equivalent to the vanishing of
{

µ0
φ, ν

1
X

}

= 0. In

view of theorem (3.9), it suffices to prove that the conditions ♣ = ♦ = ♠ = 0 are satisfied

if and only if
{

µ0
φ, ν

1
X

}

= 0. By a direct computation, we obtain:

{

µ0
φ, ν

1
X

}

=
{

µ+ ∂tφ, e−t
(

ν + (∂t + idA∗)X
)}

= e−t {φ,X} (∂t)2

+e−t∂t ({µ,X}+ {φ, ν}+ idA∗ {φ,X})
+e−t({µ, ν}+ µX − φν + idA∗({µ,X} − φX))

= e−t
(

(∂t)2♦+ ∂t(♣+ idA∗♦) +♠− 1
2 idA∗♣

)

Now, a function F ∈ Fp∗A of the form F = (∂t)2F1 + ∂tF2 + F3, with F1, F2, F3 ∈ FA is
zero if an only if F1 = F2 = F3 = 0 (as stated in section 2.2-A). We can therefore conclude

that
{

µ0
φ, ν

1
X

}

= 0 if and only if ♦ = ♣ + idA∗♦ = ♠ − 1
2 idA∗♣ = 0, i.e. if and only if

♠ = ♣ = ♦ = 0, as was to be shown. �

We call the pair (µ0
φ, ν

1
X) the Poissonified Lie bialgebroid of the Jacobi bialgebroid

(µ+ φ, ν +X).

Remark The last corollary allows one to resume all the conditions listed in the-

orem 3.9 to the single condition
{

µ0
φ + ν1X , µ0

φ + ν1X

}

= 0, or, more generally
{

µc
φ + ν1−c

X , µc
φ + ν1−c

X

}

= 0 for some c ∈ R. Said differently, a pair (µ + φ, ν + X) of

pre-Jacobi algebroids is a Jacobi bialgebroid if and only if
{

µ0
φ + ν1X , µ0

φ + ν1X

}

= 0.
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4 Poisson-Jacobi manifolds and its Jacobi bialgebroids.

Notations Throughout this section, we shall use the following conventions.
Let B → M be a vector bundle endowed with a Lie algebroid µB ∈ FB . As in section

2.2-B, we call A = B ⊕R → M the direct sum of B with the trivial bundle R×M → M ,
ǫ the section of A := B ⊕ R → M given by m → (0m, 1) ∈ Am = Bm ⊕ R, and φ the
section of A∗ given by φ(b + fǫ) := f for every b ∈ Γ(B), f ∈ F(M). As mentioned in
section 2.2-B, there is a natural inclusion FB ⊂ FA: since it preserves the big bracket, µB

can also be considered as a Lie algebroid on A → M . To avoid confusion, we shall denote
by µ this Lie algebroid on A.

It is clear that φ ∈ Γ(A∗) is a cocycle for the Lie algebroid structure µ, so that µ + φ

is a Jacobi algebroid on A → M . By lemma 3.7 therefore, µ0
φ = µ+φ∂t is a Lie algebroid

on p∗A → (M × R), where ∂t ∈ Fp∗A is as in section 2.2-B, and t ∈ F(M × R) stands for
the parameter on R (as in section 2.2-A).

Remark Explicitly, the Lie algebroid associated to µ on A = B ⊕R is the Lie algebroid
(which appears in [3]) with bracket and anchors:

[b1 + f1ǫ, b2 + f2 ǫ]A := [b1, b2]B + ρA(b1)[f2] ǫ− ρA(b2)[f1] ǫ

and ρA(b, f) := ρB(b) ∀b1, b2, b ∈ Γ(B), f1, f2, f ∈ F(M).

4.1 Poissonization

By a Jacobi structure on the Lie algebroid µB on B → M , we mean a pair (π,E) with
π ∈ Γ(∧2B) and E ∈ Γ(B) such that:

[π, π]µB
= −2Eπ and [E, π]µB

= 0.

Of course, the coefficient −2 is arbitrary, and could be turned into 1 by replacing E

by −2E.

Lemma 4.1 We use the notations introduced in the beginning of section 4. For every
π ∈ Γ(∧2B) and E ∈ Γ(B), the following are equivalent:

(i) (π,E) is a Jacobi structure for the Lie algebroid µB on B,

(ii) Pπ,E := e−t(π + ǫE) is a Poisson structure for the Lie algebroid µ0
φ on p∗A →

(M × R).

Proof. Recall that, by definition, Pπ,E ∈ Γ(∧2p∗A) is a Poisson structure for the Lie
algebroid µ0

φ if and only if [Pπ,E, Pπ,E ]µ0

φ
= 0. A direct computation gives the following:

[Pπ,E , Pπ,E ]µ0

φ
=

{{

Pπ,E , µ
0
φ

}

, Pπ,E

}

=
{{

e−t(π + ǫE), µ + φ∂t
}

, e−t(π + ǫE)
}

=
{

e−t {π, µ}+ e−tǫ {E,µ}+
{

e−t, ∂t
}

φ(π + ǫE)− e−tE∂t, e−t(π + ǫE)
}

=
{

e−t {π, µ}+ e−tǫ {E,µ} − e−tφ(π + ǫE)− e−tE∂t, e−t(π + ǫE)
}

= e−2t
{

{π, µ}+ ǫ {E,µ} + φ(π + ǫE)− E∂t, (π + ǫE)
}

+e−t
{

−E∂t, e−t
}

(π + ǫE)

= e−2t([π, π]µB
+ 2Eπ + 2ǫ [E, π]µB

).
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Now, a section of ∧2A of the form Θ1 + ǫΘ2 = 0, with Θ1 ∈ Γ(∧3B) and Θ2 ∈ Γ(∧2B)
vanishes if and only Θ1 = Θ2 = 0, so that [Pπ,E, Pπ,E ]µ0

φ
= 0 if and only if [π, π]µB

+2Eπ =

[E, π]µB
= 0. �

Remark 4.2 In general [2, 3], the Poissonization is constructed on the direct product of
the Lie algebroid B → M with the tangent algebroid TR → R. But this Lie algebroid is
indeed canonically isomorphic to p∗(B ⊕ R) → (M × R), and our construction matches
the usual one.

Moreover, when B = TM is the Lie algebroid of vector fields, p∗A is isomorphic to
T (M × R), and, under the previous isomorphism, ǫ is the vector field ∂

∂t
. Specializing

lemma 4.1, one obtains that a pair (π,E) (with π a bivector field and E a vector field) is
a Jacobi structure on TM if and only if e−t(π+ ∂

∂t
∧E) is a Poisson structure on M ×R.

4.2 The Jacobi structure of a Jacobi bialgebroid

Exactly like Lie bialgebroids induce Poisson structures on their underlying manifold, Ja-
cobi bialgebroids induce Jacobi structures on their underlying manifolds, see [3]. Our
formalism gives quite easy descriptions of these structures.

Proposition 4.3 Let (µ+ φ, ν +X) be a Jacobi bialgebroid on a vector bundle A → M ,
then

1. The assignment
F(M) → F(M)

f 7→ {{µ,X} , f}

is a vector field E on M . This vector fields is also given by the assignment f 7→
−{{ν, φ} , f}.

2. The assignment
F(M)×F(M) → F(M)

(f, g) 7→ {{µ, f} , {ν, g}}

is a bivector field π on M .

3. The pair (π,−E) is a Jacobi structure on TM .

Proof. It is clear that both assignments are derivations in each variables for degree
reasons. Let us check also the second one is skew-symmetric. A direct computation gives,
for every f, g ∈ F(M), that π[f, g]−π[g, f ] = {{{µ, ν} , f} , g}. According to theorem 3.9,
the quantity ♠ = 0, so that the previous can be rewritten as:

π[f, g]− π[g, f ] = −

{{

µX + νφ− idA

(

−φX+
{µ,X} − {ν, φ}

2

)

, f

}

, g

}

,

a quantity that vanishes for degree reasons. This proves the first two items.
We now turn our attention to the third item. According to theorem 3.11, the pair

(µ0
φ, ν

1
X) is a Lie bialgebroid. Hence, according to proposition 3.6 in [8], the assignment

F(M × R)×F(M × R) 7→ F(M × R) given by

(f, g) 7→
{{

µ0
φ, f

}

,
{

ν1X , g
}}
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is a Poisson structure on M × R, that we denote by P . In view of lemma 4.1 (more
precisely remark 4.2), in order to complete the proof it suffices to check that P is precisely
the Poissonization of the pair (π,−E). The computation goes as follows for every two
functions f, g on M × R:

P [f, g] =
{{

µ0
φ, f

}

,
{

ν1X , g
}}

=
{{

µ+ ∂tφ, f
}

,
{

e−t(ν + (∂t + idA∗)X), g
}}

=

{

{µ, f}+ φ
∂f

∂t
, e−t

(

{ν, g}+X
∂g

∂t

)}

= e−t

(

{{µ, f} , {ν, g}}+ {X,φ}
∂f

∂t

∂g

∂t
+

{

{µ, f} ,X
∂g

∂t

}

+

{

φ
∂f

∂t
, {ν, g}

})

= e−t

(

{{µ, f} , {ν, g}}+

{

{µ, f} ,X
∂g

∂t

}

+

{

φ
∂f

∂t
, {ν, g}

})

(since {φ,X} = ♦ = 0 )

= e−t
(

{{µ, f} , {ν, g}}+ {{µ, f} ,X}
∂g

∂t
+

∂f

∂t
{φ, {ν, g}}

)

= e−t
(

π[f, g] + E(f)
∂g

∂t
−

∂f

∂t
E(g)

)

= e−t(π +
∂

∂t
∧ (−E))[f, g].

This completes the proof. �

4.3 The Jacobi bialgebroid of a Jacobi structure

For every Poisson structure P on a Lie algebroid ν defined on a vector bundle C, the
function {P, ν} is a Lie algebroid structure on C∗. Moreover, the pair (ν, {P, ν}) is a
Lie bialgebroid. We refer to [8] for these classical results . We call the Lie algebroid
{P, ν} (resp. the Lie bialgebroid (ν, {P, ν})) the Lie algebroid (resp. the Lie bialgebroid)
associated to the Poisson bivector P . In particular, it follows from lemma 4.1 that, for
every Jacobi structure (π,E) on a Lie algebroid µB on B → M , the function in Fp∗A (see
section 2.2 for the notations) defined by

νµ,π,E :=
{

Pπ,E, µ
0
φ

}

=
{

Pπ,E, µ + φ∂t
}

is a Lie algebroid structure on (p∗A)∗ → (M ×R) ≃ p∗A∗ → (M ×R). Moreover, the pair
(µ0

φ, νµ,π,E) is a Lie bialgebroid on the vector bundle p∗A → (M × R).
We start with a lemma:

Lemma 4.4 We use the notations introduced in the beginning of section 4. Let (π,E) be
a Jacobi structure on the algebroid µB on B → M . Define

ν := {π, µ}+ φπ + ǫ {µ,E} − E idB ∈ F1,2
A .

The Poissonization of the pre-Jacobi algebroid ν − E on A is the Lie algebroid νµ,π,E :=
{

Pπ,E, µ
0
φ

}

associated with the Poisson structure Pπ,E.
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Proof. We have to show that the functions ν1−E = e−t(ν − E(∂t + idA∗)) and νµ,π,E =
{

Pπ,E, µ + φ∂t
}

are equal. This follows from a comparison between

νµ,π,E =
{

e−t(π + ǫE), µ + φ∂t
}

= e−t({(π + ǫE), µ}+ φ(π + ǫE)− ∂tE)

= e−t({π, µ}+ {ǫE, µ}+ φ(π + ǫE)− ∂tE)

= e−t({π, µ}+ ǫ {E,µ} + φ(π + ǫE)− ∂tE)

and

ν1−E = e−t(ν + E(∂t − idA))

= e−t({π, µ}+ φπ + ǫ {µ,E} − E idB − E(∂t − idA))

= e−t({π, µ}+ φπ + ǫ {µ,E} − ∂tE + (idA − idB)E)

= e−t({π, µ}+ φπ + ǫ {E,µ} − ∂tE + φǫE)

where, in the last line, we have used the relation idA = idB + φǫ. �

Remark A direct comparison shows that the bracket and anchor of the associated pre-
Lie algebroid ν on A → M are precisely the bracket and anchor of the Lie algebroids that
appears in [4, 2, 3].

The main result of this section is an immediate consequence of lemma 3.7 and of
lemma 4.4.

Proposition 4.5 We use the notations introduced in the beginning of section 4. Let (π,E)
be a Jacobi structure on the algebroid µB on B → M . Then,

1. the pair (µ + φ, ν − E) is a Jacobi bialgebroid structure, where:

ν := {π, µ}+ φπ + ǫ {µ,E} − E idB ∈ F2,1
A .

2. The Poissonization of this structure is the Lie bialgebroid (µ0
φ, νµ,π,E) associated to

the Poisson structure Pπ,E (i.e. the Poissonization of the Jacobi structure (π,E)).

We recapitulate the results of this section in a commutative diagram. Let µB be a Lie
algebroid on a vector bundle B, equipped with a Jacobi structure (π,E). Recall that A

stands for B⊕R (and µ is the natural extension of µB to that bundle), while p∗A stands for
the pull-back of A → M on M ×R (and can be equipped with the Lie algebroid structure
µ0
φ := µ + ∂tφ). Let Pπ,E be the Poissonization of the Jacobi structure structure (π,E)

(defined on the Lie algebroid µ0
φ on p∗A). Last, let ν := {π, µ}+ φπ+ ǫ {µ,E} −E idB be
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the Jacobi algebroid structure on A defined above. The following diagram commutes

(π,E)
Jacobi structure

on B for µB

��

Poissonization
//

Pπ,E

Poisson bivector
on p∗A for µ0

φ

��

(µ + φ, ν − E)
Jacobi bialgebroid

on (A,A∗)

Poissonization
//

(

µ0
φ, ν

1
−E

)

Lie bialgebroid
on (p∗A, p∗(A∗))

5 Quasi-Jacobi bialgebroids

In [1], quasi-Jacobi bialgebroids are introduced, as follows:

Definition 5.1 Let A → M be a vector bundle. A quasi-Jacobi bialgebroid is a pre-Jacobi
bialgebroid (µ+ φ, ν +X), together with a section Z of ∧3A, such that µ+ φ is indeed a
Jacobi algebroid, and such that the following compatibility conditions are satisfied

dν,X(Z) and (dν,X)2(P ) = [−Z,P ]µ,φ = 0 for all P ∈ Γ(
∧

A) (5.15)

where [·, ·]µ,φ , dν,X are as in definition 3.2.

As a slight modification of theorem 3.9, we obtain:

Theorem 5.2 Let A → M be a vector bundle, µ + φ a pre-Jacobi algebroid structure on
A, ν +X a pre-Jacobi algebroid structure on A∗, and Z a section of ∧3A. Define ♦, ♣
and ♠ as in (3.11). The triple (µ+φ, ν+X,Z) is a quasi-Jacobi bialgebroid if and only if

♦ = ♣ = ♠ = {µ+ φ, µ+ φ} = {ν, Z}+XZ = {ν,X}+ {Z, φ} = z = 0,

with z = 1
2 {ν, ν}+ {Z, µ}+ idA {Z, φ}+ 2Zφ.

Proof. According to theorem 3.9, the pair (µ + φ, ν +X) is a pre-Jacobi bialgebroid if
and only if ♦ = ♣ = ♠ = 0. Also, {µ+ φ, µ + φ} = 0 if and only if µ + φ is a Jacobi
algebroid. The condition dν,X(Z) = 0 is tantamount to {ν, Z} + XZ = 0 in view of the
expression of the differential given in definition 3.2.

Spelling out the condition (dν,X)2(P ) = [−Z,P ]µ,φ with the help of the differentials
and brackets introduced in definition 3.2 gives:

{ν, {ν, P}+XP}+X({ν, P}+XP ) = −{{Z, µ + idAφ} , P}+ {Zφ,P} − {Z, φ}P,

which can be rewritten as

{z, P}+ ({ν,X}+ {Z, φ})P = 0

This condition is therefore satisfied if {ν,X} + {Z, φ} = z = 0. Conversely, if this
condition is satisfied for P = 1, then {ν,X}+ {Z, φ} = 0. If the condition is satisfied for
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all P ∈ Γ(
∧

A) therefore, we have {z, P} = 0 for all P ∈ Γ(A), which, in view of the
seventh item listed in section 2.1, since z ∈ F3,1

A , implies that z = 0. This completes the
proof. �

Recall [9] that a quasi-Lie bialgebroid on a vector bundle B is a triple of functions in,
respectively, F1,2

A ,F2,1
A ,F3,0

A , and whose sum commutes with itself. Theorem 5.2 admits
the following corollary, to be compared with corollary 3.11:

Corollary 5.3 Let A → M be a vector bundle, µ+ φ a pre-Jacobi algebroid structure on
A, ν + X a pre-Jacobi algebroid structure on A∗, and Z ∈ Γ(∧3A). The following are
equivalent:

(i) the triple (µ+ φ, ν +X,Z) is a quasi-Jacobi bialgebroid on A;

(ii) the triple (µ0
φ, ν

1
X , e−2tZ) is a quasi-Lie bialgebroid on p∗A.

(In the previous, µ0
φ, ν

1
X are the pre-Lie algebroids on p∗A → (M×R) constructed in lemma

3.7 and t ∈ F(M × R) is, as in section 2.2-A, the projection on the second component)

Proof. The triple (µ0
φ, ν

1
X , e−2tZ) is a quasi-Lie bialgebroid on p∗A if and only if

{

µ0
φ + ν1X + e−2tZ, µ0

φ + ν1X + e−2tZ
}

= 0.

For degree reasons, this condition splits into the four conditions:
{

µ0
φ, µ

0
φ

}

= 0 (*)
{

µ0
φ, ν

1
X

}

= 0 (**)
{

ν1X , ν1X
}

= −2
{

µ0
φ, e

−2tZ
}

(***)
{

ν1X , e−2tZ
}

= 0 (****)

As follows from lemma 3.7, condition (*) holds if and only if {µ+ φ, µ+ φ} = 0. As
follows from item (1) in corollary 3.11, condition (**) holds if and only if (µ + φ, ν +X)
is a pre-Jacobi algebroid, i.e., in view of theorem 3.9, if and only if ♦ = ♣ = ♠ = 0. As
follows from a direct computation, condition (****) holds if and only if

{

ν1X , e−2tZ
}

= e−3t({ν, Z}+ 2ZX − 3ZX) = 0,

i.e. if and only if {ν, Z}+XZ = 0.
In view of theorem 5.2 therefore, we are therefore left with the task of showing that

condition (***) holds if and only if {ν,X}+{Z, φ} = z = 0. We check it as follows. First,
we compute:

{

ν1X , ν1X
}

=
{

e−t(ν +X(∂t + idA∗)), e−t(ν +X(∂t + idA∗))
}

= e−2t({ν, ν}+ 2 {ν,X} idA∗ + 2 {ν,X} ∂t).

Second, a direct computation gives
{

µ0
φ, e

−2tZ
}

= e−2t({µ,Z}−2φZ+∂t {φ,Z}), so that,

reordering terms, we obtain that (***) is equivalent to

z+ ∂t({ν,X}+ {Z, φ}) = 0,

which is itself equivalent to the vanishing of both z and {ν,X} + {Z, φ} (as noticed in
section 2.2-A). The result follows. �
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