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Manipulation planning with contacts for an extensible elastic rod by
sampling on the submanifold of static equilibrium configurations

Olivier Roussel1, Andy Borum2, Michel Taı̈x1 and Timothy Bretl2

Abstract— We consider the manipulation planning problem
of an extensible elastic rod in collision-free or contact space.
We assume the rod can be handled by grippers either at both
or at only one of its extremities and during the manipulation,
the grasped end may change. We show that the use of both
quasi-static and dynamic models can be coupled efficiently
with sampling-based methods. By sampling directly on the
submanifold of static equilibrium and contact-free configura-
tions, we can take advantage of the dynamic model to improve
the exploration in the state space. We show the necessity of
considering contacts for this type of problems with several
simulation experiments on various scenarios.

I. INTRODUCTION

Motion planning plays an essential role in assembling and
disassembling industrial cases. Approaches have been pro-
posed to the extension of this problem to robots manipulating
movable rigid objects [15]. Moreover, in the automotive
or aeronautical industry, manipulating deformable parts is
necessary. In this context, most of these consist in circular
Deformable Linear Objects (DLOs) (cable, hose, pipe,...)
and are usually referred as rods in the mechanical literature.
In the classical motion planning problem formulation, the
objective is to compute a path in the collision-free space,
without contacts, but in realistic conditions for this context
the contact is actually a necessary condition.

In this paper, we consider the manipulation planning
problem of a rod in free or contact space (as in Figure
1). We assume the rod is handled by a gripper at one of
its extremities and the grasped end may change during the
manipulating phase. As rod can be geometrically interpreted
as an infinite-dimensional continuous curve, planning in
the discretization of this curve may lead to high finite-
dimensional configuration spaces. Furthermore, identifying
the manifold of feasible configurations, i.e. which satisfy
mechanical constraints, on this configuration space is a chal-
lenging task. This is even more difficult if also considering
both dynamics of the rod and contacts.

Some work has been done using the reasonable assumption
of considering only the collision free space of quasi-static
configurations. These approaches are based on the numerical
minimization of the total elastic energy for given gripper
placements [9], [11], [18].

An approach to the manipulation planning considering
dynamics of the rod and contacts is to plan in the finite space
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Fig. 1. Solution path for an elastic rod to the ”powerplant” scenario. Both
sides (left) and top (right) views have been clipped for clarity.

of controls for a given number of grippers. In this case, the
state transition function is assumed to be known and can
be delegated, for example, to a simulator. For a physically
realistic rod model, these might use complex finite elements
methods resulting in computationally expensive local plan-
ning schemes. For instance, the motion planning problem for
deformable objects has been addressed in [12] which coupled
a deformable dynamics model with a kinodynamic motion
planning algorithm. However, the use of fully deformable
environments prevents the robot to be stuck in local minima
and bypasses the local control problem.

In [14], the manipulation planning problem of a DLO is
adressed from a topological perspective by focusing on knot
tying application with the help of many grippers.

More generally, the motion planning problem for de-
formable objects has already been investigated, especially in
the case of simplified visually realistic deformation models.
For example, [3] extendeded the Probabilistic Roadmap
Methods (PRMs) [2] for deformable objects by reducing the
deformation space to a one dimensional one. [6] used the
Constraint Based Motion Planning framework to simulate a
deformable robot along a guide path computed for a point-
like robot. This work has then been extended to the specific
class of DLOs in [7].

Recent results based on the local solution of a geometric
optimal control problem enabled to define this configuration
space [5], where it is shown this space defines a finite
dimensional manifold that can be parameterized by a single
chart. In previous work [13], we presented a motion planning
algorithm for a quasi-static inextensible elastic rod in com-
plex environments and we showed that quasi-static solution
paths in the collision-free space can be computed efficiently
by assuming the rod as handled by both extremities. How-
ever, slight changes in grippers wrenches involve a change



of the whole rod shape which causes greater probability
of collision. Consequently, in constrained environments, the
roadmap suffers from a slow growth of rate.

On the other hand, the physical engine eXtended Dynamic
Engine (XDE) offers a realistic multi-body dynamics simu-
lation with contact for deformable bodies. Thus, XDE can
compute dynamic motions but at the cost of a high com-
putational time, conflicting with random motion planning
needs. However, it seems interesting to allow sliding along
the contact space to improve significantly the exploration.

In this context, we can define a manipulation planning
approach based on sampling-based methods. By sampling on
the submanifold of quasi-static contact-free configurations,
it is then possible to use dynamic simulation to extend the
exploration of the state space. Using a parameterization to
sample directly on the submanifold, we can limit the number
of calls to the simulator to extension steps and to take
advantage of provided information such as contact forces.
By allowing contacts between the deformable object and
obstacles, we will show we increase the deformation space
and we can efficiently handle constrained environments, i.e.
having a very poor ε − goodness [8], and narrow passages
by sliding along the contact space.

As we use two different models for dynamic simulation
and static equilibrium configurations, it is necessary to fit
models parameters in order to ensure their convergence at
quasi-static configurations.

The paper is organized as follows. Section II presents both
models used for dynamic simulation or static equilibrium
configurations. Section III describes how to take advantage
of both models using sampling-based methods to solve
the motion planning problem for an extensible elastic rod.
Finally, we evaluate in Section IV the method on several
planning scenarios and discuss about the approach.

II. ELASTIC RODS MODELING

A. Extensible elastic rods Static Equilibrium Model (SEM)

The work from Bretl and McCarthy [5] offers a single
global chart to describe the manifold of equilibrium config-
urations of an elastic rod. As coordinates in this chart are a
subset of a low dimensional Euclidean space, it is especially
well suited for sampling-based methods. However, this model
only considers inextensible and non-shearable elastic rods.
This section presents here an extension of [5] that enables
us to derive a global parameterization for extensible and
shearable elastic rods.

Consider a thin, naturally straight elastic rod in static equi-
librium (i.e. the rod is motionless) held fixed at each end by
robotic grippers. We may assume without loss of generality
that the rod has unit length. With t ∈ [0, 1] denoting arc-
length along the rod, the position and orientation of the
rod at arc-length t are described by an element q(t) of the
special Euclidean group SE(3). The shape of the entire rod
is described by a continuous map q : [0, 1] → SE(3). The
rod is allowed to bend and twist, and the rod experiences
axial extension and shear deformations. Therefore, the map

q : [0, 1]→ SE(3) must satisfy

q̇ = q

(
6∑
i=1

uiXi +X4

)
(1)

for some u : [0, 1]→ R6, where Xi with i ∈ {1, . . . , 6} is a
basis for the Lie algebra se(3).

The functions ui : [0, 1] → R with i ∈ {1, . . . , 6} are
strains along the rod, where u1 is the twisting strain, u2 and
u3 are the bending strains, u4 is the axial strain, and u5 and
u6 are the shear strains. The functions q and u are referred
to together as (q, u).

The ends of the rod q(0) and q(1) are held by robotic
grippers. Denote the set of all possible q(0) by B0 = SE(3)
and the set of all possible q(1) by B1 = SE(3), i.e. B0
and B1 are the set of all possible placements of the robotic
grippers holding the ends of the rod. Static equilibrium
configurations of the rod are those which locally minimize
the elastic potential energy stored in the rod. Assuming the
elastic potential energy is quadratic in the strain functions
and that twist, bending, stretching, and shear deformations
are not coupled, the elastic potential energy is

1

2

∫ 1

0

6∑
i=1

ciu
2
i dt

where c1 > 0 is the torsional stiffness, c2 > 0 and c3 > 0
are the bending stiffnesses, c4 > 0 is the axial stiffness, and
c5 > 0 and c6 > 0 are the shear stiffnesses of the rod. We
say that (q, u) is a static equilibrium configuration of the rod
if it is a local optimum of

minimize
q,u

1

2

∫ 1

0

6∑
i=1

ciu
2
i dt

subject to q̇ = q

(
6∑
i=1

uiXi +X4

)
q(0) = b0, q(1) = b1

(2)

for some b0 ∈ B0 and b1 ∈ B1.
A similar optimal control formulation was used by Bretl

and McCarthy to model an unshearable and inextensible
elastic rod [5]. We now apply the procedure for deriving
necessary and sufficient conditions for optimality outlined by
[5] to the optimal control problem (2). Define the constants
cij = c−1i − c

−1
j for i, j ∈ {1, . . . , 6}. Theorem 1 provides

necessary conditions for (q, u) to be a static equilibrium
configuration of the rod.

Theorem 1: Define A = R6. A trajectory (q, u) is a
normal extremal of (2) for b0 = q(0) and b1 = q(1) if and
only if there exists µ : [0, 1]→ R6 satisfying

µ̇1 = c32µ2µ3 + c65µ5µ6

µ̇2 = µ6 + c13µ1µ3 + c46µ4µ6

µ̇3 = −µ5 + c21µ2µ1 + c54µ4µ5

µ̇4 = c−13 µ3µ5 − c−12 µ2µ6

µ̇5 = c−11 µ1µ6 − c−13 µ3µ4

µ̇6 = c−12 µ2µ4 − c−11 µ1µ5

(3)



ui = c−1i µi for i ∈ {1, . . . , 6} (4)

and (1) with the initial condition µ(0) = a for some a ∈ A.
Theorem 1 results from applying Theorem 3 of [5] to the

optimal control problem (2). Theorem 3 of [5] relies on a
geometric statement of the Pontryagin maximum principle,
and the function µ : [0, 1] → R6 is the costate trajectory
provided by the maximum principle. The function µ can also
be interpreted as the vector of internal forces and torques
acting along the rod [5].

Theorem 1 provides conditions under which (q, u) is
a normal extremal of (2). Let C denote the set of all
smooth maps (q, u) : [0, 1] → SE(3) × R6 which satisfy
the necessary conditions given in Theorem 1. Then any
(q, u) ∈ C is completely defined by the choice of a ∈ A,
as is the corresponding µ. Denote the resulting maps by
Ψ(a) = (q, u) and Γ(a) = µ.

The trajectories (q, u) ∈ C are extrema of the optimal
control problem (2). Theorem 2 provides a computational
test to determine which of these extrema are local minima.
This test relies on the theory of conjugate points in optimal
control problems [1]. This defines the matrix G by

G = diag(c−11 , c−12 , c−13 , c−14 , c−15 , c−16 )

Also define the matrix functions F and H : R6 → R6×6 by

F(µ) =


0 c32µ3 c32µ2 0 c65µ6 c65µ5

c13µ3 0 c13µ1 c46µ6 0 1+c46µ4

c21µ2 c21µ1 0 c54µ5 −1+c54µ4 0

0 −c−1
2 µ6 c−1

3 µ5 0 c−1
3 µ3 −c−1

2 µ2

c−1
1 µ6 0 −c−1

3 µ4 −c−1
3 µ3 0 c−1

1 µ1

−c−1
1 µ5 c−1

2 µ4 0 c−1
2 µ2 −c−1

1 µ1 0



H(µ) =


0 c−1

3 µ3 −c−1
2 µ2 0 0 0

−c−1
3 µ3 0 c−1

1 µ1 0 0 0

c−1
2 µ2 −c−1

1 µ1 0 0 0 0

0 c−1
6 µ6 −c−1

5 µ5 0 c−1
3 µ3 −c−1

2 µ2

−c−1
6 µ6 0 1+c−1

4 µ4 −c−1
3 µ3 0 c−1

1 µ1

c−1
5 µ5 −1−c−1

4 µ4 0 c−1
2 µ2 −c−1

1 µ1 0


Theorem 2: Let (q, u) = Ψ(a) and µ = Γ(a) for some

a ∈ A. Let M and J : [0, 1]→ R6×6 be the solutions of the
linear, time-varying matrix differential equations

dM
dt

= F(µ(t))M
dJ
dt

= GM + H(µ(t))J (5)

with initial conditions M(0) = I and J(0) = 0. Then, (q, u)
is a local optimum of (2) for b0 = q(0) and b1 = q(1) if and
only if det(J(t)) 6= 0 for all t ∈ (0, 1].

Theorem 2 results from applying Theorem 4 of [5] to the
optimal control problem (2). This Theorem provides a test to
determine which extremals provided by Theorem 1 are local
optima of (2), i.e which a ∈ A produce local optima Ψ(a) ∈
C. Let Astable ⊂ A be the subset of all a ∈ A which satisfy
the conditions in Theorem 2, and let Cstable = Ψ(Astable) ⊂ C.

We now have a characterization of the set of all static
equilibrium configurations of the rod. This allows us to use
a sampling-based planning algorithm in which we directly
sample static equilibrium configurations. This is done by
sampling points in A = R6, using the test in Theorem
2 to check if these points are members of Astable, and then
evaluating the map Ψ|Astable : Astable → Cstable at these points.

B. The physical engine XDE

XDE offers a realistic multi-body dynamics simulation
with various kinematics constraints (e.g. joints, kinematic
loops) and with real-time performances. In addition to rigid
bodies and kinematic chains, it can also handle DLOs,
modeled as geometrically exact 3D beams [16]. This model
enables large displacements thanks to Reissner kinematics
and uses geometrically exact finite elements.

Furthermore, XDE can handle non-smooth contacts accu-
rately with friction with constraints based methods. Also,
it provides smooth bodies interactions mechanisms as
Proportional-Derivative coupling for a given body position.
This will be used for controlling rod grippers in simulation
in the local planning method, as detailed in section III-B.

C. Model fitting between the SEM and XDE

For the purposes of this paper, we consider rods that are
made from a homogeneous isotropic linear elastic material.
As is common in mechanical engineering, XDE defines rod
material elasticity parameters through Young’s modulus E
and shear modulus G. SEM stiffness coefficients ci can then
be deduced from elasticity parameters by c1 = GJ, c2 =
c3 = EI, c4 = EA and c5 = c6 = GA where I represents
the second moment of area, J the polar moment of inertia
and A the cross-section area of the rod.

Using these parameters, we can bring simulated dynamic
rods to quasi-static configurations described by the SEM by
fitting rod grippers positions. As there exists a countable
number of quasi-static configurations for grippers place-
ments, this method does not give us the guarantee to fall
into the desired local minimum of elastic energy. However,
this will be sufficient to our needs and for keeping good
exploration properties as explained in section IV-C. Attached
video shows simulation results for models convergence.

III. MOTION PLANNING FOR EXTENSIBLE ELASTIC RODS

In this section, we show how the use of both models can
improve the efficiency of solving our manipulation planning
problem. By taking advantage of the parameterization pro-
vided by the SEM, we can sample quasi-static contact-free
configurations that guide the exploration in the space of all
admissible cable states reachable by the simulator.

A. Problem formulation

Consider a rod parameterized by t ∈ [0, 1], its con-
figuration q(t) can be represented by the mapping q :
[0, 1] → SE(3). The resulting configuration space would
be a subset of the infinite-dimensional function space
C∞([0, 1], SE(3)). In our case, the rod is discretized by
the simulator using finite elements into N − 1 elements
(thus N nodes), thus the resulting configuration space is a
subset of SE(3)N , where each configuration q is given by
q =

(
q1 q2 ... qN

)T
.

However, as we consider rod dynamics provided by the
simulator, the phase space of the rod must be explored. Let
X ⊂ (TSE(3))N , i.e. the tangent bundle associated to each



node configuration, be the state space of all rod states x
satisfying elasticity constraints defined by x =

(
q q̇

)T
.

Let now Xadm be the closed set of all admissible states
that can be reached by the dynamic simulator, which includes
the set of states with contacts, and Xobs the closed set of all
states in collision with an obstacle. Note that Xadm = X \
int(Xobs). The simulator, which relies on a state transition
function, must guarantee that from any initial state in Xadm,
all states resulting for any input will be also in Xadm.

However, the main drawback of considering the space of
states reachable by a dynamic simulator is that we do not
have a direct way to sample states on X .

On the other hand, the result in section II-A has shown
that all static equilibrium configurations of the rod can
be parameterized using single chart mapping from a 6-
dimensional Euclidean space Astable for a fixed rod base
q1. Let now consider a free-flying quasi-static rod, its con-
figuration space can be expressed using the same chart by
A′stable = SE(3)×Astable. The 12-dimensional submanifold
of X parameterized by this mapping is the open set Y
that describes all free-flying quasi-static elastic rods held
by its both extremities, i.e. without contacts along the rod.
Alternatively, the set Y can be defined by

Y = {x ∈ int(Xadm) | q̇ = 0}

Fig. 2. Illustration of the tree exploration in the state space Xadm while
sampling states on the submanifold of quasi-static contact-free states Y .
We can see that the resulting state of an extension step can lie on this
submanifold as xi, be in contact as xk or be any state in Xadm as xj .

Note that initial xstart and goal xgoal states of the problem
lie in Y . As shown in Figure 2, the key idea is to explore
the space of all reachable states Xadm while sampling states
on the submanifold Y using coordinates in A′stable.

B. Local planning using dynamics and contacts

In our context, the local planning problem consists in
finding the trajectory from a given state xfrom ∈ Xadm to a
sampled state xto ∈ Y . There is various possible approaches
and we describe in this subsection our controller that address
that sub-problem.

We emphasize that taking advantage of contact informa-
tion provided by the dynamic simulator by using contact
sliding motions improves significantly the exploration of the
search space for highly constrained cases (see section IV-C).

In this direction, we chose to exploit contact motions by
not constraining the local planner trajectory on the subman-
ifold Y . Our method, detailed in Algorithm 1, consists in

a two steps approach as illustrated in Figure 3. First, the
rod is manipulated by one of its gripper until the considered
extremity reaches its goal position. Then, the other gripper is
manipulated the same way while keeping the first one fixed.

Manipulation is done using a Proportional-Derivative con-
troller on the grippers position. We also consider a time limit
tmax, chosen at random between given bounds, for which
the controllers are being applied for a given local planning
instance.

Fig. 3. Illustration of the two steps approach for the local planner from a
state xfrom to a quasi-static state xto. First, a randomly chosen gripper is
manipulated to its respective goal (left). Once its goal is reached, the first
gripper is fixed and the other one is manipulated the same way (right).

Algorithm 1 EXTEND(xfrom, xto)
Require: Time bounds [Tlow, Tup], simulation step time ∆t

1: Select at random first gripper g1
2: Select at random a time limit tmax ∈ [Tlow, Tup]
3: xnew ← xfrom
4: while gripperDistance(xnew, xto, g1) > ε and t < tmax

do
5: Apply position control on xnew at g1 for ∆t
6: end while
7: Let g2 be other gripper
8: while gripperDistance(xnew, xto, g2) > ε and t < tmax

do
9: Apply position control on xnew at g2 for ∆t

10: end while
11: return xnew

C. Kinodynamic planning with sampling on a submanifold
Our approach to the manipulation planning problem for

elastics rods is based on classical kynodynamic sampling-
based approaches [10] as detailed in Algorithm 2. Some work
has been done in sampling-based planning while projecting
configurations on a constraint manifold as sampling strategy
[4]. In our case, the complexity of the constraints based
on the elasticity of the rod material make the formulation
of a projector to the sampling submanifold a difficult task.
However, the single global chart derived from the SEM that
parameterize the submanifold Y provides us a direct way to
sample on the manifold and in particular offers the guarantee
that it can be covered entirely through random sampling.

The pseudo-metric considered in the NEAREST returns
an approximation of ρ(a, b) is defined by

ρ(xi, xj) =

∫ 1

0

‖pi(t)− pj(t)‖dt (6)



Algorithm 2 Kinodynamic RRT for an elastic rod with
sampling on the quasi-static states submanifold
Require: Environment model, xstart, Xgoal

1: Initialize the tree T with xstart
2: while ¬ solved and iter < Nmax do
3: xrand ← random quasi-static state ∈ Y or goal state
4: xnear ← NEAREST(T , xrand)
5: xnew ← EXTEND(xnear, xrand)
6: Add current state xnew to T
7: Add edge (xnear, xnew)
8: end while

where p(t) ∈ R3 is the translation part of the rod position
at q(t) ∈ SE(3). Intuitively, this pseudo-metric represents
the swept surface area in the workspace between the two
rod states as if all nodes could move in straight line which
gives us a lower bound to the real swept surface area.

IV. RESULTS AND DISCUSSION

In this section, we will present our motivations to use
dynamics and contacts and we will show and discuss some
experimental results obtained in simulation.

A. A critical case: the double funnel

Consider a rod of length l and radius r, and the case of an
environment with a very narrow passage for the given length.
In the extreme case, this narrow passage would tend to have
the shape of the rod, i.e. here a tunnel of length l+ ε and of
radius 2r + ε as illustrated in Figure 4. Let Xcrt be the set
of rod configurations that are collision free when the rod is
centered in the tunnel. As ε tends to zero, the set Xcrt tends
to be a unique state of with a zero volume. Consequently, the
probability of sampling a state in Xcrt tends to zero when
the tunnel size tends to fit perfectly the rod shape.

Fig. 4. A critical narrow passage for an elastic rod represented in the
workspace W (left) and its equivalent illustrated in rod state space X . As
ε tends to zero, the probability of sampling on Xcrt also tends to zero.

This is an extreme narrow passage where sampling-based
methods typically fail. The intuition behind taking advantage
of contacts for this type of scenarios would be to:
• allow states to be in contact, i.e. x ∈ ∂Xobs,
• being able to slide along contact boundary ∂Xobs,
• being able to get off the contact.
Considering this, we tested our previously described ap-

proach on a double funnel scenario, with a tunnel of length
2l and a radius 3r (see Figure 5).

This type of case illustrate the advantage of our approach
over classical collision-free sampling-based methods. On this

Fig. 5. The double funnel case where the elastic rod must go trough a very
narrow passage (left) and a solution path (right) where the rod must go from
the left side to the right side (view has been clipped for clarity).

scenario, a classical collision-free sampling-based method
would typically fail (low probability to sample inside the
tunnel). Our approach can solve the problem using dynam-
ics/contacts with good performance results (see Tab. I).

B. Experimental results

A typical application to manipulation planning of elastic
rods consists in assembly and disassembly studies of flexible
parts such cables. In the case of disassembly study, the initial
state is generally very constrained and the goal is a free
region. Assembly studies can be solved by a symmetrical
process. In addition to the double funnel case previously
described, the following scenarios have been tested:
• engine (Figure 7) represents an industrial disassembly.
• grid (Figure 6) represents a disassembly operation for

an elastic rod that is winded up into a grid.
• powerplant (Figure 1) where both initial and goal states

for the elastic rod show a poor ε− goodness.

Fig. 6. Solution path on the ”grid” scenario where the rod must go from a
winded up state to a free state.

Solution paths on these scenarios are available in the
attached video. Each scenario has been run 50 times with
a limit in time of 20 minutes. All the benchmarks were run
on a PC with 16GB of main memory and using one core
of an Intel Core i7-2720QM processor running at 2.2GHz.
Implementation has been done in C++ using the OMPL [17].

Results of the manipulation planning on previously pre-
sented scenarios are shown in Table I.

Assembly and disassembly scenarios showing difficult
narrow passages are solved efficiently using our approach.
In addition, we provide a solution path with accurate rod
dynamics thanks to the simulation based on finite element



Fig. 7. Start (in green at clipped view a) and goal (in red at view b) states for
the disassembly scenario ”engine”. The solution path makes use of contacts
(views c and d).

TABLE I
KINODYNAMIC PLANNING FOR ELASTIC RODS WITH CONTACTS RESULTS

Scenario Number of
vertices / faces Success rate Resolution time (sec)

avg ± std. dev
double funnel 198/388 100% 77.2± 36.0

grid 704/1320 96% 34.4± 25.5

engine 64885/131583 94% 119.6± 109.3

powerplant 24870/20053 31% 402.5± 293.6

analysis. This solution includes the sequence of controls that
should be applied to the rod to solve the problem, and this
information could be used in realistic conditions.

Note that the planner performance significantly decreases
with the powerplant scenario, as it differs from typical
assembly studies and consists in a complex and highly
constrained case from initial to goal states.

C. Discussion about completeness

As our approach relies on sampling on a submanifold of
the state space, our algorithm is probabilistically complete
in the sampled submanifold Y . Indeed, our direct sampling
method enables us to cover the entire submanifold Y of
quasi-static contact-free configurations through the sampling
the process. Furthermore, each infinitesimally small quasi-
static motion that lies entirely in the submanifold Y can be
achieved through dynamic simulation as both models fit.

Also, there exists a countable number of static equilibrium
rod configurations for given grippers placement, the local
planner may fail to reach the desired state by uniquely
controlling grippers positions and fall into another local min-
imum of elastic energy. For the purpose of our local method,
this does not invalidate the probabilistic completeness of
the approach as there is a non null probability to reach the
desired state. Moreover, these configurations are guaranteed
to be close with respect to our metric, which enables us
to keep a good Voronoi bias in Y . For this reason, we

first limited our goal region Xgoal to the set of all static
equilibrium configurations for given grippers positions.

V. CONCLUSION
In this paper, we proposed an approach to the manipulation

planning problem of an extensible elastic rod in collision-
free or contact space. We showed that by using a static
equilibrium model, we can efficiently sample on the sub-
manifold of its quasi-static contact-free states whereas the
kinodynamic planning algorithm uses dynamic simulation
and explore the full state space of the rod. Thanks to dynamic
simulation, the planning algorithm can take advantage of
contacts by allowing sliding motions in order to solve diffi-
cult narrow passages, where collision-free typical sampling-
based method would fail.
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