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Abstract

We consider the manipulation planning problem of an extensible elastic rod
in collision-free or contact space. We assume the rod can be handled by grippers
either at both or at only one of its extremities and during the manipulation, the
grasped end may change. We show that the use of both quasi-static and dynamic
models can be coupled efficiently with sampling-based methods. By sampling
directly on the submanifold of static equilibrium and contact-free configurations,
we can take advantage of the dynamic model to improve the exploration in the state
space. We show the necessity of considering contacts for this type of problems with
several simulation experiments on various scenarios.

1 INTRODUCTION
Motion planning plays an essential role in assembling and disassembling industrial
cases. Approaches have been proposed to the extension of this problem to robots ma-
nipulating movable rigid objects among rigid obstacles [16]. Moreover, in the auto-
motive or aeronautical industry, manipulating deformable parts is necessary. In this
context, most of these consist in circular Deformable Linear Objects (DLOs) which are
characterized by having one dimension much greater than the other two (cable, hose,
pipe,...) and are usually referred as rods in the mechanical literature. In the classi-
cal motion planning problem formulation, the objective is to compute a path in the
collision-free space, without contacts, but in realistic conditions for this context the
contact is actually a necessary condition to realize the task.
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Figure 1: Solution path for an elastic rod to the ”powerplant” highly constrained sce-
nario. Both sides (left) and top (right) views have been clipped for clarity.

In this paper, we consider the manipulation planning problem of a rod in free or
contact space (as in Figure 1). We assume the rod is handled by a gripper at one of its
extremities and the grasped end may change during the manipulating phase.

As rod can be geometrically interpreted as an infinite-dimensional continuous curve,
planning in the discretization of this curve may lead to high finite-dimensional config-
uration spaces. Furthermore, identifying the manifold of feasible configurations, i.e.
which satisfy mechanical constraints, on this configuration space is a challenging task.
This is even more difficult if also considering both dynamics of the rod and contacts.

Some work has been done using the reasonable assumption of considering only the
collision free space of quasi-static configurations. These approaches are based on the
numerical minimization of the total elastic energy for given gripper placements [9],
[11], [19]. Recent results based on the local solution of a geometric optimal control
problem enabled to define this configuration space [5], where it is shown this space
defines a finite dimensional manifold that can be parameterized by a single chart. Based
on these results, we presented how this parameterization can be efficiently used with
sampling-based methods in collision-free space [14].

An approach to the manipulation planning considering dynamics of the rod and
contacts is to plan in the finite space of controls for a given number of grippers. In this
case, the state transition function is assumed to be known and can be delegated, for ex-
ample, to a simulator. For a physically realistic rod model, these might use complex fi-
nite elements methods resulting in computationally expensive local planning schemes.
For instance, the motion planning problem for deformable objects has been addressed
in [13] which coupled a deformable dynamics model with a kinodynamic motion plan-
ning algorithm. However, the use of fully deformable environments prevents the robot
to be stuck in local minima and bypasses the local control problem.

In [15], the manipulation planning problem of a DLO is adressed from a topological
perspective by focusing on knot tying application with the help of many passive or



active grippers.
More generally, the motion planning problem for deformable objects has already

been investigated, especially in the case of simplified visually realistic deformation
models. For example, [3] extendeded the Probabilistic Roadmap Methods (PRMs) [2]
for deformable objects by reducing the deformation space to a one dimensional one.
In [6], Gayle et al. used the Constraint Based Motion Planning framework to simulate
a deformable robot along a guide path computed for a point-like robot. This work has
then been extended to the specific class of DLOs in [7].

In previous work [14], we presented a motion planning algorithm for a quasi-static
inextensible elastic rod in complex environments and we showed that quasi-static so-
lution paths in the collision-free space can be computed efficiently by assuming the
rod as handled by both extremities. However, slight changes in grippers wrenches in-
volve a change of the whole rod shape which causes greater probability of collision.
Consequently, in constrained environments, the roadmap suffers from a slow growth of
rate.

On the other hand, the physical engine eXtended Dynamic Engine (XDE) offers
a realistic multi-body dynamics simulation with contact for deformable bodies such
as rods, modeled as geometrically exact 3D beams. This type of simulators is well
suited for interactive applications but the simulation cost is too high to couple these
simulators with motion planning algorithms in an industrial context. Thus, XDE can
compute dynamic motions with contacts but at the cost of a high computational time,
conflicting with random motion planning needs. However, it seem interesting to allow
sliding along the contact space to improve significantly the exploration.

In this context, we can define a manipulation planning approach based on sampling-
based methods. By sampling on the submanifold of quasi-static contact-free configu-
rations, it is then possible to use dynamic simulation to extend the exploration of the
state space. Using a parameterization to sample directly on the submanifold, we can
limit the number of calls to the simulator to extension steps and to take advantage of
provided information such as contact forces. By allowing contacts between the de-
formable object and obstacles, we will show we increase the deformation space and we
can efficiently handle constrained environments, i.e. having a very poor ε− goodness
[8], and narrow passages by sliding along the contact space.

As we use two different models for dynamic simulation and static equilibrium con-
figurations, it is necessary to fit models parameters in order to ensure their convergence
at quasi-static configurations.

The remainder of the paper is organized as follows. Section 2 presents both models
used for dynamic simulation or static equilibrium configurations. Section 3 describes
how to take advantage of this both models using sampling-based methods to solve the
motion planning problem for an extensible elastic rod. Finally, we evaluate in Section
4 the method on several planning scenarios and discuss about the approach.



2 ELASTIC RODS MODELING

2.1 Extensible elastic rods Static Equilibrium Model (SEM)
The work from Bretl and McCarthy [5] offers a single global chart to describe the
manifold of equilibrium configurations of an elastic rod. As coordinates in this chart are
a subset of a low dimensional Euclidean space, it is especially well suited for sampling-
based methods. However, this model only considers inextensible and non-shearable
elastic rods. This section presents here an extension of [5] that enables us to derive a
global parameterization for extensible and shearable elastic rods.

Consider a thin, naturally straight elastic rod in static equilibrium (i.e. the rod is
motionless) held fixed at each end by robotic grippers. We may assume without loss
of generality that the rod has unit length. With t ∈ [0, 1] denoting arc-length along
the rod, the position and orientation of the rod at arc-length t are described by an
element q(t) of the special Euclidean group SE(3). The shape of the entire rod is
described by a continuous map q : [0, 1] → SE(3). The rod is allowed to bend and
twist, and the rod experiences axial extension and shear deformations. Therefore, the
map q : [0, 1]→ SE(3) must satisfy

q̇ = q

(
6∑
i=1

uiXi +X4

)

for some u : [0, 1]→ R6, where

X1 =

[
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
X2 =

[
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
X3 =

[
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
X4 =

[
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
X5 =

[
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
X6 =

[
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]
is a basis for se(3), the Lie algebra of SE(3). The function u1 : [0, 1]→ R is the twist-
ing strain, the functions u2 and u3 : [0, 1] → R are the bending strains, the function
u4 : [0, 1] → R is the axial strain, and the functions u5 and u6 : [0, 1] → R are the
shear strains along the rod. The functions q and u are referred to together as (q, u).

The ends of the rod q(0) and q(1) are held by robotic grippers. Denote the set of
all possible q(0) by B0 = SE(3) and the set of all possible q(1) by B1 = SE(3),
i.e. B0 and B1 are the set of all possible placements of the robotic grippers holding the
ends of the rod. Static equilibrium configurations of the rod are those which locally
minimize the elastic potential energy stored in the rod. Assuming the elastic potential
energy is quadratic in the strain functions and that twist, bending, stretching, and shear
deformations are not coupled, the elastic potential energy is

1

2

∫ 1

0

6∑
i=1

ciu
2
i dt

where c1 > 0 is the torsional stiffness, c2 > 0 and c3 > 0 are the bending stiffnesses,
c4 > 0 is the axial stiffness, and c5 > 0 and c6 > 0 are the shear stiffnesses of the



rod. We say that (q, u) is a static equilibrium configuration of the rod if it is a local
optimum of

minimize
q,u

1

2

∫ 1

0

6∑
i=1

ciu
2
i dt

subject to q̇ = q

(
6∑
i=1

uiXi +X4

)
q(0) = b0, q(1) = b1

(1)

for some b0 ∈ B0 and b1 ∈ B0.
A similar optimal control formulation was used by Bretl and McCarthy to model

an unshearable and inextensible elastic rod [5]. We now apply the procedure for deriv-
ing necessary and sufficient conditions for optimality outlined by Bretl and McCarthy
[5] to the optimal control problem (1). Define the constants cij = c−1i − c−1j for
i, j = 1, 2, 3, 4, 5, 6. Theorem 1 provides necessary conditions for (q, u) to be a static
equilibrium configuration of the rod.

Theorem 1 Define A = R6. A trajectory (q, u) is a normal extremal of (1) for b0 =
q(0) and b1 = q(1) if and only if there exists µ : [0, 1]→ R6 satisfying

µ̇1 = c32µ2µ3 + c65µ5µ6

µ̇2 = µ6 + c13µ1µ3 + c46µ4µ6

µ̇3 = −µ5 + c21µ2µ1 + c54µ4µ5

µ̇4 = c−13 µ3µ5 − c−12 µ2µ6

µ̇5 = c−11 µ1µ6 − c−13 µ3µ4

µ̇6 = c−12 µ2µ4 − c−11 µ1µ5

(2)

ui = c−1i µi for i = 1, 2, 3, 4, 5, 6 (3)

q̇ = q

(
6∑
i=1

uiXi +X4

)
(4)

with the initial condition µ(0) = a for some a ∈ A.

Theorem 1 results from applying Theorem 3 of Bretl and McCarthy [5] to the op-
timal control problem (1). Theorem 3 of Bretl and McCarthy [5] relies on a geometric
statement of the Pontryagin maximum principle [12], and the function µ : [0, 1]→ R6

is the costate trajectory provided by the maximum principle. The function µ can also
be interpreted as the vector of internal forces and torques acting along the rod [5].

Theorem 1 provides conditions under which (q, u) is a normal extremal of (1). Let
C denote the set of all smooth maps (q, u) : [0, 1] → SE(3) × R6 which satisfy the
necessary conditions given in Theorem 1. Then any (q, u) ∈ C is completely defined
by the choice of a ∈ A, as is the corresponding µ. Denote the resulting maps by
Ψ(a) = (q, u) and Γ(a) = µ.

The trajectories (q, u) ∈ C are extrema of the optimal control problem (1). The-
orem 2 provides a computational test to determine which of these extrema are local



minima. This test relies on the theory of conjugate points in optimal control problems
[1]. To apply the theorem, define the matrix G by

G = diag(c−11 , c−12 , c−13 , c−14 , c−15 , c−16 )

Also define the matrix functions F and H : R6 → R6×6 by

F(µ) =


0 c32µ3 c32µ2 0 c65µ6 c65µ5

c13µ3 0 c13µ1 c46µ6 0 1+c46µ4

c21µ2 c21µ1 0 c54µ5 −1+c54µ4 0

0 −c−1
2 µ6 c−1

3 µ5 0 c−1
3 µ3 −c−1

2 µ2

c−1
1 µ6 0 −c−1

3 µ4 −c−1
3 µ3 0 c−1

1 µ1

−c−1
1 µ5 c−1

2 µ4 0 c−1
2 µ2 −c−1

1 µ1 0



H(µ) =


0 c−1

3 µ3 −c−1
2 µ2 0 0 0

−c−1
3 µ3 0 c−1

1 µ1 0 0 0

c−1
2 µ2 −c−1

1 µ1 0 0 0 0

0 c−1
6 µ6 −c−1

5 µ5 0 c−1
3 µ3 −c−1

2 µ2

−c−1
6 µ6 0 1+c−1

4 µ4 −c−1
3 µ3 0 c−1

1 µ1

c−1
5 µ5 −1−c−1

4 µ4 0 c−1
2 µ2 −c−1

1 µ1 0


Theorem 2 Let (q, u) = Ψ(a) and µ = Γ(a) for some a ∈ A. Let M and J : [0, 1]→
R6×6 be the solutions of the linear, time-varying matrix differential equations

dM
dt

= F(µ(t))M
dJ
dt

= GM + H(µ(t))J (5)

with initial conditions M(0) = I and J(0) = 0. Then, (q, u) is a local optimum of (1)
for b0 = q(0) and b1 = q(1) if and only if det(J(t)) 6= 0 for all t ∈ (0, 1].

Theorem 2 results from applying Theorem 4 of Bretl and McCarthy [5] to the op-
timal control problem (1). This Theorem provides a test to determine which extremals
provided by Theorem 1 are local optima of (1), i.e which a ∈ A produce local optima
Ψ(a) ∈ C. Let Astable ⊂ A be the subset of all a ∈ A which satisfy the conditions in
Theorem 2, and let Cstable = Ψ(Astable) ⊂ C.

We now have a characterization of the set of all static equilibrium configurations
of the rod. This allows us to use a sampling-based planning algorithm in which we
directly sample static equilibrium configurations. This is done by sampling points in
A = R6, using the test in Theorem 2 to check if these points are members of Astable,
and then evaluating the map Ψ|Astable : Astable → Cstable at these points.

2.2 The physical engine XDE
XDE offers a realistic multi-body dynamics simulation with various kinematics con-
straints (e.g. joints, kinematic loops) and with real-time performances. In addition to
rigid bodies and kinematic chains, it can also handle deformable bodies such as DLOs,
modeled as geometrically exact 3D beams [17]. This model enables large displace-
ments thanks to Reissner kinematics and uses geometrically exact finite elements.

Furthermore, XDE can handle non-smooth contacts accurately with friction (e.g.
using Coulomb law) with constraints based methods. Also, it provides smooth bodies
interactions mechanisms as Proportional-Derivative coupling for a given body posi-
tion. This will be used for controlling rod grippers in simulation in the local planning
method, as detailled in section 3.2.



2.3 Model fitting between the SEM and XDE
For the purposes of this paper, we consider rods that are made from a homogeneous
isotropic linear elastic material. As is common in mechanical engineering, XDE de-
fines rod material elasticity parameters through Young’s modulusE and shear modulus
G. SEM stiffness coefficients ci can then be deduced from elasticity parameters by

c1 = GJ

c2 = c3 = EI

c4 = EA

c5 = c6 = GA

where I represents the second moment of area, J the polar moment of inertia and A
the cross-section area of the rod.

Using these parameters, we can bring simulated dynamic rods to quasi-static con-
figurations described by the SEM by fitting rod grippers positions. As there exists a
countable number of quasi-static configurations for grippers placements, this method
does not give us the guarantee to fall into the desired local minimum of elastic energy.
However, this will be sufficient to our needs and for keeping good exploration prop-
erties as explained in section 4.3. Attached video shows simulation results for models
convergence.

3 Motion Planning for extensible elastic rods
In this section, we show how the use of both models can improve the efficiency of
solving the manipulation planning problem for an extensible elastic rod. By taking
advantage of the parameterization provided by the SEM, we can sample quasi-static
contact-free configurations that guide the exploration in the space of all admissible
cable states reachable by the simulator.

3.1 Problem formulation
Consider a rod parameterized by t ∈ [0, 1], its configuration q(t) can be represented by
the mapping q : [0, 1] → SE(3). The resulting configuration space would be a subset
of the infinite-dimensional function space C∞([0, 1], SE(3)). In our case, the rod is
discretized by the simulator using finite elements into N − 1 elements (thus N nodes),
thus the resulting configuration space is a subset of SE(3)N , where each configuration
q is given by q =

(
q1 q2 ... qN

)T
.

However, as we consider rod dynamics provided by the simulator, the phase space
of the rod must be explored. Let X ⊂ (TSE(3))N , i.e. the tangent bundle associated
to each node configuration, be the state space of all rod states x satisfying elasticity
constraints defined by x =

(
q q̇

)T
.

Let now Xadm the closed set of all admissible states that can be reached by the
dynamic simulator, which includes the set of states with contacts, and Xobs the closed
set of all states in collision with an obstacle. Note that Xadm = X \ int(Xobs). The



simulator, which relies on a state transition function, must guarantee that from any
initial state in Xadm, all states resulting for any input will be also in Xadm.

However, the main drawback of considering the space of states reachable by a dy-
namic simulator is that we do not have a direct way to sample states on X .

On the other hand, the result in section 2.1 has shown that all static equilibrium
configurations of the rod can be parameterized using single chart mapping from a 6-
dimensional Euclidean space Astable for a fixed rod base q1. Let now consider a free-
flying quasi-static rod, its configuration space can be expressed using the same chart
by A′stable = SE(3)×Astable. The 12-dimensional submanifold of X parameterized
by this mapping is the open set Y that describes all free-flying quasi-static elastic rods
held by its both extremities, i.e. without contacts along the rod. Alternatively, the set
Y can be defined by

Y = {x ∈ int(Xadm) | q̇ = 0}

Figure 2: Illustration of the tree exploration in the state space Xadm while sampling
states on the submanifold of quasi-static contact-free states Y . We can see that the
resulting state of an extension step can lie on this submanifold as xi, be in contact as
xk or be any state in Xadm as xj .

Note that initial and goal states of the problem, xstart and xgoal respectively, lie in
Y .

As shown in Figure 2, the key idea of our approach is to explore the space of all
reachable states Xadm while sampling states on the submanifold Y using coordinates
in A′stable.

3.2 Local planning using dynamics and contacts
In our context, the local planning problem consists in finding the trajectory from a given
state xfrom ∈ Xadm to a sampled state xto ∈ Y . There is various possible approaches



and we describe in this subsection our controller that address that sub-problem.
We emphasize that taking advantage of contact information provided by the dy-

namic simulator by using contact sliding motions (as in Figure 2) improves signifi-
cantly the exploration of the search space for highly constrained cases (see section 4.3
for discussion).

In this direction, we chose to exploit contact motions by not constraining the local
planner trajectory on the submanifold Y . Our method, detailed in Algorithm 1, consists
in a two steps approach as illustrated in Figure 3. First, the rod is manipulated by one
of its gripper until the considered extremity reaches its goal position. Then, the other
gripper is manipulated the same way while keeping the first one fixed.

Grippers manipulation is done using a Proportional-Derivative controller on the
their position. We also consider a time limit tmax, chosen at random between given
bounds, for which the controllers are being applied for a given local planning instance.

Figure 3: Illustration of the two steps approach for the local planner from a state xfrom
to a quasi-static state xto. First, a randomly chosen gripper is manipulated to its respec-
tive goal (left). Once its goal is reached, the first gripper is fixed and the other one is
manipulated the same way (right).

3.3 Kinodynamic planning with sampling on a submanifold
Our approach to the manipulation planning problem for elastics rods is based on clas-
sical kynodynamic sampling-based approaches [10] as detailed in Algorithm 2. Some
work has been done in sampling-based planning while projecting configurations on
constraint manifold as sampling strategy [4]. In our case, the complexity of the con-
straints based on the elasticity of the rod material make the formulation of a projector
to the sampling submanifold a difficult task. However, the single global chart derived
from the SEM that parameterize the submanifold Y provides us a direct way to sample
on the manifold and in particular offers the guarantee that it can be covered entirely



Algorithm 1 EXTEND(xfrom, xto)
Require: Time bounds [Tlow, Tup], simulation step time ∆t

1: Select at random first gripper g1
2: Select at random a time limit tmax ∈ [Tlow, Tup]
3: xnew ← xfrom
4: while gripperDistance(xnew, xto, g1) < ε and t < tmax do
5: Apply position control on xnew at g1 for ∆t
6: end while
7: Let g2 be other gripper
8: while gripperDistance(xnew, xto, g2) < ε and t < tmax do
9: Apply position control on xnew at g2 for ∆t

10: end while
11: return xnew

through random sampling.

Algorithm 2 Kinodynamic RRT for an elastic rod with sampling on the quasi-static
states submanifold
Require: Environment model, start configuration xstart, goal region Xgoal

1: Initialize the tree T with xstart
2: while ¬ solved and iter < Nmax do
3: xrand ← random quasi-static state ∈ Y or goal state
4: xnear ← NEAREST(T , xrand)
5: xnew ← EXTEND(xnear, xrand)
6: Add current state xnew to T
7: Add edge (xnear, xnew)
8: end while
9:

The pseudo-metric considered in the NEAREST returns an approximation of ρ(a, b)
is defined by

ρ(xi, xj) =

∫ 1

0

‖pi(t)− pj(t)‖dt (6)

where p(t) ∈ R3 is the translation part of the rod position at q(t) ∈ SE(3). Intu-
itively, this pseudo-metric represents the swept surface area in the workspace between
the two rod states as if all nodes could move in straight line which gives us a lower
bound to the real swept surface area.

4 Results and Discussion
In this section, we will present our motivations to use dynamics and contacts and we
will show and discuss some experimental results obtained in simulation.



4.1 A critical case: the double funnel
Consider a rod of length l and radius r, and the case of an environment with a very
narrow passage for the given length. In the extreme case, this narrow passage would
tend to have the shape of the rod, i.e. here a tunnel of length l + ε and of radius 2r + ε
as illustrated in Figure 4. Let Xcrt be the set of rod configurations that are collision
free when the rod is centered in the tunnel. As ε tends to zero, the set Xcrt tends to be
a unique state of with a zero volume. Consequently, the probability of sampling a state
in Xcrt tends to zero when the tunnel size tends to fit perfectly the rod shape.

Figure 4: A critical narrow passage for an elastic rod represented in the workspace
W (left) and its equivalent illustrated in rod state space X . As ε tends to zero, the
probability of sampling on Xcrt also tends to zero.

This is an example of an extreme narrow passage where sampling-based methods
typically fail. The intuition behind taking advantage of contacts for this type of scenar-
ios would be to:

• allow states to be in contact, i.e. x ∈ ∂Xobs,

• being able to slide along contact boundary ∂Xobs,

• being able to get off the contact.

Considering this, we tested our previously described approach on a double funnel
scenario, with a tunnel of length 2l and a radius 3r (see Figure 5).



Figure 5: The double funnel case where the elastic rod must go trough a very narrow
passage (top) and a solution path (bottom) where the rod must go from the left side to
the right side (view has been clipped for clarity).

This type of scenarios illustrate the advantage of our approach over classical collision-
free sampling-based methods. On this scenario, a classical collision-free sampling-
based method would typically fail as it would have a very low probability to sample
inside the tunnel. Our approach can solve the problem using dynamics and contacts
with good performance results as shown in Table 1.

4.2 Experimental results
A typical application to manipulation planning of elastic rods consists in assembly and
disassembly studies of flexible parts such cables. In the case of disassembly study, the
initial state is generally very constrained and the goal is a free region. Assembly studies
can be solved by a symmetrical process.



In addition to the double funnel case previously described, the following scenarios
have been tested:

• engine (Figure 7) represents a disassembly studies in this context.

• grid (Figure 6) represents a disassembly operation for an elastic rod that is
winded up into a grid.

• powerplant (Figure 1) is a highly constrained scenarios where both initial and
goal states for the elastic rod show a poor ε− goodness.

Solution paths on these scenarios are available in the attached video.

Figure 6: The ”grid” scenario where the rod must go from a winded up state (in green
at left) to a free state (in red at top) and a solution path (at right).



Figure 7: Start (in green at clipped view a) and goal (in red at view b) states for the
disassembly scenario ”engine”. The solution path makes use of contacts (views c and
d).

Each scenario has been run 50 times with a limit in time of 20 minutes. All the
benchmarks were run on a PC with 16GB of main memory and using one core of an
Intel Core i7-2720QM processor running at 2.2GHz. Implementation has been done in
C++ using the Open Motion Planning Library (OMPL) [18].

Results of the manipulation planning on previously presented scenarios are shown
in Table 1. Resolution time and number of generated states are given as an average and
a standard deviation.

Assembly and disassembly scenarios showing difficult narrow passages are solved
efficiently using our approach. In addition, we provide a solution path with accurate
rod dynamics thanks to the simulation based on finite element analysis. This solution
includes the sequence of controls that should be applied to the rod to the solve the
problem, and this information could be used in realistic conditions.

Note that the planner performance significantly decreases with the powerplant sce-
nario, as it differs from typical assembly studies and consists in a complex and highly



Table 1: Kinodynamic planning for elastic rods with contacts results

Scenario
Number of

vertices / faces Success rate
Resolution time

(in seconds)

double funnel 198/388 100% 77.2± 36.0

grid 704/1320 96% 34.4± 25.5

engine 64885/131583 94% 119.6± 109.3

powerplant 24870/20053 31% 402.5± 293.6

constrained case from initial to goal states.

4.3 Discussion about completeness
As our approach relies on sampling on a submanifold of the state space, our algorithm is
probabilistically complete in the sampled submanifold Y . Indeed, our direct sampling
method enables us to cover the entire submanifold Y of quasi-static contact-free con-
figurations through the sampling the process. Furthermore, each infinitesimally small
quasi-static motion that lies entirely in the submanifold Y can be achieved through
dynamic simulation as the both models fit.

Also, there exists a countable number of static equilibrium rod configurations for
given grippers placement, the local planner may fail to reach the desired state by
uniquely controlling grippers positions and fall into another local minimum of elastic
energy. For the purpose of our local method, this does not invalidate the probabilistic
completeness of the approach as there is a non null probability to reach the desired
state. Moreover, these configurations are guaranteed to be close with respect to our
metric, which enables us to keep a good Voronoi bias in Y . For this reason, we first
limited our goal regionXgoal to the set of all static equilibrium configurations for given
grippers positions.

5 CONCLUSION
In this paper, we proposed an approach to the manipulation planning problem of an
extensible elastic rod in collision-free or contact space. We showed that by using a
static equilibrium model, we can efficiently sample on the submanifold of its quasi-
static contact-free states whereas the kinodynamic planning algorithm uses dynamic
simulation and explore the full state space of the rod. Thanks to dynamic simulation,
the planning algorithm can take advantage of contacts by allowing sliding motions in
order to solve difficult narrows passages, where collision-free typical sampling-based
method would fail. We also discussed that we could guarantee the probabilistic com-
pleteness property only the sampled submanifold.



ACKNOWLEDGMENT
This work was supported by the French National Research Agency under the project
Flecto (ANR- Digital Models). The engine industrial model is courtesy of Siemens-
KineoCAM.

References
[1] A.A. Agrachev and Y.L. Sachkov. Control theory from the geometric viewpoint.

Springer, Berlin, 2004.

[2] N.M. Amato and Y. Wu. A randomized roadmap method for path and manip-
ulation planning. In Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on, volume 1, pages 113–120 vol.1, Apr 1996.
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