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Abstract—In the context of handwritten mathematical ex-
pressions recognition, a first step consist on grouping strokes
(segmentation) to form symbol hypotheses: groups of strokes
that might represent a symbol. Then, the symbol recognition
step needs to cope with the identification of wrong segmented
symbols (false hypotheses). However, previous works on symbol
recognition consider only correctly segmented symbols. In this
work, we focus on the problem of mathematical symbol recog-
nition where false hypotheses need to be identified. We extract
symbol hypotheses from complete handwritten mathematical
expressions and train artificial neural networks to perform
both symbol classification of true hypotheses and rejection of
false hypotheses. We propose a new shape context-based symbol
descriptor: fuzzy shape context. Evaluation is performed on a
publicly available dataset that contains 101 symbol classes. Re-
sults show that the fuzzy shape context version outperforms the
original shape context. Best recognition and false acceptance
rates were obtained using a combination of shape contexts and
online features: 86% and 17.5% respectively. As false rejection
rate, we obtained 8.6% using only online features.

Keywords-Mathematical symbol classification and rejection;
symbol segmentation; shape context.

I. INTRODUCTION

Recognition of handwritten mathematical expressions im-

plies solving three tasks: (1) symbol segmentation, (2) sym-

bol recognition and (3) structural analysis. In the first task,

strokes that belong to a same symbol must be grouped. In the

second task, a label must be assigned to each symbol; and in

the structural analysis task, relations between symbols must

be identified, for example superscript or subscript relations.

As it is difficult to find a correct segmentation, several

symbol hypotheses are generated and classifiers must give

a recognition confidence to each hypothesis. Most symbol

classifiers are trained on the recognition of isolated symbols

(only true hypothesis) [1], [2], [3], and it is assumed

that confidence values of miss-segmented symbols (false

hypotheses) will be lower than those for the correctly

segmented symbols.

A different approach uses both true and false hypotheses

to explicitly train the classifier to identify or reject mis-

segmented symbols [4]. Previous results suggest that training

classifiers with this approach can improve the performance

of a mathematical expression recognition system [4]. How-

ever, to the best of our knowledge, there are no previous

works that focus on the development of these classifiers with

rejection option.

In this work, we focus on the problem of handwritten

mathematical symbol hypothesis recognition with rejection

option. We extract symbol hypotheses from complete hand-

written mathematical expressions and train artificial neural

networks to perform symbol classification of true hypotheses

and rejection of false hypotheses (Section II). In addition,

we propose a new version of the well-known shape context

descriptor (SC) [5], called: fuzzy shape context (F-SC)

(Section III). To provide comparable results (Section IV),

we evaluate the proposed methods on the publicly available

Competition on Recognition of On-line Mathematical Ex-

pressions (CROHME 2013) dataset [6].

II. MATHEMATICAL SYMBOL HYPOTHESIS RECOGNITION

AND REJECTION

An online handwritten mathematical expression can be

represented as a sequence of strokes:

E = (s1, s2, s3, . . . , st) (1)

where si is the i-th written stroke, considering time order.

For an expression composed of t strokes, the total number

of symbol hypotheses that can be generated is O(2t). To

limit the number of symbol hypotheses, several heuristics

have been applied: limiting the number of strokes (between 4

or 5) that form a symbol [4], [1], considering only groups of

consecutive (in time order) strokes [7], [8], and considering

groups of only intersected strokes [9].

Despite the fact that the proposed heuristics reduce the

number of symbol hypotheses, the number of false hypothe-

ses is generally bigger than the true ones.

Handwritten variability makes difficult to differentiate true

hypotheses from the false ones. According to the CROHME

2013 competition [6], the best recall and precision of

segmentation obtained by the best University system were

84.97% and 87.08%, respectively.

Recognition of a large number of mathematical symbol

classes is by itself another difficult problem. In addition to
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the intrinsic similarity between some symbols (such as C, c,

P, p) the handwritten nature introduces more ambiguity be-

tween symbols. Results in the CROHME 2013 competition

suggest that there are still a considerable room for further

improvements in terms of symbol classification.

As we do not consider that symbols are already seg-

mented, the scope of our problem includes, at some extent,

both symbol segmentation and recognition. The symbol

segmentation is given by the rejection of false hypotheses,

and the symbol classification is given by the classification

of the correctly accepted symbol hypotheses.

To generate symbol hypotheses from mathematical ex-

pressions, we use a symbol hypothesis generator tool pro-

vided in the Fourth International Competition on Hand-

written Mathematical Expression Recognition (CROHME-

IV) 1. Given an expression, this tool allows us to extract the

whole set of true symbol hypotheses and also false symbol

hypotheses. The false hypotheses are generated by grouping

consecutive (in time order) strokes that not represent true

symbols in the expression.

III. FEATURE SET

We extract offline and online features from symbol hy-

potheses. As offline features, we use the previously defined

shape context [5] and propose a new shape context version:

fuzzy shape context. As online features, we use a set of raw

online data.

A. Shape Context

Shape context was proposed as a shape descriptor in [5]

and has been applied in several symbol recognition problems

with outstanding results. Applications include recognition of

handwritten digits and 3D objects [5], handwritten Tamil

scripts with 156 symbol classes [10] and leaf image classi-

fication (220 leaf classes) [11].

Given a set of points P = {p1, p2, . . . , pn}, the shape

context of a point pi in P is a log polar histogram that

expresses the distribution of the remaining points relative

to pi [5]. Figure 1 illustrates shape context calculation for

two points of a symbol. In that example, the symbol area

is divided into 8 angular regions and 3 radial regions, for

a total of 24 bins. Each bin contains the quantity of points

spatially placed in that bin.

Given that a shape context histogram is defined over a log

polar space, the shape context relative to a point pi is more

sensitive to positions of nearby sample points (local features)

than those of points farther away (global features) [5].

B. Fuzzy shape context

The shape context descriptor was originally defined over

crisp bins. Considering this definition, each point belongs

only to one bin of an histogram.

1http://www.isical.ac.in/∼crohme/

(a) (b)

(c) (d)

Figure 1. Shape context of two points of a symbol “2”: (a) and (c) show
the sampled points and log polar histogram bins used to calculate shape
context. (b) and (d) show the shape context histogram relative to (a) and
(c) respectively. Dark cells mean higher values.

During the sampling process or due to handwritten vari-

ability, small changes in sampled points may be generated.

These changes may affect specially points falling near to the

limits of bins: small displacements near to the end of a bin

may change the total of number of points in that bin.

We extend the shape context definition by considering

bins as fuzzy sets, as shown in figure 2.

(a)

(b)

Figure 2. Fuzzy bins in the (a) radial and (b) angular coordinates. The
arrows in the angular coordinates indicate the continuation given by the
circular nature of shape context.

Given a shape context histogram H = {Binij}, where i
indexes the bins relative to radial coordinate and j indexes

bins in the angular coordinate. For a point P = (Pl, Pθ),
that lies in a bin Binij , the membership value of point P
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is given by:

Mij(P ) = αi ∗ βj (2)

where αi and βj are between 0 and 1 and indicate the

confidence value of P lying in Binij relative to the radial

and angular coordinates, respectively. When P lies in an

intercepting region, the values αi and βj are calculated

according to its position relative to the corresponding co-

ordinate, otherwise they take the value 1. For example, for

the point in P in figure 2, the confidence values will be:

αi =
Pl −Al

Bl −Al
(3)

βj =
Pθ −Aθ

Bθ −Aθ
(4)

Note that with these new definitions, depending on its

position, a point may belong up to four bins. Figure 3 shows

four different positions for calculating the membership val-

ues:

• P position, only bin Bij receives a non-zero value (=1),

• R position, bin Bij and a radial-connected bin receive

non-zero values,

• S position, bin Bij and an angular-connected bin re-

ceive non-zero values,

• Q position, bin Bij and three connected bins receive

non-zero values

Figure 3. Four different positions in a bin Binij . Regions between dotted
lines indicate transition areas between bins

C. Shape contexts as input features for Neural Networks

Shape contexts has generally been applied using a

shape matching approach: given two sets of points P =
{p1, . . . , pn} and Q = {q1, . . . , qn}, to calculate a

similarity between P and Q, shape context is calculated at

each point and a best matching between between points of

P and Q is calculated, using the χ2 metric [5].

However, in a previous work, we showed that using shape

contexts as input features for neural networks, results are

comparable to the matching based approach, but with a

considerable efficiency improvement [12].

When using shape contexts within neural networks, we

can reduce number of features without decreasing perfor-

mance. As shape contexts of near points tend to be similar,

we do not need to calculate shape contexts at each sampled

point. In contrast, we can keep the rate of sampled points (for

instance, 30 points per symbol), but extract shape contexts

of only a subset of points. For example, when using online

data, shape contexts of some consecutive (in time) points

could be avoided.

In our shape context implementation, we used 3 radial

regions and 8 angular regions, for a total of 24 bins. We

extracted 30 points per symbol but only calculated shape

contexts of eight equally distributed (in time order) points.

These values were determined in a previous work [12].

Accordingly, the size of a SC and F-SC feature vector is

8 x 24 = 192.

D. Online Features

As mentioned above, we also extracted raw online data.

For each sampled point, 7 features are extracted: (2) nor-

malized coordinates, sin and cousin of the direction and

curvature (4) and a binary value (0 or 1) that indicates the

state of the stylus in the point [13]. As in this case we also

extract 30 points per symbol, the dimension of the feature

vector is 30 x 7 = 210.

IV. EXPERIMENTATION

A. Experimental setup

To evaluate the proposed methods, we used the CROHME

2013 dataset 2 [6]. This dataset includes expressions col-

lected from several laboratories around different countries

through several kinds of input devices, as digital pen tech-

nologies, white-boards and tablets with sensible screens.

Given this variety of devices, symbols were sampled in

different scales and resolutions.

The dataset is divided into a training part with 8, 835
mathematical expressions and 85,803 symbols and a test

part with 671 expressions and 5,889 symbols. The number

symbol classes is 101.

Using the CROHME-IV symbol generator tool, we gen-

erated 74,285 false symbol hypothesis from the training

expressions and 5,276 from the test expressions. Thus, in

our evaluation, the ratio between true and false hypothesis

is near 1.

It is important to note that symbols which are considered

here come from entire mathematical expressions. Hence, a

symbol might be influenced by its context. For example,

symbols written before and after a symbol X may influence

the way people write X. This may have introduced more

variability on symbol classes.

2The CROHME 2013 dataset is publicly available at: http://www.
iapr-tc11.org/mediawiki/index.php/Datasets List.
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For training neural networks, we split the training data

and perform a cross-validation scheme. In this scheme, we

selected a Multi Layer Perceptron neural network with one

hidden layer containing 150 units when the two sets of

features are used separately. When both feature sets are used

jointly, we also selected one hidden layer but, in this case,

it is composed of 200 units.

We evaluate our methods using symbol recognition rate

(SRR), false acceptance rate (FAR) and false rejection rate

(FRR). Considering Table I, FAR and FRR are calculated

as:

FAR =
#{Accepted junk}

#{{Accepted junk} ∪ {Rejected junk}} (5)

FRR =
#{Rejected symbol}

#{{Accepted symbol} ∪ {Rejected symbol}}
(6)

Table I
SYMBOL HYPOTHESES CLASSIFIER OUTCOMES FOR FAR AND FRR

Output Actual class
Symbol Junk

Accepted Accepted symbol Accepted junk
Rejected Rejected symbol Rejected junk

From the {Accepted symbol} set, we determine the sym-

bols that have been correctly classified (between the 101

classes): {Correct classification}. Thus, we calculate SRR

as:

SRR =
#{Correct classification}
#{Accepted symbol} (7)

In the context of a mathematical recognition system, low

FAR values allow us to reduce the search space for the

correct segmentation and classification search. On the other

hand, low FRR values allow us to keep more true hypotheses

for a posterior final recognition, for example using the

complete expression structure.

B. Results and discussion

Results relative to the Top-1, Top-2 and Top-3 recognition

rates for the test set are presented in table II. Regarding

to the features used separately, we can see that the F-SC

features are the best, with 84.38% Top-1 recognition rate.

Considering all features set, the best results were obtained

combining SC and F-SC with online features: around 86%
Top-1 recognition rate in both cases.

It is important to note that some symbols can not be

recognized by considering only the symbol information.

For example, symbols x, X and × (“\times” latex code)

may be handwritten with an identical shape. To solve those

ambiguities, context from the mathematical expressions must

be used. In these cases, a set of best classifications or top

classifications can be used: best possible classifications can

be kept and in the structural analysis step the best class can

be selected, considering relations with other symbols. Top-3

recognition rates show that combining both features we can

get high confidence of including the true symbol between

the possible classes.

Table II
TOP-1, TOP-2 AND TOP-3 RECOGNITION RATES.

Feature set SRR (%)
Top-1 Top-2 Top-3

SC 83.59 90.00 94.07
F-SC 84.38 89.87 94.45
Online features 82.55 90.15 94.20
Online + SC 86.02 92.47 96.07
Online + F-SC 85.99 92.29 96.13

Table III shows results relative to FAR and FRR. In this

case, best FAR was obtained by the Online + SC features

(17.5%) and best FRR by the online features (8.60%). We

can see also that the F-SC version outperforms SC: while

the F-SC gets almost the same FAR as the SC, the first has

3% less FRR than the second one.

Note that the FAR and FRR are independent of the

ratio symbol/junk in the test set. Although the ratio in the

train set (about 1) influence these rates via the training of

the classifier, we can see that the obtained FRR and FAR

values are far from 50%. This means that our classifier

performs much better than a simple random decision with

prior probability knowledge.

Table III
FALSE ACCEPTANCE RATE (FAR) AND FALSE REJECTION RATES (FRR).

Feature set FAR (%) FRR (%)
SC 20.66 13.47
F-SC 20.72 10.94
Online features 19.45 8.60
Online + SC 17.5 11.26
Online + F-SC 18.39 11.23

V. CONCLUSIONS AND FURTHER WORK

In this work, we propose a mathematical symbol hypoth-

esis classifier with rejection option. As part of the features

set, we propose a new shape context-based feature: Fuzzy
Shape Context. In contrast to the common matching based

approach, we used shape contexts as input features for neural

networks. In this architecture, the F-SC outperforms the SC

in terms of recognition rate and FRR. Best recognition rates

and FAR were obtained combining both features and best

FRR was obtained using only online features.

The good performance of shape context and its combi-

nation with online data suggests further research in this

area. At this regard, an important issue that can be studied

is the way we extract shape context. As described above,

in the current approach, we extract shape contexts at eight
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equally distributed (in time order) points. As a result, shape

contexts is also influenced by the online information: the

order in which strokes are introduced or writing direction

may change the order in which shape contexts are input

to the neural networks. To obtain totally offline features, we

could extract shape contexts at some key points, for example,

the center bounding box of a symbol.

The proposed classifier and future improvements will be

integrated and evaluated into a handwritten mathematical

expression recognition system.
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