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Abstract: The purpose of this paper is to define a method of soil moisture content 
estimation for bare soils based on their spectral signatures in the reflective domain. In a 
first time, this work consists in defining the most efficient and robust methods existing in 
the literature. Two spectral indexes are then retained. In a second time, new methods are 
proposed to overcome their limitations. Owing to correlation matrix tool, two other spectral 
indexes are defined by tacking into account atmosphere impact. Moreover, two global 
methods are defined. The first one is based on the Gaussian model found in the literature 
and the second one uses an existing empirical soil model. All these methods are compared 
on a reference database composed of the spectral signatures and the related soil moisture 
contents measured in laboratory for many soil samples. Finally, a realistic case is simulated 
in order to analyse the impact of a given hyperspectral instrument specifications and the 
influence of the atmospheric water vapour content on all the methods.  

Keywords: Soil moisture content, bare soil, spectral reflectance, spectral indexes, soil 
model. 
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1 Introduction 
 

The knowledge of surface soil moisture is crucial for many applications like trafficability after 
flood, soil – atmosphere exchanges or plant good health. Remote sensing technics (optical to radar) 
have several advantages in comparison with others in situ methods (gravimetric, electromagnetic, 
thermal…) for monitoring Soil Moisture Content (SMC) [1], as they provide better temporal and 
spatial coverage [2]. One of the most challenging remote sensing techniques to estimate the SMC is the 
hyperspectral imagery [3]. Indeed, near future missions like PRISMA (Hyperspectral Precursor of the 
Application Mission) [4] and EnMAP (Environmental Mapping and Analysis Program) [5] will be 
launched in 2015 and 2017, respectively. These two missions will cover the reflective domain from 0.4 
µm to 2.5 µm with a 10 nm spectral resolution. Such technical and instrumental characteristics open 
the way to retrieve SMC as proposed by [6] and [7]. 

Angström [8] demonstrated through lab measurements that soil moisture content had an impact on 
the behavior of soil spectral reflectances in the solar domain. This work exhibited a decrease of the 
reflectance level as SMC increased due to a darkening of the soil surface. Later, other lab acquisitions 
over bare soils [9] [10] confirmed this behavior which has, then, been used to develop SMC 
approaches from spectral reflectance.  

The investigation to explore the possibility of estimating soil moisture content from multispectral or 
hyperspectral remote sensing data, was penalized by the lack of specific database. Liu et al. [10] 
measured the spectral reflectances of ten soil samples and characterized the SMC during a drying 
process. These measurements have been completed by the database described in [17] including the 
spectral reflectances of thirty natural soil samples in [0.4 – 2.5 µm] depending on the SMC and 
measured in laboratory. This database was used to analyze the relationship between the soil moisture 
content and the reflectance spectra. The laboratory measurements was limited to few SMC levels (five 
or six) according to experimental constraints (drying time for example). In order to go beyond this 
limitation, a semi-empirical soil model useful to simulate bare soil spectral reflectances for SMC levels 
not reached by experimentation was then proposed in [17] and compared to other models in the 
literature. These works showed that the database development is a necessary stage to analyze the 
impact of SMC variation on soil spectral reflectances, to model this spectral behavior according to 
SMC and then to specify robust SMC assessment methods based on spectral signature in the [0.4 – 2.5 
µm] domain. 

At present time, in solar domain, three main approaches of SMC assessment can be distinguished: 
combination of spectral bands [6] [11] [12], exponential or gaussian spectral model [7] [13], and 
geostatistical methods [14] [15] [16]. The combination of spectral bands leads to the development of 
analytical methods and spectral indexes. Liu et al. [11] tested the first type of approaches using 
eighteen bare soils samples at different moisture contents characterized in laboratory. They used 
several analytical methods: a relative approach, which normalized spectral reflectance of wet soil by 
spectrum of dry soil, a derivative approach, which applied finite difference method on spectra, and an 
approach by difference, which computed a waveband difference. Their results showed that SMC 
estimation was more efficient using the relative method in the SWIR (Short Wavelength InfraRed) 
domain [1.4 – 2.5 µm]. Concerning the use of spectral indexes for estimating soil moisture of bare 
soils, the best results were obtained with WISOIL [2], SASI (Shortwave Angle Slope Index) [12] and 
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NSMI (Normalized Soil Moisture Index) [6]. Purpose of these indexes has been validated by 
reflectance measurements at different SMC over different bare soils. Lobell et al. [13] have developed 
a spectral exponential model that was applied on four bare soil spectra measured in laboratory. Their 
results confirmed the strong potential of the SWIR domain for SMC estimation. Another model, the 
SMGM (Soil Moisture Gaussian Model) [7], applied on spectral reflectances in the SWIR at different 
moisture contents, showed the possibility to derive a good indicator of SMC from the area under the 
reflectance spectra in [1.8 – 2.8 µm]. Geostatistical methods [14] [15] [16] pointed out the influence of 
topography in soil moisture estimation from in situ measurements. 

The objective of this article is then to define new methods of SMC estimation based on the spectral 
signature of bare soils. Two approaches are then investigated to reach this objective : the local methods 
like spectral indexes and the global methods using the general shape of the spectral signature. The 
proposed methods are compared to the most efficient methods in the literature.  

This paper is organized as follows: Section 2 presents the used database and soil spectral model. 
Section 3 describes the methods of the SMC estimation. Section 3 presents the performances of SMC 
assessment methods applied to laboratory measurements and simulated data. Finally, conclusions 
follow in section 4. 
 

2 Description of the Used Reference Data and Soil Spectral Model 
 

2.1 Reference Database 

The choice of the reference database in the literature is made in relation to the number of samples, 
the disparity of their contrasts and the number of SMC levels. The database developed by Lesaignoux 
et al. described in details in [17] is then used. About thirty natural soil samples, covering different 
ranges of composition (clay, limestone, sandy) and coloration, were collected over eight locations in 
France (from South-West to South-East of France) (Table 1).  
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Table 1. Information of bare soil samples area name defining as [France Department ID][Nearby 
Town], number of collected samples, area geographic location, Munsell color code (Y: yellow; YR: 

yellow red). Extracted from [17]. 

Geographic location Munsell color code [18] Area name Number 
Latitude Longitude Hue Value Chroma

11Belvis 1 42°51’02’’N 02°04’32’’E 2,5Y 6 6 
11Malves 1 43°15’08’’N 02°26’26’’E 2,5Y 7 4 
12Vabres 1 43°41’35’’N 02°25’35’’E 2,5YR 4 4 
13Crau 2 43°8’59’’N 06°04’27’’E 10YR 

10YR 
4 
5 

6 
4 

24Coulouniex 1 45°11’11’’N 00°42’00’’E 2,5Y 4 2 
30Camargue 19 43°40’37’’N 04°37’43’’E 2,5Y 

2,5Y 
5 
6 

2 
2 

30Pujaut 1 44°00’17’’N 04°46’29’’E 2,5Y 8 1 
31Fauga 2 43°23’47’’N 01°17’39’’E 2,5Y 4 3 

31Lauraguais 2 43°23’59’’N 01°43’05’’E 2,5Y 
2,5Y 

5 
5 

4 
3 

81Lautrec 1 43°42’22’’N 02°08’20’’E 2,5Y 3 3 
81StJulien 1 43°59’22’’N 02°20’45’’E 5Y 8 1 
84Avignon 1 43°56’55’’N 04°48’30’’E 2,5Y 7 2 

 
Then, the spectral reflectance measurements of these bare soils were performed in laboratory for 

different SMC (five or six levels). The laboratory facility and protocol measurements are described in 
[17]. The impact of soil moisture on spectral reflectances and the soil classification according to 
spectral behaviour are only remained in the next paragraphs.  

 

2.2 SMC Impact on Soil Spectral Reflectances 
 

The increasing of SMC value leads to [10] [11] [17] (Figure 1): 
• A decrease of the global reflectance level on the spectral domain [0.4-2.5 µm] until a SMC 

threshold value where the inverse relationship is observed; 
• A reduction of the mineral absorption bands; 
• A decrease of the amplitude and the width of the water absorption bands specially at 1.4 µm 

and 1.9 µm.  
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Figure 1. Spectral signature according to SMC for a soil sample extracted from database defined in 
[17]. 

 

 
 

In [17], the reflectance measurements of dry samples were compared to saturated sample ones. 
Spectral behaviour were analysed according to the following spectral intervals : Visible (VIS) domain 
[0.4 – 0.8 µm] and Near and Shortwave InfraRed (NSWIR) domain [0.8 – 2.5 µm].  

Globally, the reflectance difference between dry and sutured samples was less than 0.13 (± 0.04) in 
VIS and 0.3 (± 0.08) in NSWIR (for the entire sample data set). The efficiency of the NSWIR domain 
to SMC assessment in comparison to the VIS domain has been demonstrated. In NSWIR, the 
absorption peak depth of hydroxyl ( −OH ), at 1.4 µm and 1.9 µm increases and gets broader with 
SMC. A loss of absorption peak of the hydroxyl ( −OH ) at 2.2 µm (Figure 1) is noted, which this ion is 
probably not linked to water but to other minerals. Indeed, some minerals are composed of hydroxyl 
ion, and an enhancement of SMC involves a decrease of minerals absorption depth [6] [17]. 

 

2.3 A priori classification of spectral signature of dry soil samples 
 

In [17], the spectral reflectance database related to SMC, achieved by the measurements described 
in the section 2.1, was kept to group together soils with the same spectral behavior, called a priori soil 
class. The Figure 2 illustrates the observed spectral behaviours of dry samples in the VIS and NSWIR 
spectral domains.  

Wavelength (µm)
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Figure 2. Spectral behaviours of dry soil samples (left : VIS [0.4 – 0.8 µm], right : NSWIR [0.8 – 
2.5µm]). 

 

 

 
According to [17], the soil samples are then grouped together in seven a priori spectral classes 

defined by Table 2.  
 

Table 2. The a priori spectral classification of soil samples. 

A priori soil 
spectral class 

Spectral behaviour 
identification 

(Figure 2) 

Soil sample number 

Class 1 T3V – T1NS 5 
Class 2 T3V – T3NS 1 
Class 3 T3V – T2NS 19 
Class 4 T2V – T2NS 3 
Class 5 T1V – T1NS 1 
Class 6 T3V – T4NS 2 
Class 7 T1V – T3NS 1 

 

2.4 Semi-empirical Soil Model 
 
The empirical soil model is chosen among those in literature according to its performance and 
robustness. The integration of SMC in the model is necessary for our objective. The semi-empirical 
soil model detailed in [17] is then retained. It links the spectral reflectance with the SMC for a given a 
priori soil class. This mathematical model was defined according to the reference database described 
in section 2.1.  

The proposed mathematical model is then defined by the following equation [17] : 

Wavelength (µm) Wavelength (µm) 
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( ) ( ) ( ) ( )λλλλρ lglgl
l
SMC cSMCbSMCa

g
+⋅+⋅= 2  (1) 

where l designs the soil spectral class, a, b and c are the spectral coefficients of the polynomial 
function in the solar domain.  

 

3 Description of the Methods to Estimate the Soil Moisture Content 
 

Two categories of methods can be distinguished: the local methods based on the combination of 
particular spectral bands and the global methods using the shape of the spectral signature over a 
spectral range.  

 

3.1 Local Methods : Spectral Indexes 
 

3.1.1 Indexes in the Literature 
 
The most robust indexes in the literature are chosen : Normalized Soil Moisture Index (NSMI) [6] 

and WISOIL [2]. They are described in the Table 3. 
 

Table 3. Existing spectral indexes suitable for SMC assessment (ρ reflectance). 

Spectral index Used spectral bands  Formulation  
NSMI  1,8 µm ; 2,119 µm 

119,28,1

119,28,1

ρρ
ρρ

+
−

 
 

WISOIL 1,3 µm ; 1,45 µm 
3,1

45,1

ρ
ρ

 

 
One of their drawbacks is due to the use of spectral bands close to the spectral absorption bands of 

atmospheric water vapour (centred on the 1.4 µm and 1.9 µm wavelengths) (Figure 3).  
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Figure 3. Spectral wavelengths of interest for local methods. The gray lines represent the atmospheric 
water vapour absorption bands.  

 

 
 
3.1.2 New Indexes 

 
We propose in this work to define a new index overcoming this limitation. To this end, the 

procedure proposed by Haubrock et al. and based on the correlation matrix is achieved [6]. In literature 
only linear correlations are used and we propose to complete the linear correlation coefficient 
(Pearson) with the non-linear correlation coefficient (Spearman).  

The correlation is then computed for the two quantities ),( jinormX λλ  (normalized ratio) and 
),( jislopeX λλ  (slope) defined by the following equations: 

)()(
)()(

),(
ji

ji
jinormX

λρλρ
λρλρ

λλ
+
−

=  (2)

ji

ji
jislopeX

λλ
λρλρ

λλ
−
−

=
)()(

),(  
(3)

where ( )iλρ  and ( )jλρ  respectively represents the reflectance values at the wavelengths iλ  and jλ  

belonging to the reflective domain [0.4 – 2.5 µm]. 
According to laboratory measurements described in 2.1 and the analysis of the SMC impact on 

spectral signature, the wavelength couples ),( ji λλ  which are very sensitive to SMC are located in the 
spectral range [1 – 2.5 µm] for the ),( jinormX λλ  quantity. The results of the correlation matrix for this 

quantity applied on the reference database are shown on Figure 4. The highest R2 correlation 
coefficients are around 80% for wavelengths located in the [2-2.4 µm] range. The wavelength couples 
that lead to the higher correlation coefficient between the SMC and the quantity ),( jinormX λλ  are then 

the followings : 

Wavelength (µm)  

Sp
ec

tra
l r

ef
le

ct
an

ce
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o 2.076 – 2.,228 µm for ),( jinormX λλ : R2 = 87 % - linear correlation 
o 2.,122 – 2.23 µm for ),( jinormX λλ : R2= 87 % - non linear correlation. 

The impact of atmospheric water vapour absorption bands has been taken into account to choose these 
wavelengths (Figure 3). 

 

Figure 4. Linear (left) and non-linear (right) correlation matrix for ),( jinormX λλ  computed with the 
reference database in the [1-2.5µm] domain.  

 

 
 

These results lead to the following spectral indexes:  
• NINSOL (Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation) 

23.2076.2

23.2076.2

ρρ
ρρ

+
−

=NINSOL  (4) 

• NINSON (Normalized Index of Nswir domain for Smc estimatiOn from Non linear 
correlation) 

23.2122.2

23.2122.2

ρρ
ρρ

+
−

=NINSON  (5) 

 

3.2 Global Methods 
 
Two global methods are considered: the convex envelope model based on SMGM [19] and the 

inversion of the soil empirical reflectance model described in 2.4.  
 

3.2.1 Convex Envelope Model 
 

Whiting et al. [19] use the convex envelope to adjust an inverse Gaussian to the spectrum shape in 
the spectral interval [1.8- 2.8 µm]. One drawback of this method is that it is not much more applicable 
for SMC lower than a threshold value. We propose an alternative to overcome this limitation by 
extending the inverse Gaussian to the general spectrum shape of the entire solar spectrum [0.4 – 2.5 

Wavelength (µm) Wavelength (µm) 

Linear correlation Non-Linear correlation 
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µm] (Figure 5, left). The area under the curve achieved by subtracting the convex envelope and the 
spectrum is the criteria linked to SMC (Figure 5, right). 
 

Figure 5. Illustration of the convex envelope method applied on a measured spectral signature (left) 
and the difference between convex envelope and spectrum according to SMC (right). 

 

 
 

The area under the convex envelope increases with SMC (Figure 5, left). The relation between the 
SMC and this area is then modelled by a linear regression.  

 
3.2.2 Inverse Soil Empirical Reflectance Model 
 

The semi-empirical soil reflectance model (see paragraph 2.4) is inverted in order to provide, for a 
given a priori soil class and the related spectral signature, the corresponding SMC. For each soil 
spectra, the inverse model is then assessing SMC by using the equation of the direct model (Equation 
(1)).  

The inversion method is to perform, for each retained a priori soil spectral class, N spectral 
signature modelings corresponding to N SMC values. N is fixed by the number of measured SMC 
levels for the considered soil class. For each wavelength, the input reflectance value is compared to the 
N simulated reflectances. The most relevant SMC value is the SMC which minimizes the quadratic 
error defined by the following equation:  

( )( )∑
=

+⋅+⋅−=
q

i
gglinput icSMCibSMCiaiE

0

22 )()()()(ρ  (6) 

Where i is the wavelength, inputρ  is the spectral reflectance for which the associated SMC value is 

searched and q is the wavelength number.  
In the next, the Inverse Soil Empirical Reflectance model is called ISER model. 

Spectrum 
Envelop 

Wavelength (µm) Wavelength (µm) 
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4 Results and Discussion 
 
The methods of SMC assessment described in the paragraph 3 are applied on the reference spectral 

signatures defined in the paragraph 2.1 in order to assess and compare their performances.  
The performances are measured owing to two criteria : the correlation coefficient R2 and the Root 

Mean Square Error (RMSE).  
 

4.1 Comparison of the SMC Assessment Methods Global 
 
4.1.1 Local Methods 
 

The principle of this validation stage is illustrated by the Figure 6 and breaks down as follows:  
• The index is computed for all the measured spectral signatures described in the paragraph 

2.1, 
• The SMC is represented according to computed index in order to deduce linear (or non 

linear) regression between SMC and index (Figure 6, left - regression represented by the red 
dotted line) and to compute the corresponding R2 value, 

• The SMC is then assessed owing to the linear (or non linear) relation and represented 
according to measured SMC introduced in the paragraph 2.1 (Figure 6, right).  

For the indexes suggested by the literature, 52% of the SMC values obtained with NSMI have an 
relative error greater than 20 % (24 % for WISOIL). Moreover, these two criteria undervalue the SMC.  
 

Figure 6. Variation of the NSMI according to SMC (left) and representation of assessed SMC with 
NSMI according to measured SMC (right). The dashed black lines represent the boundaries of a 

relative error of 20%. 
 

 
 
For the proposed indexes described in the paragraph 3.1.2 (Equations (4) and (5)), the R2 values of 

NINSOL and NINSON are respectively of 87% and 85 %. These values are better than those obtained 

Measured SMC (%) 

A
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d 
SM

C
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) 

NSMI  

SM
C

(%
) 
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with WISOIL and NSMI. The results for NINSON are illustrated by the Figure 7. For the two 
proposed indexes 70 % of the estimated SMC values are characterized by an error lesser than 20 %.  
 
Figure 7. Variation of the NINSOL according to SMC (left) and representation of assessed SMC with 

NINSOL according to measured SMC (right). The dashed black lines represent the boundaries of a 
relative error of 20%. 

 

 

 

4.1.2 Global Methods 
 
The same validation process is applied to convex envelope model based on SMGM and the ISER 

model (§ 3.2).  
For the convex envelop model, the correlation coefficient R2 between the SMC and the area under 

the curve is equal to 80 % with a corresponding RMS error of 5.6 %.  
 
The comparison between the assessed SMC by the ISER model and the measured SMC is 

illustrated for each a priori soil spectral class in the Table 4. The RMSE ranges between 2 and 4 % 
according to the a priori soil class. 
 

Table 4. RMSE values obtained with the inverse model for each a priori soil class. 

Soil spectral class RMSE(%) 
Class 1 4.1 
Class 2 2.2 
Class 3 4.0 
Class 4 3.6 
Class 5 1.9 
Class 6 3.7 
Class 7 2.1 

 
The soil spectral classes composed by an unique soil (class 2, class 5 and class 7) have RMSE 

values lower than 3 % and the corresponding relative error is lower than 10%.  

NINSOL 
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) 
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The soil class 3, which including the largest number of samples, is mainly characterized by an error 
on the SMC estimation lower than 20 % (Figure 8).  

 
Figure 8. Representation of assessed SMC with the inverse model according to measured SMC for the 
a given a priori soil class. The dashed black lines represent the boundaries of a relative error of 20%. 

 

 
 

4.1.3 Synthesis 
 
A conclusion on the performances of the different methods is given in Table 5.  
The performances of the area under the convex envelop are equivalent to WISOIL and NSMI 

performances. The capacities of the inverse soil spectral model to retrieve SMC are closely 
approximates that of the NINSOL and NINSON. All the global and local methods, except for inverse 
soil spectral model, can be applied whatever the soil type. The inverse model needs the soil spectral 
class as input.  

 
Table 5. Synthesis of the methods and their performances. 

Method Type Reference Performance (RMSE) 
NSMI Local [6] 6 % 

WISOIL Local [2] 6 % 
NINSOL Local § 3.1.2 4.4 % 
NINSON Local § 3.1.2 4.8 % 

Envelop convex model Global § 3.2.1 6 % 
Inverse soil spectral model Global § 3.2.2 3.8 % 

 

4.2 Analysis of the Atmosphere Impact on the SMC Assessment Methods : Application to a Realistic 
Simulation Case 

 
In order to test the applicability of the local and global methods to outdoor measurements and to 

evaluate their robustness, the SMC methods are applied on spectral radiances simulated at the top of 
the atmosphere for specific spectral bands corresponding to existing hyperspectral system. This 
requires the definition of a direct and an inverse simulators. The direct simulator is based on the 
radiative transfer code MODTRAN4 (MODerate resolution atmospheric TRANsmission ; [20], [21]) 

Measured SMC (%) 
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C
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) 



Sensors 2014, 14 14 
 

 

and allows to model spectral radiance at sensor level owing to spectral reflectance at ground level (in 
our case laboratory measurements). The inverse simulator is based on the atmospheric correction code 
Cochise (COde de Correction atmosphérique Hyperspectrale d'Images de Senseurs Embarqués; [22]) 
and allows to estimate spectral signature at ground level according to simulated or measured spectral 
radiances by hyperspectral system.  

The following hypotheses are retained : flat and homogeneous ground, surface temperature fixed to 
293°K and atmosphere described by the standard atmospheric model (US Standard Atmosphere 1976) 
[21] with a integrated water vapour content set at 1.5 g.cm-2.  

The considered image acquisition system is the airborne hyperspectral instrument HYMAP [23] 
covering the spectral domain [0.4-2.5 µm] with a 128 spectral bands, a spectral resolution ranging 
from 15 to 20 nm and a spatial resolution around 4 meters at the height of 2000 meters. 

A nominal simulation case (called US0) is then defined according to the previous hypotheses and to 
measured spectral signatures chosen according to the following considerations (Table 6): a soil by 
spectral soil class and three SMC levels (dry, saturated and intermediary)  

 
Table 6. Parameters of the nominal simulation case US0. 

Hyperspectral system  HYMAP 
Acquisition conditions System altitude : 2 km 

Viewing angle : Nadir 
Hour : 11 TU 

Climatic conditions  Atmospheric profile : US Standard 
Integrated vapour content : 1.5 g.cm-2 

Scene description  Surface temperature : 293 °K 
Measured spectral signature (one by soil spectral 
class) for three SMC levels varying from 0 % to 
46 % 

 
The impact of the atmospheric water vapour content on the SMC assessment methods is analyzed. 

The other four simulation cases (US1 to US4) correspond to the variation of the integrated vapour 
content from 0.5 g.cm-2 to 2.5 g.cm-2. This variation range has an impact on the absorption band width 
and the continuum of the atmospheric transmission (Figure 9).  
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Figure 9. Atmospheric transmission of the US standard profile for integrated vapor contents from 

0.5 g.cm-2 to 2.5 g.cm-2. 
 

 
 

4.2.1 Impact of the Hyperspectral System and the Atmosphere 
 
The local methods use specific wavelengths (see paragraph 3.1). They need to be adapted to the 

spectral bands of the retained hyperspectral system [6]. The deviation between the index wavelengths 
and the central wavelengths of the HYMAP spectral bands is, on average, lower than 3 nm.  

 
The atmosphere modelling and the instrumental specification integration have a low impact on the 

local method performances (Figure 10). The NSMI relative error is around 1 % for SMC higher than 
15% and 10 % for SMC lower than 15 %. The WISOIL scatter plot is located close to the bisector 
(relative error in the order of  1.5 %). NINSOL tends to overestimate SMC. However it offers a 
relative error lesser than 10 % for SMC over 15 %. The NINSON relative error is about 5 %.  
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Figure 10. Local methods (NSMI, WISOIL, NINSOL, NINSON) – Representation of the SMC 

computed on the simulated spectra (nominal case US0) according to SMC assessed on the 
corresponding measured spectra (lines of small points on either side of centreline associated to the 

limit of a relative error of 5 % and the long-dashed lines representing the relative error equal to 10 %). 

 

 
 
The global methods are not too sensitive to the introduction of the atmosphere and hyperspectral 

system bands (Figure 11). The relative error of the convex envelop area is 6 %. Its performance is 
comparable to NSMI according to the SMC levels. The ISER model is characterized by a relative error 
inferior to 10 % whatever the SMC value.  

 
Figure 11. Global methods (convex envelop area, ISER model) – Representation of the SMC 

computed on the simulated spectra (nominal case US0) according to SMC assessed on the 
corresponding measured spectra (lines of small points on either side of centreline associated to the 

limit of a relative error of 5 % and the long-dashed lines representing the relative error equal to 10 %). 
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The overall SMC assessment methods are compared with respect to RMSE, assessed owing to 
measured SMC (see paragraph 4.1). The highest value is related to NSMI (around 8 %) and the lowest 
error is obtained with the inverse model (around 3 %). The convex envelop area and WISOIL deliver 
similar performances (around 7 %) as NINSOL and NINSON (around 6.5 %). These results are 
consistent with the findings of the methods applied on reference data (see paragraph 4.1).  

 
4.2.2 Impact of the Atmospheric Water Vapour Content Variation (Simulation Cases US1 to US4) 

 
The NSMI relative errors are lower than 5 % for SMC higher than 15% and lower than 10 % for 

lower SMC values, regardless of the atmospheric water vapour content. For instance, a water vapour 
content increase from 1.5 g.cm-2 to 2.5 g.cm-2 (US0 to US4) leads to a 6 % increase in average error of 
the SMC assessment (Figure 12). NSMI, operating with the Hymap spectral bands based on central 
wavelengths at 1.8 µm and 2.1228 µm, is impacted by the water vapour content variation owing to the 
wavelength at 1.8 µm (Table 3). The SMC values are overestimated according to the increase in water 
vapour content (US3 and US4) and underestimated when it decreases (US1 and US2).  

 
Figure 12. NSMI (right) and inverse soil model (left) results – Representation of assessed SMC for 
US1 to US4 cases according to the assessed SMC for the nominal case (US0). The short and long 

dashed lines represent respectively the limits of the relative error of 5 % and 10 %. 

 

 
 
The variation of the water vapour absorption bandwidth has a low influence on WISOIL, NINSON 

and NINSOL owing to their operated wavelengths (Equations (4) and (5)). The average error on the 
SMC assessment is stable regardless of the simulation case (less than or equal to 1%).  

The assessed SMC with the convex envelop area leads to relative error lower than 5 % for SMC 
values higher than 15 %. In this case, the increase of the water vapour content results in a significantly 
underestimation of the SMC value (if the water content increases from 1.5 g.cm-2 (US0) to 2.5 g.cm-2 
(US4), the mean relative error increase of 16 %) and the water vapour content decrease leads to a SMC 
value overestimation (from 1.5 g.cm-2 (US0) to 0.5 g.cm-2 (US1), the average relative error increases 
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of 5 %). For SMC lower than 15%, the value are largely overestimated. The overestimation of the 
atmospheric water vapour content has an important impact for this method.  

The ISER model is not influenced by changes in atmospheric water vapour content (Figure 12). The 
average relative error of SMC assessment is altered of 0.15% from US1 to US4.  

 
To conclude, the least robust methods of SMC estimation to the atmospheric water content variation 

are NSMI and the convex envelop. WISOIL, NINSOL, NINSON and the ISER model are the less 
sensitive to the variation of this atmospheric parameter.  
 

5 Conclusions  
 
New global and local SMC estimation methods based on hyperspectral data of the reflective 

spectral domain [0.4-2.5 µm] are presented. These methods are validated on experimental and 
simulated data and are compared to existing methods in the literature. 

The specification of SMC assessment criteria is lead owing to existing reference data measured in 
laboratory. Correlation matrixes are used to defined local methods based on spectral indexes which are 
compared to the spectral indexes in the literature (NSMI [6], WISOIL [2]). The proposed global 
methods include an improvement of the convex envelop model proposed by Whiting [7] and the 
inverse soil spectral model based on the semi-empirical soil spectral model proposed by [17]. This last 
one aims to estimating the SMC assuming that the soil spectral class (class related to the spectral 
behavior of the dry soil) is a priori known. All these methods are applied on a reference dataset in 
order to evaluate their performances.  

The study based on the simulation of the realistic case (called nominal) corresponding to the 
modeling of the HyMap spectral bands and acquisition conditions and the atmosphere introduction 
leads to the definition of the most appropriate methods for estimating SMC. The errors are then lesser 
than 10 % and the most efficient methods are NINSOL and NINSON (RMSE of 6.5%) and the inverse 
soil spectral model (RMSE of 3%).  

The sensitivity study in relation to the integrated atmospheric water vapor content has yielded the 
following results: 

• Whatever the selected method and error, the most important impact is obtained for SMC 
lower than 15 %; 

• NSMI and convex envelop area are lesser robust than the other methods; 
• WISOIL, NINSOL and NINSON are slightly affected by the variation of atmospheric water 

vapor content; 
• The inverse soil spectral model has the best performance. 

In order to facilitate the effective application of the inverse soil spectral model, the first future 
works will be devoted to integrate soil class related to chemical analysis. It is necessary to first plan the 
introduction of this kind of soil class in the direct model. Finally, these methods will be tested and 
compared on real remote data acquired on a bare soil landscape in order to define rules for their use 
according to their robustness. The future works are expected to analyze the impact of sparse vegetation 
and adapt the methods for those items.  
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