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Abstract

This study aims at modeling the effect of incoming heat flux fluctuations, on solid material ignition. In order to
propose a general methodology based on the classical ignition theory that can be applied to any kind of solid
target, kernels accounting for the target temperature response regarding an incoming heat flux are considered for
thermally thick and thin solids with low or high thermal inertia. A Fourier decomposition of the incoming heat flux
is then used to calculate the target response to harmonic heat fluxes. Finally, effects of harmonic fluctuations on
ignition are discussed based on the previous analytical results, allowing to discriminate situations where ignition
time is expected to be rather predictable from situations where ignition time is expected to be less predictable
thanks to an uncertainty quantification of the ignition time. To cite this article: Aymeric Lamorlette, C. R.
Mecanique 333 (2005).

Résumé

Quantification de l’incertitude du temps d’ignition fondée sur la théorie classique de l’ignition
et l’analyse de Fourier Cette étude a pour but la modélisation des effets des fluctuations du flux de chaleur
impactant un matériau solide sur l’ignition de ce dernier. Afin de proposer une méthodologie générale, fondée sur la
théorie classique de l’ignition, qui pourra être appliquée à n’importe quel type de cible, des noyaux rendant compte
de la réponse en température à une sollicitation thermique sont considérés pour des solides thermiquement épais et
fins, et pour de basses et hautes inerties thermiques. Une décomposition en séries de Fourier de la sollicitation est
alors utilisée pour calculer la réponse de la cible aux flux harmoniques. Finalement, les effets de ces fluctuations
sont discutés à partir des résultats analytiques précédent, permettant de discriminer des situations où le temps
d’ignition devrait être plutôt prédictible de situations où il risque d’être moins prédictible, et ce grâce à une
quantification de l’incertitude du temps d’ignition. Pour citer cet article : Aymeric Lamorlette, C. R. Mecanique
333 (2005).
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1. Introduction

In the frame of fire safety applications, estimation of flaming ignition time of solid material is a major
issue. A first approximation, often called the classical ignition theory, consists in considering ignition as
two separated mechanisms: Heat and pyrolysis of the solid followed by chemical reactions in the gas phase.
If the pyrolysis gas flow is low with normal oxygen concentration and suggesting that ignition occurs when
the solid surface temperature reaches the pyrolysis temperature, the ignition time corresponds to the time
needed by the solid to heat until it begin its pyrolysis. Indeed, chemical time and mixing time are typically
much smaller than pyrolysis time for piloted flaming ignition. These assumptions allow to model ignition
as a temperature rise process in the solid material as suggested by [1]. Ignition is thus modeled as a
one-dimensional heat conduction problem as proposed by [2] for thermally thick surfaces and as a zero-
dimension heat transfer problem for thermally thin particles as suggested in [3]. In order to mimic more
realistic fire scenarios, an improvement of this theory is proposed in [4], where the radiant heat flux is
suggested to be linearly time depending, as suggested by [5] to take into account the time-varying heat
flux on a stationary target exposed to a spreading fire front. Using this approach, the global trend of the
incoming radiant heat flux can be taken into account. However, turbulent motions are common in the fire
front as explained by [6] and often generate periodic or quasi-periodic flame behavior as demonstrated
by [7] and [8], thus periodic or quasi-periodic fluctuations of the radiant heat flux can occur that are
not taken into account in the previously described modeling. These fluctuations could be responsible for
ignition or fire propagation unpredictabilities since they are not controlled in practical applications: Recent
experimental results on fire propagation by [9] demonstrate the existence of quasi-periodic fluctuations of
the heat flux involving flaming contact on the solid particles composing a fuel layer which seems to be of
great matter in particle ignition. Moreover, the study of [10] demonstrates the effect of wind fluctuations
on fire propagation, involving processes similar to those suggested in [9].
Therefore, this study aims at modeling the effect of heat flux harmonic variations on different solid

target of interest, to mimic the effect of the previously described periodic or quasi-periodic processes and
investigate ignition uncertainty. The latter is defined as the harmonic flux effect on the temperature rise.
It can nevertheless be noticed that if chemical and mixing time were to be considered, uncertainties due
to chemistry and mixing should be added to the uncertainty due to the temperature rise, particularly
when addressing ignition of the smaller targets, according to [11]. This aspect is however not investigated
in this study. The suggested target could be PMMA and wood slabs, insulating foams, excelsior or pine
needles, which can be classified as thermally thick or thin, with low or high thermal inertia, according
to the classification suggested in [11]. Hence ignition is modeled for these solid categories. Solutions are
discussed for practical fire safety applications, thus use of “practical“ in this article will refer to material
thermophysical properties of PMMA, wood and insulating foams, with ignition time ranging from a
few seconds to a few hundred seconds. The limit (regarding the particle size) between thermally thin
and thermally thick material is set according to [12], where a radiative Biot number, depending on the
incoming radiant heat flux, is considered. Indeed, a classical Biot number cannot fully account for the
thermal behavior transition since heating is here due to radiative heat transfer.
In order to illustrate the incoming heat flux harmonic variation effect, an example considering the

ignition under heat fluxes composed of a constant and a harmonic part is presented. Nevertheless, the
methodology allows to extend the study to heat fluxes composed of any kind of slow time-varying varia-
tions part adding any harmonic part.
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2. Mathematical formulation: The classical ignition theory

This section recalls the work of [1,2,3,4,11], using a particular formalism which provides a simple
expression for the target temperature response to a Fourier decomposition of the incoming heat flux,
and suggesting a slight difference for low thermal inertia solids. Indeed, the study of [11] considers series
expansion around t → ∞ whereas this study considers a higher series expansion (in comparison with the
high thermal inertia case) around t → 0.
For thermally thick targets, a one-dimensional semi-infinite inert solid material is considered with one

side exposed to an incoming heat flux Φ(t). The heat conduction equation is solved for the solid target,
introducing θ(x, t) = T (x, t)−T0 where T (x, t) is the solid temperature and T0 the initial temperature of
both the solid and its surrounding air. λ, ρ, Cp and h represent respectively the solid heat conductivity,
its density, its specific heat and a total heat transfer coefficient.
For high thermal inertia solids, the associated surface heat loss can be neglected as shown in [4,11]

whereas it is taken into account for low thermal inertia solids. Hence, kernel K is provided by the
classical solution suggested in [2,11] for high thermal inertia solids. Since the study focuses on the surface
temperature evolution, the kernel K is calculated at x = 0, leading to:

K(0, t) =
2
√
t√

πλρCp
. (1)

Now, considering an arbitrary function Φ(τ) as series of steps and using the heat diffusion equation
linearity, the response θ(0, t) can be expressed as a sum of response with time offsets for an arbitrary
kernel K0:

θ(0, t) =

t∫
0

dΦ

dτ
K0(0, t− τ)dτ . (2)

This result is similar to the solution suggested by [13] for the heat diffusion equation with K0(0, t) =
K(0, t).
For low thermal inertia solids, a kernel KH(0, t) that take into account the surface heat losses through

a total heat transfer coefficient h is provided, according to [2]:

KH(0, t) =
1

h

[
1− exp

(
h2

λρCp
t

)
erfc

(
h√
λρCp

√
t

)]
. (3)

The practical use of this kernel is however limited due to its mathematical form. Nevertheless it can
be simplified assuming that even for material with low thermal inertia, the characteristic time τKH =
λρCp/h2 of the kernel KH(0, t) is always larger than the ignition time, allowing series expansion of the
kernel around t → 0. The latter is then re-written as KH(0, t) = K(0, t) +Kh(0, t) with

Kh(0, t) ≈ − ht

λρCp
+

4

3

h2t3/2
√
π (λρCp)

3/2
. (4)

Application of this simplified kernel to a linear time-dependent heat flux does not strictly allow recovering
the series expansion result of [4] since the series expansion has been made before calculating the convo-
lution. The solution suggested here is nevertheless more accurate regarding the exact solution than the
solution proposed in [4] which has been experimentally validated, thus validating the simplified kernel.
Indeed, in most practical cases, the ignition time is lower than the kernel characteristic time and the
series expansion provides an efficient approximation.
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In order to assert this assumption, the characteristic time τKH
is calculated for typical material as

wood, polymer and insulating foam. Thermophysical properties of these material are extracted from
[14,15,16,17,18] and are listed in table 1. In order to estimate the total heat transfer coefficient, different
approaches can be suggested. For instance, in [19], this coefficient stands for radiant re-emission only
and its value is maximized, providing h = 22W.m−2.K−1. Linearized values of this coefficient provide
h in the range 18 − 20W.m−2.K−1 regarding the reference temperature (ignition or mean temperature
between ambient and ignition temperature). The convective heat transfer coefficient can also be added to
this coefficient, as suggested in [3], however natural convection on a flat surface is often expected to be
negligible regarding radiant re-emission. This assumption is questionable for small targets according to
[11]; however, in the case of thermally thick material, it seems acceptable. For thermally thin materials,
the total heat transfer coefficient should then be a bit higher. Finally, in [20], this coefficient is set at
10W.m−2.K−1. Thus, a value in the range 10 − 20W.m−2.K−1 is used in this study, which seems an
acceptable range. Therefore, considering wood, τKH ∈ [270; 4000]s; For polymer, τKH ∈ [260; 10000]s
while τKH

∈ [2; 150]s for insulating foams. It must be noticed that [14] suggests slightly lower values in
the case of very low thermal inertia. These ranges are summarized in table 1, showing (for wood and
polymer) the relevancy of series expansion for ignition times ranging from a few seconds to a few hundred
seconds. For insulating foam, the efficiency of series expansion observed in [4] in case of ignition time up
to 400s however suggests that the efficient characteristic time τKH

for foam is much greater than table 1
values. Hence, practical dimensionless ignition time t∗ (defined as t∗ = tig/τKH ) for thermally thick solids
will be considered lower or equal to one.
For thermally thin solid targets, such as solid particles composing a forest fuel layer, the solution

suggested in [3] is used, providing the thermally thin kernel k(t):

k(t) =
1

h

[
1− exp

(
− hσ

ρCp
t

)]
. (5)

where σ is the specific area of the solid particles. The thermally thin kernel characteristic time is thus
τk = ρCp/hσ. Since the ratio τk/τKH = h/λσ for a given material stands for its convective Biot number,
it seems acceptable for the characteristic time τk to be considered small in comparison with τKH

.
Thanks to the expression of the convective Biot number, the latter can be estimated for typical forest

fuel layer particle, considering σ in the range 600 − 12000m−1 using values from [18,21,22]. It provides
τk/τKH ∈ [0.005; 0.555] for woody fuel particles. However, the thermally thin limit provided by [12]
suggests that some of these particles can behave as thermally thick (for radiative Biot number Bi >
0.1), which corresponds to σ < 2640m−1 for a 10kW.m−2 radiant heat flux (10kW.m−2 seems to be
an acceptable approximation for the heat flux lower limit, according to critical heat fluxes measured in
[19]). Hence, the specific area will be considered to range approximately from 3000m−1 to 12000m−1 for
particles behaving as thermally thin. Thus, the kernel characteristic time τk is in the range 1.35− 20s for
the thinner woody fuel particles and in the range 30− 444s for the thicker woody fuel particles that still
behave as thermally thin.

3. Temperature response to radiant heat fluxes viewed as Fourier series

The following assumption is now suggested: Effects of radiative heating variations and convective trans-
fer variations can both be represented by apparent incoming heat flux variations. However, to mimic
convective heat transfer variations, the apparent incoming heat flux variation magnitude increases as the
radiative Biot number decreases, since the thermally thinner particles are the most sensitive to convective
heat transfer modifications. Consequently, effects of flame unsteadiness on the radiant heat flux, practical
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uncontrolled variations of heat loss (convective and radiative) and periodic flaming contact (responsible
for both incoming heat flux enhancement and heat loss decrease) could be modeled using periodic in-
coming heat flux variations. This is why the temperature response to a Fourier decomposed heat flux is
investigated, providing thanks to Eq.(2), using the heat conduction equation linearity, for an arbitrary
kernel K0 and a radiant heat flux Φ(t) = Φ0 +

∑
(an cos(ωt) + bn sin(ωt)):

θ(t) = Φ0K0(tig) + ω

(∑
n

Ic −
∑
n

Is

)
, (6)

where ω = 2πn/tig,

Ic n = bn

tig∫
t=0

K0(tig − τ) cos(ωτ)dτ , (7)

and

Is n = an

tig∫
t=0

K0(tig − τ) sin(ωτ)dτ . (8)

Integrals Ic n and Is n are solved analytically for the different kernels suggested in this study yet
expressions are not provided here for clarity.
In order to account for the different periodic and quasi-periodic heat flux fluctuations involved in

realistic ignition situations, pulsation range of buoyant diffusion flames and pool fires are taken as a
reference, using for instance results of [23], based on the pioneer work of [24]. Hence, considering equivalent
fire diameters ranging from 10−2m to 5m to account for pine needle litter fires up to crown fires, the
reference frequencies are expected to be in the range 0.84− 16.8Hz. It corresponds to period in the range
0.06−1.33s. This range provides a first insight on these frequencies, however higher and lower frequencies
should also be considered since other physical phenomenon such as wind gusts, wind/fire front interactions
and wind/vegetation interactions could be responsible for a larger frequency range. For instance the study
of [10] suggests heat flux variations due to wind gusts, with frequencies in the range 0.0006− 0.1Hz.

3.1. A criteria to estimate ignition time uncertainty

The solution θ(t) is now studied for a radiant heat flux Φ(t) = Φ0 + bn sin(ωt). In order to investigate
the effect of the harmonic part and thus ignition time uncertainty, the following expression f is firstly
suggested, accounting for the ratio of the temperature rise due to the harmonic part of the radiant heat
flux and the temperature rise due to the constant part:

f(K0, n) =
ωIc n

Φ0K0(tig)
. (9)

An harmonic dephasing, which is obviously a parameter that is not controlled in a practical ignition case,
should also be taken into account. This is why f possible variation range ∆f = 2|f | will be considered to
account for ignition time uncertainty. This function is calculated for the different kernels and then studied
regarding the harmonic mode n, the perturbation relative magnitude φ = bn/Φ0 (with 0 < φ < 1) and the
dimensionless time to ignition t∗ = tig/τK0 . As suggested earlier, for thermally thick solids, φ is mostly
accounting for radiant heat flux variations. Since experimental radiant heat fluxes from fire fronts in [25]
exhibits only small magnitude temporal variations, φ is practically expected to be small. On the contrary,
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for thermally thin solids, φ can also account for heat loss variations which suggests that φ can increase
almost up to 1 when mimicking flame contact on thermally thin particles.

3.2. Thermally thick target

In the case of thermally thick target with high thermal inertia, function f is depending only on n and
φ:

f(K,n) = −1

2
φ
SFresnel(2

√
n)

√
n

, (10)

where SFresnel is the sinusoidal Fresnel integral. For n ≥ 1, the global trend exhibits a relatively slow
yet always decreasing rate regarding n as shown on figure 1 (the curve t∗ = 0 corresponds to the high
thermal inertia case).
For thermally thick target with low thermal inertia, function f is expressed the following way:

f(KH , n) = f(K +Kh, n) = f(K,n) + f(Kh, n) , (11)

f(Kh, n) =
1

2
φ
t∗

nπ
− 1

4
φ
t∗CFresnel(2

√
n)

n3/2π
, (12)

where CFresnel is the cosinusoidal Fresnel integral. As previously mentioned, t∗ is practically expected
to be lower or equal to one. Consequently, the first term in f(Kh, n) is always lowering the effect of the
term f(K,n) and f(KH , n) global trend is practically monotonic as shown on figure 1, where ∆f(KH , n)
is plotted for different values of t∗ in the range t∗ ∈ [0; 1]. Effects of the apparent incoming heat flux
harmonic part on the ignition are lowered by surface losses which are damping the system response.
This last remark allows the physical interpretation of figure 1 to be done regardless of the thermal

inertia. Hence, according to Eq.(10), frequencies that could be responsible for large ignition time uncer-
tainties are independent of the kernel characteristic time. They rather depend on the ignition time. For
instance, in the case of high thermal inertia, setting n > 7 leads to ∆f/φ < 0.2, which means that the
potential effect of any harmonic mode n > 7 on the temperature rise leading to ignition is lower than 20%
of the harmonic perturbation relative magnitude. Setting a 50% perturbation relative magnitude, if this
perturbation oscillates more than seven times before theoretical ignition (i.e. ignition if no perturbation
occurs), the solid surface temperature rise error due to harmonic perturbations at theoretical ignition
time is lower than 10% of the temperature rise needed to achieve ignition, what can be considered as
acceptable for fire safety application. Relevant frequencies are even lower for low thermal inertia: For
instance, when t∗ = 0.5, ∆f/φ < 0.2 for n > 5.
Considering the previous example with a 50% perturbation relative magnitude, radiation variation due

to flame puffing could then be neglected, even for the larger flame fronts considered in this study, as
long as tig ≥ 10s. It can be neglected for even smaller ignition time in the case of low thermal inertia
materials. For lower frequency phenomenon such as wind gusts, uncertainty can be estimated comparing
the considered physical phenomenon period with the ignition time and using Eq.(10), Eq.(11) and Eq.(12).

3.3. Thermally thin target

For thermally thin target, function f is expressed the following way:

f(k, n) = −φ
2πnt∗

4π2n2 + t∗2
. (13)
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Figure 1. ∆f(KH , n)/φ for t∗ = 0, t∗ = 0.25, t∗ = 0.5 and t∗ = 1

This relation shows that a non-monotonic behavior of f can occur for n ≥ 1. Indeed, the kernel and
the heat flux solicitation can resonate since df(k, n)/dn = 0 when nres = t∗/2π, which corresponds to
Tres = 2πτk where Tres is the resonance period. Hence ∆fmax = φ when n = nres, showing clearly that
some harmonic variations of the heat flux (with period in the range 8.5−250s for thin forest fuel particles)
can greatly modify the ignition time of thermally thin targets. A plot of f(k, n)/φ is provided on figure
2 for t∗ = 10, t∗ = 40 and t∗ = 100 to show the width of the resonating band.
Therefore, in the case of thin forest fuel particles, flame puffing effects of the larger fire fronts considered

in this study are responsible for ∆f/φ = 0.3. This is 50% higher than in the thermal thick case when
tig ∼ 10s. This value is however constant which mean that ∆f/φ = 0.3 even when tig → ∞. Hence, the
relative uncertainty on tig is constant but the absolute uncertainty grows as the ignition time increases.
In the most general case (which means considering not only the finest fuel elements and considering any
fire size), flame puffing frequencies and also any higher frequencies (for instance due to wind/vegetation
interactions) are not expected to interact with the kernel and thus will not generate uncertainty on the
ignition time calculation. However, lower frequencies due to wind gusts or wind/fire front interactions
could be responsible for great uncertainties on the ignition time calculation if theses frequencies are in
the range 0.005− 0.15Hz, regardless of the ignition time.

Concluding remarks

Using the classical ignition theory and a Fourier decomposition for the incoming heat flux on different
kind of solid targets, this study quantifies how harmonic fluctuations of the heat flux can affect ignition
times regarding a main constant contribution. Hence, for thermally thick target, only slow time-varying
fluctuations can affect ignition times due to the characteristic time scale of the associated kernel. Fre-
quencies which have relevant contributions on the ignition time uncertainty are depending linearly on the
inverse of the ignition time. However, for a thermally thin target, the characteristic time scale of the kernel
allows the later to resonate with the solicitation, showing a higher sensitivity (in comparison with the
thermally thick case) to any frequency, plus the existence of particular frequencies (based on the kernel
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Figure 2. ∆f(k, n)/φ for t∗ = 10, t∗ = 40 and t∗ = 100

characteristic time) which interact actively with the ignition process. These frequencies are depending
solely on the kernel characteristic time, contrary to the thermally thick case where it was depending on the
ignition time. Hence, thermally thin kernel frequencies can be compared with the characteristic frequency
of periodic (or quasi-periodic) physical phenomenon involved in fire propagation such as flame puffing,
wind gusts, wind/fire front interactions and wind/vegetation interactions, showing that lowest frequency
phenomenon such as wind gusts are the most likely to generate large uncertainties on the ignition time
calculation.
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Université de Corse, Pascal Paoli ; University of Edinburgh, 2011.

[19] A. Simeoni, J.C. Thomas, P. Bartoli, P. Borowieck, P. Reska, F. Colella, P.A. Santoni, and J.L. Torero. Flammability

studies for wildland and wildland-urban interface fires applied to pine needles and solid polymers. Fire Saf. J., 54:203–
217, 2012.

[20] A.M. Grishin. A Mathematical Modelling of Forest Fires and New Methods of Fighting Them. Publishing House of
the Tomsk University, Tomsk, Russia, 1997.

[21] N.P. Cheney, J.S. Gould, and W.R. Catchpole. The influence of fuel, weather and fire shape variables on fire-spread in
grasslands. Int. J. Wildland Fire, 3(1):31–44, 1993.

[22] W.R. Catchpole, E.A. Catchpole, B.W. Butler, R.C. Rothermel, G.A. Morris, and D.J. Lathan. Rate of spread of
free-burning fires in woody fuels in a wind tunnel. Combust. Sci. and Tech., 131:1–37, 1998.

[23] W.M.G Malalasekera, H.K. Versteeg, and K. Gilchrist. A review of reaserch and an experimental study on the pulsation

of buoyant diffusion flames and pool fires. Fire and Materials, 20:261–271, 1996.

[24] P.J. Pagni. Pool fire vortex shedding frequencies, in Applied Mechanics Reviews, 43(8):153-170, 1990.
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Material type λ [W.m−1.K−1] ρ [kg.m−3] Cp [J.kg−1.K−1] τKH
[s]

Wood 0.12− 0.17 500− 800 1800− 2850 270− 4000

Polymer 0.11− 0.6 940− 2000 1000− 2000 260− 10000

Insulating foam 0.022− 0.037 20− 200 1400− 2000 2− 150

Table 1

Physical property ranges from [14,15,16,17] and [18] and thermally thick characteristic time ranges
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