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Abstract

This work concerns the existence and uniqueness of the acceleration and contact
forces for Lagrangian systems subject to bilateral and/or unilateral constraints with
or without sliding Coulomb’s friction. Sliding friction is known to yield singularities
in the system, such as Painlevé’s paradox. Our work aims at providing sufficient
conditions on the parameters of the system so that singularities are avoided (i.e., the
contact problem is at least solvable). To this end, the frictional problem is treated
as a perturbation of the frictionless case. We provide explicit criteria, in the form
of calculable upper bounds on the friction coefficients, under which the frictional
contact problem is guaranteed to remain well-posed. Complementarity problems,
variational inequalities, quadratic programs and inclusions in normal cones are cen-
tral tools.

1 Introduction

Lagrangian systems subject to (frictional) bilateral and unilateral constraints are con-
sidered. Such systems, mathematically described in Equation (1) below, feature a very
rich dynamics, because they are nonlinear, nonsmooth, and set-valued. A large number
of studies have been led on their well-posedness. Their goal is to formulate conditions
under which (1) possesses a solution, that is, a trajectory (q(·), q̇(·)) belonging to a certain
functional space (with absolutely continuous positions and right-continuous velocities of
local bounded variations), and satisyting (1) for all t > 0. It also consists in determining
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whether a solution is unique for given initial data (q(0), q̇(0)), whether solutions depend
continuously on initial data or not, whether they converge to some equilibrium state (sta-
bility and control analysis [41]), etc. The well-posedness of the dynamical system (1) has
been pioneered in the frictionless case by Schatzman [67] and Monteiro-Marques [49], and
further tackled in [59, 60, 61, 6, 46, 23, 24, 68], and in [4, 7, 50, 71] when Coulomb’s
friction is considered.

Besides such analysis, one may in turn be interested in properties of least mathematical
relevance, but of high interest for mechanical engineers. Typically, are the contact forces
calculable during persistent motion phases ? Are they calculable in a unique way ? If
some solvability results can be obtained in the absence of friction, what happens when
Coulomb friction is added at some contacts ? More generally, how does the system evolve
during persistent contact phases in the presence of friction, e.g., does the dynamics exhibit
some singular states ? In Solid Mechanics, these questions are to be examined by studying
the so-called contact problem, which assumes the mechanical state (q(t), q̇(t)) to be known
at a given time t, and considers the acceleration q̈(t) and the contact forces at time t as
unknowns. It thus results in a merely algebraic system, for which well-posedness remains
a difficult question. Studying the contact problem is of high interest in multibody systems
where one often wants to calculate the contact forces at a certain given time. Another
motivation comes from event-driven numerical integration methods, where one has to
solve the contact problem at a given time where possibly the state of the system may
switch to another mode [1].

In this paper our goal is to study conditions under which the contact problem is
well-posed. We first focus on frictionless systems, then on systems with sliding friction
(single-valued law). Indeed sliding friction is known to yield hard singularities like the
Painlevé paradoxes [27, 56, 5], while it has been shown in the seminal paper [58] that
sticking modes can always, under some mild assumption, be continued in another contact
mode (including detachment from the constraints).

For systems subject to bilateral constraints, the necessary and suffcient conditions for
the existence and uniqueness of the acceleration in the presence of a singular mass matrix
and redundant constraints are given in [20, 76]. The computation of constraint reactions
in the redundant case is adressed via augmented Lagrangian methods in [8, 10, 65, 22],
by a constraint elimination method combined with solvability analysis techniques in [81,
79, 26] and by a pseudo-inverse method in [75]. While the mechanical and geometrical
interpretation of the augmented lagrangian method is well understood [10], only recently
have its convergence and robustness properties been proved in the absence of a linearly
independent constraint qualification hypothesis [37]. In the case of bilateral constraints
with sliding Coulomb’s friction, Matrosov and Finogenko derive an implicit criterion in
[47, 48], which guarantees the uniqueness of the acceleration for small enough friction
coefficients, however no explicit upper bounds are given. In [5] such an upper bound may
be found but concerns only systems with a single contact point. For systems subject
only to unilateral constraints and sliding Coulomb’s friction an existence result based
on small enough friction coefficients and complementarity theory is given in [42] and an
explicit upper bound is established in [58]. The contact problem with mixed (bilateral
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and unilateral) constraints has received surprinsingly less attention, its analysis in the
frictionless case with redundant constraints and a singular mass matrix is given in [13],
while in the frictional sliding case it is established in [35] that it becomes a mixed linear
comlpementarity problem but no explicit condition for its solvability is given.

1.1 Dynamics of Lagrangian systems subject to bilateral, uni-
lateral and frictional constraints

In a Lagrangian formalism such systems may be written generically as follows,







M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b +∇hn,u(q)λn,u +Ht,b(q)λt,b +Ht,u(q)λt,u (1a)

Sliding friction (Coulomb) : λt,i = −µi|λn,i|
vt,i

‖vt,i‖
, vt,i 6= 0 1 6 i 6 m (1b)

Complementarity conditions : 0 6 hn,u(q) ⊥ λn,u > 0 (1c)

Bilateral (holonomic) constraints : hn,b(q) = 0, (1d)

where q ∈ R
n is the vector collecting the generalized coordinates qi, 1 6 i 6 n, assumed

to be independent when all the constraints are removed, q̇ is the vector of generalized
velocities, M(q) = M(q)T is the inertia matrix, always assumed to be at least positive
semi-definite (it may be assumed non-singular in some cases), F (q, q̇, t) collects internal
forces (including forces deriving from a potential, plus Coriolis and centrifugal forces), as
well as external actions on the system such as disturbances or control.

We consider m = mu + mb constraints (or contacts) consisting of mu unilateral (in-
equality) constraints hn,u(q) ∈ R

mu and mb bilateral (equality) constraints hn,b(q) ∈ R
mb .

The matrix ∇hn,u(q) (respectively ∇hn,b(q)) collects on each column the gradient for each
unilateral constraint (for each bilateral constraint, respectively). The vectors of Lagrange
multipliers λn,u ∈ R

mu and λn,b ∈ R
mb are associated with the unilateral and bilateral con-

straints, respectively. From a mechanical point of view, λn,u and λn,b correspond to the
normal components of the contact forces in the unilateral and bilateral case, respectively,
and are obtained from the local contact kinematics [30, Chapter 10] [1, Chapter 3]. The
unilateral constraints and their associated Lagrange multipliers are related through the
complementarity condition (1c), which is to be understood componentwise (per contact).
It models the fact that for each contact i, the normal contact force should not act at a
unilateral contact point if the contact is open (i.e., hn,u,i(q) > 0), and that λn,u,i > 0 if
and only if hn,u,i(q) = 0.

The coefficients of friction at each contact point i are µi > 0. We consider in this study
frictional contacts in a sliding mode only (non-zero relative tangential velocities). Also the
contact problem (with unknowns the acceleration and the contact forces) is considered at
a given time instant. This means that by a proper choice of the local contact kinematics
frames one has

vt,i
‖vt,i‖

= sgn(vt,i), both for 2-dimensional and 3-dimensional friction.

Organization: We first review in detail the frictionless case in Section 2, where results
for the bilaterally and unilaterally constrained cases are recalled. In Section 3, it is shown
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how the problem gets all the more complex as Coulomb’s friction is considered and as
mixed constraints (both bilateral and unilateral) are added.

1.2 Further notations

Mathematical notations R
n is the set of n-vectors with real entries, Rn

+ is the set of n-
vectors with non-negative entries. Let a1, a2, ..., an some given reals, then [a] = diag(ai) is
the n×n diagonal matrix with entries ai. Let A ∈ R

n×n be a real square matrix, its induced
norm is ||A||2 = maxx∈Rn,||x||2=1 ||Ax||2, where ||x||2 is the Euclidean norm on the vector
space R

n. This induced matrix norm is sometimes denoted as ||A||2,2. One has ||A||2 =

σmax(A) =
√

λmax(AAT ) [9, Proposition 9.4.7], where σmax is the maximum singular value
of A, and λmin(·) and λmax(·) are its smallest and largest eigenvalues, respectively [9,
Proposition 9.4.7]. Moreover, if A is invertible, σmin(A) = 1

σmax(A−1)
, where σmin(A) is

the smallest singular value of A [9, fact 6.3.21]. A positive definite (resp. semi definite)
matrix is denoted A ≻ 0 (resp. A � 0), it may be non-symmetric. Let f : Rn 7→ R

p be a
differentiable function. Its Euclidean gradient is ∇f(x) = (∇f1(x) ∇f2(x) . . . ∇fp(x)) ∈
R

n×p, and its Jacobian ∂f

∂x
(x) = ∇f(x)T . The cardinality of a countable set I is denoted

as card(I). Let S ⊆ R
n be a set, its orthogonal complement S⊥ ∆

= {x ∈ R
n|xTy =

0 for all y ∈ S} and is a subspace. Its boundary is denoted as bd(S). One has ker(A) =
Im(AT )⊥, and ker(A) = Im(AT )⊥ for any matrix A.

Mechanical notations Since contacts may be frictionless, or in contrast may involve
Coulomb friction, the following conventions shall be adopted:

• Bilateral contacts: 1 6 i 6 mb, i.e., i ∈ Ib.

– Frictional bilateral contacts (sliding): 1 6 i 6 mµ
b , i.e., i ∈ Iµ

b .

– Frictionless bilateral contacts: mµ
b + 1 6 i 6 mb, i.e., i ∈ I0

b .

• Unilateral contacts: mb + 1 6 i 6 m, i.e., i ∈ Iu.

– Frictional unilateral contacts (sliding): mb + 1 6 i 6 mµ
u, i.e., i ∈ Iµ

u .

– Frictionless unilateral contacts: mµ
u + 1 6 i 6 m, i.e., i ∈ I0

u.

We may therefore rewrite the first line in (1) as

M(q)q̈ + F (q, q̇, t) =
∑

i∈Iµ
b
∇hn,b,i(q)λn,b,i +

∑

i∈I0
b
∇h0n,b,i(q)λ

0
n,b,i

+
∑

i∈Iµ
b
Ht,b,i(q)λt,b,i +

∑

i∈Iµ
u
∇hn,u,i(q)λn,u,i

+
∑

i∈I0
u
∇h0n,u,i(q)λ

0
n,u,i +

∑

i∈Iµ
u
Ht,u,i(q)λt,u,i

(2)
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• Matrix notations : Schur complements and Delassus’ operators are ubiquitous in the
study of contact forces, their mechanical interpretation is that of matrices expressing
the coupling of constraints. In trying to render the equations more readable we
assign these matrices names which reflect the effects they are responsible for. For
example bilateral/bilateral coulings are of two types:

– normal bilateral/normal bilateral : Anb(q)
∆
= ∇hn,b(q)

TM(q)−1∇hn,b(q)

– normal bilateral/tangential bilateral : Atb(q)
∆
= ∇hn,b(q)

TM(q)−1Ht,b(q)

Unilateral/unilateral coupling matrices are defined in the same way, replacing the
letter ’b’ by ’u’ in the above expressions. For the mixed couplings a more explicit
notation is used:

– normal bilateral/tangential unilateral : Anbtu(q)
∆
= ∇hn,b(q)

TM(q)−1Ht,u(q)

1.3 Mechanical systems

Throughout this paper, examples will help illustrate the concepts. The different mechan-
ical systems that will be considered are depicted on Figure 1.
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constraint
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(c) Rod with mixed constraints
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(e) Stretching rod with two
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(f) Articulated rod with two
bilateral constraints

Figure 1: Mechanical systems with constraints.

2 Frictionless systems

This section starts with the classical KKT system for bilaterally constrained systems of
index 1, and then elaborates on how this system is transformed when unilateral constraints
are added. A thorough analysis of the ubiquitous KKT system is proposed in appendix
E.
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2.1 Bilaterally constrained systems

Let us assume that mu = 0, i.e., I0
u = ∅, and that I0

b 6= ∅. The Lagrangian system (1)
boils down to a differential-algebraic equation (DAE) of index 3 [70, 31],

{
M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b
hn,b(q) = 0.

(3)

Reducing the index to 1 consists in differentiating twice the constraint hn,b(q) = 0 to
obtain ∇hn,b(q)

T q̈ + d
dt
(∇hn,b(q)

T )q̇ = 0. This new equality combined with the dynamics
yields the following linear system,

(
M(q) −∇hn,b(q)

∇hn,b(q)
T 0

)

︸ ︷︷ ︸

Mb(q)

(
q̈
λn,b

)

=

(
−F (q, q̇, t)

− d
dt
(∇hn,b(q)

T )q̇

)

. (4)

Time-varying constraints hn,b(q, t) = 0 may be considered in the analysis. Then d
dt
hn,b(q, t) =

∇hn,b(q, t)
T q̇(t) +

∂hn,b

∂t
(q, t) and d2

dt2
hn,b(q, t) = ∇hn,b(q, t)

T q̈(t) + d
dt
(∇hn,b(q, t)

T )q̇(t) +
∂
∂q

∂hn,b

∂t
(q, t)q̇(t) +

∂2hn,b

∂t2
(q, t). If needed it is thus sufficient to add the missing terms to

step from the time-invariant to the time-varying case. Recall that M(q) is assumed to
be symmetric positive semi-definite (with possibly rank(M(q)) < n). The matrix in
the left-hand side, denoted as Mb(q) and often called the DAE matrix, is ubiquitous
not only in the analysis and numerics of Lagrangian systems with holonomic constraints
[70, 31, 40, 76, 73, 20, 80], but also in convex quadratic minimization. In the latter con-
text, the Mb(q) matrix is referred to as the KKT matrix and system (4) corresponds to
the KKT system of the following quadratic minimization problem [66, §10.1.1],

q̈(t) = argminz
1
2
zTM(q)z + F (q, q̇, t)T z

subject to ∇hn,b(q)
T z + d

dt
(∇hn,b(q)

T )q̇ = 0,
(5)

which can be, in the case when M(q) is non-singular, interpreted mechanically as the
Gauss principle of least constraints1 applied to a Lagrangian system subject to bilateral
holonomic constraints [75].

The DAE or KKT matrixMb(q) is a positive semi-definite matrix. The fact thatMb(q)
has a skew-symmetric part in (4) is not intrinsic to the problem. Indeed it stems from an
arbitrary choice in the way the bilateral constraints are introduced in the dynamics (1),
and thus of the choice of the sign of the multiplier. By changing the sign of the multiplier,
the problem may be analyzed equivalently without the minus sign in −∇hn,b(q), thus
setting Mb(q) symmetric (meanwhile causing the loss of positiveness for Mb(q)). This is
actually the convention adopted in most of the DAE literature. Next proposition gathers
solvability results for the system (4) from Optimization [66, §10.1.1] and Mechanics [20].

1Gauss’ principle of least constraints, applied to a constrained motion, amounts to minimizing the
kinetic distance between the actual generalized acceleration z of the body and the generalized acceler-
ation z∗ it would have in the absence of constraints (here, z∗ = M(q)−1F (q, q̇, t)), over all compatible
accelerations.
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Proposition 1 Consider the KKT system in (4).

• (i) Let mb < n and ∇hn,b(q) have full (column) rank mb. ThenMb(q) is non-singular
(or equivalently, given (q, q̇) and any arbitrary right-hand side vector of (4), there
exists a unique solution (q̈, λn,b) to (4)) if and only if

ker(M(q)) ∩ ker(∇hn,b(q)
T ) = {0}. (6)

Moreover, if M(q) ≻ 0, then the multiplier λnb can be computed in closed form by
solving the linear equation

Anb(q)λn,b + wb(q, q̇, t) = 0, (7)

where Anb(q) = Anb(q)
T ≻ 0, corresponding to the Schur complement2 of M(q)

in the DAE matrix Mb(q), and where wb(q, q̇, t) = −∇hn,b(q)
TM(q)−1F (q, q̇, t) +

d
dt
(∇hn,b(q)

T )q̇. Injecting the expression λn,b = −Anb(q)
−1wb(q, q̇, t) in the dynamics

then yields a dynamical system which sets the submanifold {(q, q̇) ∈ R
n × R

n |
hn,b(q) = 0 and ∇hn,b(q)

T q̇ = 0} invariant.

• (ii) Let ∇hn,b(q) have arbitrary rank and satisfy the compatibility of constraints, i.e.,
− d

dt
(∇hn,b(q)

T )q̇ ∈ Im(∇hn,b(q)
T ). Then, given (q, q̇) and an arbitrary force vector

F (q, q̇, t),

– A solution (q̈, λn,b) of (4) exists, and

– The acceleration q̈ and the generalized contact force ∇hn,b(q)λn,b are unique,

if and only if condition (6) holds.

Proof It follows from the material in section E items (iii) (iii’) and (iv). �
Item (ii) obviously relies on weaker assumptions than item (i), since ∇hnb(q) is not

required to have full column rank mb, but rather satisfies the compatibility of constraints,
as in [20]. In particular, we consider in (ii) cases where mb > n, i.e., where Mb(q)
is necessarily a singular matrix, and where some contraints are redundant. Note that
provided M(q) ≻ 0, the Schur complement satisfies Anb(q) = Anb(q)

T � 0. Furthermore,
we have ker(Anb(q)) = ker(∇hnb(q)). In particular, Anb(q) is non-singular if and only if
∇hnb(q) has full column rank mb ≤ n. Singular mass matrices and redundant constraints
are common features of multibody dynamical systems subject to bilateral constraints, due
to rotation parameterization [69], or redundant generalized coordinates [76, 77].

2The Schur complement of the invertible matrix A11 in the m × n matrix A =

(
A11A12

A21A22

)

, is the

matrix A22 − A21 A
−1
11 A12. The Schur complement of the invertible matrix A22 in A, is the matrix

A11 −A12 A
−1
22 A21.
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Example: 2D bilaterally constrained rigid rod Let us study the sliding rigid rod
depicted in Figure 1(a), which can be seen as a rigid pendulum with a frictionless sliding
base. The only forces applied here are gravity (oriented downwards) and the net (normal)
contact force λnb (taken positive by convention when oriented upwards). Let m > 0 be
the mass of the rod and l > 0 its total length. Let us choose q = (x, y, θ)T , where x and
y are the coordinates of the center of mass of the rod, and θ ∈ [0, π] is the angle between
the horizontal line and the main axis of the rod. The dynamic equations read







mẍ = 0
mÿ = −mg + λnb
m l2

12
θ̈ = − l

2
cos θ λnb

hn,b(q) = y − l
2
sin θ = 0,

(8)

where the last equality expresses the prismatic constraint applied onto the bottom tip of
the rod. Note that the multiplier λnb ∈ R may take positive (upward net force) or negative
(downward net force) values. Formulating (8) as the canonical system (4), one obtains
M(q) = M = diag(m,m, ml2

12
), ∇hn,b(θ) = (0, 1,− l

2
cos θ)T , F (q̇, q, t) = F = (0,mg, 0)T .

Observe that both M and ∇hnb(θ) have full rank, hence this case study falls into the first
(the most classical) category (i) examined in Proposition 1. M being full rank, the Schur
complement of the DAE matrix is well-defined and can be computed as the scalar number
Anb(θ) = ∇hnb(θ)

TM−1∇hnb(θ) =
1+3 cos2 θ

m
. The reduced equation for λnb then boils down

to a linear scalar equation Anb(θ)λnb + wb(θ, θ̇) = 0, where wb(θ, θ̇) =
d
dt

(
∇hTnb

)
q̇ − g =

l
2
θ̇2 sin θ− g. As expected, Anb(θ) is non-singular and thus the solution for λnb exists and

is unique. Similarly, from the dynamic equation (8) there exists a unique solution for the
generalized acceleration q̈ of the system. Finally we get

λnb = m

(
l
2
θ̇2 sin θ + g

1 + 3 cos2 θ

)

q̈ =

(

0,−g +
l
2
θ̇2 sin θ + g

1 + 3 cos2 θ
,−

6

l
cos θ

(
l
2
θ̇2 sin θ + g

1 + 3 cos2 θ

))T

.

2.2 Unilaterally constrained systems

Now we assume that all contacts are unilateral, mb = 0, i.e., Ib = ∅. Let us recall the
so-called contact linear complementarity problem (LCP).

2.2.1 Construction of the contact LCP

Proposition 2 Let h(·) and λ(·) be two functions of time, and let 0 6 h(t) ⊥ λ(t) > 0
for all t. Assume that h(·) is continuous, ḣ(·), ḧ(·) and λ(·) are right-continuous at some
time t. (i) Let h(t) = 0, then 0 6 ḣ(t) ⊥ λ(t) > 0. (ii) Let h(t) = 0 and ḣ(t) = 0, then
0 6 ḧ(t) ⊥ λ(t) > 0.

Proof: (i) For any t
′

> t one has h(t
′

)− q(t) =
∫ t

′

t
ḣ(s)ds. Suppose that ḣ(t) < 0. Since

ḣ(·) is right-continuous, there exists ǫ > 0 such that ḣ(s) < 0 for all s ∈ [t, t + ǫ). Thus
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for any t
′

∈ [t, t + ǫ) one has h(t
′

) < 0 which is impossible. Thus one has ḣ(t) > 0. Now
let ḣ(t) > 0, by continuity there exists ǫ > 0 such that for all t

′

∈ (t, t + ǫ), one has
ḣ(t

′

) > 0. Consequently h(t
′

) > 0 for all t
′

∈ (t, t + ǫ), and λ(t) = 0. Now suppose that
λ(t) > 0, thus h(t) = 0. Assume that ḣ(t) > 0 so that h(t

′

) > 0 for all t
′

∈ (t, t + ǫ),
so that λ(t

′

) = 0 for all t
′

∈ (t, t + ǫ): this is a contradiction and consequently ḣ(t) 6 0.
From the non-negativeness one infers ḣ(t) = 0. Hence (i) is proved. Part (ii) is proved in
a similar way. �

One sees that Proposition 2 involves the lexicographical inequality (h(t) ḣ(t) ḧ(t)) < 0
3. Lexicographical inequalities are ubiquitous in the analysis of unilaterally constrained
dynamical systems [53, 78, 2, 30, 34, 72, 74]. Assume that q(·) and hn,u(·) are con-
tinuous, while q̇(·), q̈(·) and λn,u(·) are right-continuous. Replacing h(t) with hn,u,i ◦
q(t) and λ(t) with λn,u,i(t) allows one to assert that hn,u,i(q(t)) = 0 implies that 0 6

∇hn,u,i(q(t))
T q̇(t) ⊥ λn,u,i(t) > 0, while hn,u,i(q(t)) = 0 and ∇hn,u,i(q(t))

T q̇(t) = 0 implies
0 6 ∇hn,u,i(q(t))

T q̈(t) + wu,i(q, q̇, t) ⊥ λn,u,i(t) > 0, where wu(q, q̇, t) is in (11). In fact
since we disregard impacts we may even assume that q̇(·) is continuous. In view of this
the following mixed LCP (MLCP) whose unknown is the acceleration, and which is the
counterpart of (4) for unilateral constraints, holds:







M(q)q̈ + F (q, q̇, t) = ∇hn,u(q)λn,u

0 6 λn,u ⊥ ∇hn,u(q)
T q̈ + d

dt
(∇hn,u(q)

T )q̇ > 0.
(9)

2.2.2 Analysis of the contact LCP

In case M(q) ≻ 0, the MLCP (9) is easily transformed by elimination of q̈ to construct
the contact LCP, that is the counterpart of (7):

Definition 1 (Frictionless Contact LCP) Let µi = 0 for all 1 6 i 6 m, mb = 0,
mu > 0, and M(q) ≻ 0. The frictionless contact LCP is given by:

0 6 λn,u ⊥ Anu(q)λn,u + wu(q, q̇, t) > 0, (10)

where Anu(q) = ∇hn,u(q)
TM(q)−1∇hn,u(q) is the Delassus’ matrix, and

wu(q, q̇, t) = −∇hn,u(q)
TM(q)−1F (q, q̇, t) +

d

dt
(∇hn,u(q)

T )q̇. (11)

If at a given time t the solution of (10) satisfies λn,u(t) > 0, then the contact mode exists
at t. If λn,u(t) = 0 it may be that another mode has to be considered, depending on
wu(q, q̇, t) being > 0 or null (componentwise). In a more general situation it may occur
that some components of the multiplier are positive while others are zero.

The next proposition gathers results from Moreau [51, 52], Lötstedt [43], Pang and
Trinkle [57], Brogliato and Goeleven [11, 13].

3(x1 x2...xn) < 0 if the first non-zero entry xj > 0, or all entries are zero.
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Proposition 3 (Frictionless, unilateral constraints) Let µi = 0 for all 1 6 i 6 m,
mb = 0, mu > 0. Let also M(q) ≻ 0.

• (i) The LCP (10) has a unique solution for any wu(q, q̇, t) if and only if the constraint
functions hn,u,i(q) are independent (⇒ m 6 n).

• (ii) If λn,u,1 and λn,u,2 are any two solutions of the LCP in (10), then ∇hTn,u(q)λn,u,1 =
∇hTn,u(q)λn,u,2 and wu(q, q̇, t)

Tλn,u,1 = wu(q, q̇, t)
Tλn,u,2. If the LCP in (10) has at

least one solution at t, and given unique (q, q̇), then q̈ is unique.

• (iii) The LCP in (10) is solvable if for any z ∈ R
m in the set of solutions of the

homogeneous LCP: 0 6 z ⊥ Anu(q)z > 0, one has zTwu(q, q̇, t) > 0.

• (iv) The implication λn,u ≥ 0,∇hn,u(q)λn,u = 0 ⇒ λTn,u
d
dt
(∇hn,u(q)

T )q̇ > 0 holds if
and only if the LCP in (10) is solvable.

• (v) If d
dt
(∇hn,u(q)

T )q̇ ∈ Im(Anu(q)) then the LCP in (10) is solvable.

Let now M(q) � 0 and the gap functions hn,u,i(q), 1 6 i 6 mu satisfy the Mangasarian-
Fromovitz constraint qualification.

• (vi) The MLCP in (9) is solvable if TΦu
(q)∩ker(M(q)) = {0}, where TΦu

(q) = {v ∈
R

n|∇hn,u(q)
Tv > 0}, Φu = {q ∈ R

n|hn,u(q) > 0}.

Proof: Item (i) follows from the symmetry of Anu(q) and the important fact that
ker(Anu(q)) = ker(∇hn,u(q)), since the symmetric positive semi definite matrix Anu(q)
is a P-matrix if and only if it is invertible. Item (ii) is a direct application of The-
orem 1 in section B, and implies that the mere existence of a solution to the LCP
in (10) assures that the acceleration is unique, independently of n, m and the con-
straints jacobian matrix rank. Item (iii) follows from Theorem 2, since Anu(q) is pos-
itive semi definite and hence copositive. Item (iv) is stated in [57, pp.211-212] with-
out proof, we give the details of how to prove (iv) and (v) for completeness. For the
“only if” part in item (iv) one remarks that the condition (λn,u ≥ 0,∇hn,u(q)λn,u = 0)
is equivalent to (λn,u ≥ 0, λn,u ∈ Ker(Anu(q))), which is in turn equivalent to λn,u
being a solution of the homogeneous LCP(Anu(q), 0). Next, one has the inequality
λTn,u(−∇hn,u(q)

TM(q)−1F (q, q̇, t) + d
dt
(∇hn,u(q)

T )q̇) ≥ 0, the first term being zero and
the second non-negative by hypothesis. Hence the conditions for item (iii) hold and the
LCP(Anu(q), wu(q, q̇, t)) is solvable. Conversely, if LCP(Anu(q), wu(q, q̇, t)) is solvable then
there exists a feasible element z such that Anu(q)z+wu(q, q̇, t) ≥ 0. Let λn,u be any element
such that λn,u ≥ 0,∇hn,u(q)λn,u = 0. Then one has the inequality λTn,u(Anuz + wu) ≥ 0.

From the structures of wu(q, q̇, t) and Anu(q) one deduces that λTn,u
d
dt
(∇hn,u(q)

T )q̇) ≥ 0.
Thus the implication in (iv) holds. Item (v) gives sufficient conditions for the hypothesis
of (iv) to hold. Any element in the range of Anu(q) is orthogonal to the nullspace of
Anu(q) (which is the same as ker(∇hn,u(q))). Hence, if

d
dt
(∇hn,u(q)

T )q̇ ∈ Im(Anu(q)) then
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for all non-negative λn,u in the nullspace of Anu(q) one has λ
T
n,u

d
dt
(∇hn,u(q)

T )q̇ = 0, so the
hypothesis of (iv) holds. The proof of item (vi) relies on the results in [3], see [13]. �

It is interesting to compare Proposition 3 (vi) and (6): the null space is replaced by
the tangent cone. In [11] item (iv) is stated as d

dt
(∇hn,u(q))q̇ = 0, however due to the

structure of wu(q, q̇, t) it may be replaced by this inequality as noted in [57, pp.211-212].
It is noteworthy that in item (iv) the force F (q, q̇, t) plays no role. Let us note that if
wu(q, q̇, t) > 0 the LCP in (10) is solvable, since λn,u = 0 is a solution (possibly not the
only one). This is however a rather stringent requirement. Corollary 3.8.12 in [18] may
also be used in our context. Indeed, given that Anu(q) = Anu(q)

T � 0, the LCP in (10) is
equivalent to the convex quadratic program

λn,u = argminz>0

1

2
zTAnu(q)z + wu(q, q̇, t)

T z (12)

This QP is solvable if and only if it is bounded by below on the set {z | z ≥ 0, z ∈
ker(Anu(q))}, hence retrieving the condition of item (iv). We shall see that when friction
is considered the positivity may be kept, however the symmetry is usually lost.

The uniqueness of q̈ may be deduced following another path that necessitates some
convex analysis and variational inequalities theory (while proving Proposition 3 requires
tools from Complementarity Theory [18]). The complementarity conditions in (9) are
equivalently rewritten as the inclusion in a normal cone λn,u ∈ −NR

mu

+
(∇hn,u(q)

T q̈ +
d
dt
(∇hn,u(q)

T )q̇). Then using the chain rule of convex analysis (see e.g. Proposition A.2
in [14]) it follows that:

∇hn,u(q)λn,u ∈ −NK(q,q̇)(q̈) (13)

where

K(q, q̇) = {x ∈ R
n | ∇hn,u(q)

Tx+
d

dt
(∇hn,u(q)

T )q̇ > 0} (14)

is convex polyhedral. We suppose here that K(q, q̇) is non-empty, for otherwise the
problem we are dealing with is simply meaningless. This translates into the classical
constraint qualification for the chain rule [64, Theorem 23.9]

Assumption 1 Im(∇hn,u(q)
T ) contains a point in R

mu
+ − d

dt
(∇hn,u(q)

T )q̇.

Therefore the MLCP (9) is equivalently rewritten as the inclusion:

M(q)q̈ + F (q, q̇, t) ∈ −NK(q,q̇)(q̈) (15)

Proposition 4 Let M(q) ≻ 0, m and n be arbitrary integers. The inclusion in (15) has
a unique solution q̈.

The proof follows from Theorem 6 in [3] since M(q) ≻ 0. Consequently the MLCP (9)
with unknown q̈ is well-posed also. This is in fact what Moreau proved in [51, 52] using
another reasoning. The case when M(q) has low rank r < n may be tackled via the
tools in [3], however this is outside the scope of this article, see [13]. It is nevertheless
noteworthy that the formulations in (15) or (4) do not a priori rely on the assumption that
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M(q) ≻ 0, and this will be the case of all their extensions in the sequel. The existence
and uniqueness of the acceleration for given position and velocity, is closely linked to
Gauss’ principle of mechanics (which is consequently extended to systems with unilateral
constraints). Indeed since M(q) is symmetric and at least positive semi definite, (15) is
equivalent to (compare with (5)):

q̈ = argminz∈K(q,q̇)
1
2
zTM(q)z + zTF (q, q̇, t)

= projM(q)[K(q, q̇);−M(q)−1F (q, q̇, t)] (in case M(q)) ≻ 0).
(16)

The existence and uniqueness of q̈ in Proposition 3 is clearly sufficient only since it
relies on the existence of a solution λn,u of the contact LCP, while the acceleration existence

relies on the existence of the generalized force Fn,u(q)
∆
= ∇hn,u(q)λn,u. Further quadratic

programs obtained for the unilaterally constrained case may be found in [11, §4.4.1], using
Dorn’s duality. They summarize various results (including (12) and (16)), some of which
were obtained by Moreau [52, 51] and Lötstedt [43]. It is noteworthy that (15) is written
in a more general setting in [29, Equ. (8.11)], such that K(q, q̇) = TTΦu(q)

(q̇). Here we deal

with the case when hn,u(q) = 0 and ∇hn,u(q)
T q̇ = 0, i.e. q ∈ bd(Φu) and q̇ ∈ bd(TΦu

(q)),
for it is clear that if hn,u(q) = 0 and ∇hn,u(q)

T q̇ > 0, or if hn,u(q) > 0, then q̈ ∈ R
n.

Remark 1 As announced in the introduction, the existence and uniqueness issues of
solutions (q(·), q̇(·)) of the dynamical system (1) over R

+ is not tackled here, where only
the contact complementarity problems are studied. It is however noteworthy that well-
posedness results as in [60] or [6], rely on the full rank of the Delassus’ matrix computed
at the active constraints. This demonstrates that the contact LCP well-posedness and the
dynamical system’s well-posedness, have strong connections.

Example: Unilaterally constrained rigid rod Consider the system in Figure 1(b)
with a unilateral constraint. The rod is allowed to slide on the horizontal plane but it
may also take off (note that θ is assumed to belong to [0, π] so that the whole rod should
remain in the upper half space). This example corresponds to the classical example of
Painlevé, albeit without friction. The dynamics of the system reads







mẍ = 0
mÿ = −mg + λnu
Iθ̈ = − l

2
cos θλnu

0 ≤ hnu(θ) = y − l
2
sin(θ) ⊥ λnu ≥ 0

where the complementarity expresses the unilateral constraint applied onto the bottom
tip of the rod. In contrast with the bilateral case, the multiplier λnu ∈ R

+ can take
positive values only, meaning that the contact force should always be oriented upwards.
Derivations of M , F , and ∇hnu are identical to the bilateral case (replacing ∇hnb with
∇hnu), and the LCP in λnu reads

0 ≤ Anu(θ)λnu + wu(θ, θ̇)⊥λnu ≥ 0
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with Anu(θ) =
1+3 cos2 θ

m
and wu(θ, θ̇) =

l
2
θ̇2 sin θ − g. Since Anu(θ) ≻ 0, the solution for

λnu (and thus for q̈) exists and is unique. This is in accordance with Proposition 3(i),
which applies here since ∇hnu has full column rank.

2.3 Unilaterally/bilaterally constrained systems

We now consider the case when both bilateral and unilateral constraints are involved.
Strangely enough, it is only recently that the analysis of this case has received attention
[11, 13], though it may represent the most common case in practice [62]. Let us write the
bilateral constraints on the acceleration level. The MLCP in (9) is augmented as follows:







M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b +∇hn,u(q)λn,u

0 6 λn,u ⊥ ∇hn,u(q)
T q̈ + d

dt
(∇hn,u(q)

T )q̇ > 0

∇hn,b(q)
T q̈ + d

dt
(∇hn,b(q)

T )q̇ = 0.

(17)

LetM(q) ≻ 0. The equality is used to rewrite (17) as the following MLCP, which extends
both (7) and (9):







(a) M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b +∇hn,u(q)λn,u

(b) ∇hn,b(q)
TM(q)−1∇hn,b(q) λn,b +∇hn,b(q)

TM(q)−1∇hn,u(q) λn,u

−∇hn,b(q)
TM(q)−1F (q, q̇, t) + d

dt
(∇hn,b(q)

T )q̇ = 0

(c) 0 6 λn,u ⊥ ∇hn,u(q)
T q̈ + d

dt
(∇hn,u(q)

T )q̇ > 0

(18)

In the following we are going to follow different paths for the analysis of this MLCP.

2.3.1 Analysis of acceleration inclusions

Existence and uniqueness of q̈ via a first inclusion: Let us try to mimic the
developments of section 2.2, in particular the steps that lead to the inclusion (15). The
MLCP in (18) is a mixture of equality and complementarity constraints. Let us make the
following assumption:

Assumption 2 M(q) ≻ 0 and the mb × mb matrix Anb(q) is positive definite for all
q ∈ R

n (⇔ ∇hn,b(q) has rank mb).

We may use the second equality in (18) to express λn,b as a function of λn,u (the couplings

between both set of multipliers comes from the matrixAnbnu(q)
∆
= ∇hn,b(q)

TM(q)−1∇hn,u(q);
this shows why jumps in λn,u may induce jumps in λn,b). Inserting this expression in the

13



dynamics one obtains:

M(q)q̈ + P (q)F (q, q̇, t) +∇hn,b(q)(∇hn,b(q)
TM(q)−1∇hn,b(q))

−1 d
dt
(∇hn,b(q)

T )q̇

= P (q)∇hn,u(q)λn,u

0 6 λn,u ⊥ ∇hn,u(q)
T q̈ + d

dt
(∇hn,u(q)

T )q̇ > 0

(19)

with:
P (q) = I −∇hn,b(q)Anb(q)

−1∇hn,b(q)
TM(q)−1 (20)

This is equivalent to an inclusion that extends (15):

M(q)q̈ + P (q)F (q, q̇, t) +∇hn,b(q)Anb(q)
−1 d

dt
(∇hn,b(q)

T )q̇ ∈ −P (q) NK(q,q̇)(q̈) (21)

Use was made of (13) to obtain (21). Three facts about P (q) ∈ R
n×n are hence:

∇hn,b(q)
TM(q)−1P (q) = 0, M(q)−1P (q) ∈ R

n×n is symmetric positive semi definite
with rank r = n − mb, and rank(P (q)) 6 n − 1. The first fact is obvious from (20),
the second fact follows from Lemmas 2 and 3 in [11], and the third fact is a conse-
quence of [9, Fact 3.8.6]. The first fact may be used to prove that the submanifold
{(x, y) ∈ R

n × R
n|hn,b(x) = 0,∇hn,b(q)

Ty = 0} is invariant under the dynamics in (21),
which means that the multiplier λn,b satisfying (18) plays the role of a contact force that
maintains the system on the bilateral constraint. We deduced uniqueness of q̈ from (15).
However (21) is more complex because of the presence of the singular matrix P (q) which
is an idempotent matrix. P (q) is not symmetric, hence it is not a projector according
to [9, definition 3.1.1], but it may be named a projector according to [39, §5.8] (onto
Im(P (q)) along ker(P (q))). Let us rewrite (21) more compactly as:

q̈ +D(q, q̇, t) ∈ −M(q)−1P (q) NK(q,q̇)(q̈) (22)

with an obvious definition of D(q, q̇, t). Since M(q)−1P (q) = (M(q)−1P (q))T � 0 there

exists a unitary matrix S(q) such that S(q)M(q)−1P (q)S(q)T =

(
Pr(q) 0
0 0

)

, with

Pr(q) = Pr(q)
T ≻ 0 of dimension (n − mb) × (n − mb). Let z

∆
= S(q)q̈, then (22) is

rewritten equivalently as:

z + S(q)D(q, q̇, t) ∈ −

(
Pr(q) 0
0 0

)

S(q) NK(q,q̇)(S(q)
T z) (23)

The chain rule of convex analysis [64, Theorem 23.9] allows us to state that S(q) NK(q,q̇)(S(q)
T z) =

NΦ(q,q̇)(z) with Φ(q, q̇) = {z ∈ R
n|S(q)T z ∈ K(q, q̇)} = (S(q)T )−1(K(q, q̇)). Let x ∈ R

n,
then we denote xr the vector made of its first r entries and xn−r the vector made of its
last n− r entries. From (23) one infers that:

zn−r = −(S(q)D(q, q̇))n−r ⇔ Sn−r(q)q̈ = −Sn−r(q)D(q, q̇, t), (24)

14



where Sn−r(q) ∈ R
(n−r)×n is the matrix made of the last n − r rows of S(q), while

Sr(q) ∈ R
(r)×n is the matrix made of the first r rows of S(q). The following assumption

is made:

Assumption 3 The set Φ(q, q̇) = {z ∈ R
n, zn−r = −(S(q)D(q, q̇, t))n−r|S(q)

T z ∈ K(q, q̇)}
is non-empty.

It is noteworthy that Assumption 3 imposes some constraint on the term D(q, q̇, t) defined
from (22). Let us denote Φ(q, q̇) as Φr(q, q̇) since the free variable is zr, i.e.,

Φr(q, q̇) = {zr ∈ R
r|(∇hn,u(q)

TS(q)T )rzr + (∇hn,u(q)
TS(q)T )n−r(−S(q)D(q, q̇, t))n−r

+ d
dt
(∇hn,u(q)

T )q̇ > 0}
(25)

Actually Assumption 3 states that Φr(q, q̇) is non-empty. We can rewrite equivalently

NΦ(q,q̇)(z) as

(
∂zrΨΦ(q,q̇)(z)
∂zn−r

ΨΦ(q,q̇)(z)

)

=

(
∂zrΨΦr(q,q̇)(zr)
∂zn−r

ΨΦ(q,q̇)(z)

)

, where ΨΦr(q,q̇)(zr) = ψ
R
+
mu

◦

[(∇hn,u(q)
TS(q)T )rzr+wr(q, q̇)], with wr(q, q̇)

∆
= (∇hn,u(q)

TS(q)T )n−r(−S(q)F (q, q̇, t))n−r+
d
dt
(∇hn,u(q)

T )q̇. Thus from (23) and (24) we get:

zr + (S(q)D(q, q̇, t))r ∈ −Pr(q) NΦr(q,q̇)(zr) (26)

Since Pr(q) = Pr(q)
T ≻ 0, so is its inverse and we can apply again Theorem 6 in [3] to

conclude about the existence and uniqueness of a solution zr to (26). Since q̈ = S(q)−1z
we thus proved the following.

Proposition 5 Let F (q, q̇, t) be given. Suppose that Assumptions 1, 2 and 3 hold. The
inclusion in (22) has a unique solution z, and the MLCP in (18) has a unique solution q̈.

Using (18) (a) one concludes that∇hn,b(q)λn,b+∇hn,u(q)λn,u is unique as well. Uniqueness
of the multipliers holds under an additional rank assumption on the gradients. Notice
that using (26) one obtains:

Pr(q)
−1zr + Pr(q)

−1(S(q)D(q, q̇, t))r ∈ −NΦr(q,q̇)(zr)

⇔ zr = projPr(q)−1 [Φr(q, q̇); (S(q)D(q, q̇, t))r]

⇔ Find zr ∈ Φr(q, q̇) : 〈Pr(q)
−1zr + Pr(q)

−1(S(q)D(q, q̇, t))r, v − zr〉 > 0 for all v ∈ Φr(q, q̇)
(27)

where the last formalism is a variational inequality of the first kind. Gauss’ principle
applies to systems subject to unilateral and bilateral constraints (as shown in [11] through
various quadratic problems). It is noteworthy that a direct interpretation of the inclusion
in (22) as in (27), is not possible due to the singular matrix P (q).
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Existence and uniqueness of q̈ via a second inclusion: As we have seen under
Assumption 1, one has using (18) (c): ∇hn,u(q)λn,u ∈ −NK(q,q̇)(q̈). Similarly one has
∇hn,b(q)λn,b ∈ −NKb(q,q̇)(q̈) with Kb(q, q̇) = {z ∈ R

n|∇hn,b(q)
T z + d

dt
(∇hn,b(q)

T )q̇ = 0},
the assumption being here that Kb(q, q̇) is non-empty: this inclusion enforces the bilateral
constraints.

Assumption 4 The set K(q, q̇) ∩Kb(q, q̇) is non-empty.

Then we have the following [13] (compare with (5) (16) (27)):

Proposition 6 Let Assumptions 1 and 4 hold. The MLCP in (17) is equivalent to:

M(q)q̈ + F (q, q̇, t) ∈ −NK(q,q̇)∩Kb(q,q̇)(q̈)

⇔ Find q̈ ∈ K(q, q̇) ∩Kb(q, q̇) : 〈M(q)q̈ + F (q, q̇, t), v − q̈〉 > 0 for all v ∈ K(q, q̇) ∩Kb(q, q̇)

⇔ q̈ = argminz∈K(q,q̇)∩Kb(q,q̇)
1
2
zTM(q)z + zTF (q, q̇, t)

(28)

Notice that no assumption on the rank of M(q) has been made to get (28), contrary to
(18). In order to get the right-hand side of the inclusion in (28) we used [64, Theorem 23.8]
about the subdifferential of the sum of convex functions, and the fact that the functions
we are dealing with are polyhedral.

Corollary 1 Let F (q, q̇, t) be given. Suppose that M(q) ≻ 0, and that Assumptions 1 and
4 hold. Then q̈ is given by:

q̈ = projM(q)[K(q, q̇) ∩Kb(q, q̇);−M(q)−1F (q, q̇, t)] (29)

In fact Assumption 4 implies that Assumption 1 holds. Let us notice thatK(q, q̇)∩Kb(q, q̇)
is convex hence the projection is indeed uniquely defined. The inclusions in (28) and
(26) are not equivalent because no assumption on the rank of M(q) has been made to
get (28), contrary to (26) (indeed Assumption 2 holds only if M(q) ≻ 0). Again, one
may analyze (28) with M(q) � 0 only, relying on results in [3] and [13]. This may
be particularly interesting when bilateral constraints are present. Indeed singular mass
matrices are often due to the use of redundant generalized coordinates together with
bilateral holonomic constraints [76, 77, 33]. We may use [3, Corollary 4] to cope with (28)
with a low rank M(q), but this would bring us too far away from the main topic of this
paper. Some results in this direction may be found in [13].
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Existence and uniqueness of q̈ and λn,b via a third inclusion: Let us investigate
again how one may dispense with Assumption 2 (as well as the underlying assumption
that M(q) ≻ 0). In (28) and (26) the multiplier λn,b does not appear explicitly because it
has been eliminated in the process used to obtain these two inclusions. Let us investigate
a path that yields a direct extension of the KKT system (4). Using (13) with K(q, q̇) in
(14) it is possible to rewrite (17) as follows:





M(q) −∇hn,b(q)

∇hn,b(q)
T 0









q̈

λn,b



+





F (q, q̇, t)

d
dt
(∇hn,b(q)

T )q̇



 ∈





−NK(q,q̇)(q̈)

0



 (30)

The inclusion (30) represents the merging between (4) and (15). As noticed in section
2.1, the DAE matrix Mb(q) in the left-hand side of (30) is positive semi definite, non-
symmetric. Let us denote the second term in the left-hand side as Fb(q, q̇, t). We have

that {0} = NR
mb (λn,b). Let us define z

∆
=

(
q̈
λn,b

)

, and f(q,q̇)(z) = ΨK(q,q̇)(q̈)+ΨR
mb (λn,b).

Using Assumption 1 we may therefore rewrite equivalently (compare with (15) and (28)):

Mb(q)z + Fb(q, q̇, t) ∈ −∂f(q,q̇)(z) ⇔

Find z ∈ R
n+mb : 〈Mb(q)z + Fb(q, q̇, t), v − z〉+ f(q,q̇)(v)− f(q,q̇)(z) > 0, for all v ∈ R

n+mb

(31)
It is noteworthy that despite Mb(q) ∈ R

(n+mb)×(n+mb) is positive semi definite it may have
full rank due to its skew-symmetric part. Using section E item (iii’) it follows that Mb(q)
is invertible if and only if ker(M(q)) ∩ ker(∇hn,b(q)

T ) = {0} and rank(∇hn,b(q)
T ) = mb.

One may then conclude about the well-posedness of the system Mb(q)z + Fb(q, q̇, t) = 0.
However direct conclusions on the well-posedness of (31) cannot be drawn even ifMb(q)

satisfies the conditions recalled in section E, since the well-posedness of inclusions like (31)
relies on positivity-like properties (P-matrices, copositive matrices, positive definiteness),
and not merely on rank assumptions. This makes a strong difference between problems
involving unilateral constraints, and those with bilateral constraints only.

We note that the criteria presented in [3, 13] rely on semi-complementarity problems
that use recession functions and cones. Introducing such mathematical tools is not possible
here for the sake of briefness. Nevertheless the crucial subspace which plays a role in the
various criteria proposed in [3] is ker(Mb(q) +Mb(q)

T ) = {z ∈ R
n+mb |M(q)q̈ = 0} (see [3,

Corollary 3] that applies to non-symmetric positive semi definite matrices).

Remark 2 The other (mechanically equivalent) option in (4) or (30) is to replace −∇hn,b(q)
with ∇hn,b(q). As pointed out in section 2.1, Mb(q) is then symmetric, however never
positive semi definite (a necessary condition for its positive semi definiteness being that
−∇hn,b(q)

TM(q)−1∇hn,b(q) be positive semi definite, which is possible only if ∇hn,b(q) =
0). The criteria based on positiveness and its variants, cannot be used.

The solvability Theorem 2.1 in [45] applies to (30) only if d
dt
(∇hn,b(q)

T )q̇ > 0 (compo-
nentwise non-negativity), which is a rather restrictive case that holds in practice for all
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velocities, only if d
dt
(∇hn,b(q)

T ) = 0 (therefore it has practical interest for the static case
where q̇ = 0 only). This in turn implies that the index 1 formalism (constraints written
on the acceleration level) and the index 2 formalism (constraints written on the velocity
level) possess the same canonical form.

Conclusions: three inclusions have been constructed which extend the KKT system (4)
and the inclusion (15), when both bilateral and unilateral constraints are present: (26),
(28) and (31). They rely on different assumptions which are used to transform the MLCP
in (17). There is a significant discrepancy between Assumptions 1, 3 and 4 (which are
necessary to secure that the problems make sense, i.e. one does not consider a system
with an empty admissible space), and Assumption 3. Assumption 3 (with the prerequisite
that M(q) ≻ 0) allows us to calculate λn,b and inject its expression in the dynamics in
order to obtain a projected dynamics on the bilateral constraints. On the contrary in
(28) the bilateral constraints are enforced directly in the normal cone. Finally (30) uses
only Assumption 1. Both (28) and (30) hold with M(q) � 0, and possibly redundant
constraints.

2.3.2 Analysis of contact LCP with a bilateral distortion

Another path is chosen in [11]. Instead of augmenting the unilateral constraints set, one
uses as above the second equality in (18) to get an expression of λn,b as a function of λn,u,
and inserts it in the dynamics (the first line of (18)). Let Assumption 2 hold. Then the
constrained LCP is obtained in the same way as (10):

0 6 λn,u ⊥ Ac(q)λn,u + wc(q, q̇, t) > 0 (32)

where the new Delassus’ matrix is:

Ac(q)
∆
= ∇hn,u(q)

TMc(q)
−1∇hn,u(q) (33)

with Mc(q)
−1 ∆

= M(q)−1P (q), P (q) is in (20). One sees that Mc(q)
−1 is the symmetric

positive semi definite matrix4 that appears in the right-hand side of (22): it is the mass
matrix with a distortion due to the bilateral holonomic constraints. Hence Ac(q) = Ac(q)

T

is at least positive semi definite. Finally one has:

wc(q, q̇, t) = ∇hn,u(q)
TMc(q)

−1FM(q, q̇, t)+∇hn,u(q)
TM−1(q)

d

dt
(∇hn,b(q)

T )q̇+
d

dt
(∇hn,u(q)

T )q̇

(34)

with FM(q, q̇, t)
∆
= −M(q)F (q, q̇, t). Clearly the LCP in (32) (33) (34), is the extension of

the LCP in (10) (11), where one replaces M(q)−1 by Mc(q)
−1 and wu(q, q̇, t) by wc(q, q̇, t).

A proposition quite in the same spirit as Proposition 3 may be stated, which concatenates
Proposition 6, Corollary 1, and Lemma 4 in [11], as well as results from [13].

4This is denoted as the inverse of some matrix though there is no inverse, just to mimic the case
without bilateral constraints.
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Proposition 7 (Frictionless, unilateral/bilateral constraints) Let Assumption 2 hold.
Then:

• (i) The LCP in (32) has a unique solution for any wc(q, q̇, t) if and only if Ac(q) ≻ 0,
equivalently

(
∇hn,u(q) ∇hn,b(q)

)
is full rank.

• (ii) Let λn,u,1 and λn,u,2 be two solutions of the contact LCP in (32). Then∇hn,u(q)(λn,u,1−
λn,u,2) ∈ ker(Mc(q)

−1), and (λTn,u,1 − λTn,u,2)wc(q, q̇) = 0.

• (iii) Let Im(∇hn,u(q)) ∩ Im(∇hn,b(q)) = {0} for all q ∈ R
n. Let λn,u,1 and λn,u,2 be

two solutions of the LCP in (32). Then ∇hn,u(q)(λn,u,1 − λn,u,2) = 0. If the LCP in
(32) is solvable then the acceleration q̈ exists and is unique.

• (iv) The LCP in (32) is solvable if for any z ∈ R
n in the set of solutions of the

homogeneous LCP 0 6 z ⊥ Ac(q)z > 0 one has zTwc(q, q̇, t) > 0; if d
dt
(∇hn,b(q)) = 0

and d
dt
(∇hn,u(q)) = 0 and Im(∇hn,u(q)) ∩ Im(∇hn,b(q)) = {0} for all q ∈ R

n, the
LCP in (32) is solvable.

• (v) The implication λn,u ≥ 0,∇hn,u(q)λn,u = 0 ⇒ λTn,u
d
dt
(∇hn,u(q)

T )q̇ > 0 holds if
and only if the LCP in (32) is solvable.

• (vi) If (∇hn,u(q)
TM−1(q) d

dt
(∇hn,b(q)

T )+ d
dt
(∇hn,u(q)

T ))q̇ ∈ Im(Ac(q)), then the LCP
in (32) (33) (34) is solvable.

Let now M(q) � 0 and the constraints hn,u,i(q), 1 6 i 6 mu satisfy the Mangasarian-
Fromovitz constraint qualification. Then:

• (vii) The MLCP in (17) (equivalently (28)) is solvable if ker(∇hn,b(q)) ∩ TΦu
(q) ∩

ker(M(q)) = {0}.

Item (v) stems from similar arguments as item (iv) of Proposition 3, using the specific
form of wc(q, q̇, t) in (34), and similarly for item (vi) (these facts were not noticed in
[11]). Item (iv), that is Lemma 4 in [11], therefore states sufficient conditions only as a
direct consequence of Theorem 2 in section C. As in Proposition 3, both positiviy and
symmetry of Ac(q) are used. It is noteworthy that the independence of the constraints
hn,u,i(q) is not sufficient to assure (i) as in Proposition 3, because Mc(q)

−1 is not a full
rank matrix. Conditions which guarantee that Ac(q) > 0 are given in [11], mainly relying
on the kinetic angles values. It has been noticed in another context [38, Lemma 2]
that a matrix with the same structure as Ac(q), is the Schur complement of Anb(q) in
(

∇hn,b(q)
T

∇hn,u(q)
T

)

M(q)−1(∇hn,b(q) ∇hn,u(q)) =

(
Anb(q) Anbnu(q)
Anbnu(q) Anu(q)

)

. Hence Ac(q) =

Anu(q)−Anbnu(q)
TAnb(q)

−1Anbnu(q) is positive definite if and only if

(
∇hn,b(q)

T

∇hn,u(q)
T

)

has

full row rank ⇔ ker(∇hn,b(q) ∇hn,u(q)) = {0} [38, Lemma 4] (a condition easier to check
than the necessary and sufficient condition of [11, Proposition 10]). Uniqueness of the
acceleration in item (iii) holds since the right-hand side of the dynamic equation is equal
to P (q)∇hn,u(q)λn,u,1.
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Remark 3 Consider solvability conditions in Propositions 3 and 7. Using Corollary
3.8.12 in [18], one has that solvability of the LCP(wu(q, q̇, t), Anu(q)) is equivalent to
the boundedness from below of the quadratic function f(z) = zTwu(q, q̇, t) + zTAnu(q)z
for all z > 0 (and the same for wc(q, q̇, t) and Ac(q)). It is known that such f(z) is
bounded from below for all z (not necessarily non-negative) if and only if wnu(q, q̇, t) ∈
Im(Anu(q)) [66, §a.5.5]. Thus the condition that wu(q, q̇, t) ∈ Im(Anu(q)) may be used
for solvability of the contact LCP, as a sufficient condition. In view of the structures
of the terms wu(q, q̇, t) and wc(q, q̇, t) in (11) and (34), if d

dt
(∇hn,u(q)) ∈ Im(Anu(q))

(resp. [∇hn,u(q)
TM(q)−1 d

dt
(∇hn,b(q)) +

d
dt
(∇hn,u(q))]q̇ ∈ Im(Ac(q))) , then wu(q, q̇, t) ∈

Im(Anu(q)) (resp. wc(q, q̇, t) ∈ Im(Ac(q))) if and only if F (q, q̇, t) (resp. FM(q, q̇, t))
belong to Im(∇hn,u(q)). This is more restrictive than the conditions in Proposition 3 (iv)
and (v) and 7 (v) and (vi).

2.3.3 Analysis of the MLCP (18)

Let us analyse the contact MLCP in (18) with relaxed Assumption 2.

Proposition 8 Let us consider (18). Suppose that d
dt
(∇hn,b(q)

T )q̇ ∈ Im(∇hn,b(q)
T ).

Then solvability of the contact LCP holds if and only if ∇hn,u(q)
T [z+y]+ d

dt
(∇hn,u(q)

T )q̇ >
0 for some z ∈ R

n and y ∈ ker(∇hn,b(q)
T ).

Proof: From (18) (b) it follows using the Proposition’s assumption that there exists
z ∈ R

n and y ∈ ker(∇hn,b(q)
T ) such that ∇hn,b(q)λn,b = −∇hn,u(q)λn,u + F (q, q̇, t) +

M(q)z +M(q)y. Inserting this expression in (18) (c) and using (18) (a), one finds that
λn,u has to satisfy the degenerate LCP:

0 6 λn,u ⊥ ∇hn,u(q)
T [z + y] +

d

dt
(∇hn,u(q)

T )q̇ > 0 (35)

Clearly this complementarity problem has a solution if and only if ∇hn,u(q)
T [z + y] +

d
dt
(∇hn,u(q)

T )q̇ > 0. �
Applying Theorem 2 in section C and noting that in the degenerate case with M = 0

one has Q0 = Q∗
0 = R

mu
+ , provides a sufficient condition. It is noteworthy that the

Proposition’s assumption is implied by Assumption 2. If (18) (b) is seen as a linear
equation with unknown ∇hn,b(q)λn,b, this condition is necessary and sufficient. Lötstedt
analyzes in [43, Lemma 5.2] a mixed LCP that corresponds to (30) or to (18) written at
the multipliers level with the assumption that d

dt
(∇hn,b(q)

T )q̇ = 0 and d
dt
(∇hn,u(q)

T )q̇ = 05

(the MLCP in (5.2a)–(5.2c) in [43] is easily obtained from (18) with this assumption).
This allows one to relax Assumption 2 to rank∇hn,b(q) 6 min(n,mb) and rank∇hn,u(q) 6
min(n,mu), which guarantee existence and uniqueness of ∇hn,b(q)λn,b and ∇hn,u(q)λn,u

6.
We tend to believe that the analysis of (30) using the tools on well-posedness of variational
inequalities in [3] could yield similar results in a more general setting.

5Or, more generally, that d
dt
(∇hn,b(q)

T )q̇ ∈ Im(∇hn,b(q)
T ) and d

dt
(∇hn,u(q)

T )q̇ ∈ Im(∇hn,u(q)
T ).

6Theorem 1 in [17] is wrongly used in the proof of [43, Lemma 5.2], however this does not call into
question the result which is right.
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Example: The rod with one bilateral and one unilateral constraint Con-
sider the system on Figure 1(c), where the upper tip of the rod is unilaterally con-
strained and the lower tip is bilaterally constrained. The external forces are horizon-
tal pulling forces fb, fu at each tip. One obtains the matrices involved in the dynamics:
M = diag(m,m, ml2

12
), ∇hn,b(θ) = (0, 1,− l

2
cos(θ))T , ∇hn,u(θ) = (0,−1,− l

2
cos(θ))T ], F =

(−fb − fu, 0,−
l
2
(fb − fu) sin(θ))

T , wc(θ, θ̇, t) = − 3 sin (θ) cos(θ)
m(3 cos2 (θ)+1)

(

2(fb − fu) + lm cos(θ)θ̇2
)

,

and Ac(θ) =
12 cos2 (θ)

m(3 cos2 (θ)+1)
. The LCP in (32) then becomes :

0 ≤ λnu⊥
12 cos2 (θ)

m (3 cos2 (θ) + 1)
λnu −

3 sin (θ) cos(θ)

m (3 cos2 (θ) + 1)

(

2(fb − fu) + lm cos(θ)θ̇2
)

≥ 0.

It has a unique solution for all θ 6= π
2
. If θ = π

2
then the LCP becomes 0 6 λn,u ⊥ 0 > 0

so any non negative λn,u is a solution: this configuration is indeterminate.

3 Systems with sliding Coulomb’s friction

We now turn our attention to systems that are subject to Coulomb’s friction. As an-
nounced above we only deal with sliding friction, hence encapsulating the 3D case as well
(indeed since the system is analysed at a given time t, it is always possible to consider
that one of the two tangent vectors t1,i or t2,i on Figure 2 is colinear with vi).

3.1 The Lagrange dynamics with sliding friction

Figure 2: Sliding Coulomb friction can be expressed compactly in 2D as λt,i = −µi|λn,i| ξi
where ξi ∈ {−1; 1} is the (monovalued) sign of vt,i. In 3D, the same law holds when
expressed in the local frame (ni, ti), where ti is a tangent vector oriented along the sliding
line (with arbitrary direction).

We shall assume in the sequel that any contact point lies in the sliding mode of
Coulomb friction. In 2D and 3D, this allows one to build for each contact point a local
kinematical frame (ni, ti), where ni is the normal at contact and ti is oriented along the
sliding line (see Figure 2 for an illustration). Using this local frame, one can define the
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(scalar) tangential velocity vt,i 6= 0 as vt,i = vi · ti where vi is the 3D velocity at contact
point i, and formulate sliding Coulomb’s friction as

λt,i = −µi|λn,i| ξi where ξi ∈ {−1; 1} is univoquely given by the sign of vt,i.

Let vt,b be the vector that gathers local tangential velocities for the bilaterally con-
strained contact points, and vt,u its unilateral counterpart. Then the local operators Ht,b

and Ht,u define a local mapping between local and generalized tangential velocities, writ-
ten as vt,b = Ht,b(q)

T q̇ and vt,u = Ht,u(q)
T q̇. Let Ft,b denote the generalized force acting

on the system when the normal contact force has been deleted. From the principle of
virtual works it follows that vTt,bλt,b = q̇THt,b(q)λt,b = q̇TFt,b. Hence Ft,b = Ht,b(q)λt,b, and
similarly for the unilateral constraints. Then, using (1a) and (1b), one obtains

M(q)q̈+F (q, q̇, t) = ∇hn,b(q)λn,b+∇hn,u(q)λn,u−Ht,b(q)[µb][ξ] |λn,b|−Ht,u(q)[µu][ξ] λn,u (36)

where [xb] denotes the diagonal matrix diag(xi) for 1 6 i 6 mb and [xu] the diagonal
matrix diag(xi) for mb + 1 6 i 6 m, and where |λn,b| = (|λn,b,1| |λn,b,2|...|λn,b,mb

|)T ∈
R

mb . Note that unilateral normal forces λn,u do not need to be expressed in terms of
absolute value since they should always remain positive due to the LCP constraint (1c).
Equation (36) serves as a starting point to analyse (1) with sliding Coulomb’s friction.

The Lagrange dynamics with unilateral constraints, Coulomb’s friction and impacts
as in (36) are very well developed in [41, Chapter 5], while their Lyapunov stability is
analyzed in detail in [41, Chapter 7]. Since we are dealing with the impactless con-
tact, (36) has to be completed with (1c) and (1d). Notice that λTn,b∇hn,b(q)

T q̇ = 0
since ∇hn,b(q)

T q̇ = 0. From Proposition 2 one has 0 6 λn,u,i(t) ⊥ ∇hn,u,i(q(t))
T q̇(t) >

0 ⇔ λn,u,i(t) ∈ −∂ΨR+(∇hn,u,i(q(t))
T q̇(t)) for all i such that hn,u,i(q(t)) = 0. Suppose

that all mu unilateral contacts are active, then from [64, Theorem 23.9] it follows that
∇hn,u(q)λn,u ∈ −∂ΨTΦu (q)

(q̇) with TΦu
(q) = {z ∈ R

n|∇hn,u(q)
T z > 0} 7. These develop-

ments may be used to prove that the contact forces (including tangential ones) dissipate
energy, provided λn,u and λn,b exist.

It is noteworthy however that Coulomb’s law cannot be written as an associated law
8 [32, §4]. This means that the righ-hand side of (36) together with the complementarity
conditions, cannot be written compactly as the normal cone to some convex set. De
Saxcé’s bipotential function [21] allows one to recover an associated form at the local
kinematics level, however at the price of using a modified tangential velocity [1, §3.9.2].

3.2 Bilaterally constrained systems

In this section we analyse different cases, and we show that various results may be obtained
on the contact problem’s well-posedness, depending on the assumptions.

7The notation for this set is chosen to recall that under some constraint qualification (like Mangasarian-
Fromovitz), TΦu

(q) is the tangent cone polar to the normal cone.
8A contact law is associated if it can be expressed as an inclusion in the subdifferential of a convex,

proper function, i.e. it admits a convex pseudo-potential.
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3.2.1 All frictional bilateral constraints

Suppose that I0
b = ∅, i.e., mµ

b = mb and that all contacts are sliding: ξi
∆
= sgn(vt,b,i) ∈

{−1, 1}. Using (36) the extension of the KKT system in (4) is:

(
M(q) −∇hn,b(q) +Ht,b(q)[µbξ] [sgn(λn,b)]

∇hn,b(q)
T 0

)

︸ ︷︷ ︸

∆
=Mbµξ(q)

(
q̈
λn,b

)

=

(
−F (q, q̇, t)

− d
dt
(∇hn,b(q)

T )q̇

)

(37)
and we may denote the matrix in the left-hand side of (37) as Mbµξ(q). Comparing with
(4) one sees that friction modifies the system’s matrix, not its right-hand side. Bilateral
friction introduces a non-linearity or rather piecewise linearity in the variable λn,b, which
prevents one from using the same linear algebra results as in section 2.1 and appendix E.

What we call a mode in item (i) of the next proposition, is a set of non-zero tangential
velocities vt,b,i with a given sign.

Proposition 9 Let (q, q̇), F (q, q̇, t) be given and suppose that all contacts are sliding

(vt,b,i 6= 0). Let µmax
∆
= max16i6mb

µi

(a) Consider that M(q) ≻ 0 and ∇hn,b(q) have full column rank mb. Then if:

µmax < µb
max(q)

∆
=
σmin(Anb(q))

σmax(Atb(q))
(38)

the matrix Mbµξ(q) in (37) is full rank n + mb
9. Then there exists a mode (possibly

non-unique) in which q̈ and λn,b can be calculated uniquely.
(b) Suppose that ∇hn,b(q) is full column rankmb. Then −∇hn,b(q)+Ht,b(q)[µbξsgn(λn,b)]

is full rank mb if:

2µmaxσmax(∇hn,b(q)
THt,b(q)) + µ2

maxλmax(Ht,b(q)
THt,b(q)) < σmin(∇hn,b(q)

T∇hn,b(q)).
(39)

Then there exists a mode (possibly non-unique) in which q̈ and λn,b can be calculated
uniquely.

Proof: (a) The proof relies on section E (vi) where Â plays the role of Mbµξ(q), F
is ∇hn,b(q), and P is Ht,b(q)[µbξ] [sgn(λn,b)]. If (38) holds, the system may be solved by
supposing that [sgn(vt,b)] [sgn(λn,b)] = I, then choosing the right signums for the variables
ξi (i.e. choosing a suitable mode). (b) The proof for (39) relies on section E (v) and on the
properties of induced matrix norms [9, Corollary 9.4.9] and of singular values [9, Definition
5.6.1] to deduce the inequality in (39). Using section E (i) we know that the matrix
corresponding to Ã in (71) has rank n+mb, hence q̈ and−∇hn,b(q)+Ht,b(q)[µbξsgn(λn,b)]λn
are unique. Then (39) guarantees that λn is unique in a certain mode that may be found
as in case (a). �

9Recall that Anb(q)
∆
= ∇hn,b(q)

TM(q)−1∇hn,b(q) and Atb(q)
∆
= ∇hn,b(q)

TM(q)−1Ht,b(q).

23



Notice that in case λn,b,i = 0 for some i, it is possible to assign any value to sgn(λn,b,i)
since one has trivially in this case |λn,b,i| = sgn(λn,b,i)λn,b,i. The possible mode at the
contact point i is then free (vt,b,i > 0, < 0,= 0): clearly uniqueness of the mode does not
hold.

A direct way of analyzing the existence and uniqueness of solutions (q̈, λn,b) of (37) is
to form the analog of (7),

Anb(q)λn,b − Atb(q)[µξ] |λn,b|+ wb(q, q̇, t) = 0, (40)

where the absolute value is meant componentwise. By inspecting each of the 2mb possible
signums of λn,b one obtains 2mb linear systems. One may solve each such system and
obtain a candidate solution λn,b. If the signums of the newly computed λn,b coincide with
those of the assumption, a solution has indeed been found, otherwise it is rejected. If no
solution or several solutions are found, the system is said to be wedged or jammed. Such
an exhaustive procedure would yield necessary and sufficient conditions on the parameter
values for a unique solution of problem (40) to exist (see [5] in the case of a single contact).
However, in practice, it becomes intractable for systems with more than a few contact
points.

In the rest of this section we present two alternative ways to derive sufficient conditions
for equation (37) to have a unique solution. Problem (40) can be treated as a perturbation
of the frictionless problem (7) and the non-linearity introduced by bilateral friction can
be treated via a fixed point argument or via complementarity theory.

Proposition 10 Let (q, q̇), F (q, q̇, t) be given. Let (q, q̇), F (q, q̇, t) be given. Let Anb(q)
be positive definite. Suppose that all contacts are sliding (vt,b,i 6= 0) and that

max16i6m µi < µb
max(q) = σmin(Anb(q))

σmax(Atb(q))
. (41)

Then the bilateral sliding friction problem (37) has a unique solution (q̈, λn,b).

Proof: Under the rank assumptions made in the proposition, system (37) is equivalent
to






q̈ =M(q)−1∇hn,b(q)λn,b −M(q)−1Ht,b(q)[µb] [sgn(vt,b)] |λn,b| −M(q)−1F (q, q̇, t)

Anb(q)λn,b − Atb(q)[µξ] |λn,b|+ wb(q, q̇, t) = 0
(42)

SinceAnb(q) can be inverted, λn,b is a solution of (37) if and only if λn,b = A−1
nbAtb[µξ] |λn,b|−

A−1
nb wb. Let T (x)

∆
= A−1

nbAtb[µξ] |x| − A−1
nb wb, we will show that the mapping T (·) is con-

tracting under (41). Indeed one has:

‖T (x)− T (y)‖2 =
∥
∥A−1

nbAtb[µξ](|x| − |y|)
∥
∥
2
≤
∥
∥A−1

nbAtb[µξ]
∥
∥
2
‖|x| − |y|‖2

≤
∥
∥A−1

nbAtb[µξ]
∥
∥
2
‖x− y‖2

(43)
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for any x, y ∈ R
mb . By the property of induced matrix norms [9, Proposition 9.4.3],

and the fact that ||[a]||2 = maxi |ai|, we have max16i6m µi <
1

||A−1
nb

||2||Atb||2
which implies

∥
∥A−1

nbAtb[µξ]
∥
∥
2
< 1. Hence T (·) is contracting. Using the Banach fixed point theorem

one concludes that a unique solution λn,b to (42) exists. Existence and uniqueness of the
acceleration in (42) follows from that of λn,b. �

It is quite interesting to see that the same friction coefficient upperbound appears in
both Proposition 10 and Proposition 9 (a), despite the fact they do not yield the same
result. A result similar to Proposition 10 can be derived to guarantee existence and
uniqueness of a solution to (37) by casting it into a complementarity problem.

Proposition 11 Let (q, q̇), F (q, q̇, t) be given. Let Anb(q) be positive definite. Suppose
that all contacts are sliding (vt,b,i 6= 0) and that

max
16i6m

µi <
1

3
µb
max(q)

where µb
max(q) is defined in (41). Then the bilateral sliding friction problem (37) has a

unique solution (q̈, λn,b).

Proof: The proof consists of three steps: reformulating (40) as a horizontal LCP
(hLCP10), casting the hLCP matrix as a perturbation of a positive definite matrix and
applying Corollary 3 in section D. One can write [sgn(λn,b)]λn,b = |λn,b|. Following [35]

let us introduce λ+
∆
=

|λn,b|+λn,b

2
and λ−

∆
=

|λn,b|−λn,b

2
. Solving (40) boils down to find λ+

and λ− such that






(Anb(q)− Atb(q)[µbξ])λ
+ − (Anb(q) + Atb(q)[µbξ])λ

− + wb(q, q̇, t) = 0

0 ≤ λ+⊥λ− ≥ 0
(44)

As pointed out in [35], a solution to the hLCP (44) exists and is unique if and only if
Anb − Atb[µbξ] is invertible and (Anb − Atb[µbξ])

−1(Anb + Atb[µbξ]) is a P-matrix. The
upperbound on the friction coefficient assures ||A−1

nbAtb[µbξ]||2 ≤ ||A−1
nbAtb||2||[µb]||2 ≤

1
3
<

1, securing that I −A−1
nbAtb[µbξ] is non-singular and that its inverse can be written using

Taylor series expansion. The hLCP matrix, whose positive definiteness we want to enforce,
can be rewritten as (Anb − Atb[µbξ])

−1(Anb + Atb[µbξ]) = (I − A−1
nbAtb[µbξ])

−1A−1
nbAnb(I +

A−1
nbAtb[µbξ]) = (

∑+∞
k=0(A

−1
nbAtb[µbξ])

k)(I + A−1
nbAtb[µbξ]) = I + 2

+∞∑

k=1

(A−1
nbAtb[µbξ])

k

︸ ︷︷ ︸

∆
=Kµ(q,q̇)

. From

Corollary 3 in section D, it follows that if ||Kµ(q, q̇)||2 < 1 then I + Kµ(q, q̇) ≻ 0 is a
P-matrix. The upperbound 1

3
µb
max(q) is chosen specifically so that this condition holds:

‖Kµ(q, q̇)‖ ≤ 2
∑+∞

k=1

∥
∥A−1

nbAtb

∥
∥
k
‖[µb]‖

k < 2
∑+∞

k=1

∥
∥A−1

nbAtb

∥
∥
k 1

3k‖A−1
nb

Atb‖
k < 1. �

10See [1, Definition 12.23].
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3.2.2 Examples

Let us present several examples which illustrate the foregoing developments.

Bilaterally constrained rod with friction We now add Coulomb friction to the
mechanical system in Figure 1(a) and point out how the equations of motion are affected.
The system under consideration is a rigid pendulum with a frictional sliding base. Its
dynamics is given by







mẍ = −µξ |λnb|
mÿ = −mg + λnb
ml2

12
θ̈ = − l

2
cos θλn − l/2 sin θµξ |λnb|

hn,b(θ) = y − l
2
sin(θ) = 0

With respect to the frictionless case, the additional terms are Ht,b(θ) = (1, 0, l
2
sin(θ))T

and Atb(θ) = ∇hn,b(θ)
TM−1Ht,b(θ) =

−3 sin θ cos θ
m

. Thus, equation (40) boils down to the
scalar equation Anb(q)λn,b − Atb(q)µξ |λn,b| + wb(q, q̇) = 0. The sufficient condition of
Proposition 10 turns out to be also necessary and the critical value for the friction
coefficient is given by µmax

b (θ) = 1+3 cos2 θ
3 sin θ cos θ

. At a given configuration q if µ > µmax
b (θ) then

no meaningful contact force λn,b can be computed. Note that the positive definiteness
of the Delassus operator Anb(q) is no longer sufficient (as in the frictionless case) to
guarantee existence and uniqueness of a solution. One can graphically inspect the solution
set of this piecewise linear scalar equation by plotting ḧn,b (the normal acceleration of
the contact point) versus λn,b. Solutions lie on the intersection of ḧn,b = 0 and ḧn,b =
Anbλn,b − Atbµξ |λn,b| + wb. As Figure 3(a) shows, when the friction coefficient is larger
than the bound, the two curves either don’t intersect (when wb < 0) or intersect twice
(when wb > 0). Whereas if friction is low enough then a unique point of intersection will
occur (regardless of wb). On Figure 3(b) the same idea is illustrated but from the fixed
point equation λn,b = Anb(q)

−1Atb(q)µξ |λn,b| − Anb(q)
−1wb(q, q̇) point of view. One sees

clearly that if the slope |A−1
nbAtbµ| is smaller than one then a unique solution exists and

otherwise no solution (inconsistency) or two solutions (indeterminacy) may exist.

A bilaterally constrained system with two frictional contacts We consider now
the mechanical system on Figure 1(d), with both guides frictional. We have again an all
frictional bilateral problem for which we can use Proposition 10. We will show that in
this case the condition for existence and uniqueness on the upper bound for friction is
only sufficient and we will illustrate how conservative it is. The dynamics of the system
is given by







mẍ+ F1 + F2 = −µ1ξ1 |λ1| − µ2ξ2 |λ2|
mÿ = λ1 + λ2
ml2

12
θ̈ + l

2
sin θ(F1 − F2) = l

2
cos θ(λ2 − λ1)−

l
2
sin θµ1ξ1 |λ1|+

l
2
sin θµ2ξ2 |λ2|

h1n,b(θ) = y − l
2
sin(θ)

h2n,b(θ) = y + l
2
sin(θ)−D
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(a) Equation (40) in a scalar case

unique solution

(b) Fixed Point interpretation

Figure 3: Bilateral sliding friction in the scalar case.

The matrices involved in the analysis of the system are: M = diag(m,m, ml2

12
),∇hn,,b(θ) =





0 0
1 1

− l
2
cos (θ) l

2
cos (θ)



, Anb(θ) =

[
3
m
cos2 (θ) + 1

m
− 3

m
cos2 (θ) + 1

m

− 3
m
cos2 (θ) + 1

m
3
m
cos2 (θ) + 1

m

]

,

Ht,b(θ) =





1 1
0 0

l
2
sin (θ) − l

2
sin (θ)



, Atb(θ) =

[
− 3

m
sin (θ) cos (θ) 3

m
sin (θ) cos (θ)

3
m
sin (θ) cos (θ) − 3

m
sin (θ) cos (θ)

]

. It

has been long known [56] that the contact LCP of this system has a unique solution for the
multipliers, if and only if |µ1 − µ2| <

2
tan θ

. Proposition 10 states the sufficient condition

that if max(µ1, µ2) <
σmin(Anb(θ))
σmax(Atb(θ))

, then the multiplier vector exists and is unique. Explicitly
computing the singular values yields

max(µ1, µ2) < µb
max(θ)

∆
=

2

3
√

− cos (4θ) + 1

√

− (3 cos2 (θ) + 1) |3 cos2 (θ)− 1|+ 9 cos4 (θ) + 1.

It can be shown that µb
max(θ) <

2
tan θ

for all θ ∈ ]0; π/2[. Thus there is existence and
uniqueness of a solution for friction values between the two bounds. The condition stated
in Proposition 10 is conservative as depicted in Figure 4(a). On Figure 4(b) µmax

b (θ) is
plotted as a function of θ. If the system is at a certain state θ and the friction at each
guide is less than the value µmax

b (θ) on the curve, then the contact force exists and is
unique.

Flexible Painlevé-Klein system In this example we consider two rods of same mass
and length coupled by a linear spring, constrained to be aligned and subject to the same
two bilateral, frictional constraints as in the previous example, see Figure 1(e). The
additional degree of freedom is d (the distance between the two rods), and q = (x, y, d, θ)T .
To see how this change in the kinematics affects the friction bound of Proposition 10,
µb
max(q) is numerically computed for different configurations, see Figure 5. The matrices

which are needed to compute the friction bound are:
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(b) µmax
b (θ) for a the Painlevé-Klein system

Figure 4: Friction bound for the Painlevé-Klein system

M(q) =







m 0 m
2
cos (θ) −m

2
(d+ l) sin (θ)

0 m m
2
sin (θ) m

2
(d+ l) cos (θ)

m
2
cos (θ) m

2
sin (θ) m

2
0

−m
2
(d+ l) sin (θ) m

2
(d+ l) cos (θ) 0 m

96
(48d2 + 72dl + 32l2)






,

∇hn,,b(q) =







0 0
1 1
0 sin(θ)
0 (l + d) cos(θ)






and Ht,b(q) =







1 1
0 0
0 cos(θ)
0 −(l + d) sin(θ)






.
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Figure 5: (a) d = −1.2l, l, 1.2l, (b) θ = π/3

Figure 5 illustrates the fact that a change in θ or d influence the friction bound’s con-
servativeness. One can also study the system in reduced coordinates and obtain a closed
form expression for the necessary and sufficient conditions of existence and uniqueness of
λn,1. The multiplier λn,1 exists and is unique if and only if µ1 <

4−3 cos2 θ
3 sin θ cos θ

. Therefore, just
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as in the classic Painlevé example, no singularities occur when the friction coefficient is
under 4/3 [27].

Articulated Painlevé-Klein system We consider an articulated Painlevé-Klein mech-
anism where both ends are subject to bilateral constraints with Coulomb friction. The
rigid rod is replaced by two rods of same size and mass, linked together by a rotational
joint, as in Figure 1(f). The friction bound of Proposition 10 is computed to under-
stand how the coupling of the constraints plays a role on the criterion’s conservativeness.
Here q = (x1, y1, x2, y2, θ1, θ2)

T . The matrices which are needed to compute the friction
coefficient upper bound are

M(q) =







m 0 −3l
8
m sin (θ1) − lm

8
sin (θ2)

0 m 3l
8
m cos (θ1)

lm
8
cos (θ2)

−3l
8
m sin (θ1)

3l
8
m cos (θ1)

l2m
6

l2m
16

cos (θ1 − θ2)

− lm
8
sin (θ2)

lm
8
cos (θ2)

l2m
16

cos (θ1 − θ2)
l2m
24






,

∇hn,b(q) =







0 0
1 1
0 l

2
cos θ1

0 l
2
cos θ2







and Ht,b(q) =







1 1
0 0
0 − l

2
sin θ1

0 − l
2
sin θ2






. We numerically com-
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Figure 6: Evolution of µmax
b (q) for (a) q = (0, 0, θ, θ), (b) q = (0, 0, θ1, θ2 = arcsin(2D/l−

sin θ1)

puted µb
max(q) for a variety of cases. Figure 6(a) depicts how µb

max(q) changes for a set of
configurations corresponding to the case where the rod is perfectly straight, keeping every
other parameter fixed. We observe that as the system approaches a vertical configuration
the normal couplings become stronger and the admissible set of friction values decreases.
Figure 6(b) depicts how µb

max(q) changes for initial configurations corresponding to a
bent rod. The major discrepancy between this system and the previous one, compared to
the other Painlevé-Klein systems with fixed θ, is that the configuration may evolve during
the motion. This is also the case of the sliding rod system, and it may create additional
dynamical features [27].
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3.2.3 Mixed frictional/frictionless contacts

Let us now assume that I0
b 6= ∅ and Iµ

b 6= ∅: some of the bilateral contacts are frictionless,
the others are frictional. We rewrite (36) in its index 1 form:






M(q)q̈ + F (q, q̇, t) = ∇h0n,b(q)λ
0
n,b +∇hµn,b(q)λ

µ
n,b +Hµ

t,b(q)[µb][ξ][sgn(λ
µ
n,b)] λ

µ
n,b

∇h0n,b(q)
T q̈ + d

dt
(∇h0n,b(q)

T )q̇ = 0, ∇hµn,b(q)
T q̈ + d

dt
(∇hµn,b(q)

T )q̇ = 0
(45)

In a matrix form one gets the extension of (37):





M(q) −∇h0n,b(q) −∇hµn,b(q) +Hµ
t,b(q)[µb][ξ][sgn(λ

µ
n,b)]

∇h0n,b(q)
T 0 0

∇hµn,b(q)
T 0 0









q̈
λ0n,b
λµn,b





=





−F (q, q̇, t)
− d

dt
(∇h0n,b(q)

T )q̇
− d

dt
(∇hµn,b(q)

T )q̇





(46)

Due to its similarity with (37), system (46) may be analyzed along section E items (v)
and (vi), and Proposition 9 may be extended accordingly. Similarly to the all frictional
case, assuming M(q) ≻ 0 and that the non-frictional constraints are independent, one
obtains a reduced system where the only unkown is λµn,b. Under these assumptions system
(45) is equivalent to (the argument q is dropped):







q̈ = −M−1F (q, q̇, t) +M−1∇h0n,bλ
0
n,b +M−1∇hµn,bλ

µ
n,b −M−1Hµ

t,b[µbξ]
∣
∣λµn,b

∣
∣

λ0n,b = −(A00
nb)

−1A0µ
nbλ

µ
nb + (A00

nb)
−1A0µ

tb [µbξ]
∣
∣λµn,b

∣
∣+ (A00

nb)
−1((∇h0n,b)

TM−1F − d
dt
((∇h0n,b)

T )q̇)

(

Aµµ
nb − (A0µ

nb)
T (A00

nb)
−1A0µ

nb

)

λµn,b −
(

Aµµ
tb − (A0µ

nb)
T (A00

nb)
−1A0µ

tb

)

[µξ]
∣
∣λµn,b

∣
∣+ w̃b = 0,

(47)
where A00

nb(q) = ∇h0n,b(q)
TM(q)−1∇h0n,b(q) is the matrix of normal/normal frictionless

couplings, A0µ
nb(q) = ∇h0n,b(q)

TM(q)−1∇hµn,b(q) is the matrix of normal frictionless/normal

frictional couplings, A0µ
tb (q) = ∇h0n,b(q)

TM(q)−1Hµ
t,b(q) is the matrix of normal friction-

less/tangential frictional couplings, Aµµ
tb (q) = ∇hµn,b(q)

TM(q)−1Hµ
t,b(q) is the matrix of nor-

mal frictional/tangential frictional couplings, and finally w̃b(q, q̇, t)
∆
= A0µ

nb(A
00
nb)

−1((∇h0n,b)
TM−1F−

d
dt
((∇h0n,b)

T )q̇) − (∇hµn,b)
TM−1F − d

dt
((∇hµn,b)

T )q̇) is the vector collecting all remaining
terms in the last equation. Hence the problem is reduced to studying essentially the same
equation as (40) in the all frictional case (which was itself the extension of (7)):

Ãnb(q)λ
µ
n,b − Ãtb(q)[µξ]

∣
∣λµn,b

∣
∣+ w̃b(q, q̇, t) = 0, (48)

where Ãnb
∆
= Aµµ

nb − (A0µ
nb)

T (A00
nb)

−1A0µ
nb and Ãtb

∆
= Aµµ

tb − (A0µ
nb)

T (A00
nb)

−1A0µ
tb . It is im-

portant to observe that Ãnb(q) is nothing but the Schur complement of Aµµ
nb (q) in the
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matrix
(
∇h0n,b ∇h

µ
n,b

)T
M−1

(
∇h0n,b ∇h

µ
n,b

)
. So Ãnb(q) ≻ 0 and A00

nb(q) ≻ 0 if and only if
(
∇h0n,b ∇h

µ
n,b

)T
M−1

(
∇h0n,b ∇h

µ
n,b

)
≻ 0. Hence, if

(
∇h0n,b(q) ∇h

µ
n,b(q)

)
is full rank then

Ãnb(q) is invertible. We deduce the following result.

Proposition 12 Let (q, q̇), F (q, q̇), t) be given and vt,b,i 6= 0 for all i ∈ Iµ
b . Assume that

the matrix
(
∇h0n,b(q) ∇h

µ
n,b(q)

)T
M(q)−1

(
∇h0n,b(q) ∇h

µ
n,b(q)

)
(49)

is positive definite. If furthermore max16i6m µi <
σmin(Ãnb(q))

σmax(Ãtb(q))
, then the solution (q̈, λ0n,b, λ

µ
n,b)

of system (45) exists and is unique.

The proof is almost the same as that of Proposition 10: existence and uniqueness are
obtained by a fixed point argument, and the bound on the matrix norm guarantees that
an affine operator is contracting. The other hypothesis is there to ensure that Ãnb(q) is
invertible.

Example: The Painlevé-Klein system Let us we study the classical example of
Painlevé-Klein within our framework of frictional/frictionless bilateral constraints. The
system consists of a rigid rod with two prismatic joints as in Figure 1(d). One of the
guides is rough (it is acted on by Coulomb friction), the other is smooth. The external
forces are horizontal pulling forces F1 and F2. The dynamics is given by:







mẍ+ F1 + F2 = −µ1ξ |λ
µ
nb|

mÿ = λµn,b + λ0n,b
ml2

12
θ̈ + l

2
sin θ(F1 − F2) = l

2
cos θ(λ0n,b − λµn,b)−

l
2
sin θµ1ξ

∣
∣λµn,b

∣
∣

hµn,b(θ) = y − l
2
sin(θ)

h0n,b(θ) = y + l
2
sin(θ)−D

The matrices involved in the analysis of the system are: M = diag(m,m, ml2

12
), ∇hµn,b(θ) =

(0, 1,− l
2
cos(θ))T ,∇h0n,b(θ) = (0, 1, l

2
cos(θ))T ,Ht,b(θ) = (1, 0, l

2
sin(θ))T , Ãn,b(θ) =

12 cos2 (θ)
m(3 cos2 (θ)+1)

,

Ãtb(θ) =
[

6 sin (2θ)
m(3 cos (2θ)+5)

]

. Equation (48) boils down to a scalar equation of the form

Ãnb(θ)λ
µ
n,b − Ãtb(θ)µ1ξ

∣
∣λµn,b

∣
∣+ w̃b(q, q̇, t) = 0. From Proposition 12 it follows that if µ1 <

2
tan θ

then (ẍ, ÿ, θ̈, λµn,b, λ
0
n,b) exists and is unique. The condition turns out to be not only

sufficient but also necessary.

3.3 Unilaterally constrained systems

We now assume that mb = 0 and mu > 1. The unilateral sliding friction problem then
consists in finding the accelerations and contact forces (q̈, λn,u) solutions of the mLCP:

{
M(q)q̈ + F (q, q̇, t) = (∇hn,u(q)−Ht,u(q)[µ] [ξ])λn,u
0 6 ∇hn,u(q)

T q̈ + d
dt
(∇hn,u(q)

T )q̇ ⊥ λn,u > 0.
(50)
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3.3.1 Augmented contact LCP

If M(q) ≻ 0 then the problem is reduced to an LCP. Let us introduce the matrix:

Au,µ,ξ(q)
∆
= ∇hn,u(q)

TM(q)−1(∇hn,u(q)−Ht,u(q)[µu] [ξ]) (51)

= Anu(q)− Atu(q)[µu][ξ] (52)

with ξi = sgn(vt,u,i), vt,u,i 6= 0 for 1 6 i 6 mu. Then the frictional contact LCP, which
extends (10), is given by:

0 6 λn,u ⊥ Au,µ,ξ(q)λn,u + wu(q, q̇, t) > 0 (53)

with wu(q, q̇, t) in (11).

Proposition 13 Let (q, q̇), F (q, q̇, t) be given and vt,u,i 6= 0 for 1 6 i 6 mu. Let Anu(q)
be positive definite and suppose that:

max
16i6m

µi < µu
max(q)

∆
=
σmin(Anu(q))

σmax(Atu(q))
(54)

Then the matrix Au,µ,ξ(q) is positive definite, and the contact LCP (53) always has a
unique solution λn,u(q, q̇, t, µ) that is a Lipschitz continous function of wu(q, q̇, t).

The last result follows from basic complementarity theory [18]. The fact that (54) guar-
antees that Au,µ,ξ(q) ≻ 0, may be proved using Corollary 3 in section D. Proposition 13
thus states that whatever the status of the tangential contacts may be (provided they
are sliding) then λn,u can always be calculated uniquely. As alluded to above, extending
Propositions 3 and 7 requires some care, because even if the LCP matrix may still be
positive semi definite when sliding friction is involved (because the “disturbance” due to
friction is small) its symmetry is usually lost. Symmetry is an important property (see
Theorem 1 (d) in section B). When Au,µ,ξ(q) � 0 and is not symmetric, then using [18,
Theorem 3.1.7] various properties of the solutions may be derived (however Proposition
3 (ii) cannot be stated due to the lack of symmetry): if λ1n,u and λ2n,u are two solutions of
the LCP (53), then λ1,Tn,u(Au,µ,ξ(q)−Au,µ,ξ(q)

T )λ2n,u = (λ2n,u−λ
1
n,u)wu(q, q̇, t). Also solvabil-

ity implies that the set of solutions is polyhedral. Using a charaterization of copositive
matrices [66, §4.41], we may state the following, which may be seen as the extension of
Proposition 3 (iii) (iv).

Corollary 2 Suppose that there exists [ξ] such that the matrix Atu(q)[µu] [ξ] is elemen-
twise non-positive. Then provided that (0 6 λn,u ⊥ Au,µ,ξ(q)λn,u > 0 ⇒ λTn,uwu(q, q̇, t) >
0), the LCP in (53) is solvable.

Indeed from [66, §4.41], the sum of a symmetric positive semi definite together with
an elementwise non-negative matrices, is copositive. Hence under the stated conditions
Au,µ,ξ(q) is copositive. Then apply Theorem 2 in section C. Thus Corollary 2 boils down
to testing whether tangential velocities signs exist such that the perturbation matrix has
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all its entries non-negative. As simple examples like the classical Painlevé sliding rod
show [27], this may be the case. Obviously reversing the tangential velocities signs may
destroy the copositivity of Au,µ,ξ(q), and may induce singularities like Painlevé paradoxes.
It is noteworthy that direct extension of item (v) in Proposition 3, is generically not
possible because Au,µ,ξ(q) is non-symmetric. Thus the characterization of the solutions of
the homogenous LCP is not straighforward.

Notice that in a sticking regime where vt = 0, the LCP in (53) is not sufficient to
calculate λn,u uniquely, because the selections of the set-valued term sgn(vt) =sgn(0) =
[−1, 1] are still to be determined. One has to resort to Coulomb’s law at the acceleration
level [30, 58] to determine which type of transition the system undergoes.

3.3.2 Inclusions and Gauss’ principle

It is of interest to investigate whether or not some miminization problem for the acceler-
ation may be obtained in the sliding frictional case. The starting point is the MLCP in
(50), which is transformed using (52) into an inclusion that generalizes (15). The ques-

tion is then whether or not an extension of (16) exists or not. Let η̈
∆
= ∇hn,u(q)

T q̈ +
d
dt
(∇hn,u(q)

T )q̇, and M(q) ≻ 0. Using similar tools from convex analysis as in the forego-
ing sections (see (69)), one obtains:

η̈−
d

dt
(∇hn,u(q)

T )q̇ +∇hn,u(q)
TM(q)−1F (q, q̇, t)

︸ ︷︷ ︸

∆
=F̄u,µ,ξ(q,q̇,t)

∈ −Au,µ,ξ(q)∂ΨR
mu
+

(η̈) (55)

Let the conditions of Proposition 13 be satisfied. Then one has Au,µ,ξ(q)∂ΨR
mu
+

(η̈) =

Au,µ,ξ(q)∂ΨR
mu
+

(Au,µ,ξ(q)
TAu,µ,ξ(q)

−T η̈) = NE(q)(ζ̈), with ζ̈ = Au,µ,ξ(q)
−T η̈, E(q) = {z ∈

R
mu |Au,µ,ξ(q)

T z > 0} is non-empty, closed convex (polyhedral) set, and use was made of
the chain rule of convex analysis [64, Theorem 23.9]. The inclusion (55) is then equiva-
mently rewritten as:

Au,µ,ξ(q)
T ζ̈ + Fu,µ,ξ(q, q̇, t) ∈ −NE(q)(ζ̈) (56)

where Fu,µ,ξ(q, q̇, t) = Au,µ,ξ(q)
T F̄u,µ,ξ(q, q̇, t). The crucial fact here is that Au,µ,ξ(q) ≻ 0 is

not symmetric. However from [25, §1.1] it follows that the inclusion (56) is equivalent to
the variational inequality:

Find ζ̈ ∈ E(q) : 〈Au,µ,ξ(q)
T ζ̈ + Fu,µ,ξ(q, q̇, t), z − ζ̈〉 > 0 for all z ∈ E(q) (57)

Since Au,µ,ξ(q) ≻ 0, it follows that the mapping x→ Au,µ,ξ(q)
Tx+Fu,µ,ξ(q, q̇, t) is strongly

monotone [25, p.155], so from [25, Theorem 2.3.3] the variational inequality in (57) has a
unique solution ζ̈⋆. This solution also satisfies [25, p.158]:

ζ̈⋆ = proj[E(q);Au,µ,ξ(q)
T ζ̈⋆ + Fu,µ,ξ(q, q̇, t)] (58)

(56) (58) may be considered as the counterpart of (15) (16), or (22) (27), or (28) (29),
for unilateral constraints with sliding Coulomb friction. Consider the LCP in (53): the
extension of (12) that is the minimization associated with the LCP (10), is not clear due
again to the lack of symmetry of Au,µ,ξ(q).
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The Classical Example of Painlevé We now add Coulomb’s friction to the mechan-
ical system in Figure 1(b) and point out how the equations of motion are affected. The
system under consideration is the classical example of Painlevé. Its dynamics is given by:







mẍ = −µξλnu
mÿ = −mg + λn
ml2

12
θ̈ = − l

2
cos θλn − l/2 sin θµξλnu

0 ≤ hnu(θ) = y − l
2
sin(θ)⊥λnu ≥ 0

The additional matrices due to friction are Htu(θ) = (1, 0, l
2
sin(θ))T , Atu(θ) =

−3 sin θ cos θ
m

,

and Au,µ,ξ(θ) =
1+3 cos2(θ)

m
+ 3 sin(θ) cos(θ)

m
µξ. Hence the LCP in (53) reads:

0 ≤
(1 + 3 cos2(θ)

m
+

3 sin(θ) cos(θ)

m
µξ
)

λnu +
l

2
θ̇2 sin θ − g⊥λnu ≥ 0. (59)

The necessary and sufficient condition for a solution to exist is that the scalar Au,µ,ξ(θ)
be positive. If we consider values of θ in ]0, π

2
[ then one sees that for rightward sliding

(ξ = 1) Au,µ,ξ(θ) is always positive, regardless of the magnitude of friction (hence Corollary
2 applies and the LCP is solvable because the only solution of the homogeneous LCP is
λn,u = 0, though in this scalar case one can use directly the fact that the LCP matrix
is a P-matrix to conclude about existence and uniqueness). Whereas for leftward sliding
(ξ = −1), Au,µ,ξ(θ) becomes negative for high values of friction. Indeed solving for µ in the
scalar inequality Au,µ,ξ(θ) < 0 one finds the critical friction value beyond which paradoxes

occur, and it coincides with that of Corollary 13, namely µmax
u (θ) = 1+3 cos2 θ

3 sin θ cos θ
. A graphical

interpretation of these singular LCP situations is given on Figure 7, paralleling Figure
3(a) in the bilateral case.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

λnu

−1.0

−0.5

0.0

0.5

1.0

1.5

ḧ
n

u

Unique Solution

Unique SolutionNon Uniqueness

Non existence

θ = π/3, ξ = −1

µ < µmax

u
(θ)

µ > µmax

u
(θ)

0 ≤ λn⊥ḧnu ≥ 0

Figure 7: Singular and non-singular situations for (59).

3.4 Unilaterally/bilaterally constrained systems

Let us consider again systems as in section 2.3, but with friction at the contacts.
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3.4.1 All contacts with friction

Let us assume first that all contacts are frictional, i.e., I0
b = I0

u = ∅. Let us consider (1)
in its index 1 form, i.e., with the acceleration constraints ∇hn,b(q)

T q̈+ d
dt
(∇hn,b(q)

T )q̇ = 0
and 0 6 hn,u(q) ⊥ ∇hn,u(q)

T q̈ + d
dt
(∇hn,u(q)

T )q̇ > 0. The dynamics in (1) becomes :






M(q)q̈ = ∇hnb(q)λn,b −Ht,b(q)[µbξb] |λn,b|+∇hnu(q)λn,u −Ht,u(q)[µuξu]λn,u − F (q, q̇, t)

∇hn,b(q)
T q̈ + d

dt
(∇hn,b(q)

T )q̇ = 0

0 6 λn,u ⊥ ∇hnu(q)
T q̈ + d

dt
(∇hn,u(q)

T )q̇ > 0.
(60)

By inverting the mass matrix, q̈ can be expressed as a function of the multipliers. In-

troducing λ+ = |λnb|+λnb

2
and λ− =

|λn,b|−λn,b

2
as in Proposition 11 casts the piecewise

linearity induced by the absolute value into a complementarity formalism.The problem
is thus transformed to determining whether for arbitrary parameter values and arbitrary
vectors w1, w2 the following MLCP has a unique solution (λ+(q, q̇), λ−(q, q̇), λn,u(q, q̇)):






(Anb − Atb[µbξb])λ
+ − (Anb + Atb[µbξb])λ

− + (Anbnu − Anbtu[µuξu])λn,u + w1 = 0

0 6 (Anunb − Anutb[µbξb])λ
+ − (Anunb − Anutb[µbξb])λ

− + (Anu − Atu[µuξu])λn,u + w2 ⊥ λn,u > 0

0 6 λ+ ⊥ λ− > 0
(61)

where

w1(q, q̇, t)
∆
= −∇hn,b(q)

TM(q)−1F (q, q̇, t) +
d

dt
(∇hn,b(q)

T )q̇

w2(q, q̇, t)
∆
= −∇hn,u(q)

TM(q)−1F (q, q̇, t) +
d

dt
(∇hn,u(q)

T )q̇

possess the same structure as wu(q, q̇, t) in (11). Assume that the conditions of Proposition
11 hold. Then Anb(q) − Atb(q)[µbξb] ≻ 0 and the problem is to determine the existence
and uniqueness of a solution (λ−(q, q̇), λn,u(q, q̇)) (for arbitrary q, q̇) of the following LCP
(argument q is dropped):

0 6

(
λ−

λn,u

)

⊥

(
A−1Ā −A−1B

CA−1Ā− C̄ D − CA−1B

)

︸ ︷︷ ︸

∆
=M

µ
ub

(q)

(
λ−

λn,u

)

+

(
z1
z2

)

> 0, (62)

where A
∆
= Anb − Atb[µbξb], Ā

∆
= Anb + Atb[µbξb], B

∆
= Anbnu − Anbtu[µuξu], C

∆
= Anunb −

Anutb[µbξb], C̄
∆
= Anunb+Anutb[µbξb], D

∆
= Anu−Atu[µuξu], z1

∆
= −A−1w1 and z2

∆
= w2+Cz1.

Remark 4 When all the contacts are frictionless, the LCP in (62) has the form:

0 6

(
λ−

λn,u

)

⊥

(
I −A−1

nbAnbnu

0 Anu − AT
nbnuA

−1
nbAnbnu

)

︸ ︷︷ ︸

∆
=M0

ub
(q)

(
λ−

λn,u

)

+

(
z1
z2

)

> 0, (63)
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The second line is an LCP involving λnu alone and is the same as the LCP in (32). Thus
its solution λnu exists and is unique provided that all the constraints are independent.
Under this assumption it follows that λ− also exists and is unique: hence the matrix
M0

ub(q) of the LCP (63) is a P-matrix.

One has the following decomposition : Mµ
ub(q) =M0

ub(q)+Pµ(q, q̇) where ‖Pµ(q, q̇)‖ tends
to zero as the friction µi goes to zero for each contact. Once again the matrix from the
frictional LCP is obtained as a perturbation of the frictionless one (63). Here sufficiently
small friction coefficients will guarantee that Mµ

ub is a P-matrix. Let us provide some
details on the matrix Pµ(q, q̇). We know from section 3.2 that A−1Ā = I +2Kµ(q, q̇) with
Kµ(q, q̇) =

∑∞
i=1(A

−1
nbAtb[µbξb])

i. Using the same decomposition for the other blocks of
Mµ

ub(q), one obtains

A−1Ā = I + 2Kµ(q, q̇) (64)

−A−1B = −A−1
nbAnbnu + (I +Kµ(q, q̇))A

−1
nbAnbtu[µuξu]−Kµ(q, q̇)A

−1
nbAnbnu (65)

CA−1Ā− C̄ = 0− 2Anutb[µbξb] + CKµ(q, q̇) (66)

D − CA−1B = Anu − AT
nbnuA

−1
nbAnbnu − Atu[µuξu] + Anutb[µbξb]A

−1
nbAnbnu

+ C((I +Kµ(q, q̇))A
−1
nbAnbtu[µuξu]−Kµ(q, q̇)A

−1
nbAnbnu) (67)

By Theorem 3 in section D, if ‖Pµ(q, q̇)‖2 < 1/β2(M
0
ub(q)) thenM

µ
ub(q) is a P-matrix. One

can therefore derive an explicit maximum value of all friction coefficients below which
existence and uniqueness of a solution to problem (60) is guaranteed. Since each block

of Pµ(q, q̇) is a O(µ) and ‖Pµ(q, q̇)‖ ≤
√

‖P11‖
2 + ‖P12‖

2 + ‖P21‖
2 + ‖P22‖

2 it suffices to

choose µ such that ‖Pµ(q, q̇)ij‖ < 1/2β2(M
0
ub(q)).

Proposition 14 Let (q, q̇), F (q, q̇, t) be given and vt,i 6= 0 for all i. Assume M(q) ≻
0 and Anb(q) ≻ 0. Suppose that all the constraints are independent, that the bilateral
friction coefficients satisfy max16i6mb

µb
i < µb

max(q), and that ‖Pµ(q, q̇)‖2 < 1
β2(M0

ub
(q))

.

Then Mµ
ub(q) is a P-matrix and there exists a unique solution (q̈, λnb, λnu) to the LCP in

(62) and thus to the mixed sliding friction problem (60).

One sees once again that there is no obvious quadratic problem that could be associated
with the LCP in (62), because Mµ

ub(q) is guaranteed to be neither symmetric nor � 0.

3.4.2 Frictionless bilateral contacts

When the bilateral constraints are frictionless (µb,i = 0 for all 0 ≤ i ≤ mb), one can easily
express λnb as a function of λnu and equation (60) becomes

0 ≤ λnu⊥(D − CA−1B)λnu + z2 ≥ 0,

with D−CA−1B = Anu−A
T
nbnuA

−1
nbAnbnu+(AT

nbnuA
−1
nbAnbtu−Atu)[µuξu], which is the sum

of the matrix Ac(q) in (33), plus a frictional perturbation term. This matrix is simpler
than Mµ

ub(q) in (62) since it is the perturbation of a symmetric positive definite matrix,
rather than that of a P-matrix. One can use the results of Section 3.3.
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Proposition 15 Let (q, q̇), F (q, q̇, t) be given and vt,i 6= 0 for all i. Suppose that all
constraints are independent, that the bilateral constraints are frictionless (µb,i = 0 for all
i), and that

max
16i6mu

µu,i <
σmin(Anu(q)− Anbnu(q)

TAnb(q)
−1Anbnu(q))

σmax(Atu(q)− Anbnu(q)TAnb(q)−1Anbtu(q))
(68)

Then there exists a unique solution (q̈, λnu, λnb) to problem (60).

There is no clear relationship between µu
max(q) in (54), and the upperbound in (68).

4 Recapitulation

4.1 Contact force calculation

We now give a global view on the structures of the different contact problems we have
been considering thus far. What we first wish to underline is that (for a non-singular mass
matrix and constraint Jacobian) the frictionless problems are well posed. The bilateral
one as a linear system in (7)

Anb(q)λn,b + wb(q, q̇, t) = 0,

the unilateral one as an LCP in (10)

0 ≤ Anu(q)λn,u + wu(q, q̇, t)⊥λn,u ≥ 0,

and the mixed one as the unilateral LCP with a bilateral distortion in (32)

0 ≤ Ac(q)λn,u + wc(q, q̇)⊥λn,u ≥ 0.

In the case of a full rank Jacobian and an invertible mass matrix all three matrices
Anb(q), Anu(q),and Ac(q) are positive definite. One can solve uniquely for contact forces
and deduce a unique acceleration. Then in the case of small friction this well posedness
is preserved. The all sliding bilateral friction problem becomes the LCP

0 ≤ (I + 2Kµ(q, q̇))λ
− + wbf (q, q̇, t)⊥λ

− ≥ 0,

for some wbf (q, q̇, t), where ‖Kµ(q, q̇, t)‖ tends to zero as the friction µ goes to zero. For
small enough friction the positivity of the identity matrix is preserved and the LCP is
well posed. The unilateral all sliding friction problem becomes (53)

0 ≤ Au,µ,ξ(q)λn,u + wu(q, q̇, t)⊥λn,u ≥ 0.

For small friction µu the well posedness of the contact problem is kept. As for the mixed
all sliding friction problem one has an LCP of the form (62)

0 ≤ (M0
ub(q) + Pµ(q, q̇))λ+ w(q, q̇, t)⊥λ ≥ 0,

where ‖Pµ(q, q̇)‖ tends to zero as the friction µ goes to zero. The matrix M0
ub(q) is a

P-matrix whose terms appear in the frictionless problems and the P-matrix property is
also preserved when adding the small frictional perturbation term Pµ(q, q̇).
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4.2 Minimization problems and Gauss’ principle

Althrough the paper it has been shown that the acceleration is the solution of a min-
imization problem under constraints: (5) for the frictionless bilateral case, (16) for the
frictionless unilateral case, (28) for the frictionless mixed bilateral/unilateral case. All
these quadratic programs may be recast into a stationary point problem

0 ∈ ∂

(
1

2
q̈TM(q)q̈ + q̈TF (q, q̇, t) + ΨK̃(q̈)

)

where K̃ varies from one case to the other and ∂ is the subdifferentiation from convex
analysis. This was already advocated in [28, 29, 30], see also [82]. In the mixed case a
different expression has been proposed in (27). The crucial property for the minimization
problem to hold, is the symmetry of the mass matrix (or of Pr(q) in (27)) in addition to its
(semi) positive definiteness. In case of sliding Coulomb friction, symmetry is usually lost.
However Gauss’ principle may be formulated under the projection (58) in the unilateral
case. If the contacts are sticking and Coulomb friction is formulated at the acceleration
level [30, p.137] [58], then some extensions of Gauss’ principle are possible [63, 36].

A Some convex analysis and complementarity theory

tools

Let f : Rn → R ∪ {+∞} be a convex proper function. Its subdifferential is denoted as
∂f(·) and is the set of subgradients.

Let K be a set, its indicator function is ΨK(x) = 0 if x ∈ K and = +∞ if x 6∈ K.
If K ⊂ R

n is non-empty closed and convex, its normal cone at x is NK(x) = {z ∈
R

n|zT (y − x) 6 0 for all y ∈ K} = ∂ΨK(x). If K = R
n then NK(x) = {0} for all x. The

tangent cone TK(x) = {z ∈ R
n|zTy 6 0 for all y ∈ NK(x)}. If K = {x ∈ R

n|f(x) > 0}
for m continuously differentiable functions fi : R

n 7→ R which satisfy the Mangasarian-
Fromovitz constraint qualification [25], then TK(x) = {v ∈ R

n|vT∇fi(x) > 0, for all i ∈
{1, ...,m} such that fi(x) = 0}.

A linear complementarity problem LCP(q,M) with unknown x ∈ R
n is: x > 0,

Mx + q > 0, xT (Mx + q) = 0. More compactly 0 6 x ⊥ Mx + q > 0. An LCP is said
solvable if it has at least one solution. If M is a P-matrix then the LCP has a unique
solution for any q [18].

Let C be a (non-necessarily convex) set of Rn, then its dual set is C∗ = {x ∈ R
n|xT z >

0 for all z ∈ C}, which is always a closed convex cone.
Let M ∈ R

n×n be a symmetric positive definite matrix defining the inner product
xTM x. With this metric, the orthogonal projection of a vector x ∈ R

n on a convex set
K ⊂ R

n is denoted as projM [K; x] = argminz∈K
1
2
(z − x)TM(z − x).

The following equivalences are useful. Let x ∈ R
n, q ∈ R

n, M ∈ R
n×n, K is a closed
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convex cone.

Mx+ q ∈ −NK(x) ⇔ K ∋ x ⊥Mx+ q ∈ K∗

⇔ (if M =MT � 0) x = argminz∈K
1
2
zTMz + qT z

⇔ (if M =MT ≻ 0) x = projM [K;−M−1q]

(69)

B Theorem 3.1.7 in [18] (excerpts)

Theorem 1 Let M ∈ R
n×n be positive semi definite, and let q ∈ R

n be arbitrary. The
following statements hold:

• (a) If z1 and z2 are two solutions of the LCP(M, q) then (z1)T (q+Mz2) = (z2)T (q+
Mz1).

• (d) If M is symmetric (as well as positive semi definite) then Mz1 = Mz2 for any
two solutions z1 and z2.

C Theorem 3.8.6 in [18]

Theorem 2 Let M ∈ R
n×n be copositive and let q ∈ R

n be given. If the implication
[0 6 v ⊥Mv > 0] ⇒ [vT q > 0] is valid, then the LCP(M, q) is solvable.

Let QM denote the solution set of the homogeneous LCP. This theorem can be restated
equivalently as: If M is copositive and q ∈ Q∗

M then LCP(M, q) is solvable.

D Theorems 2.8 and 2.11 in [16]

Chen and Xiang [16] stated very useful criteria that guarantee that a positive definite or a
P-matrix remains positive definite or P when it is subject to a small enough perturbation.
We give here just an excerpt of the results in [16], and a corollaries of it.

Theorem 3 If M is a P-matrix then all matrices A such that

β2(M) ‖M − A‖2 < 1

are P-matrices, where β2(M) := maxd∈[0,1]n ‖(I −D +DM)−1D‖2, and D = diag(d).
When M is symmetric positive definite, β2(M) = ‖M−1‖2.

Theorem 4 Let M ∈ R
n×n be a positive definite matrix. Then every matrix

A ∈ {A :
∣
∣
∣
∣

∣
∣
∣
∣

(
M+MT

2

)
−1
∣
∣
∣
∣

∣
∣
∣
∣
2

||M − A||2 < 1}

is positive definite.
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The next corollary is proved in [12].

Corollary 3 Let D = P + N , where D, P and N are n × n real matrices, and P > 0,
not necessarily symmetric. If

||N ||2 <
1

‖
(

P+PT

2

)−1

‖2

(70)

then D > 0.

E KKT system: solvability and solution uniqueness

The KKT problem in (4) is ubiquitous in the study of mechanical systems with bilateral
holonomic constraints. In this section it is analysed from various points of view, and
proves to possess some subtleties depending on which assumptions are made on the data.
Let us consider the next three problems, where M =MT ∈ R

n×n and M � 0, F ∈ R
n×m,

N ∈ R
n×m, x ∈ R

n, y ∈ R
m, z ∈ R

n, a ∈ R
n, b ∈ R

m:

(
M I
F T 0

)

︸ ︷︷ ︸

∆
=Ã∈R(n+m)×2n

(
x
z

)

=

(
a
b

)

(71)

and (
M −F
F T 0

)

︸ ︷︷ ︸

∆
=Ā∈R(n+m)×(n+m)

(
x
y

)

=

(
a
b

)

(72)

and (
M N
F T 0

)

︸ ︷︷ ︸

∆
=Â∈R(n+m)×(n+m)

(
x
y

)

=

(
a
b

)

(73)

The three systems (71), (72) and (73) correspond to various ways to consider the
system in (4), where x is for q̈, z is for −∇hn,b(q)λn,b and y is for λn,b.

• (i) Let us consider first (71) without any assumption on the form of z. From [9,

Fact 2.10.22] one has Im(Ã) = Im

(
M
F T

)

+ Im

(
I
0

)

. Thus a necessary and

sufficient condition for (71) to possess a solution (x, z) for any a and b, equivalently
rank(Ã) = n + m (which also follows from [9, Proposition 6.1.7 (iii)]), is that F T

has full rank m, i.e., F be full column rank (this implies that n > m). Uniqueness
of (x, z) for any a and b holds if and only if n = m and rank(Ã) = 2n (this may
be proved from [9, Theorem 2.6.3 ii)]), in which case F is square and has full rank
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n. In this case the solution is equal to Ã†

(
a
b

)

, where Ã† is the Moore-Penrose

generalized inverse of Ã [9, Proposition 6.1.7 (viii)]. One sees that M plays no role
in this system.

• (ii) Let us still consider (71) assuming that z = −Fy for some y, i.e., z ∈ Im(F ).
One has (x, z) ∈ ker(Ã) ⇔ Mx = −z and x ∈ ker(F T ). Using z ∈ Im(F ) and
x ∈ ker(F T ) and [9, Theorem 2.4.3] it follows that x ⊥ z. We also have z ∈
Im(M). Using that Im⊥(M) = ker(M), we deduce that x ∈ ker(M) because M is
symmetric positive semi definite11. Thus x ∈ ker(M) ∩ ker(F T ) and consequently
z = −Mx = 0. Thus we have shown that [(x, z) ∈ ker(Ã) and z ∈ Im(F )] ⇒
[z = 0 and x ∈ ker(M) ∩ ker(F T )], and the reverse implication holds also. Let
S = {(x, z) ∈ R

2n|z ∈ Im(F )}. Then ker(Ã) ∩ S = {(x, z) ∈ R
2n|z = 0 and x ∈

ker(M) ∩ ker(F T )}. One infers that ker(M) ∩ ker(F T ) = {0} ⇒ ker(Ã) ∩ S = {0}.
From (i) existence of solutions for system (71) holds for any a and b if and only if
rank(Ã) = n+m⇔ rank(F ) = m, hence dim(ker(Ã)) = 2n−n−m = n−m. From
the fact that 0 6 dim(ker(Ã) ∩ S) 6 min(n −m,n +m) = n −m [9, Fact 2.9.14],
one infers that ker(M) ∩ ker(F T ) = {0} ⇒ dim(ker(Ã) ∩ S) = 0, thus n = m. In
this case it follows from (i) that the system has a unique solution for any a and
b. Conversely the existence of solutions for arbitrary a and b and n = m imply
uniqueneness, as well as ker(M) ∩ ker(F T ) = {0} since F is square full rank n.

Let us now pass to the system (72). Remark that if Ā in (72) is invertible then F
necessarily has full rank m. This follows from the fact that (x, y) ∈ ker(Ā) implies
x ∈ ker(M) ∩ ker(F T ) and y ∈ ker(F ), using similar arguments as in (ii). In particular if
there are more constraints than degrees of freedom (i.e., m > n) then Ā is not invertible,
and likewise if rank(F )= r < m.

• (iii) Consider now the system (72). Let rank(F ) = m (so m ≤ n) andM be positive
semi definite. Then existence and uniqueness of both x and y for arbitrary a and
b (equivalently, non-singularity of Ā) holds if and only if ker(M) ∩ ker(F T ) = {0}
(proof by direct application of [66, p.523], or using the above expression of ker(Ā)).

The rank condition on F appears to be in fact necessary and sufficient as alluded
to few lines above:

• (iii’) The system (72) has a unique solution (x, y) for arbitrary a and b if and only

if rank(F ) = m and ker(M) ∩ ker(F T ) = {0}. This solution is equal to Ā−1

(
a
b

)

.

The proof of (iii’) follows from [9, Theorem 2.6.3, Proposition 6.1.7], noting that Ā is
square. It is sometimes wrongly stated that Ā is non-singular if and only if M and F are
both full rank matrices [40], which is only a sufficient condition. In fact one has from [9,

11The conclusion does not hold without the positive definiteness condition.

41



Fact 6.4.20]:

rank(Ā) = rank(M) + 2rank(F )− dim[Im(M) ∩ Im(F )]

−dim[Im

(
M
F T

)

∩ Im

(
F
0

)

]
(74)

The formula in (74) shows that one may dispense with positive definiteness conditions
on M , and that the non-singularity of Ā results form an interplay between the matrices

ranges. Consider for instanceM =

(
1 0
0 −1

)

and F = (1 0)T , which yields rank(Ā) = 3.

In Contact Mechanics we wish to allow for situations where the constraints are redundant,
so (rank(F ) = r < min(m,n)) but which are nevertheless compatible (i.e. b ∈ Im(F T )),
for otherwise the problem has no solution. Thus the most relevant problem is that of
determining x and y such that (72) holds for arbitrary a with the additional assumption
that b ∈ Im(F T ). This problem is thus different from problems tackled in (ii) and (iii’),
and corresponds to the problem tackled in [20, 19, 76].

• (iv) The necessary and sufficient condition for the existence of x and y with unique-
ness of x and Fy such that (72) holds for arbitrary a is that b ∈ Im(F T ) and
ker(M) ∩ ker(F T ) = {0}.

Proof:
⇐
Existence of x and y: By contraposition, if not (∀a, ∃x and y such that (72) holds)
then there exists an a ∈ R

n such that for all x, y, F Tx 6= b (so b 6∈ Im(F T )) or
Mx− Fy 6= a (so Im([M F ]) 6= R

n, i.e., ker(M) ∩ ker(F T ) 6= {0}.
Uniqueness of x and Fy: Suppose b ∈ Im(F T ) and ker(M) ∩ ker(F T ) = {0}.

If (x1, y1) and (x2, y2) are two solutions of (72) then F T (x1 − x2) = 0 and M(x1 −
x2) = F (y1− y2). Hence (x1−x2) ∈ ker(F T ) and M(x1−x2) ∈ Im(F ) = ker(F T )⊥.
Hence (x1 − x2)

TM(x1 − x2) = 0 and since M is symmetric positive semi definite
this means (x1 − x2) ∈ ker(M). By hypothesis ker(M) ∩ ker(F T ) = {0} so one
concludes that x1 − x2 = 0, that is, x is unique. It follows that Fy1 = Fy2 so Fy is
unique as well.
⇒
Suppose that for arbitrary a, there exists x and y such that (72) holds with unique-
ness of x and Fy. Then in particular b ∈ Im(F T ). Let x ∈ ker(M) ∩ ker(F T ) and
let (x⋆, y) be the unique solution of (72). Then (x⋆ + x, y) is also a solution of (72).
Hence x = 0, so that ker(M) ∩ ker(F T ) = 0. �

In [20, p.319] the condition b ∈ Im(F T ) is stated as: acceleration constraints are com-
patible. In conclusion, four types of systems are considered: system (72) with unknowns
x and y in (iii), system (71) with unknowns x and z in (i), system (71) with unknowns x
and z and the constraints that z ∈ Im(F ) in (ii), system (72) with unknowns x and y with
uniqueness of x and Fy and arbitrary a in (iv). To complete the picture let us note that
ker(M) ∩ ker(F T ) = {0} ⇔ (Im(M) + Im(F )) = R

n ⇔ Im[(M F )] = R
n using [9, Fact
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2.9.10], and we recover directly an alternative way to formulate the condition involving
the kernels, sometimes used in the literature [76] [19, Equation (9)].

Problems like in (72) and (71) occur in frictionless systems. The next step is to
consider systems of the form (73) for some matrix N . Such problems arise in the presence
of Coulomb’s friction, see (37). Using [9, Fact 6.4.20] one gets an extension of (74):

rank(Â) = rank(M) + rank(F T ) + rank(N)− dim[Im(M) ∩ Im(F )]

−dim[Im

(
M
F T

)

∩ Im

(
N
0

)

]
(75)

System (73) has a unique solution (x, y) for any a and b if and only if rank(Â) = n+m.
One has:

Im

(
M
F T

)

∩ Im

(
N
0

)

= {z ∈ R
n+m|∃ y1 ∈ ker(F T ), ∃ y2 ∈ R

m, such that

z =

(
My1
0

)

=

(
Ny2
0

)

}
(76)

and

Im(M) ∩ Im(F ) = {z ∈ R
n|∃ y1 ∈ R

n, ∃ y2 ∈ R
m, such that z =My1 = Fy2} (77)

It is clear from (75) that the system’s well-posedness depends on the interplay between
M , F and N . Even if all three matrices have full rank, one may have rank(Â) < n +m.
Suppose that rank(M) = n, and rank(F TM−1N) = m. Then Im(M) ∩ Im(F ) = Im(F )

and Im

(
M
F T

)

∩ Im

(
N
0

)

= {0} (since F Ty1 = 0 = F TM−1Ny2). Therefore from (75)

one has rank(Â) = n+m.
Finally we may rewrite (73) as (71) posing z = Ny. Then (i) applies, but (ii) usually

does not except if Im(N) ⊆ Im(F ). Then given z, there exists a unique y if and only if
N has full column rank m (⇒ m 6 n). Let N = −F + P for some matrix P .

(v) Assume that F has full column rank m (equivalently F TF ∈ R
m×m is positive def-

inite). Let us investigate conditions that guarantee that N has full rank m. Equivalently
NTN ∈ R

m×m is positive definite. One has NTN = F TF − F TP − P TF + P TP . Direct
application of Corollary 3 shows that a sufficient condition for NTN to be positive definite
is that ||−F TP −P TF +P TP ||2 <

1
||(FTF )−1||2

, equivalently σmax(−F
TP −P TF +P TP ) <

σmin(F
TF ).

Let M = 0, then using (75) it follows that rank(Â) = 2m, hence rank(Â) = n +m if
and only if n = m. This shows that depending on the interplay between the ranges of the
matrices in (75), the system in (73) may be solvable with uniqueness for any a and b, for
low-rank matrices M .

(vi) Let us assume that rank(M) = n and study conditions such that the rank of
F TM−1N = −F TM−1F + F TM−1P is m. Then as shown after (77), Â has rank
n + m and the system (73) has a unique solution for any a and b. Using Corollary
3, rank(F TM−1N) = m holds if rank(F ) = m and σmax(F

TM−1P ) < σmin(F
TM−1F ).
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It is noteworthy that the study of problem (73) may also be quite useful in the context
of numerical analysis of differential algebraic equations (DAEs). Half-explicit methods
involve such problems (for instance N may be the jacobian of the constraints estimated
at step i + 1 while F is the jacobian estimated at step i) [70, §7.1] [31, §VII.6], see also
[15, 44, 54, 55] for various forms of numerical KKT systems.
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[65] B. Ruzzeh and J. Kövecses. A penalty formulation for dynamics analysis of re-
dundant mechanical systems. Journal of Computational and Nonlinear Dynamics,
6(2):021008, 2011.

[66] L. Vandenberghe S. Boyd. Convex Optimization. Cambridge University Press, 2004.

[67] M. Schatzman. A class of nonlinear differential equations of second order in time.
Nonlinear Analysis, Theory, Methods and Applications, 2(3):355–373, 1978.

[68] M. Schatzman. Uniqueness and continuous dependence on data for one-dimensional
impact problem. Math. Comput. Modelling, 28(4-8):1–18, 1998.

[69] A.A. Shabana. Euler parameters kinetic singularity. Proc. Inst. Mech. Eng. Part K:
Journal of Multi-body Dynamics, 2014. DOI: 10.1177/1464419314539301.

[70] B. Simeon. Computational Flexible Multibody Dynamics. A Differential-Algebraic
Approach. Springer Verlag, 2013. Differential-Algebraic Equations Forum.

[71] D.E. Stewart. Convergence of a time-stepping scheme for rigid-body dynamics and
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