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Partial difference operators on weighted graphs for
image processing on surfaces and point clouds.

François Lozes, Abderrahim Elmoataz, Olivier Lézoray

Abstract—PDEs and variational methods for image processing
on Euclidean domains spaces are very well established because
they permit to solve a large range of real computer vision
problems. With the recent advent of many 3D sensors, there is
a growing interest in transposing and solving PDEs on surfaces
and point clouds. In this paper, we propose a simple method
to solve such PDEs using the framework of Partial difference
Equations (PdEs) on graphs. This latter approach enables us
to transcribe, for surfaces and point clouds, many models and
algorithms designed for image processing. To illustrate our
proposal, three problems are considered: p-Laplacian restoration
and inpainting, PDEs Mathematical Morphology, and active
contours segmentation.

I. INTRODUCTION

PDEs and variational methods are one of the most important
tools widely used for modeling and solving inverse problems,
e.g., in image processing and computer vision. They have
been applied with success in many applications tasks such as
image or video denoising, image inpainting, image segmen-
tation, etc. Recently, many of these methods were extended
to non-local forms [1, 2] that have shown their ability to
preserve textures and repetitive structures. However, most of
the research works on local or non-local processing focus only
on image processing on Euclidean spaces. With 3D sensors
becoming cheaper, there is a huge need in the processing of 3D
surfaces or 3D point clouds. Indeed, many application fields
such as medical imaging, industrial vision, terrestrial imaging
now directly consider such 3D data. Recently, researchers
have been interested in transposing and solving PDEs and
variational problems on general surfaces or manifolds. PDEs
on surfaces are traditionally handled by techniques that can be
roughly classified in three categories whether they make use
of either explicit, implicit or intrinsic representations.

The first category of techniques is using explicit represen-
tations of surfaces represented by triangular meshes [3, 4]. By
relying on a specific parametrization to the given surface, dif-
ferential operators can be defined and computed analytically.
However the computation of a parametrization is a difficult
task for arbitrary given surfaces and topological changes can
be hard to handle.
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The second category of techniques is using implicit repre-
sentations of surfaces represented by a zero level-set function
of a signed distance function in Euclidean domains. The
differential operators are then approximated by combining the
Euclidean differential operators with a projection along the
normal direction [5, 6]. For instance, in [7] the coordinates
of the closest point for each point of the surface is used and
fast algorithms can be obtained in Euclidean domains. Implicit
representation can deal easily with topological changes but all
the data has to be extended to the definition domain of the
implicit function.

The third category of techniques is using intrinsic geometry
to study variational problems directly on the surface rep-
resented as a triangular mesh. Lai and Chan have recently
proposed [8] a framework for intrinsic image processing
on surfaces. They approximate surface differential operators
such as surface gradient and divergence by specific intrinsic
differential geometry definition. Intrinsic methods do not need
any pre-processing but they require a specific discretization
scheme on triangles.

As we just detailed it, the three categories of methods
all suffer from some restrictions. Some explicit and intrinsic
methods consider surfaces as a set of triangles called a trian-
gular mesh. Indeed, for triangulated surfaces, the definition of
differential operators can be defined in a rigorous way whereas
this is much more difficult for arbitrary manifolds. For point
clouds, the processing is even more difficult since we lack any
structuring information. Indeed, contrary to triangular meshes,
3D points clouds are not associated with any connectivity.
Moreover, if one considers 3D point clouds and not triangular
meshes, it is very difficult to express any variational algo-
rithm since the definition of the basic differential operators
have specific connectivity requirements (triangles are needed)
available only for triangular meshes. Finally, implicit methods
can be time-consuming since one has to cope with very large
volumes.

Some authors have recently considered the problem of
solving PDEs on point clouds [9, 10]. However both these
approaches use intermediate representations to approximate
differential operators on point clouds. [10] use a local triangu-
lation that necessitates a pre-processing. This pre-processing is
needed for the authors to estimate their differential operators
on triangular meshes and their method can be categorized as
an intrinsic method. [9] compute a local approximation of
the manifold using moving least squares from the k-nearest
neighbors. From this local coordinate system, a local metric
tensor is computed at each point to be able to differentiate on
the manifold. This method can therefore be categorized as an
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explicit method. As we can see, even if these methods consider
point clouds, they rely on intermediate representations to
locally approximate manifolds.

Regarding all these difficulties, a different approach is
needed that can cope with both 3D meshes and point clouds of
the arbitrary connectivities. To achieve this goal, we propose
in this paper a new approach that can be used to overcome all
the problems or drawbacks that explicit / implicit / intrinsic
methods do suffer: no parametrization is needed, no pre-
processing is required, no assumption on the surfaces’ graphs
topologies is necessary. Since 3D point clouds and triangular
meshes can have very different topologies, we propose to rely
on a new class of methods that directly works in any discrete
domain.

In this approach, surfaces (composed of a collection of
any polygons and not necessarily triangular meshes) and 3D
point clouds are represented under the same structure of
weighted arbitrary graphs. Then we use the framework of
Partial difference Equations (PdEs) on weighted graphs [11]
to transcribe PDEs and variational methods in the discrete
settings of graphs. Conceptually PdEs mimic the PDEs on
a general domain by replacing the differential operators by
non-local difference operators such as: difference, gradient,
divergence, p-laplacian, etc. This graph version of differential
operators will enable us to study image processing problems
on general graphs representing surfaces and 3D point clouds.
By the way, the framework we propose can extend classical
PDEs on Euclidean domains to arbitrary graphs and give
rise to many new problems transposed as PdEs on graphs.
Regarding the other approaches of the literature, our approach
to transpose PDEs on surfaces or point clouds (represented as
graphs) has many advantages: no parametrization is needed,
no pre-processing is required, no assumption on the surface
graph topology is necessary, the use of graph unifies local and
non-local processing, and a large range of PDEs can be easily
adapted on arbitrary weighted graphs.

Our approach allows to transpose and extend many pro-
cesses in classical image processing to surfaces and points
cloud. In this paper, to illustrate our approaches, we consider
four representative problems for image processing on surfaces
and point clouds: p-Laplacian regularization denoising, mor-
phological processing, inpainting and global minimization for
segmentation. As far as we known, such problems on raw point
clouds have been few investigated in literature.

Before entering into the details of our approach, we present
our new contributions and also highlight the differences with
our previous works. In our previous works [11], we have
considered many image processing problems formulated on
graphs using the framework of partial difference operators
that we proposed. In this framework the derivatives on graph
of a function f at a given vertex are deconnected from the
geometrical organization of the data (i.e., the graph topology).
To cope with this, weights are introduced for the derivatives to
incorporate the geometry. This is very important to enable for
example non-local processing. In all our previous works, we
have considered only the cases of images, meshes, and high
dimensionals manifolds [12, 11, 13]. In this paper we focus on
a very challenging type of data: raw point clouds. To describe

the geometry of the data, we propose a specific patch definition
and construction that enables to account for similar geometric
configurations. This framework is the first to propose a unified
way to process a function on any arbitrary graph representing
a surface or a point cloud, and there is no equivalent in the
literature. One strong benefit of our approach is that it enables
to process the color associated to 3D point clouds whereas
usual mesh filtering consider only vertex coordinates filtering.
However, we want to stress that even if we consider point
clouds in this paper, all the processing that we will proposed
can be applied to any type of graph signal.

In [11, 13], we have proposed p-Laplacian regularization
of graph signals. In this paper, we propose to unify under a
same formulation, in a divergence form, both the isotropic and
anisotropic formulations of the p-Laplacian. Since this new
formulation unifies many works of the litterature (including
our previous works), we also show how with different config-
urations (graph topology and weights, regularization param-
eters), we can recover classical approaches for regularizing
graph signals such as images. In addition, since we consider
point clouds, we also show how we can recover state-of-the-art
filtering approaches for meshes and point clouds. This shows
the genericity of our new proposal.

In [12], we have proposed an adaptation of PDEs based
mathematical morphology with convex structuring elements.
We extend this work by considering new adaptive structuring
elements that provide more adaptation in the processing,
especially in non-local configurations. Given this new proposal
we show how this is related to our previous works. Then,
we consider the problem of graph signal inpainting as a
morphological process based on non-local infinity Laplacian
interpolation. We show how this can be used to perform both
patch-based non-local geometric and color inpainting of point
clouds described as graphs. To the best of our knowledge,
there is no equivalent in the litterature.

In [14], we have drawn the bases for the adaptation of
active contours on graphs. In this paper, we propose to use
the Chambolle and Pock algorithm [15] on weighted graphs
to perform the optimization and we apply it for point clouds
clustering. To the best of our knowledge this is the first method
to proposed non-local patch-based segmentation of colored
point clouds on graphs.

The rest of the paper is organized as follows. In Section
II, we review the principle of PdEs on graphs and provide
all the necessary notations and definitions of our graph-
based difference operators. After that, in Section III, we
first generalize the p-Laplacian on graphs for solving the
concept of p-Laplacian regularization on surfaces and point
clouds. In section IV and V, we present our generalization
of Mathematical Morphology and Active Contours to surfaces
and point clouds. Section VI details how to build graphs from
surfaces and point clouds, as well as how to weight these
graphs accounting local neighborhood information. Section
VII provides experimental results and last section concludes.

II. PDES ON WEIGHTED GRAPHS

In this section, we recall definitions and present difference
and p-Laplacian operators on graphs. This constitutes the basis
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of the framework of PdEs on a graph that enables to transpose
PDEs on graphs. Most of these definitions are borrowed from
[11].

A. Definitions

A weighted graph G = (V,E, w) consists of a finite set
V = {v1, . . . , vN} of N vertices and a finite set E ⊂ V × V

of weighted edges. We assume G to be undirected, with no
self-loops and no multiple edges. Let (vi, vj) be the edge
of E that connects two vertices vi and vj of V. Its weight,
denoted by w(vi, vj), represents the similarity between its
vertices. Similarities are usually computed by using a positive
symmetric function w : V×V→ R+ satisfying w(vi, vj) = 0
if (vi, vj) /∈ E. The notation vi ∼ vj is also used to denote
two adjacent vertices. The degree of a vertex vi is defined as
δw(vi) =

∑
vj∼vi w(vi, vj). Let H(V) be the Hilbert space

of real-valued functions defined on the vertices of a graph. A
function f ∈ H(V) assigns a real value f(vi) to each vertex
vi ∈ V.

Similarly, we define the space H(E) of functions defined on
the set E of edges. Given a function f : V → R, the integral
of f is defined as: ∫

V

f =
∑
vi∈V

f(vi),

and its `p and `∞ norms are given by:

||f ||p =

(∑
vi∈V

|f(vi)|p
)1/p

, with 1 ≤ p ≤ ∞, (1)

||f ||∞ = max
vi∈V

|f(vi)|, for p =∞. (2)

B. Difference operators on weighted graphs

Let G = (V,E, w) be a weighted graph and w : V×V→ R+

a weight function that depends on the interactions between the
vertices. The difference operator [11], denoted dw : H(V)→
H(E), is defined for all f ∈ H(V) and (vi, vj) ∈ E by:

(dwf)(vi, vj) =
√
w(vi, vj)(f(vj)− f(vi)). (3)

The directional derivative (or edge derivative of f , at a vertex
vi ∈ V, along an edge e = (vi, vj), is defined as:

∂vjf(vi) = (dwf)(vi, vj). (4)

The adjoint of the difference operator, denoted d∗w : H(E)→
H(V), is the unique linear operator satisfying

〈dwf,H〉H(E) = 〈f, d∗wH〉H(V), (5)

for all f ∈ H(V) and all H ∈ H(E). Its expression is given
by:

(d∗wH)(vi) =
∑
vj∼vi

√
w(vi, vj)(H(vj , vi)−H(vi, vj)). (6)

The divergence operator, defined by −d∗w, measures the net
outflow of a function of H(E) at each vertex of the graph.
The weighted gradient operator of a function f ∈ H(V), at a

vertex vi ∈ V, is the vector defined by:

(∇wf)(vi) = ((dwf)(vi, vj))
T
vj∈V . (7)

The `p norm of this vector is defined, for p ≥ 1, by:

‖(∇wf)(vi)‖p =

∑
vj∼vi

w(vi, vj)
p/2
∣∣f(vj)−f(vi)

∣∣p1/p

.

(8)
The external and internal morphological directional partial

derivative operators are respectively defined as [12]:{
∂+
vjf(vi) = (∂vjf(vi))

+

∂−vjf(vi) = (∂vjf(vi))
− , (9)

with (x)+ = max(x, 0) and (x)− = −min(x, 0) =
max(−x, 0) = (−x)+. Discrete upwind non-local weighted
gradients are defined as:

(∇±wf)(vi) =
(

(∂±vjf)(vi)
)T
vj∈V

. (10)

The `p and the `∞ norms of these gradients are defined by:

‖(∇±wf)(vi)‖p =

 ∑
vj∼vi

w(vi, vj)
p
2

(
(f(vj)− f(vi))

±
)p 1

p

,

(11)

‖(∇±wf)(vi)‖∞ = max
vj∼vi

√
w(vi, vj)(f(vj)− f(vi))

±). (12)

C. p-Laplace operators on weighted graphs

The isotropic weighted p-Laplace operator, with p ∈
[1,+∞[, at a vertex vi ∈ V is defined on H(V) by [11]:

(∆i
w,pf)(vi) =

1

2
d∗w(||∇wf ||p−2

2 dwf)(vi), (13)

=
∑
vj∼vi

ψiw,p (vi, vj)(f(vi)− f(vj)) , (14)

where

ψiw,p(vi, vj) =
1

2
w(vi, vj)(||∇wf(vi)||p−2

2 +||∇wf(vj)||p−2
2 ).

(15)
The anisotropic weighted p-Laplace operator, with p ∈
[1,+∞[, at a vertex vi ∈ V is defined on H(V) by [13]:

(∆a
w,pf)(vi) =

1

2
d∗w(|dwf |p−2dwf)(vi), (16)

=
∑
vj∼vi

ψaw,p (vi, vj)(f(vi)− f(vj)) , (17)

where

ψaw,p(vi, vj) = w(vi, vj)
p
2 |f(vj)− f(vi)|p−2. (18)

When p = 2, we recover the combinatorial Laplacian operator
[11]:

∆i
w,2 = ∆a

w,2 = ∆. (19)
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The ∞-Laplacian is defined by [16]:

(∆w,∞f)(vi) =
1

2

[
||(∇+

wf)(vi)||∞ − ||(∇−wf)(vi)||∞||
]
.

(20)
From all the definitions of these discrete difference operators

on graphs, we are now in position to transpose any PDEs that
involves gradient, p-Laplacian or ∞-Laplacian in their con-
tinuous formulation on Euclidean domains. In the following
sections, we present several transcriptions of non-local PDEs
considered in image processing. We adapt them to arbitrary
weighted graphs (for representing surfaces and point clouds)
to perform p-Laplacian regularization, adaptive Mathematical
Morphology, and convex relaxation for segmentation.

III. UNIFIED p-LAPLACIAN REGULARIZATION ON GRAPHS

In this section we consider a first transposition of PDEs
on graphs and propose a methodology to regularize functions
defined on the vertices of graphs. To do so, we consider a
new family of p-Laplace operators based on a divergence
formulation, that unifies both the isotropic and anisotropic p-
Laplacian on graphs proposed earlier [11, 13]. This section
will provide only the underlying theory, experiments of local
and non-local regularization of functions on surfaces and point
clouds will be presented in section VII. To start this section,
let us first recall the problem we consider.

A. Problem formulation

Let f0 ∈ H(V) be a given function defined on the vertices
of a weighted graph G = (V,E, w). In a given context this
function represents an observation of a clean function h ∈
H(V) corrupted by an additive noise n ∈ H(V) such that
f0 = h + n. Regularizing functions on graphs using either
isotropic or anisotropic p-laplacian, was proposed in [11, 13].
In this section we proposed to unify and to extend these both
p-laplacian in a same operator.

To recover the uncorrupted function h, the processing task
is to remove the noise n from f0. A commonly used method
is to seek for a function f ∈ H(V), which is regular enough
on G, and also close enough to f0. This can be formalized
by the minimization of an energy functional which involves
a regularization term (or penalty term) plus an approximation
one (or fitting term). In this paper, we consider the following
model:

h ≈ arg min
f :V→R

J(f) + λ
2 ||f − f

0||22 (21)

where Jφw,p(f) =
∑
vi∈V φ(||(∇wf)(vi)||p) (22)

is a gradient-based functional, and λ ∈ R is a regularization
parameter, called Lagrange multiplier, that controls the trade-
off between the penalty term and the fitting term. The function
φ(·) is a positive convex function that penalizes large varia-
tions of f in the neighborhood of each vertex. Several penalty
kernels have been proposed in literature, in different situations.
Among them, we can quote φ(s) = s2 (known in the context
of Tikhonov regularization [17]), φ(s) = s (total variation
[18]), φ(s) =

√
s2 + ε2− ε2 (regularized total variation [19]),

and φ(s) = r2log(1 + s2/r2) (non linear diffusion [20]).

B. Unified p-Laplace operator on weighted graphs
To get the solution of (22), we consider the following system

of equations (Euler-Lagrange equation):

∂Jφw,p(f)

∂f(vi)
+ λ(f(vi)− f0(vi)) = 0,∀vi ∈ V, (23)

where the first term denotes the variation of (22) with respect
to f at a vertex vi. It is easy to show that this variation is,
since this quantity depends only on vi and the edges incident
to vi, equal to:

∂Jφw,p(f)

∂f(vi)

(22)
=
∂φ(||(∇wf)(vi)||p)

∂f(vi)
+
∑
vj∼vi

∂φ(||(∇wf)(vj)||p)

∂f(vi)

(8)
=
∑
vj∼vi

α
φ,p,f
vivj

|f(vj)− f(vi)|p−2
(f(vi)− f(vj)),

(24)

with the following notation

α
φ,p,f
vivj

= w(vi, vj)
p/2

(
φ′(||(∇wf)(vi)||p)

||(∇wf)(vi)||p−1
p

+
φ′(||(∇wf)(vj)||p)

||(∇wf)(vj)||p−1
p

)
.

(25)

This leads us to the proposition of the following general def-
inition of a unified p-Laplace operator based on a divergence
formulation:

(∆φ
w,pf)(vi)

def
=

d∗w

(
φ′(||(∇wf)(vi)||p)

||(∇wf)(vi)||p−1
p
|(dwf)(vi, vj)|p−2(dwf)(vi, vj)

)
(vi).

(26)
One can see that this expression (26) is exactly (24).

This formulation unifies the isotropic and anisotropic for-
mulations of the p-Laplacian [11, 13] as well as many others
under continuous, discrete, local or non-local formulations
[21, 22, 23]. For instance, for φ(s) = sq and p = q, one
has ∆φ

w,p = 2q∆a
w,q . For φ(s) = sq and p = 2, one has

∆φ
w,2 = 2q∆i

w,q . More generally, for φ(s) = sq , one has

1

q
〈f,∆φ

w,pf〉V
(5)
= Jφw,p(f), (27)

and this shows that the unified p-Laplacian operator is semi-
definite positive.

In most cases (values of p 6= 2), the system (23) is
nonlinear, and thus is is difficult to find a close solution.
Approximated solutions are given in the following sections.
Also, the regularization functional J must be convex to ensure
that the solution of (23) is also the solution of (22), which
depends on φ and p.

C. Diffusion processes
The first method, that is considered to get the solution of

(23) is based on gradient descent of (23):

(Φfn)(vi) = (∆φ
w,pf)(vi) + λ(f0(vi)− fn(vi)),∀vi ∈ V,

(28)
with the initial condition n = 0 and fn = f0. A classical
iterative algorithm to get the solution of Equation (28), at a
time n+ 1, is the Euler one. An iteration of this algorithm is
given by:

fn+1(vi) = fn(vi)−∆t(Φfn)(vi), ∀vi ∈ V, (29)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2336548

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

where fn is the parametrization of f by an artificial time
n > 0. This describes a family of fitted diffusion flows on
weighted graphs. This family includes and extends several
well-known flows intensively used in image processing and
computer graphics. Most of them are formulated without the
fitting term (λ = 0), and have been analyzed by [24] in the
context of image processing. In particular, for the regulariza-
tion kernel φ(s) = s2 and p = 2, we obtain Laplacian-based
diffusion, and if φ(s) = s it corresponds to mean curvature-
based diffusion. For vertex filtering with meshes, we can also
recover the diffusion equations for mesh fairing proposed in
[25, 26] with specific edge weights.

D. Neighborhood filters

This section describes a second approach to get the solution
of (23). Let βφ,p,fvi,vj = αφ,p,fvi,vj |f(vj)− f(vi)|p−2. Equation (29)
can be rewritten as:

f
n+1

(vi) = f
n

(vi)−

∆t

 ∑
vj∼vi

β
φ,p,f
vi,vj

(f
n

(vi)− fn(vj)) + λ(f
n

(vi)− f0
(vi))


(30)

For ∆t = 1

λ+
∑
vj∼vi

βφ,p,fvi,vj

, equation (30) becomes:

fn+1(vi) =
λf0(vi) +

∑
vj∼vi β

φ,p,f
vi,vj f

n(vj)

λ+
∑
vj∼vi β

φ,p,f
vi,vj

. (31)

This describes a family of neighborhood filters. Indeed, at
each iteration, the new value of fn+1 at a vertex vi, depends
on two quantities: the initial value f0(vi), and a weighted
average of the filtered values of fn in the neighborhood of vi.

E. Related works

The choice of the resolution method (Equation (29) or (31)),
of the regularization parameters (p, λ, φ), and of the graph
allows to retrieve and to extend several well-known filters
proposed in the context of smoothing and denoising vertices
coordinates of meshes or points clouds . With Equation (29),
λ = 0, p = 2, and φ(s) = s2, many approaches of the
literature can be related to ours with the use of specific edge
weights w(vi, vj). For meshes, we can quote the Bilateral
Mesh filter [27], the Trilateral Mesh filter [28]. For point
clouds, we can also recover recently proposed approaches
using weights that account for local neighborhoods similarity
[29, 30, 31]. To do so, filtered vertices coordinates are obtained
by p̂i = pi + δi · ni where pi denotes the coordinates of
the vertex vi, ni is the normal to the point pi and δi is an
estimated displacement along the normal. Then, δi can be
estimated using Equation (29) given an initial estimation of
the displacement. With Equation (31), we can also recover
diffusion equations for mesh fairing or smoothing proposed in
[25, 26, 32].

One strong drawback of many of the above-mentioned
methods is that methods conceived for meshes cannot process
point clouds and vice-versa. Moreover, very few methods
enable to simultaneously process vertices coordinates and

colors as well as using patches to describe local configurations.
Only our method fulfills all the requirements of a versatile and
flexible framework that can process arbitrary vector spaces
defined on meshes and point clouds.

IV. MORPHOLOGICAL OPERATORS ON GRAPHS

In this section we propose an adaptation on graphs of new
PDEs morphological operators, that go beyond our previous
works [12]. We show how such operators can be used to
perform morphological filtering and inpainting processing on
graphs.

A. Morphological operators

Continuous-scale morphology [33] defines the flat dilation δ
and erosion ε of a function f0 : Rm → R by using structuring
sets B = {x : ||x||p ≤ 1} with the following general PDEs:

∂f

∂t
= +||∇f ||p and

∂f

∂t
= −||∇f ||p, (32)

where f is a modified function of f0, ∇ is the gradient
operator, || · ||p corresponds to the Lp-norm, and one has the
initial condition f = f0 at t = 0. With different values of
p, one obtains different structuring elements: a rhombus for
p = ∞, a disc for p = 2, and a square for p = 1 [33]. The
solution at time n provides a dilation (with the plus sign) or
an erosion (with the minus sign) with a structuring element of
size n∆t. We have proposed in [12] the discrete PdEs analogue
of these PDEs-based dilation and erosion formulations by
replacing ∇ by ∇±w in (32). We propose a new formulation
of morphological processes on graphs by considering the q-th
power of the norm of the gradient ∇±w . This provides the new
following expression of dilation and erosion over graphs for a
given initial function f : V→ R, ∀vi ∈ V and 0 < p <∞:

∂f

∂t
(vi, t) = +||(∇+

wf)(vi)||qp , and

∂f

∂t
(vi, t) = −||(∇−wf)(vi)||qp .

(33)

We will mainly focus on the case of p = q and 0 < p <∞ and
p = ∞. When q = 1 we can recover our previous approach
[12]. For the case of p =∞, we consider:

∂f

∂t
(vi, t) = +||(∇+

wf)(vi)||∞ , and

∂f

∂t
(vi, t) = −||(∇−wf)(vi)||∞ .

(34)

This new expression of PDEs-based morphological oper-
ators enables the introduction of adaptivity with the use of
different configurations (graph weights, values of p and q).
Figure 1 shows the interest of such an adaptivity. An image
of a pulse located on the center of a scalar grayscale image
is considered. Results are shown for different graphs (local:
4-adjacency grid graphs, nonlocal: k-nearest-neighbor graph
based on patch distances), and values of p and q that enable to
control the shape of the structuring element when no weights
are considered (w = 1). In the processing, the structuring
element B (supposed to be symmetric) is provided by the local
neighborhood configurations and expressed by B(vi) = {vj ∼
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(a) Original Image of a (b) Image used to compute
white dot (a pulse) on the weights w.
a black background.

p = 0.5 p = 1 p = 2 p =∞
q = 0.5 q = 1 q = 2 q = 1

local w = 1

local w 6= 1

non-local

Figure 1: Dilation examples of a pulse image (a) using a
weighted graph (weights computed from a textured image (b)).
We set p = q for p <∞ and q = 1 for p =∞.

vi}∪{vi}. When weights are considered, the dilation takes into
account the image information and this adaptively modifies the
dilation of the pulse. Local configuration consider similarities
based on pixel features, whereas nonlocal ones consider patch-
based similarities and this latter is more suited for dilations that
better take into account fine and repetitive image structures.
Figure 1 shows how the shape of the structuring element is
deformed according to the chosen parameters.

B. Morphological Filtering

In this section we provide an interpretation of the latter
morphological operators as a family of non-local digital aver-
aging filters that can be expressed by iterative schemes with
discretization in time for filtering. We study the cases of
p =∞ and q = p.

1) Case of 0 < p < +∞ and q = p: the dilation process is
now expressed by:

∂f

∂t
(vi, t) = +||(∇+

wf)(vi)||pp. (35)

With vj +∼vi = {vj ∼ vi|f(vj) ≥ f(vi)}, we have

f
n+1

(vi) = f
n

(vi) + ∆t
∑
vj∼vi

w(vi, vj)
p/2
(

(f
n

(vj)− fn(vi))
+
)p

(36)

=

1−∆t
∑
vj+∼vi

w(vi, vj)
p/2

(f
n

(vj)− fn(vi))
p−1

 f
n

(vi)

+ ∆t
∑
vj+∼vi

w(vi, vj)
p/2

(f
n

(vj)− fn(vi))
p−1

f
n

(vj). (37)

Equation (37) shows a new family of pseudo-morphological
diffusion filters based on dilation process, parameter-
ized by the weight function w, parameter p, parameter
∆t, and the graph g. For the special case of ∆t =

1∑
vj +∼vi w(vi,vj)p/2(fn(vj)−fn(vi))p−1 , we get a new operator

that we call the NLDp operator, expressed by:

NLDp(f
n

)(vi) =


f
n+1

(vi) = f
n

(vi) if vj+∼vi = ∅

f
n+1

(vi) =

∑
vj+∼vi α

fn

w,p(vi, vj)f
n(vj)∑

vj+∼vi α
fn
w,p(vi, vj)

o.w.,

(38)

where

αfw,p(vi, vj) = w(vi, vj)
p/2(f(vj)− f(vi))

p−1

and fn+1(vi) depends of neighbors values f(vj). By applying
the same approach, we can get new filters based on on erosion
process, that we call NLEp. These operators define a new
family of pseudo-morphologic diffusion filters, that globally
behave like an erosion or a dilation process, but also average
informations from their neighbors.

2) Case of p =∞: the dilation process is then expressed
by:

f
n+1

(vi) = f
n

(vi) + ∆t max
vj∼vi

(√
w(vi, vj)(f

n
(vj)− fn(vi))

+

)
(39)

To simplify this expression, we consider the vertex vd such
that

vd = arg max
vj +∼vi

(√
w(vi, vj)(f

n(vj)− fn(vi))

)
.

With this notation, equation (39) can be rewritten as:

f
n+1

(vi) =

(
1−∆t

√
w(vi, vd)

)
f
n

(vi) + ∆t
√
w(vi, vd)f

n
(vd). (40)

For the special case of ∆t = 1√
w(vi,vd)

, the dilation PdE can

be interpreted as an iterative non-local dilation (NLD) process
and expressed by

fn+1(vi) = NLD(fn)(vi)

= fn(vi) + ||(∇+
wf

n)(vi)||∞
= fn(vd).

(41)

One can easily see that when w(vi, vj) = 1 one recovers the
classical algebraic formulation of the mathematical morphol-
ogy dilation. Our proposal enables therefore to define new
general weighted dilation operators. With the same approach,
we can define a non-local erosion operator that we will denote
by NLE.

C. Morphological Inpainting

Many tasks in image processing and computer vision can be
formulated as interpolation problems. Interpolating data con-
sists in constructing new values for missing data in coherence
with a set of known data. Our motivation for using the non-
local ∞-Laplacian on graphs for interpolation stems from the
fact that flexible data processing tools that can be adapted
easily to general domains modeled by graphs are needed.
Recent works on inpainting tend to unify local and non-
local approaches under a variational formulation (see [1] and
references therein for more details). We presented a unifying
approach of local geometric methods and non-local exemplar-
based ones for inpainting [34] using the framework of discrete
non-local regularization on graphs introduced in [11]. We
consider that data are defined on a general domain represented
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on a graph G = (V,E, w). Let f0 : V→ R be a function. Let
A ⊂ V be the subset of vertices with unknown values and
∂A the subset of vertices with known values. The purpose of
interpolation is to find a function f∗ approximating f0 in V

minimizing the energy:{
(∆w,∞f)(vi) = 0 ∀u ∈ A,
f(u) = f0(vi) ∀u ∈ ∂A. (42)

The solution f∗ is said to be infinity-harmonic [35]. Works of
[16] have shown that interpolation problems have a unique
solution that can be obtained using the following iterative
algorithm: {

f (0)(vi) = f0(vi),

f (n+1)(vi) = NLA(f (n))(vi).
(43)

The solution is obtained with this simple iterative algorithm
based on the NLA operator, where:

NLA(f)(vi) =
1

2
[NLD(f)(vi) +NLE(f)(vi)]. (44)

The iterative algorithm presented in (43) converges to the
unique solution [16]. This general equation describes a family
of discrete diffusion processes, parameterized by the structure
of the graph (topology and weight function w). Modifying
both graph topology and graph weights enables to perform
both local and non-local inpainting / filtering within the
same framework of PdEs. At each iteration, only the internal
boundary ∂−A = {vi ∈ A|∃vj ∼ vi, vj ∈ ∂A} is inpainted:

NLA(f)(vi) =
1

2
[NLD(f)(vi) +NLE(E)(vi)] ∀vi ∈ ∂−A,

NLA(f)(vi) = f
0
(vi) ∀vi ∈ ∂A.

(45)

At the end of each iteration the set ∂A is updated by
∂A(n+1) = ∂A(n) ∪ ∂−A(n) and ∂−A(n+1) is updated from
∂A(n+1). The algorithm stops when the set of vertices to
inpaint is empty.

V. SEGMENTATION OF GRAPH-SIGNALS

In this section, we propose a framework for the segmen-
tation of graph signals (functions defined on the vertices of
graphs). To perform the segmentation, we consider a convex
formulation of active contours on graphs. Starting from a
continuous formulation, we show how to transpose the latter
on weighted graphs using the framework of PdEs along with
a minimization strategy

The usual drawback of active contours methods is the
existence of local minimizers and hence their sensitivity to
the initial condition. A recent method, introduced by Bresson
and Chan in [36, 37], proposes to redefine the active contour
model into a model which gives global minimizers. In the
continuous setting, where images are viewed as functions on
a continuous domain Ω, this model is given by:

arg min
f(x)∈{0,1}

{∫
Ω

||∇f(x)||1dx+ λ

∫
Ω

g(f
0
)(x)f(x)dx

}
. (46)

The transposition of (46) on graphs is obtained using the PdEs
framework [11, 14] leading to:

f̄ ∈ arg min
f:V→{0,1}

∑
vi∈V

‖(∇wf)(vi)‖pp + λ
∑
vi∈V

g(f
0
)(vi)f(vi)

 , (47)

where f is a labeling function and f0 the signal on the
graph. When λ 6= 0, this energy can be considered as the non-
local discrete analogue on graphs of the functional introduced
in [37]. We now show how such a minimization can be
solved. Problem (47) is non-convex and, as shown in [38]
for the continuous analogue, can be reformulated through a
convex relaxation. Therefore, a new minimization problem is
considered:

f̂ = arg min
f:V→[0,1]

∑
vi∈V

‖(∇wf)(vi)‖pp + λ
∑
vi∈V

g(f
0
)(vi)f(vi)

 . (48)

Following the approach in [38], one can show that every
level-set of a minimizer of (48) is solution of the original
optimization problem (47). As a consequence, to obtain a
global solution f̄ : V → {0, 1} to the problem of (47), one
thresholds any function f̂ : V → [0, 1] that is a solution of
(48) and f̄(vi) = χS(vi), where S = {vi ∈ V : f̂(vi) > t}
with t ∈ [0, 1] and χ is the indicator function defined by
χ : V→ {0, 1}. For a given vertex, if vi ∈ A, then χA(vi) = 1
and χA(vi) = 0 otherwise. However, to be able to perform
such a minimization approach, one has to show that both parts
of the energy (48) do verify the co-area formula. This can be
easily shown for the second part of the energy (see [38]). We
show now that this is also true for the first part.

1) Perimeters and co-area on graphs: Now we show that
there is a relation, for the case of a sub-graph, between discrete
perimeters on graphs and the co-area formula on graphs.

a) Perimeters on graphs: Let A be a set of connected
vertices with A ⊂ V. We denote by ∂+A and ∂−A, the
external and internal boundary sets of A, respectively. The
set Ac=V \ A is the complement of A. For a given vertex
vi∈V, one has: ∂+A = {vi∈Ac : ∃vj∈A with (vi, vj)∈E},
∂−A = {vi∈A : ∃vj∈Ac with (vi, vj)∈E}, and ∂A =
{(vi, vj) ∈ E : ∃vi∈∂+A and vj∈∂−A}. Let us consider non-
local regularization functionals based on weighted total vari-
ation on graphs Rw,p : H(V ) → R of a function f ∈ H(V ):
Rw,p(f) =

∑
vi∈V ‖(∇wf)(vi)‖pp with 0 < p < +∞.

b) Co-area formula on graphs: In this subsection, we
discuss the co-area formula on graphs. It is very useful in many
contexts such as convex relaxation of variational methods on
graphs. Let (V,E, w) be a weighted graph, f ∈ H(V). For t ∈
R, let At = {vi ∈ V : f(vi) > t}. Then the co-area formula
is verified for p = 1 since Perw,1(A) =

∫∞
−∞ Perw,1(At)dt.

The proof is obvious since |a−b| =
∫ +∞
−∞ |χ{a>t}−χ{b>t}|dt.

In the rest of the paper, we will therefore work exclusively
with the case of p = 1 since only Rw,1 does verify the co-
area formula.

2) Minimization Algorithm on Weighted Graphs: To solve
the optimization problem (48), we propose to use the Cham-
bolle and Pock algorithm [15] on weighted graphs, in a similar
manner as in [39]. Let us consider the following general
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optimization problem:

min
x∈X

F (Kx) +G(x), (49)

where X and Y , are two general finite-dimensional vector
spaces, and F ∈ Γ0(Y ), G ∈ Γ0(X) and K : X → Y a
linear operator. Recently, Chambolle and Pock have proposed
the following iterative algorithm [15] to solve efficiently (49):

x0 = x̄0 = f, y0 = 0

yn+1 = proxσF∗(y
n + σKx̄n),

xn+1 = proxτG(xn − τK∗yn+1),

x̄n+1 = xn+1 + θ(xn+1 − xn),

(50)

where F ∗ is the conjugate of F [40], K∗ is the adjoint operator
of K, and prox the proximity operator defined as:

proxf (x) = arg min
y∈Y

{
f(y) +

1

2
||y − x||2

}
. (51)

The convergence of algorithm (50) is guaranteed if θ = 1 and
0 < τσL2 < 1 where L = ||K|| = max||x||≤1 ||Kx||. The
segmentation problem of (48) is formulated with F = ||.||1,
K = ∇w and G = λ〈., g(f0)〉, with 〈., .〉 the dot product
operator. By replacing F , K and G, in (50), we can simplify
the algorithm. For y ∈ Y , as shown in [39], we have:

proxσF∗(y) = proxσiB (y) = projB(y) = ỹ,

where ỹij = M(yij) =
yij

max(1,max(yi.))
and

iC =

{
0 for x ∈ C
+∞ otherwise,

(52)

and B is the unitary ||.||∞,2 ball.
For x ∈ X , we can show that:

proxτG(x) = arg min
y∈Y

{
τλ〈y, g(f0)〉+

1

2
||y − x||2

}
= x− τλg(f0).

(53)

Thus the algorithm to solve the segmentation problem (48) is
reduced to:

x0 = x̄0 = f, y0 = 0,

yn+1
ij = M(ynij + σ(dwx̄

n)(vi, vj)),

xn+1
i = xni − τ(d∗wy

n+1)(vi)− τλg(f0)(vi),

x̄n+1
i = xn+1

i + θ(xn+1
i − xni ).

(54)

This algorithm is parameterized by the structure of the graph
(topology and weight function w), the functions f , f0 and
g(f0), and several parameters (λ, τ , θ and σ). One has to
note that it is the first time that such a solution is proposed to
solve (48) on general weighted graphs.

VI. GRAPH CONSTRUCTION

In this section, we discuss how to build a weighted graph
from surfaces data or point clouds. Roughly speaking, two
types of graph are considered: local and non-local graphs.
The creation of a graph lies on several steps: first vertices
are created from raw data to process, second vertices are
connected with edges, and finally weights associated to each

edge are deduced. The creation of a local graph is really
straightforward: only local close neighbors are considered
during the creation of edges. In a non-local graph, edges are
created between vertices that are spatially far apart. Weights
on each edge are deduced from values associated to vertices
(the graph signals) and patches can be used to compute a better
similarity value accounting local neighborhood similarities.To
do so, we propose a new patch definition subdivided in 2 steps:
patch localization and patch creation.

A. Graph creation

Depending on the data under consideration (meshes or point
clouds), we devise specific strategies for the creation of the
graph, i.e., inferring the set of vertices and edges.

1) Graph Creation from Meshes: Graph creation from
meshes is straightforward since the set of vertices and edges
is known beforehand. Let us consider the meshing M of a
surface as a set of vertices MV = {v1, . . . , vn} ∈ R3 and a set
of edges ME ⊂MV ×MV . The graph G is therefore defined
with V = MV and E = ME . The topology of this graph
is local but can be modified arbitrarily to become nonlocal
by adding edges between vertices not belonging to adjacent
triangles.

2) Graph Creation from Point Clouds: Graph creation from
point clouds is much more challenging. Indeed, the structuring
information is lacking and the data is not naturally organized
in a manifold. Therefore, the set of edges cannot be easily
determined. Given a point cloud P defined as a set of data
points {p1, . . . ,pn} ∈ R3, there are many ways of associating
a graph to such a data set. Since point clouds data exhibit
a geometrical structure, proximity graphs are preferable: if
two data points satisfy particular geometric requirements, the
corresponding vertices in the graph are connected by an edge.
To each data point we first associate a vertex of a proximity
graph G to define a set of vertices V = {v1, v2, . . . , vn}.
Then, determining the edge set E of the proximity graph G

requires defining the neighbors of each vertex vi according
to its embedding pi using the Euclidean distance. We will
denote as D(vi, vj) = ‖pi − pj‖2 the Euclidean distance
between vertices. Among many possible choices, we choose to
consider the symmetric k Nearest Neighbor Graph (k-NNG).
An undirected edge (vi, vj) is added between two vertices vi
and vj if the distance between pi and pj is among the k
smallest distances from either pi or pj to all the other data
points. The value of k will be denoted kG for the graph G

associated with the point cloud. The construction of such a
graph being computationally expensive for large point clouds,
a kD-tree is used [41] to speed-up the k nearest neighbor
search.

B. Graph Weights

Once the graph has been created, it has to be weighted.
If one does not want to take care of the vertices similarities,
the weight function w can be simply set up to w(vi, vj) =
1, ∀(vi, vj) ∈ E. To take into account the similarity between
the graph signal associated to the vertices, it is more suited to
use similarity functions based on distances to weight the edges.
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Given an initial function f0 : V → Rm, computing distances
between vertices consists in comparing their features generally
depending upon f0. To this end, each vertex vi is associated
to a feature vector P(vi) ∈ Rq . From this, a usual similarity
measure is provided by the Gaussian kernel:

w(vi, vj) = exp

(
−||P(vi)−P(vj)||22

σ2

)
. (55)

Traditionally, one has simply P(vi) = f0(vi). However, in
image processing an important feature vector is provided by
image patches [42]. For images, a patch P(vi) centered at
a vertex vi ∈ V is a vector of values (e.g., coordinates,
intensities, ...) defined by P(vi) =

(
f0(vj) : vj ∈ B(vi, n)

)T
where B(vi, n) is a square of size n2 centered at vi. This
definition of patches is valid only for grid-graphs and cannot
be considered for arbitrary graphs. Therefore, we need a
new definition of patches that can be used with any graph
representation associated to meshes or point clouds.

C. Patch Definition

As we just mentioned, there is actually no proper definition
of patches for graph signals on arbitrary graphs. Some authors
have proposed definitions of patches that account for local
neighborhood configurations [30, 31], but these methods are
not valid for any graph signal. Indeed, they only consider
the case of vertex coordinates and their proposal cannot be
easily adapted for other graph signals such as vertices colors.
Therefore, we propose to introduce a definition of graph-signal
patches for arbitrary graphs. To do so, around each vertex
we build a two-dimensional grid (the patch) describing the
neighborhood. This grid is defined on the tangent plane of the
point (i.e., the vertex). Since there are many different ways of
orienting a 2D grid on a plane, we devise a strategy to define
the orientation of the patch. Once the orientation is known,
the patch is created by a weighted average of the graph-signal
values in the local neighborhood. We detail these two steps in
the sequel.

1) Orientation: The first step consists in estimating the
orientation of each patch. Indeed, since two patches can have
very different orientations in the point cloud, we need to
estimate this orientation to be able to compare the patches.
In our previous works [43], we have proposed the following
strategy to estimate the patch orientation. Let us recall it
briefly. Point clouds are first smoothed, using a local filtering.
From this filtered version, a PCA is locally applied on the kn
nearest neighbors of each point pi. This enables to define the
normal to each point pi (associated with each vertex vi) as
n(vi) (see [43]). Figure 2 illustrates this where the kn nearest
neighbors are comprised in a ball of radius ε.

Next, patches need to be oriented from principal directions
computed on this smoothed point cloud. This means that direc-
tions of first and second axis of the patch basis will coincide
respectively with major and minor principal directions. To
compute these principal directions at point pi, one can use
the arguments of [30]: principal directions can be estimated
as the eigenvectors of a PCA of the covariance matrix of the
normals of the neighbors of pi.

Figure 2: The tangent plane to a point pi.

However this strategy is not always efficient. Indeed, be-
cause the orientation of patches are computed from principal
directions, these orientations highly depend on the repartition
of points in the 3D space. So, similar parts of a point cloud
will produce similar orientations of the patches. Unfortunately,
because the obtained orientation depends highly on the most
predominant axis, one can find different patches orientations
for similar points repartitions, and conversely. Therefore we
propose another way to obtain the patch orientation.

Another way to orient patches is to deduce an orientation
from normal vectors. On the contrary to the principal direction
method presented above, which depends on the repartition of
neighboring points, it is better to deduce the orientation from
the normals. Indeed, this will produce the same orientations
for points that have similar normals. The proposed algorithm
is therefore to first deduce a tangent vector t1(vi) from the
normal vector n(vi). As in [30], we use a PCA to estimate
this normal vector: t0(vi) = n(vi).

Let x, y, z be the three axis of a 3D space, the first tangent
vector t1(vi) is computed with:{

t1(vi) = z× t0(vi) if |z · t0(vi)| 6= 1

t1(vi) = x× t0(vi) otherwise,
(56)

with × the cross product operator, and · the dot product oper-
ator. Then a bitangent vector t2(vi) is computed by t2(vi) =
t0(vi)× t1(vi). The orientations vectors o0(vi), o1(vi), o2(vi)
are then respectively assigned to t1(vi), t2(vi), t0(vi).

2) Patch construction: Second step consists in constructing
the patches. Given a point pi, defining a patch for this point
comes to construct a square grid around pi on its tangent
plane in the orientation of the patch defined by (o0, o1). We
fix the patch length l manually. Let n be the number of
cells on a row of the patch. A square lattice of n2 cells is
constructed around pi with respect to the basis obtained from
orientation computation. Each cell has a side length of l/n.
A local graph is then considered that connects the vertex vi
to all the vertices vj contained in a sphere of diameter l

√
2.

Then, all the neighbors vj of vi are projected on the tangent
plane of pi giving rise to projected points p′i. To fill the
patch with values, these projected points p′i are affected to
the cells the center of which is the closest. The value of the
cell is then deduced from a weighted average of the values
f0(vj) associated with the vertices vj that where projected on
to the patch cell. This value is a spectral value (the points’
colors). The set of values inside the patch of the vertex vi
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are denoted as P(vi). Let Ck(vi) denotes the kth cell of
the constructed patch around vi with k ∈ [1, n2]. With the
proposed patch construction process, one can define the set
Vk(vi) = {vj | p′j ∈ Ck(vi)} as the set of vertices vj that
were affected to the kth patch cell of vi. Then, the patch vector

is defined as P(vi) =

 ∑
vj∈Vk(vi)

w(ck,pj)f
0(vj)∑

vj∈Vk(vi)

w(ck,pj)

T

k∈[1,n2]

,

with w(ck,pi) = exp(− ||ck−p
′
i||

2
2

σ2 ) where the ck are the
coordinates’ vector of the kth patch cell center. This weighting
enables to take into account the repartition of the points in
the cells of the patch to compute their mean feature vectors.
Figure 3(a) summarizes the method of patch construction.
Figures 3(b) and 3(c) shows that points with similar geometric
configurations are close with respect to the patch distance.

(a)

(b) (c)

Figure 3: Figure (a) shows the interpolation of the content
of the patch. l is the patch length. o1(vi) and o2(vi) are the
orientation of the patch P(vi) at a point pi. Elements marked
by a “×” symbol correspond to the projected neighbors p′i of
the point pi on the patch. These projections are used to deduce
values of each patch cell (a “o” symbol) by a weighted average
of the associated graph signal values. Figure (b) shows a point
cloud with a selected vertex (in white), and the patch descriptor
of that vertex. Figure (c) shows a point cloud colored by the
patch-based distance between all points and a given selected
one, from most similar (in red) to least similar (in blue).

VII. EXPERIMENTS

In this section we illustrate the abilities of the proposed
methods and algorithms for signal processing on meshes and
point clouds. The typical graph signals we consider are point
(resp. vertices) coordinates or colors. Given a weighted graph
G = (V,E, w) associated to a mesh (typically a triangular one)
or to a point cloud, we will consider an initial graph signal f0 :
V → Rm with m = 3. This signal will be either the vertices
coordinates, in this case f0(vi) = pi, or vertices colors, in
this case f0(vi) = (fR(vi), f

G(vi), f
B(vi)

T ) where fX(vi)

denotes the X color component of the color at the vertex vi.
We will mainly consider the last case (the processing of the
color associated to vertices) but to be inline with classical
mesh processing we will also present some filtering results
for vertices coordinates.

A. p-Laplacian filtering

First we provide illustrations of p-Laplacian filtering for
meshes and point clouds. We will consider Equation (31)
for the filtering unless specified otherwise. We first consider
a triangular mesh of 200000 points with f0(vi) = pi. The
processing is local and uses Gaussian weights. The central
column of Figure 5 presents, for given parameters, how the
value of p affects the result of the processing. One important

O
ri

gi
na

l
R

es
ul

ts
p = 2 p = 1 p = 0.1 p = 0.1

Figure 5: In the central column: filtering of the mesh of a
gargoyle, using φ(s) = s2, λ = 0, 1000 iterations with various
values of p, for each of the depicted results, the filtered mesh
and a zoom on a specific part are shown. In the right column:
simplification of a point cloud of the Saint Eligius statue with
p = 0.1, λ = 0, φ(s) = sp after 10000 iterations.

thing to note here is that the presented graphs all have the same
number of vertices. The filtering enables to groups similar
vertices around high curvature regions. The second thing to
point out is that acting on p enables to perform a filtering
of the original graph but also to smooth (for p ≥ 1) or to
preserve sharp curvatures (for p ≤ 1). This can be particularly
interesting when used on point clouds. The right column of
Figure 5 presents the result of the filtering of a point cloud of
200000 points with f0(vi) = pi and a small value of p.

The processing is local (the graph is a 8 nearest neighbor
graph) and uses Gaussian weights. This time the effect is easily
visible: the filtering has grouped the point around areas of high
curvature, enabling a better visualization of the point cloud.

If our approach can be used to filter the vertices coordinates,
it can be also used to process any graph signal associated
to graphs. To illustrate this, we now consider a color point
cloud, where a color is associated to each vertex. From this
original 3D colored point cloud, we artificially add Gaussian
noise and denoise the color at each vertex with p = 2 and
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Local filtering Non-local filtering
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Figure 4: Morphological operators on a colored point cloud (with 219,699 points) after 10 iterations with p = ∞, q = 1,
kG = 1000, and n2 = 25. First column present local filtering: w = 1 and kG = 8. Second column presents non-local filtering:
w is a similarity measure between patches.

λ = 10−4 (Figure 6). We consider two different types of
graphs. The first one is a local graph (8 nearest neighbor
graph) with constant weights (w(vi, vj) = 1). The second one
is a non-local graph (1000 nearest neighbor graph) with patch-
based Gaussian weights (using n2 = 5 × 5 patches defined
with the 150 nearest points for each point). The benefit of
a non-local approach is evident and much better denoising
results are obtained with edges and texture that are preserved.
This visual assessment can be quantitatively measured with
the PSNR value that is equal to 23.89dB with the non-local
approach versus 22.71dB with the local one. This shows the
real benefit of the use of a non-local graph with patch-based
weights. Figure 6 presents all the results.

B. Mathematical Morphology

Second we provide illustrations of Morphological filtering
and inpainting for meshes and point clouds. We start by
providing examples of Morphological filtering of point clouds
with p = ∞ and q = 1 with Equation (39) for the dilation
(and associated scheme for the other morphological operators).
A 3D colored point cloud is considered and we use the
same graph configurations than in Figure 6. Figure 4 shows
some morphological processings of a tower of the bishop
castle point cloud obtained with an Optech Lidar scanner.
As it was previously mentioned, with non constant weights,
an adaptive morphological processing is obtained that can
better preserve some features of the graph signal, depending
on the graph weights. In this example, patch-based weights
are considered and therefore repetitive patterns are better
preserved while providing the usual attended simplification
effects of morphological operators. Figure 7 presents addi-
tional morphological filtering results using the proposed NLE
and NLA morphological averaging operators with p = ∞.
The same graphs as in Figure 6 are considered. Again, the
interest of patch-based graph weights with non-local graphs is
put forward. As this is interesting for filtering, this is all the
more interesting for inpainting. To illustrate this, we use the
NLA operator to perform inpainting using the approach we
proposed in Equation (45).

Figure 8 shows the morphological inpainting results we
obtained on a real 3D color point cloud. The point cloud is
a real scan of a man and the image that appears on his T-
shirt has to be removed. Local and non-local configurations

Original Local Non-local

Original

Local

Non-local

Figure 7: Processing of the colors of a real 3D point cloud of
a man with the NLE operator. In the last column: processing
of the colors of a generated 3D point cloud (lena on the point
cloud of a bowl) with the NLA operator. Results are shown
after 600 iterations.

of the NLA operator are used towards this. For non-local
inpainting, we set kG = 30000 and n2 = 9×9. Regarding the
previous experiments, we have modified the values of these
parameters since their choice depends on the point sampling
density as well as the area to be recovered by inpainting. As it
can be seen, the local morphological inpainting cannot restore
correctly the texture of the missing part of the T-shirt. In
contrast, the non-local approach was successful in performing
this interpolation thanks to patch-based graph weights with
non-local graph associated to the NLA operator.

C. Geometry and Color Inpainting on Point Clouds

Many real scanned objects in cultural heritage have real
defects, a typical one being missing parts of the object. The
challenge of the inpainting is then not only to restore the
color but also to restore the geometry of the missing part.
We propose thus a method to restore these missing parts. Let
f : V→ R3 be a function that associates to each node vi ∈ V

his 3D coordinates pi in a point cloud P1. A user manually
delineates the part of the object that has to be virtually
repaired. The algorithm is composed of two steps. First, the
tangent plane to the missing part is determined. The boundary
of the missing part is projected on this plane. Its convex hull is
computed and points are added in such a way that the sampling

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2014.2336548

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

(a) Original (b) Noisy (c) Local (d) Non-local

Figure 6: Denoising of a noisy point cloud corrupted with Gaussian noise of standard deviation σ = 30. Results are shown
after 100 iterations.

allows to cover a dilated version of the convex hull. Let P2

denote this set of generated points. From the union P of P2

and the initial point cloud P1, a nearest neighbors graph is
constructed. The graph is weighted with patches constructed in
a different way than for color inpainting. Indeed, to enable the
generated points to fit correctly real parts of the object, patches
are constructed from P and filled with distances ||pi−p′i||2 (as
in the approaches of [30, 31]). Then the algorithm presented
in (43) is used on points of P2 but the patches (and also the
weights) are updated after each iteration to enable the iterative
deformation of the points of P2. Fig. 9 shows the full process
of virtual restoration of an antique broken vase. First the hole is
filled with points to cover the missing part, next the color of the
geometrically recovered part is inpainted with the algorithm
present in Section III.

D. Segmentation of graph signals

To end these experiments, we provide illustrations of the
segmentation of graph signals. This section shows some seg-
mentation results of colored 3D point clouds in two classes
using the algorithm presented in (54). The raw data consist of
sets of 3D points pi (i.e., vertices vi) that are associated with
CIELAB colors vectors (f0 : V→ R3). In all our experiments,
the parameters are θ = 1, τ = 1, σ = 0.25/(wmax × τ)
with wmax = maxvi∈V δw(vi). Figure 10 shows segmentation
result on real example with g(f0(vi)) = (c̄1 − f0(vi))

2 −
(c̄2 − f0(vi))

2, where c̄1 and c̄2 are respectively the average
colors of both extracted regions. This corresponds to the
Chan-Vese model on graphs. The initial partition function
f is initialized from seeds provided by the user. Figure 10
shows the segmentation of real scanned persons. For the first
scan, the graph is a local one and the weights are based on
the colors of the vertices. This explain why both the short
and the hair of the model are extracted in the same class.
The second scan is much more challenging. In this case, we
want to extract the T-shirt of the man. This is very difficult
because of the texture and heterogeneity of the latter. To
obtain a good segmentation, we have therefore to rely on
a non-local patch-based weighted graph (kG = 1000 and
n2 = 5× 5). Since the T-shirt is a very heterogeneous region
in color, we have used the variance of patches to compute

a heterogeneous term that eases the segmentation. We set
g(f0(vi)) = (V ar1 − f0(vi))

2 − (V ar2 − f0(vi))
2 where

f0 : V→ R3 represents the variance of P(vi) for each color
channel, and V ar1, V ar2 are respectively the average variance
of patches of extracted regions for each color channel. This
shows the versatility of the proposed approach. To the best
of our knowledge, there exist actually no other method that
is able to provide such a segmentation on point clouds that
exhibit repetitive patterns.

VIII. CONCLUSION

In this paper we have proposed an approach for the pro-
cessing of functions on surfaces or point clouds represented
as graphs. From this graph representation, we have redefined
the basic differential operators on graphs, that mimic the
continuous ones. From these operators, we have shown how to
transpose on graphs some PDEs using the framework of Partial
difference Equations (PdEs). We have used this latter approach
to transcribe, for surfaces and point clouds, many models and
algorithms designed for image processing. To illustrate our
proposal, three problems have been considered: p-Laplacian
filtering , morphological operators, and segmentation. Through
experiments, we have shown the potentialities and the flexibil-
ity of our approach to address these various problems. From
a new definition of a patch for 3D point clouds, we have also
shown the efficiency and the superiority of nonlocal patch-
based schemes as compared to local ones.

Abderrahim Elmoataz is a full-time Professor of
computer science in the Computer Science Depart-
ment, Université de Caen Basse-Normandie, France.
His research concerns PDEs on graphs with appli-
cations in image processing and machine learning.
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(a) original (b) to inpaint (c) with w = 1 (d) with patches

Figure 8: Morphological inpainting of a real scan (127,039 points). From left to right respectively: the original man, the part
to be inpainted shown in yellow, the inpainted man with local and non-local approaches.

(a) (b) (c) (d)

Figure 9: Virtual restoration of a broken antique vase (with 220,994 points) with kG = 4000 and n2 = 81. (a) broken vase
with labeled part to restore (border shown in yellow), (b) points’ sampling on the tangent plane, (c) geometric filtering result,
(d) color inpainting result
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Olivier Lézoray received the M.Sc. and Doctoral
degrees in computer science from the Universiteé de
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