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Abstract The IPSL-CM5A climate model was used to perform a large number1

of control, historical and climate change simulations in the frame of CMIP5. The2

refined horizontal and vertical grid of the atmospheric component, LMDZ, con-3

stitutes a major difference compared to the previous IPSL-CM4 version used for4

CMIP3. From imposed-SST (Sea Surface Temperature) and coupled numerical ex-5

periments, we systematically analyze the impact of the horizontal and vertical grid6

resolution on the simulated climate. The refinement of the horizontal grid results7

in a systematic reduction of major biases in the mean tropospheric structures and8

SST. The mid-latitude jets, located too close to the equator with the coarsest grids,9

move poleward. This robust feature is accompanied by a drying at mid-latitudes10

and a reduction of cold biases in mid-latitudes relative to the equator. The model11

was also extended to the stratosphere by increasing the number of layers on the ver-12

tical from 19 to 39 (15 in the stratosphere) and adding relevant parameterizations.13

The 39-layer version captures the dominant modes of the stratospheric variability14

and exhibits stratospheric sudden warmings. Changing either the vertical or hor-15

izontal resolution modifies the global energy balance in imposed-SST simulations16

by typically several W/m2 which translates in the coupled atmosphere-ocean sim-17

ulations into a different global-mean SST. The sensitivity is of about 1.2 K per18

1 W/m2 when varying the horizontal grid. A re-tuning of model parameters was19
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Laboratoire de Météorologie Dynamique, IPSL
UPMC, Tr 45-55, 3e et, B99
Jussieu, 75005 Paris
E-mail: hourdin@lmd.jussieu.fr

F. Codron, V. Guemas, J.-L. Dufresne, S. Bony, L. Guez, F. Lott
LMD

M.-A. Foujols, S. Denvil, J. Gatthas
IPSL

P. Braconnot, O. Marti, Y. Meudesoif, L. Bopp
LSCE



2 Frédéric Hourdin et al.

thus required to restore this energy balance in the imposed-SST simulations and20

reduce the biases in the simulated mean surface temperature and, to some extent,21

latitudinal SST variations in the coupled experiments for the modern climate. The22

tuning hardly compensates, however, for robust biases of the coupled model. De-23

spite the wide range of grid configurations explored and their significant impact24

on the present-day climate, the climate sensitivity remains essentially unchanged.25

Keywords Climate modeling · grid resolution · climate change projections26

1 Introduction27

Numerical simulations with general circulation models are at the heart of climate28

change studies. They are used to quantify the impact of greenhouse gas increase29

on the evolution of the global climate, to unravel the physical mechanisms that30

control climate sensitivity, and to verify theoretical hypotheses or mechanisms31

while taking into account the complexity of the climate system. Those numerical32

models however still provide only an approximate representation of the real climate33

system, which constitutes a major source of uncertainty for assessing future climate34

changes. Improving the models should therefore be one of the main drivers of35

climate research.36

Among the limitations often emphasized is the rather coarse spatial resolution37

of the models used for long-term climate change simulations, such as those co-38

ordinated by the Coupled Model Intercomparison Project (CMIP, Meehl et al,39

2007; Taylor et al, 2012). It is partly because of this coarse resolution that key40

processes such as convection or clouds have to be parameterized. Systematic cen-41

tennial global simulations with meshes of the order of 50 m, which would be re-42

quired to explicitly represent boundary layer clouds, will not be reachable before43

at least a couple of decades. It is however expected that significant improvements44

can already be achieved by increasing the spatial resolution of current climate45

models from a few hundreds to a few tens of kilometers, both because it allows a46

better resolution of the dominant atmospheric large scale dynamics and because it47

offers a finer description of surface conditions (orography, land/sea distribution).48

Among the expected improvements are a reduction of systematic biases in tem-49

perature, precipitation and winds (Pope and Stratton, 2002; Roeckner et al, 2006;50

Hack et al, 2006), a better representation of the regional-scale climate (Williamson51

et al, 1995; Kobayashi and Sugi, 2004; Navarra, 2008; Byrkjedal et al, 2008), and a52

better representation of rainfall distributions (Kiehl and Williamson, 1991; Déqué53

et al, 1994). An important question in the frame of climate change simulations is54

to know whether the model limitations, and in particular the biases which come55

from the use of coarse grids, impact the climate sensitivity, both in a global sense56

and in modifications of the climate regimes.57

Within the framework of the preparation of the 5th phase of CMIP (CMIP5,58

Taylor et al, 2012) at the Institut Pierre-Simon Laplace (IPSL), a systematic59

exploration of the impacts of changes in the atmospheric grid configuration of60

the LMDZ atmospheric general circulation model was conducted. The simulations61

were performed with the LMDZ4 version (Hourdin et al, 2006), the atmospheric62

component of the IPSL Coupled Model IPSL-CM4 (Braconnot et al, 2007; Marti63

et al, 2010) that took part in CMIP3 (Meehl et al, 2007). The results of this64
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systematic exploration were used to choose the final configuration LMDZ5A, the65

atmospheric component of the IPSL-CM5A model used for CMIP5. Since we in-66

tended to contribute to CMIP5 with a wide variety of configurations and ensembles67

of simulations (Dufresne et al., this issue), rather coarse resolutions were explored.68

One major goal of this comparison of different grids was to understand how69

model biases evolve with increasing resolution. It appears that grid refinement70

affects the position of the jets, and in turn the mid-latitude cold bias which71

was one of the major deficiencies of IPSL-CM4. The cause of the impact of grid72

refinement on the jet latitude is found in large-scale atmospheric dynamics, and73

was studied by Guemas and Codron (2011). Here we show that these changes also74

affect significantly the biases of the coupled model, as well as the mean climate75

equilibrium temperature.76

Research over the last decades have led to an increasing recognition of the77

role of the stratosphere in controlling some aspects of the tropospheric climate.78

This influence is related to radiative and chemical effects, but also to dynami-79

cal effects: some modes of stratospheric variability propagate downward, like the80

Quasi-Biennial Oscillation (QBO, Baldwin et al, 2001) in the tropics, and the Arc-81

tic Oscillation (AO, Baldwin and Dunkerton, 1999) in the mid latitudes. When82

the stratospheric anomalies reach the tropopause, they can potentially influence83

the surface climate, at least in the mid-latitudes (for the AO effect in the LMDZ84

mid-latitudes see for instance Lott et al, 2005; Nikulin and Lott, 2010). In order85

to take into account the impact of the stratospheric dynamics and chemistry in86

the coupled climate simulations, the LMDZ vertical grid was extended in the87

stratosphere, with a resolution close to a previous stratospheric version of LMDZ488

described by Lott et al (2005). After these changes the model can be considered89

as a high-top climate model.90

These results and discussions are mainly focused on the impact of the configu-91

ration changes on the model biases and climate sensitivity. It is shown in particular92

that despite a significant impact on some biases in the present-day climate, the93

climate sensitivity is weakly affected by the changes in grid configuration. Addi-94

tional results concerning the impact of changes in grid configuration are discussed95

in companion papers in the same issue: the impact of the refinement of the hori-96

zontal grid on the atmospheric variability in the north-Atlantic region is discussed97

by Cattiaux et al. and results on the ENSO variability are shown by Dufresne et98

al. in an overview paper of the IPSL-CM5 model.199

The paper is organized as follows. In section 2, the consequences of the model100

horizontal grid refinement on the mean climatology and on the latitudinal structure101

in the LMDZ4 simulations with imposed SSTs, and in the coupled atmosphere-102

ocean simulations with IPSL-CM4, are documented and analyzed. Section 3 is103

dedicated to the impact of the vertical extension of the model to the stratosphere.104

Finally, we compare in Section 4 the mean climate and the climate sensitivity to105

an increase in greenhouse gases of the configurations of the IPSL coupled model106

involved in the CMIP3 and CMIP5 exercises.107

1 The drafts of the special issue papers can be found at
http://icmc.ipsl.fr/research/international-projects/cmip5/special-issue-cmip5.
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2 Refining the horizontal grid in LMDZ4 and IPSL-CM4 simulations108

We analyze in this section a series of imposed-SST and coupled atmosphere-ocean109

simulations, all done with the same LMDZ4 atmospheric model, but with varying110

horizontal grids.111

2.1 The LMDZ4 general circulation model112

LMDZ is an atmospheric general circulation model developed at Laboratoire de113

Météorologie Dynamique. The dynamical part of the code is based on a finite-114

difference formulation of the primitive equations of meteorology (see e. g. Sadourny115

and Laval, 1984), discretized on a stretchable (Z of LMDZ standing for Zoom ca-116

pability) longitude-latitude Arakawa C-grid.117

The physical parameterizations of the LMDZ4 versions are described by Hour-118

din et al (2006). The Morcrette (1991) scheme is used for radiative transfer. Drag119

and lifting effects associated with the subgrid-scale orography are accounted for120

according to Lott (1999). Turbulent transport in the planetary boundary layer is121

treated as a vertical diffusion with an eddy diffusivity Kz depending on the lo-122

cal Richardson number according to Laval et al (1981). Up-gradient transport of123

heat in the convective boundary layer is ensured by adding a prescribed counter-124

gradient term of 1 K/km to the vertical derivative of potential temperature (Dear-125

dorff, 1966). In the case of unstable profiles, a dry convective adjustment is applied.126

The surface boundary layer is treated according to Louis (1979). Deep convection is127

parameterized using the ”episodic mixing and buoyancy sorting” Emanuel scheme128

(Emanuel, 1991) which assumes quasi-equilibrium between the opposite influences129

of the large-scale forcing of convection and of convective instability. A statistical130

cloud scheme is used to predict the clouds properties with a different treatment131

for convective clouds (Bony and Emanuel, 2001) and large-scale condensation as132

explained by Hourdin et al (2006).133

The IPSL-CM4 simulations made for CMIP3 were performed with a configura-134

tion of LMDZ4 made of 96 points in longitude by 72 in latitude (about 3.75◦×2.5◦)135

and 19 layers on the vertical (Marti et al, 2010).136

2.2 Sensitivity experiments137

Identical changes in horizontal resolution are explored here in both imposed-SST138

and coupled atmosphere-ocean simulations with exactly the same source code for139

the atmospheric component LMDZ4, using a 19-layer vertical grid (L19). The140

dynamical time-step and the time constants for the horizontal diffusion are the only141

— necessary — parameter changes between the different simulations, as described142

below. The other components of the system, i. e. the land surface scheme Orchidee143

and the oceanic circulation model Nemo, are also strictly identical (those versions144

are described by Marti et al, 2010).145

In the imposed-SST simulations, seasonally varying SSTs are imposed as a146

boundary condition. In practice, a climatological average of the AMIP SSTs (Hur-147

rell et al, 2008) over the period 1970–2000 is used in order to minimize the num-148
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(km×km)
at 45◦

δt
(s)

τ1
(hrs)

τ2
(hrs)

LMDZ4, IPSL-CM4, L19, CMIP3
96 ×71 CM4 3.75× 2.5 296 × 280 180 2.0 1.5 X X X
96 ×95 3.75× 1.9 296 × 209 180 2.0 1.5 X X X
144×95 2.5 × 1.9 197 × 209 120 2.0 1.5 X X
144×142 2.5 × 1.25 197 × 140 120 1.5 1.0 X X X
192×142 1.88× 1.25 148 × 140 90 1.5 1.0 X X
192×192 1.88× 0.93 148 × 104 90 1.5 1.0 X
280×192 1.29× 0.93 101 × 104 60 1.5 1.0 X

LMDZ5A, IPSL-CM5A, L39, CMIP5
96 ×95 CM5A-LR 3.75× 1.9 296 × 209 180 1.5 1.5 X X X X
144×142 CM5A-MR 2.5 × 1.25 197 × 140 120 1.5 1.0 X X X X

Table 1 Characteristics of the model configurations used for this study. The IPSL-CM4 model
used for CMIP3 was based on the 96× 71 horizontal grid configuration of the LMDZ4 atmo-
spheric general circulation model with 19 layers on the vertical (L19). A series of sensitivity
experiments to the horizontal grid was performed with the same model version. For CMIP5,
the IPSL-CM5A model (LMDZ5A atmospheric component with 39 layers) was run both with
a low resolution (LR, 96 × 95) and mid resolution (MR, 144 × 142) grid. δt is the time-step
used for primitive equations integration. The physical package is called with a time-step of
30 minutes for all the model configurations. The radiative transfer is computed each two hour
for the IPSL-CM4 simulations and every hour for IPSL-CM5A-LR and -MR. τ1 and τ2 are the
time constants for horizontal dissipation. The last four columns indicate the simulations used
in the present study. See text for further explanations.

ber of years of simulation required to smooth out the inter-annual variability. The149

forced simulations are run for 10 years.150

For the coupled atmosphere-ocean simulations, we show results of control sim-151

ulations in which the concentration of greenhouse gases, the Earth’s orbital pa-152

rameters and solar irradiance, and aerosols are kept constant, with same values153

as in the imposed-SST experiments. The model is run for 100 years. The control154

simulations are analyzed after a spin-up phase so that the global radiative balance155

is within 1W/m2 from zero in all the simulations. For the illustrations bellow156

the climatological mean seasonal cycle is computed from the last 10 years of the157

simulations.158

LMDZ uses for the time integration a leapfrog scheme with a Matsuno (or159

forward/backward) step every five leapfrog time-steps. The time step δt is limited160

by a CFL criteria, which varies linearly with the size δxmin of the smallest grid161

cell: δt < δxmin/C, where the C constant is the external gravity waves phase speed162

in the model. In longitude-latitude grids, the longitudinal grid size goes to zero163

at the pole. In order to avoid the use of too small time-steps, a longitudinal filter164

is applied to the dynamical equations after latitude φ0=60◦ in both hemispheres.165

For a regular longitude-latitude grid as used here, the minimum scale explicitly166

accounted for in x is δxmin = δxmax ∗ cos(φ0) = δxmax/2, where δxmax = 2πa/IM167

is the mesh size in x at the equator, a = 6400 km being the Earth radius and168

IM the number of grid cells in the longitudinal direction. Poleward of the latitude169

φ0, meteorological fields are filtered so as to retain only wave lengths longer than170

δxmin. The grid mesh size in latitude δy = πa/JM – where JM is the number of171

points in latitude – is a constant for a given grid. Finally, the time step is limited172

by δt < (πa/C)min(1/IM, 1/JM).173
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In a longitude-latitude grid, the isotropy of the horizontal grid (δy = δx) cannot174

be insured everywhere. The original grid, (IM, JM) = (96, 72), or (dλ, dφ)=(3.75◦,2.5◦),175

has a ratio IM/JM = 4/3 chosen so that the grid is isotropic at close to 45◦ lat-176

itude. This choice yields δx = 3δy/2 at the equator; and the time step is limited177

by δx at φ0. Keeping both the same resolution in longitude and the same value of178

φ0 = 60◦, it is possible to refine further the resolution in latitude up to JM = IM179

without reducing the time step. The grid is then isotropic at 60◦ latitude, and180

δx/δy = 2 at the equator.181

The simulations presented here were performed with either JM = 3/4× IM or182

JM = IM. Resolutions from (dλ, dφ)=(3.75◦,2.5◦) to (1.875◦,1.26◦) or (IM, JM)=(96,71)183

to (192,142) were explored with the coupled atmosphere-ocean model, by increas-184

ing successively either the latitudinal or longitudinal resolution. The same resolu-185

tions as well as finer grids were explored with the imposed-SST model. Character-186

istics of the simulations are given in Tab. 1.187

In addition to the choice of a small enough time step, the numerical stability188

of the model is ensured by the ”horizontal dissipation” operators. Those opera-189

tors account for the interaction between the explicit and sub-grid scales. They190

are also crucial for numerical stability. Without dissipation, the enstrophy cascade191

— well represented in LMDZ which favors numerical conservation of enstrophy192

(Sadourny, 1975) — would accumulate at the cut-off scale. The efficiency of those193

operators is controlled by two constants: the number of iterations N and a time194

constant τ . The larger the value of N , the more scale-selective the operator is,195

the e-folding time of an oscillation of wavenumber k scaling with k2N . The time196

constant τ is the e-folding time of the largest value of k encountered in the mesh197

(kmax ∼ 1/δxmin). In practice, a Laplacian operator is used for the lateral diffu-198

sion of potential temperature, while the vector Laplacian used for wind dissipation199

is divided into rotational and divergent components. N = 2 is used for the tem-200

perature and the wind rotational, with the same time constant τ1. For the wind201

divergence, a stronger dissipation is applied by using both N=1 and a shorter time202

constant τ2 < τ1. In practice, the time constants are slightly adjusted (reduced)203

empirically to insure numerical stability when refining the grid. Note however that204

the effective diffusivity at a given scale decreases drastically when refining the grid.205

The retained values are given in Tab. 1.206

2.3 SST cold biases and dynamical structure207

One of the major deficiencies of the IPSL-CM4 CMIP3 simulations was a strong208

cold bias in the mid-latitude SSTs, in both the Northern and Southern hemispheres209

(Swingedouw et al, 2007; Marti et al, 2010). The zonal-mean bias reaches 4 K210

around 40◦ of latitude for the IPSL-CM4 96× 71 simulation (Fig. 1). Refining the211

resolution in latitude significantly reduces this bias. With a refinement in longitude,212

the warming of the model is essentially located in the tropics, as illustrated further213

in Fig. 2. The equator-to-mid-latitude surface temperature contrast is generally214

0.5-1 K smaller (and thus closer to observations) when the same number of points215

is used in longitude and latitude. The bias in the equator-to-mid-latitude contrast216

is of 4 K for the 96×71 simulation, which has nearly zero SST-bias at the equator.217

It reduces down to 2 K in the 144 × 142 case, but increases back to 3 K for the218

192× 142 grid.219
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Fig. 1 Biases in SST (K) for the various configurations of the IPSL-CM4 model. The biases
are computed with respect to the Levitus climatology, and zonally averaged. We analyze the
last 10 years of 100-year simulations starting from the same oceanic state. The red curves
correspond to cases where IM = JM .
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Fig. 2 Evolution with the model horizontal resolution of the SST (K) for the global average
(squares), for the southern (45-35S, dashed line) and northern (35-45N, full line) mid-latitudes
and for the Equator (5S-5N, circles). The values from the coarsest grid (96×71) are subtracted.

The reduction of the cold bias of the mid-latitudes when refining the grid is220

accompanied by a poleward shift of the mid-latitude jets (Fig. 3). This shift is221

present both in the IPSL-CM4 coupled and LMDZ4 imposed-SST simulations. It222

corresponds to a strong reduction of the biases in the representation of the mean223

zonal wind with grid refinement, as illustrated in the left column of Fig. 4 for the224

imposed-SST simulations. For the coarsest grids, the jets are shifted toward the225

equator compared to ERA interim reanalyzes (as seen from the strong dipole in226

the zonal wind bias, centered at the latitude of the jet maximum intensity).227

This jet displacement was studied by Guemas and Codron (2011) in a set of228

dynamical core experiments produced with the LMDZ atmospheric model using229

the Held and Suarez (1994) setup. This setup consists in replacing all the detailed230

physical parameterizations by a Newtonian relaxation of the temperature field231
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Fig. 3 Latitude of the mid-latitude jets, computed at the 850hPa level, for the two hemispheres
and for the imposed-SST (LMDZ4) and coupled atmosphere-ocean (IPSL-CM4) simulations.
The latitude is counted positive from equator to pole in both hemispheres and the values from
the coarsest (96× 71) grid are subtracted.

toward a zonally-symmetric state, and a Rayleigh (linear) damping of the low-level232

wind with an e-folding timescale of 1 day at the surface. In this configuration, it233

was shown that the jet latitude moves poleward when refining the grid in latitude,234

and is less affected when increasing the number of grid points in longitude. It was235

checked also in this idealized framework that the changes in jet location when236

refining the grid do not come from the use of a shorter time-step.237

A similar behavior is found for the imposed-SST and coupled climate simula-238

tions shown here (Fig. 3): a tendency of the jets to move toward the poles when239

increasing the resolution, with a stronger impact when refining the grid in latitude.240

The effect is not as systematic as in the idealized dynamical simulations of Guemas241

and Codron (2011), which may reflect additional effects due to the complexity of242

the climate system.243

In order to understand how the grid refinement impacts the SSTs, i. e. both244

the increase of the mean temperature and reduction of the latitudinal contrasts,245

we start by analyzing the change in thermodynamical variables and energy budget246

in the imposed-SST simulations.247

2.4 Thermodynamical variables in the imposed-SST simulations248

The changes in zonal winds shown in Fig. 4 are accompanied by systematic changes249

in the temperature and humidity fields.250

The mid-latitude tropopause (close to 200 hPa) moistens when refining the251

horizontal grid, and becomes too moist when compared to ERA-Interim for the252

finest grids. The tropopause cold bias of the mid to high latitudes also increases.253

These two trends are probably related to each other since the cooling to space,254

a dominant term of the radiative balance at this level, is strongly affected by255
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Fig. 4 Ten-year average of the mean meridional structure of the zonal wind (m/s, left), tem-
perature (◦C, middle) and relative humidity (%, right) for the various imposed-SST simulations
with LMDZ4 (L19). The contours correspond to the simulations and the colors to the difference
(bias) with ERAinterim re-analayzes.
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humidity as already discussed by Hourdin et al (2006). Overall, the mid-latitude256

tropopause is thus too high for the finest grids explored.257

The systematic dry bias of the tropical boundary layer top (900 hPa) is a258

direct consequence of an underestimated moisture vertical transport by the eddy-259

diffusion parameterization used in LMDZ4. It is therefore not affected by the260

changes in horizontal resolution.261

Grid refinement leads to a systematic decrease of the wet and cold bias of the262

mid-latitude troposphere. This decrease of relative humidity is not just a conse-263

quence of the warmer temperature since the specific humidity is reduced as well,264

as illustrated in Fig. 5a and b that show differences between the 96 × 71 and265

144 × 142 grids. These changes can be interpreted as a shift toward the poles of266

the dry anticyclonic regions of the sub-tropics, as seen from the coincidence of the267

location of the maximum drying with that of the maximum latitudinal gradient268

of relative humidity (Fig. 5b).269

The impact of the poleward displacement of the jet and of the Hadley-cell270

boundary is also apparent in the water budget. The difference of integrated merid-271

ional transport of moisture between the 144×142 and 96×71 resolutions is shown272

on Fig. 6a (the transport of Lq is shown here where L is the specific latent heat273

and q the specific humidity). The Hadley circulation transports water toward the274

equator (more water being transported in the lower branch of the cell), while the275

Ferrel Cell and mid-latitude eddies transport moisture toward the pole. A wider276

Hadley cell will thus increase the equatorward transport near the latitudinal edge277

of the cell, while the displacement of the mid-latitude eddies will increase poleward278

transport in higher latitudes. The differential transport with increased resolution279

is therefore systematically away from the mid-latitudes (40◦N and 40◦S) towards280

the equator and poles. As a consequence, precipitation is reduced in the mid-281

latitudes (Fig. 6b), even though the evaporation increases weakly because of the282

drier atmosphere.283

2.5 Energy budget in the imposed-SST simulations284

The changes in relative humidity illustrated in Fig. 5b between resolutions 96×71285

and 144 × 142 coincide with large changes in cloud fraction (Fig. 5c). Specifi-286

cally, the cloud fraction exhibits a significant decrease near 40◦ latitude in both287

hemispheres, and a systematic increase at the tropopause.288

The changes in clouds are associated with pronounced changes in the Top-289

of-Atmosphere (TOA) radiative budget (Fig. 6d). The short-wave (SW) Cloud-290

Radiative-Forcing (CRF), defined as the difference of the TOA SW radiation be-291

tween all-sky and clear-sky conditions, is strongly increased in the mid-latitudes,292

as a consequence of the decrease of the fractional coverage of low and mid-level293

clouds. For long-wave (LW) radiation, the effect of clouds and the modification294

of clear-sky radiation partially cancel each other. The change in SW CRF does295

not affect significantly the atmospheric budget (red curve in Fig. 6c), since the in-296

crease of down-welling SW radiation at surface (red curve in Fig. 6e) is very close297

to that at TOA. Conversely, the decrease in low-level cloud cover and near surface298

humidity in the mid latitudes reduces the LW radiation of the atmosphere toward299

the surface (green dashed curve in Fig. 6e). The change of net LW radiation (full300

green curve) is almost identical to the change in downweling LW radiation except301
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Fig. 5 Zonal mean change of the latitude-pressure distribution of moisture and clouds in
LMDZ4 imposed-SST simulations associated with grid refinement from 96× 71 to 144× 142:
a) relative difference in specific humidity (%), b) difference in relative humidity (%) and c)
difference in cloud fraction (%). The differences are in color while the contours correspond to
the mean value of the 144× 142 simulation (resp. in g/kg, % and %).
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Fig. 6 Change in atmospheric transport, water and energy budget between the 96×71 LMDZ4
imposed SST simulation and the 144 × 142 configuration : a) change in meridional energy
transport (in PW), the moist static energy Etot being decomposed into its dry component
CpT + gz and latent heat Lq; b) change in evaporation (E), precipitation (P ) and water
budget (E − P ) ; c) change in atmospheric budget, difference between the TOA and surface
(downward) fluxes, separating the contribution of SW and LW radiation, and the latent (LE)
and sensible (H) heat flux at surface ; d) TOA fluxes, for LW and SW radiation together
with the corresponding CRF ; e) surface downward fluxes. For the LW radiation, we show
in green both the net radiation (full line) and down-welling radiation (dashed). The changes
in turbulent flux −(H + LE) and mean surface temperature are also shown in e (orange and
dashed black curves respectively). In c, d and e, ALL means the sum of the LW, SW and
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Fig. 7 Impact of the grid resolution on the top-of-atmosphere (TOA) fluxes (W/m2) in the
imposed-SST LMDZ4 simulations. The total (LW+SW) net radiation (full curve) together with
the SW component (dashed), SW CRF (circles) and LW CRF (squares) are shown. Results
from the 96×71 simulation are subtracted. The SW CRF of the coupled IPSL-CM4 simulations
(diamonds) is also shown for comparison. All the diagnostics correspond to 10-year means.

in the northern mid and high latitudes where continental surfaces respond to the302

increased surface incoming SW radiation.303

The sensible heat flux is reduced rather systematically by about 1 W/m2 due to304

the warmer atmosphere. The latent heat is reinforced in the mid latitudes but with305

a local minimum at 40 degrees latitude. All together, the atmosphere is heated by306

diabatic processes in the mid-latitudes more than in the tropics, which induces a307

reduction of the total latitudinal energy transport (black curve in Fig. 6a). This308

decrease is however weak, with a partial compensation between the transport of309

Lq and that of the dry static energy CpT + gz.310

In the imposed-SST LMDZ4 simulations, the global value of the total longwave311

plus shortwave (LW+SW) radiation at TOA (full curve in Fig. 7) systematically312

increases with grid refinement. It changes by +3 W/m2 (a gain for the climate313

system) when going from the coarsest to the finest grid. For the global average,314

this additional heat for the climate system can be entirely explained by the change315

in SW CRF, associated with a reduction of the averaged low-level cloud cover from316

almost 27% for the 96×71 grid to less than 24% for the finest 280×192 grid. The317

LW CRF also increases with grid refinement but is compensated by a decrease of318

the clear-sky Outgoing Longwave Radiation (OLR, not shown), so that the total319

OLR is almost independent of grid resolution (as evidenced by the fact that the320

total and SW radiation almost coincide in Fig. 7).321

We detail below the specific modifications of the SW CRF that result from a322

grid refinement in either longitude or latitude. Refining the grid in latitude induces323

a maximum of SW CRF increase in the mid-latitudes (red curve in Fig. 8a) which324

may be explained by the latitudinal shift of the jets: the jets being closer to the325

pole in the finest grids, the region of strong (negative) SW CRF associated with the326

storm-tracks is shifted towards latitudes where the insolation is weaker, resulting327

in a weaker SW CRF and also in a weaker low-level cloud cover. because of the328
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Fig. 8 Impact of grid refinement on: a) the latitudinal distribution of the SW CRF, b) the
meridional transport of latent heat (Lq), and c) the PDF (Probability Density Function) of the
500 hPa large-scale vertical velocity ω500 in the Tropics (30◦S-30◦N). The red (respectively
blue) curves show the difference between pairs of imposed-SST experiments with consecutive
grid refinement in latitude (respectively in longitude). Scales are on the left vertical axis.
For each graph, the black curve corresponds to the simulation with the 96 × 71 grid. The
corresponding values are on the right vertical axis.
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wider meridional extent of the trades. Consistently, the grid refinement in latitude329

has a clear effect on the meridional water transport with a systematically increased330

transport away from the mid-latitudes, towards both the poles and the equator331

(red curves in Fig. 8b).332

When increasing the resolution in longitude, the effect on the SW CRF is333

stronger in the tropics (blue curves in Fig. 8a), and is less clearly related to a334

change in the meridional moisture transport. This can be related to changes in the335

PDF (Probability Density Function) of the 500 hPa large-scale vertical velocity,336

ω500, that characterizes the large-scale tropical circulation (Bony et al, 2004). The337

change in tropical dynamics is particularly clear when increasing the resolution in338

longitude from 96×95 to 144×95 (full blue curve in Fig. 8c). The deep convective339

regimes (ω500 <-40 hPa/day) associated with the ITCZ and the strong subsiding340

regimes (ω500 >30 hPa/day) associated with strato-cumulus regions both have a341

strongly reduced occurrence, with a compensating increase in the weakly subsiding342

regimes. These two extreme regimes correspond to maximum cloud coverage and343

SW CRF, so their diminution could partly explain the reduction of the SW CRF344

in the tropics, which was particularly large for this change of resolution. When345

increasing the resolution in latitude from 96× 71 to 96× 95 (red curve in Fig. 8c)346

the change of the PDF is dominated by a transfer from the weakly subsiding to the347

weakly ascending regimes so that the ascending motions are globally reinforced on348

the domain retained for analysis (the ocean in the 30◦S-30◦N latitude band). This349

increased ascent is compensated by subsidence in the extra-tropics. These changes350

are accompanied in this particular case by a slight decrease of the SW CRF in the351

tropics (Fig. 8). The effects of resolution changes are weaker when exploring finer352

resolutions, in terms of both PDF and SW CRF changes.353

2.6 Impact on SST in the coupled experiments354

The changes with resolution of the global SW CRF are quite similar in the coupled355

(Fig. 9) and imposed-SST simulations (the SW CRF of the coupled simulations is356

duplicated in Fig. 7 for comparison). The latitudinal distribution of these changes357

of SW CRF are also quite similar, as can be seen for resolutions 96 × 71 and358

144× 142 by comparing the dashed red curves in Fig. 6d and Fig. 10d.359

In the coupled IPSL-CM4 simulations, the imbalance of the TOA radiative360

budget associated with grid refinement, coming from the change in SW CRF, acts361

as an initial forcing and induces a warming of the global surface temperature until362

a new equilibrium is reached. After 90 years, the total net flux in the simulations363

shown here is close to zero, as expected for an equilibrated coupled simulation. The364

total flux is of -0.4 W/m2 for the 96× 71 grid. The other resolutions have a total365

balance less negative by a fraction of a W/m2 (full curve in Fig. 9), indicating that366

the various simulations are not too far from radiative equilibrium. Note that there367

is an energy leakage of the order of 0.2 W/m2 in all the coupled atmosphere-ocean368

simulations presented here (see Dufresne et al., this issue).369

The direct forcing induced by the SW CRF change on the temperature is then370

amplified by classical climate feedbacks resulting from the surface temperature371

increase. This can be illustrated from the comparison of the 96×71 and 192×142372

simulations, i. e. focusing on the values associated with grid 192 × 142 on the373

x-axis in Fig. 7 and 9. Simulations with imposed SST show that the initial SW374



16 Frédéric Hourdin et al.

✾�
✁✂
✄

✾�
✁✾
☎

✄ ✶
✶✁
✾ ☎

✄ ✶
✶✁
✄ ✶
✆

✄✾
✆✁
✄ ✶
✆✵

✝

✷

✸

✹

✺

❋
✞✟
✠
✡☛
☞✌

✥ ✮
✍
✎
✏
✡✑
✮ ❚✒✓✔✕

❙✖
❙✖✗✘✙
▲✖✗✘✙
✗✕❈✔✚❙✛✜✢✣
❚✤

Fig. 9 Impact of the grid resolution on the TOA fluxes (W/m2) and global-mean surface
temperature Ts (triangles, in K) in the coupled atmosphere-ocean IPSL-CM4 simulations.
Results from the 96 × 71 simulation are subtracted. The total (LW+SW) net radiation (full
curve) together with the SW component (dashed), SW CRF (circles), LW CRF (squares), clear
sky greenhouse term (diamonds) are shown. All the diagnostics correspond to 10-year means.

CRF between the two resolution is 1.5 W/m2 (circles in Fig. 7). The SW-CRF375

is reinforced by about 0.7 W/2 in the coupled experiments (positive feedback,376

as seen by comparing circles and diamonds in Fig. 7). The difference between377

the absorbed solar radiation (SW) and the SW CRF in Fig. 9 reflects a positive378

feedback from the surface albedo (of about 1.7 W/m2), resulting from a decrease379

in snow and ice cover. Between the forced and coupled simulation the role of clouds380

on longwave radiation remains comparable (squares in Fig. 7 and 9). The change381

in TOA SW radiation is around 4 W/m2 and so is the change in OLR in the382

coupled simulations.383

The change in LW emission by the surface, σTs
4, can be formally decomposed384

as the sum of the change in OLR and in Greenhouse Effect (GE) term (Raval and385

Ramanathan, 1989)386

GE = σTs
4 −OLR (1)

with a strong contribution of the clear-sky GE (diamonds in Fig. 9) associated with387

water vapor and lapse rate feedbacks. Finally, a temperature increase of 1.8 K is388

obtained for an initial SW CRF of 1.5 K in the imposed-SST simulations. The389

sensitivity close to 1.2 K per W/m2, obtained here from a change in horizontal390

grid, is comparable to that obtained in climate change simulations with the IPSL-391

CM4 model.392

In terms of modification of the latitudinal structures, the results also follow393

what was observed in imposed-SSTs simulations, but for the above mentioned394

feedbacks. As was the case in the imposed-SSTs simulations, the atmospheric395

transport tends to dry the mid latitudes (Fig. 10a and b). The TOA SW CRF396

shows, similarly, a maximum increase in the mid latitudes. The surface albedo397

feedback is seen by the fact that the change in total TOA SW radiation (full red398

curve in Fig. 10d) in the high latitudes is somewhat larger than the CRF (dashed)399
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Fig. 10 Same as Fig. 6 but for the coupled IPSL-CM4 simulations. The change in oceanic
heat transport is added on panel a) (thick green curve).

while the two curves were almost superimposed in the imposed SST simulations400

(Fig. 6d). The coupled atmosphere-ocean system tends to re-adjust to this SW401

forcing, so that, at the end, the increased OLR in the mid latitudes almost com-402

pensates for the increased SW radiation (green and red full curves of Fig. 10d).403

The surface temperature increase (black dashed curve in Fig. 10e) is somewhat404

larger in the mid- and high-latitudes than at the equator so that the turbulent405

fluxes (latent + sensible) tend to increase specifically at those latitudes (an heat-406

ing for the atmosphere). The new equilibrium in the coupled model also results in407

a reduction of the atmospheric equator to pole heat transport (Fig. 10a). However408
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Fig. 11 Volume transport through Drake Passage (between the southern tip of America and
Antarctica), in black, and nitrate inventories in the Southern Ocean (90S-55S, 0m-200m), in
red. Circles are for the IPSL-CM4 simulations with various horizontal grids. Data (dashed lines)
correspond to Cunningham et al (2003) for the Drake transport and Conkright et al (2002)
for nitrate inventories. Note that the PISCES biogeochemical model has been run offline for
the results shown here, with the same ocean grid configuration for all the atmospheric grids.

the magnitude is smaller than in the atmosphere alone simulations, mainly because409

the warmer SSTs lead to enhanced evaporation with resolution that counterbal-410

ances the surface net radiation, which smoothes the changes in the atmospheric411

equator to pole energy budget compared to the imposed-SST simulations.412

2.7 Oceanic transport413

The poleward shift of the jets has a positive impact on the ocean gyre circulation414

in the north Atlantic (illustrations not shown). The warm and saltier water from415

the tropics are advected further north in the Atlantic, which reinforces deep water416

formation and the northward heat transport by the ocean circulation by up to417

0.15 PW at 30◦N between the coarsest (96 × 71) and finest (144 × 142) grid.418

The processes involved are similar to the one discussed by Marti et al (2010).419

The role of the Atlantic in the northern hemisphere is directly reflected on the420

changes in the global heat transport by the ocean circulation (thick green curve in421

Fig. 10a). These changes in the ocean circulation partially counteract the reduction422

of the heat transport by the atmospheric circulation discussed above. However the423

changes in the atmosphere of about 0.2 PW between the coarsest and finest grid424

considered here are larger than those of the ocean so that the sum of the heat425

transport by the ocean and the atmosphere reduces with resolution, reflecting the426

dominant role of the readjustments of temperature, humidity and clouds in the427

atmospheric column on the new equilibrium.428

The southward shift and intensification of the westerlies associated with the429

poleward shift of the atmospheric mid-latitude jets with resolution increase the430

mass flux of the Antarctic Circumpolar Current, as shown by the volume trans-431



IPSL-CM5A: impact of the atmospheric grid configuration 19

port through Drake Passage (Fig. 11). These changes have a positive impact on432

the representation of the nutrient fields in the ocean. It can be inferred from sim-433

ulations performed with the PISCES biogeochemical model (Aumont and Bopp,434

2006) forced by the CM4 ocean circulation. We focus here on the first 200 m ni-435

trate inventories in the Southern Ocean (south of 55◦S). These inventories are key436

in setting the Southern Ocean biological productivity, and also in determining the437

nutrient concentrations of the tropical oceans (Sarmiento et al, 2004). The suite438

of CM4 simulations clearly shows that changes in ocean transport and mixing due439

to the strengthening and poleward shift of the westerlies impact NO3 inventories440

(red curves in Fig. 11). The first 200 m NO3 inventory increases from 123.1 Tmol441

to 164.8 Tmol for an increase in atmospheric latitudinal resolution from 96 points442

(1.9◦) to 142 points (1.3◦), in better agreement with observations. These results443

illustrate both the importance of atmospheric dynamics representation for the444

other components of the ”Earth System” and the potential new constraint that445

new components can provide for model evaluation.446

2.8 Impact on precipitation447

One motivation to increase the horizontal resolution of the atmospheric models is448

the better representation of rainfall distribution, a key variable for impact studies.449

We show in Fig. 12 a comparison of the annual-mean rainfall obtained for the450

coarsest (96 × 71) and finest (280 × 192) grids for the imposed-SST simulations.451

Despite a reduction by a factor 8 of the grid cells area, the differences are relatively452

weak. northward extension of the West Africa monsoon rainfall at the southern453

edge of the Sahara desert, is for instance almost the same in the two versions454

(not far enough to the north for both). The tendency of the model to predict455

a double ITCZ structure in the East Pacific, with a too strong secondary zone456

of precipitation south of the equator, is also present in the two versions. The457

main differences come from a finer description of local rainfall patterns driven by458

orography, as over the Alps or the western Ghats (India).459

3 Extending the model to the stratosphere460

3.1 The L39 vertical discretization461

During the preparation of the CMIP5 exercise, the vertical grid of LMDZ4, for-462

merly based on a L19 (19 layers) discretization, was extended in the stratosphere463

using a L39 discretization as explained below. The model uses a classical hybrid464

σ − P coordinate : the pressure Pl in layer l is defined as a function of surface465

pressure Ps by Pl = AlPs+Bl. The values of the Al and Bl coefficients are chosen466

in such a way that the AlPs part dominates near the surface (where Al reaches467

1), so that the coordinate follows the surface topography (like the σ coordinates),468

and Bl dominates above several km of altitude, making the coordinate equivalent469

to a pressure coordinate there.470

The Al and Bl coefficients retained for the former L19 and the new L39 con-471

figurations are as shown in Fig. 13. The L39 discretization goes up to about the472

same altitude of 70 km as the stratospheric L50 version used in Lott et al (2005),473
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GPCP climatology

LMDZ4 – 96× 71

LMDZ4 – 280× 192

Fig. 12 Annual mean rainfall (mm/day) in the GPCP (Global Precipitation Climatology
Project, Huffman et al, 2001) observations and for the two extreme configurations explored
with LMDZ4.

and much higher than the L19 version. With 15 levels above 20km, the resolution474

of the L39 configuration is sufficient to resolve the propagation of the mid-latitude475

waves into the stratosphere and their interaction with the zonal-mean flow as il-476

lustrated below. Sudden-stratospheric warmings are thus simulated, but not the477

Quasi-Biennial Oscillation in the tropics. Since the L39 version goes to the same478
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Fig. 13 Coefficients Al and Bl defining the L39 vertical grid (dot and dashes line respectively).
The thick lines are for the log pressure altitude in km: z = 7.log(Ps/Pl). The values given
correspond to the 2 versions used in this paper: the L19 vertical grid of LMDZ4 and the L39
grid of LMDZ5A. Also shown for comparison are the variation of z with model level used in
the standard L50 stratospheric version of LMDZ presented in Lott et al (2005).

height as the L50 version described in Lott et al (2005), we use the same parame-479

ters for the orographic and non-orographic gravity waves.480

3.2 Representation of the stratospheric variability481

The L39 vertical resolution retained here is in practice sufficient to capture the482

planetary waves that control the polar vortex dynamics in the stratosphere (Char-483

ney and Drazin, 1961). This is illustrated in Fig. 14 which shows, for coupled484

atmosphere-ocean simulations with the 96 × 95 atmospheric configuration, the485

amplitude of the first 3 stationary planetary waves that modulate the northern486

stratospheric polar vortex in January. These amplitudes are computed by expand-487

ing the geopotential altitude Z in Fourier series,488

Z(λ, φ, z, t) =
∑

s

Zs(s, φ, z, t)e
isλ (2)

where λ, φ, and z are the longitude, latitude and the log-pressure altitude respec-489

tively, and by averaging the complex Fourier coefficients Zs over the days belonging490

to the 30 januaries 1976-1995, yielding the temporal average < Zs >. The ampli-491

tudes ‖ < Zs > ‖ =
√
< Zs >< Zs >∗ of the first three planetary waves (Fig. 14)492

are comparable in the L39 version and in the reanalysis data. The level of realism493

is comparable with that of the L50 stratospheric version of LMDZ (see the Fig. 2494

in Jourdain et al, 2008). The planetary waves in the L19 version are quite realistic495

in the troposphere, but are clearly underestimated in the lower stratosphere below496

z=35 km. This shows that a well-resolved stratosphere does not affect directly the497

planetary-scale waves in the troposphere, and that our L19 tropospheric model is498
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Fig. 14 Climatological amplitude of the first three dominant January planetary waves in
the Northern Hemisphere. a), b), c):wave s = 1 from ERA40 and from L39 and L19 coupled
simulations with the 96× 95 horizontal grid; d), e), f):wave s = 2 from ERA40, and from L39
and L19 simulations; g), h), i):wave s = 3 from ERA40, and from L39 and L19 simulations

damping adequately the waves near its top. Note that these results on the mean499

planetary waves remain essentially valid when looking at other months but also at500

the variability associated with each wave (as for instance also shown in the Fig. 2501

in Jourdain et al, 2008).502

To see whether the planetary waves are able to force stratospheric sudden503

warmings, we compare in Fig. 15 time-series of the zonal-mean temperature at504

50 hPa and 85◦N. We choose this altitude, which is significantly lower than the505

more conventional 10 hPa level often used to diagnose the stratospheric warmings,506

because 10 hPa is very close to the L19 model top (around 32 km, see Fig. 13).507

Despite of this caveat, we see that the L19 version fails to simulate the right508

amount of polar temperature variability, whereas the L39 version is reasonably509

close to observations. This suggests that a realistic representation of the planetary510

waves in the upper stratosphere is necessary to represent sudden stratospheric511

warmings. In the L19 version, the polar temperatures also present a cold bias of512

10–20 K during the entire winter, and the average downward control related to513

the planetary waves breaking is not well represented, despite the fact that the514

planetary waves are quite realistic up to the L19 model top.515
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Fig. 15 Polar temperatures at 50hPa for 20yrs (1976-1995). a) ERA40 reanalysis, b) L39 and
b) L19 IPSL-CM simulations

Simulation SW CRF LW CRF Tot CRF Total TOA
96× 95-L19 -47.3 30.1 -17.2 -1.4
96× 95-L39* -49.4 25.4 -24.0 -7.6
96× 95-L39 -47.4 30.3 -17.1 -0.2

Table 2 Global values (in W/m2) at TOA of the SW and LW CRF as well as of the total net
radiation for imposed-SST simulations with LMDZ4-96× 95 for the L19 discretization and for
the L39 discretization before (L39*) and after retuning of clouds parameters.

3.3 Need for tuning516

Increasing the vertical resolution has a major impact on the TOA radiation budget517

in imposed-SST simulations, as shown in Tab. 2 and Fig. 16 that compare the518

L19 simulation with the simulation L39*, in which only the vertical resolution519

was increased without any specific tuning of the model. The global net absorbed520

atmospheric radiation decreases by about 7 W/m2, with 1 W/m2 coming from an521
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Fig. 16 Ten-year mean zonally averaged SW and LW CRF at TOA, net radiation, precipi-
tation, net CRF and clear sky net radiation for imposed-SST simulations with the LMDZ4-
96 × 95 configuration. Precipitation is in mm/day and fluxes in W/m2. For radiative fluxes,
observations correspond to the CERES Energy Balanced and Filled (EBAF) dataset, devel-
oped to remove the inconsistency between average global net TOA flux and heat storage in the
Earth-atmosphere system (Loeb et al, 2009). We use GPCP (Huffman et al, 2001) for rainfall
observations.

increase of the (negative) SW-CRF and 6 W/m2 coming from a decrease of the522

(positive) LW-CRF. The clear-sky radiation is not strongly affected by the change523

of vertical resolution. The changes in CRF come from a decrease of the cloud cover524

in the upper troposphere and increase of boundary layer clouds as seen in Fig. 17.525

A phase of tuning was thus required to re-equilibrate the TOA budget. The526

requirements on the accuracy of the TOA energy balance are much more strin-527

gent than the typical biases and approximations of climate models, in particular528

regarding cloud coverage and radiative properties. A modification of 1 W/m2 of529

the TOA balance typically results in a change of 1 K of the global-mean surface530

temperature in a coupled model.531

The tuning was done by considering a sub-set of the free parameters of the532

cloud parameterizations. Two parameters governing the upper-level clouds533

were modified. The maximum precipitation efficiency ǫpr,max of the Emanuel deep534

convection scheme, a critical and not well constrained parameter was changed535

from 0.99 to 0.999. The fall velocity of the ice particles was divided by two by536

changing from 0.5 to 0.25 the value of a scaling factor γiw introduced on purpose537

for model tuning in the formulation of the free fall velocity: wiw = γiw × w0,538

w0 = 3.29 (ρqiw)
0.16 being a characteristic free fall velocity (in m/s) of ice crystals539

given by Heymsfield and Donner (1990) where ρ is the air density (kg/m3) and540

qiw the ice mixing ratio. The two changes compensate each other to some extent:541
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L39* - L19

L39 - L39*

Fig. 17 Difference in cloud cover (annual and zonal mean) between (upper panel) the L19
and L39* simulation (with no tuning) and (lower panel) between the L39* and re-tuned L39
version. The LMDZ4-96× 95 configuration is used.

a larger ǫpr,max results in a smaller detrainment of condensed water in the upper542

atmosphere while a smaller fall velocity reduces the main sink for total water.543

However, the first one mainly acts in the tropics, where the deep convection scheme544

is mostly active, while the second one has an impact at all latitudes. The specific545

choice made here results in a large increase of cloud cover (lower panel of Fig. 17)546

and humidity (not shown) in high latitudes, close to the tropopause level. This547

increase of high cloud cover has a clear signature in the LW CRF (green curve in548

the mid-upper panel of Fig. 16) in the imposed-SST simulations.549

The last tuning parameter governs the conversion of cloud water to rainfall in550

the large-scale cloud scheme. Following Sundqvist (1978), the cloud liquid water551
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Fig. 18 Mean meridional structure of the Zonal wind (m/s, left), temperature (◦C, middle)
and relative humidity for the L19, L39* and L39* forced simulations with the LR horizontal
grid. The vertical axis is a pseudo-altitude (-Hln(p/ps), with H=7 km).

(of mixing ratio qlw) starts to precipitate in LMDZ5A above a critical value clw552

for condensed water, with a time constant for auto-conversion τconvers = 1800 s so553

that554

dqlw
dt

= − qlw
τconvers

[1− e−(qlw/clw)2 ] (3)

The critical value clw was changed from 0.26 g/kg to 0.416 g/kg, within the555

typical range expected for cumulus and strato-cumulus clouds.556

With the new tuning, L39 is close to the previous L19 version regarding the557

TOA gobal fluxes and CRF (Tab. 2) and the latitudinal distribution of the Net558

CRF (Fig. 16). However, this similarity of the net forcing is obtained in the tropics559

thanks to an error compensation between SW and LW CRFs which are both560

underestimated. The tuning of the original L19 version was probably better in561

that respect.562



IPSL-CM5A: impact of the atmospheric grid configuration 27

The retuning of the model has also a significant effect on the mean meridional563

structure of the meteorological fields. We show in Fig. 18, in a latitude log-pressure564

framework, the mean biases in zonal wind, temperature and relative humidity565

in the L19, L39∗ (before retuning) and L39 (after retuning) versions. There is a566

significant improvement in the zonal wind structure in the stratosphere when going567

from L19 to L39∗ , which is partly reversed by the tuning. Also, the temperature568

biases around the tropopause in the mid-latitudes are a little bit stronger in L39569

than in L39∗. The retuning improves the location of the tropospheric jets, which is570

critical for the biases of the coupled model. This improvement is similar to the one571

obtained when using the 144×142 horizontal grid in the LMDZ4-L19 configuration572

(Fig. 4).573

The retuning thus results in a compromise. On the one hand, the TOA fluxes574

and the stratospheric structure are degraded. On the other hand, the tropospheric575

circulation is improved, allowing the use of a coarser model resolution. The L39576

vertical resolution, with the tuning described here, was retained for the LMDZ5A577

version of LMDZ used in IPSL-CM5A for the CMIP5 simulations.578

4 IPSL-CM5A versus IPSL-CM4579

The LMDZ4 configuration which was used in IPSL-CM4 for the CMIP3 simula-580

tions had the coarsest grid explored in the previous sections (96× 71-L19). Apart581

from some minor bug fixes and optimization for parallel computing, the main582

differences between LMDZ versions used in the previous IPSL-CM4 version and583

the IPSL-CM5A one used for CMIP5 concern the grid configuration. The L39 dis-584

cretization described above is retained in LMDZ5A with two horizontal grid con-585

figurations : a low resolution (LR) with 96×95 points (3,75◦×1,9◦) and a medium586

resolution (MR) with 144×142 points (2,5◦×1,25◦).587

The Nemo ocean circulation model was also upgraded from OPA8 to OPA9 con-588

figuration, with in particular an improved vertical mixing scheme and an improved589

representation of solar absorption, as well as the Orchidee surface-vegetation-590

atmosphere transfer and dynamic vegetation model (de Rosnay et al, 2002; Krinner591

et al, 2005), with modified root profiles and an interactive Leaf Area Index compu-592

tation. Those changes are detailed by Dufresne et al. (this issue). In this section,593

we document and discuss the effect of these configuration changes on the atmo-594

spheric component on the simulated coupled atmosphere-ocean climate and on its595

sensitivity to greenhouse gases concentration.596

4.1 Mean climate597

We compare here the control simulation with the IPSL-CM4 96×71 standard con-598

figuration (run with present-day forcing for greenhouse gases, solar constant, and599

aerosols) with the IPSL-CM5A-LR and MR ”historical” simulations for 1990-1999.600

Those simulations start from the pre-industrial control simulation. The evolution601

of the forcing from 1850 to 2000 is imposed as explained by Dufresne et al. (this602

issue). Those simulations are designed to be as close as possible to the observed603

climate. The LR configuration was considered too cold and thus a somewhat mod-604
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Fig. 19 Mean meridional structure of the Zonal wind (m/s, left), temperature (oC, middle)
and relative humidity (%) for the IPSL-CM4, IPSL-CM5A-LR and -MR simulations. The
IPSL-CM4 simulation corresponds to a control run in present conditions while we show for
IPSL-CM5A-LR and -MR the 1990-1999 decade of historical runs.

ified tuning was retained for the MR. This was done by subtracting a constant605

value of 1% from the ocean albedo.606

The changes in the coupled simulations (Fig. 19) reflect for a large part the607

ones observed in the imposed-SST simulations (Fig. 18). There is a reduction of608

the biases in the location of the mid-latitude jets when going from IPSL-CM4609

to CM5A-LR and CM5A-MR. The mid-latitude moist bias is also reduced when610

refining the horizontal grid. For the temperature, the reduction of the global cold611

bias when going from CM5A-LR to -MR comes mainly from the modified tuning.612

However, increasing the horizontal resolution also contributes to the reduction of613

the mid-latitude cold bias. The stratospheric biases are also significantly reduced614

when going from IPSL-CM4 to -CM5, as was the case in the imposed-SST simu-615

lations.616

The spatial structures of the mean SST biases are shown in Fig. 20. The global617

mean, which reflects the different tuning of the three model versions, is subtracted.618

The mean bias is of -1.6 K for IPSL-CM4, -0.95 K for IPSL-CM5A-LR and -0.49 K619
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CM4-96x71

CM5A-LR

CM5A-MR

Fig. 20 Mean SST bias in the IPSL-CM4 and CM5A-L/MR model. The CM4 simulation is a
control run while we consider the historical simulations for CM5. The mean bias is subtracted
to concentrate on the structures. This mean bias is of -1.6 K for IPSL-CM4, -0.95 K for
IPSL-CM5A-LR and -0.49 K for IPSL-CM5A-MR.
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Fig. 21 Global (top) and Atlantic (bottom) total meridional energy transport by the ocean
(in PW) in the IPSL-CM4, IPSL-CM5A-LR and IPSL-CM5A-MR simulations. Heat transport
estimates (Ganachaud and Wunsch, 2003) are obtained by inversion or hydrographic data from
the World ocean circulation experiment.

for IPSL-CM5A-MR. The specific cold bias in the mid-latitudes reduces when620

refining the grid. The three configurations show however similar regional patterns:621

a cold bias in the mid-latitudes, a warm bias on the eastern side of the tropical622

oceans, and a particularly strong cold bias in the North Atlantic.623

The bias in the North Atlantic SST is associated with a strong underestimation624

of the Atlantic meridional overturning circulation. This underestimation is visible625

both in the Atlantic and global ocean meridional energy transport (Fig. 21). The626

transport is only slightly increased when refining the grid for IPSL-CM5A but the627

improvement is not systematic when comparing IPSL-CM4 and IPSL-CM5A. This628

underestimated circulation is a robust bias of our model for which no satisfactory629

solution has been found so far.630

For the rainfall (Fig. 22), an important deficiency of the IPSL-CM4 version631

was the presence of a second zone of convergence south of the equator, both in632

the Pacific and Atlantic ocean. This double ITCZ is a classical bias of coupled633

models (see e. g. Dai, 2006). It is still present in the new version, both in the634

LR and MR configurations. The monsoon rainfall over West Africa and the Indian635

sub-continent did not extend sufficiently to the north in IPSL-CM4. This point is636

slightly improved in the new version. This could be due in part to the reduction637

of the latitudinal biases in SST and in part to the modifications in the surface638

scheme. Since this question of the latitudinal extension of monsoons is rather639
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CM4 – 96× 71

CM5A-LR

CM5A-MR

Fig. 22 Annual mean rainfall (mm/day) in the control simulation with IPSL-CM4 and in the
”historical simulation” for the end of the 20th century with the CM5A-LR and CM5A-MR
configurations.

important, this could deserve further investigations. Apart from this point, the640

rainfall is similar in the various configurations.641
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Fig. 23 Evolution of the global mean of the 2m air temperature in control and 1%CO2

experiments with the IPSL-CM4 and IPSL-CM5A model with various grid configurations.
Panels a and b show the temperature itself (in ◦C) while panel c shows the difference between
the 1%CO2 experiment and the corresponding control simulation.
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4.2 Climate sensitivity642

We present in Fig. 23 the evolution of the mean 2-meter air temperature (T2m)643

in a series of control (constant forcing) and 1%CO2 experiments. In the latter,644

everything is kept constant in the model except the atmospheric concentration of645

carbon dioxide, which increases by 1% each year. The 1%CO2 simulations start646

from a 1st of January on one particular year of the control experiment taken as year647

0 for the graphics. Two IPSL-CM4 simulations, using the coarsest horizontal grids648

(96× 71 and 96× 95), were tuned by lowering the surface albedo (by subtracting649

1% and 0.9% respectively), so as to obtain an averaged global mean temperature650

close to that of the 144 × 142 configuration for the control simulations run with651

present-day greenhouse gases concentrations. Those simulations are called 96×71B652

and 96 × 95B. The 96 × 71B simulation is still 0.5 K colder than 96 × 95B and653

144×142 (Fig. 23a). Control simulations and climate sensitivity experiments were654

done with both 96×71 and 96×71B to check whether the tuning affects the climate655

sensitivity. For the IPSL-CM5A model, the tuned (lowered) ocean albedo also656

explains a large part of the difference between the LR and MR configurations657

(Fig. 23b).658

Despite those changes in grid configuration, in tuning or in the mean temper-659

ature biases, the transient climate response (defined as the difference between the660

1%CO2 and control experiments at time of CO2 doubling, i. e. around year 70)661

is almost the same for all the model configurations as illustrated in the lower662

panel of Fig. 23. The ocean uptake is also comparable for all the simulations (not663

shown). A rigorous climate sensitivity analysis based on both 1%CO2 and abrupt664

4×CO2 experiments shows that the climate sensitivity and feedback parameters665

differ by less than 10% between the IPSL-CM4, IPSL-CM5A-LR and -MR models666

(see Dufresne et al., this issue).667

The regional distribution of global warming (left part of Fig. 24 for IPSL-CM4668

and of Fig. 25 for -CM5A) also shows quite consistent results between the differ-669

ent versions, and reflects the usual robust aspects of climate change simulations: a670

stronger warming over the continents (where evaporative cooling is limited) than671

over oceans, a stronger warming in the (more continental) northern hemisphere672

than in the southern one, and in high than in low latitudes in the northern hemi-673

sphere. The simulations also show, in a rather consistent way, a weak warming in674

the Southern Ocean and in the North Atlantic.675

The situation is a bit different for changes in the mean rainfall. Some aspects676

appear to be quite robust, such as the global increase of rainfall in the ITCZ/SPCZ677

region, and a relative drying at around 30-40 degrees latitude in both hemisphere,678

also a rather robust feature of CMIP3 projections (Held and Soden, 2006). How-679

ever, when looking at regional changes over the continents, results differ quite680

significantly between IPSL-CM4 and CM5A. Generally speaking, the CM4 con-681

figuration tends to predict a stronger drying (in particular over Amazonia, cen-682

tral Africa, India) than CM5A does, while, for each model, the results are much683

more consistent when varying the horizontal resolution. The differences between684

the CM4 and CM5A results are probably due to some significant changes in the685

Orchidee land-surface model between the two versions: a bug fix which had a686

particularly strong impact in semi-arid regions, a soil reservoir twice as deep in687

CM5A and the activation of the CO2 cycle which influences the Leaf Area Index688
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Temperature change (K) Rainfall change (mm/day)
CM4-96x71

CM4-96x71B

CM4-96x95B

CM4-144x142

Fig. 24 2m air temperature (K, left column) and precipitation (mm/day, right column)
changes in 1%CO2 experiments with various configurations of IPSL-CM4, showing the dif-
ference between the average variable for the last 30 years (year 51 to 80) of the 1%CO2

simulation minus the value of the control simulations for the same period.
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Temperature change (K) Rainfall change (mm/day)
CM5A-LR

CM5A-MR

Fig. 25 2m air temperature (K, left column) and precipitation (mm/day, right column)
changes in 1%CO2 experiments with various IPSL-CM5A-LR and -MR, showing the difference
between the average variable for the last 30 years (year 51 to 80) of the 1%CO2 simulation
minus the value of the control simulations for the same period.

(Dufresne et al., this issue). Whether one of those changes is responsible for the689

changes observed is a question which could deserve further investigations.690

5 Conclusions691

We have explored the impact of the horizontal and vertical grid configuration of692

an atmospheric general circulation model on the results of both imposed-SST and693

coupled simulations, focusing on the representation of the mean climate and on694

the climate sensitivity to greenhouse gases concentration.695

The refinement of the horizontal grid has a significant and systematic impact696

on the model biases, in particular on the latitude of the jets and on the humidity697

and temperature in the mid latitudes. Refining the grid in latitude rather than698

in longitude has a stronger impact on the latitude of the mid-latitude jets in the699

dynamical core experiments (Guemas and Codron, 2011) and in the imposed-SST700

climate simulations, and a stronger impact on the reduction of the cold mid-701

latitude SST bias with respect to Equator in the coupled experiments.702
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The changes of atmospheric dynamics when refining the grid are associated703

with significant changes in the meridional transport of heat and moisture. In mid-704

latitudes, grid refinement (in particular in latitude) reduces systematically a strong705

moist bias of the coarsest configurations, which results in less low-level clouds.706

In imposed-SST simulations, this decrease in cloudiness weakens the vertically707

integrated tropospheric radiative cooling and thus reduces the cold atmospheric708

bias in mid-latitudes. In coupled atmosphere-ocean simulations, the reduced cloud709

cover enhances the short-wave radiation at the surface in mid latitudes, and thus710

contributes to reduce the cold SST bias in that region. Changes in the tropical711

circulation are also observed when increasing the resolution in longitude that also712

contribute to reduce the low-level cloud cover.713

Starting the explanation from the change of dynamics is somewhat arbitrary714

since it is possible that the changes of atmospheric transport at work in the full715

climate model are influenced by other processes, coming for instance from a di-716

rect sensitivity of the physical parameterizations to the grid size. However, the717

fact that the jet displacement mimics that observed in the idealized simulations718

with newtonian cooling, and that we are able to derive a complete and consistent719

explanation of the changes observed apart from this initial change, suggests that720

it could explain at least a large part of the modifications observed. This point721

would deserve however additional investigations, including for instance the use of722

idealized water-like tracers in idealized simulations with newtonian cooling.723

It is shown also that the extension of the vertical grid to higher levels improves724

the representation of the stratospheric mean flow and of stratospheric sudden725

warmings.726

Changing the grid configuration also has an impact on the global energy bal-727

ance. Refinement of the horizontal grid results in a warmer climate in the IPSL-CM728

model as a consequence of the above mentioned decrease in low-level cloud cover729

which induces weaker (less negative) SW-CRF. The impact of refining the vertical730

grid is even stronger and is mainly related to changes in high-level cloudiness. The731

modifications are as large as 3 W/m2 when refining the horizontal grid from 96×71732

to 280 × 192, or about -6 W/m2 when changing the vertical discretization from733

L19 to L39. In the coupled model, the model global radiation balance is restored734

through an increase of the global-mean near-surface temperature, by about 1.2 K735

per W/m2.736

After such configuration changes, the model must thus be tuned to compensate737

for the changes in energy balance. Tuning of free parameters, often unmentioned738

in publications, is central to climate modeling. Tuning was used here to restore the739

energy balance in the imposed-SST simulations and so to reduce the biases in the740

simulated mean surface temperature compared to present-day observations in the741

coupled model (the IPSL-CM5A-MR tuning is more satisfactory for that point).742

The tuning of the IPSL-CM5A-LR also helped to partially compensate the bias in743

the location of the mid-latitude jets that results from the rather coarse horizontal744

resolution. Generally however, tuning did not help reduce several major robust745

biases of the model such as the warm SST biases at the eastern side of tropical746

oceans, the double ITCZ structure or the underestimated meridional ocean heat747

transport. Tuning with respect to present-day observations does not guarantee748

either a better representation of the climate sensitivity to greenhouse gases.749

Despite significant changes in configuration which result in a significantly modi-750

fied representation of the present-day climate, the various IPSL-CM configurations751
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presented here show a very similar sensitivity to the concentration of greenhouse752

gases. This is an important result for climate change studies: if grid refinement753

allows to improve the realism of climate models in their representation of the754

present-day climate, it seems of secondary importance for many aspects of climate755

projections.756

The above result must be contrasted with the strong reduction of climate sen-757

sitivity obtained in the CM5B version of the IPSL coupled model, when changing758

the parameterizations of clouds and convection (Hourdin et al, 2012). The simple759

conclusion could thus be that grid refinement, both in the vertical and horizontal760

affects the climate sensitivity to a lesser extent than changes in clouds parameter-761

izations. It must be kept in mind, however, that a careful retuning of the model762

was done when changing the vertical grid, in such a way that the final net CRF763

in LMDZ5A is very close to that of the previous LMDZ4 L19 version (lower mid764

panel in Fig. 16). Some recent results suggest that a different tuning of the same765

set of cloud parameterizations could modify as well the sensitivity to greenhouse766

gases (Brient and Bony, 2012).767
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