
HAL Id: hal-01096211
https://hal.science/hal-01096211

Submitted on 17 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reusing and Combining UI, Task and Software
Component Models to Compose New Applications

Christian Brel, Philippe Renevier, Alain Giboin, Anne-Marie Dery, Michel
Riveill

To cite this version:
Christian Brel, Philippe Renevier, Alain Giboin, Anne-Marie Dery, Michel Riveill. Reusing and
Combining UI, Task and Software Component Models to Compose New Applications. BCS HCI,
http://hci2014.bcs.org/, Sep 2014, Southport, United Kingdom. �hal-01096211�

https://hal.science/hal-01096211
https://hal.archives-ouvertes.fr

Reusing and Combining UI, Task and
Software Component Models to Compose

New Applications

Christian Brel
CNRS, Laboratoire I3S - UMR 7271 - UNS CNRS

FR-06900 Sophia Antipolis Cedex
Christian.Brel@unice.fr

Philippe Renevier Gonin
Universit Nice Sophia Antipolis,

Laboratoire I3S - UMR 7271 - UNS CNRS
FR-06900 Sophia Antipolis Cedex

Philippe.Renevier@unice.fr

Alain Giboin
INRIA, Laboratoire I3S - UMR 7271 - UNS CNRS INRIA

FR-06900 Sophia Antipolis Cedex
Alain.Giboin@inria.fr

Michel Riveill
Universit Nice Sophia Antipolis,

Laboratoire I3S - UMR 7271 - UNS CNRS
FR-06900 Sophia Antipolis Cedex

Michel.Riveill@unice.fr

Anne-Marie Dery
Universit Nice Sophia Antipolis,

Laboratoire I3S - UMR 7271 - UNS CNRS
FR-06900 Sophia Antipolis Cedex

Anne-Marie.Pinna@unice.fr

Composing applications by considering in parallel both software components and UI elements is a complex
process not yet very well supported by any current composition process model or composition environment.
To contribute to better support the composition process, we propose a new composition model and a
prototype of a component assembler, the so-called OntoCompo, which implements the model. The model
describes applications in terms of Task, UI and software components. The prototype allows a composition
mainly driven by the direct manipulation of UI elements, the other components being hidden, but still being
linked to the UI elements. We performed a user testing with actual developers to evaluate if the composition
process was actually facilitated by our modeling approach and the prototype implementing it.

UI Composition ; Model-Based Development ; User Testing

1. INTRODUCTION

Facilitating the development work of software
developers was the motivation of the OntoCompo
approach reported in this paper. We could call
this approach the Developer-Friendly Development
(DFD) approach, by comparison to the so-called
End-User Development (EUD) (Lieberman et al.
(2006)). EUD has been defined ”as a set of
methods, techniques, and tools that allow users
of software systems, who are acting as non-
professional software developers, at some point to
create, modify or extend a software artefact”. In
2006, (Lieberman et al. (2006)) foresaw that ”the
goal of human-computer interaction will evolve from
just making systems easy to use (...) to making
systems that are easy to develop”, implied end-
users to develop. Our DFD approach aims at making

application composition easier for professional
developers themselves.

Composing applications, by considering in parallel
both software component assembly and User
Interfaces (UI), is a complex process not yet
very well supported by any current modeling
approach or composition environment. The need to
combine applications may grow with the increase
of specialized applications available on application
stores. For example, Google Maps is often integrated
for geo-localization. In an idealistic way, developers
must be able to reuse existing functionalities with
minor developments. There is a need in supporting
developers in their task of combining elements of
existing applications to create a new application.

c© The Authors. Published by BISL.
Proceedings of BCS HCI 2014 - Sand, sea and Sky - Holiday HCI, Southport, UK

Rather than having to learn API of applications such
as Google Maps and to code from scratch, or rather
than having to abstract existing applications (in terms
of tasks, services or UI) and to transform such
abstractions in some new application, we propose
a new composition model and a prototype, the
so-called OntoCompo, to simplify the composition
work. The model describes applications in terms
of links between Task, UI (i.e., graphical elements)
and Software Components. By preserving and by
reasoning on these links, during developers’ direct
manipulations on the UI, we intend to enhance the
consistency of the composition. In our case study,
we consider the UI elements as an entry point.
Developers can indicate directly on the UI which
visible parts of the application are required for the
composition. By considering at the same time UI,
task and software models, i.e., by following the linked
UI, Task and Software descriptions, we could transfer
such UI direct manipulations to the whole application
description.

We assumed that hiding the three models would
hide a part of the complexity of the process,
and consequently facilitate it. To evaluate if the
composition process was actually facilitated by our
approach through the prototype implementing it, we
performed a user testing with actual developers.

This article is structured as follows. After having
presented related work, we describe our application
model for composition. Next we present the
OntoCompo prototype. Then we report the user
testing (method, results and discussion). Finally we
conclude with future works.

2. RELATED WORK

2.1. Software Composition

For software composition, ”Composition can be
defined as any possible and meaningful interaction
between the software constructs involved” according
to (Lau and Rana (2010)) where a taxonomy
of composition mechanisms (e.g., orchestration,
aspect oriented programming, etc.) is defined. When
the application code is not available, we can only
access to published interfaces and we have to use
connectors (Mehta et al. (2000)).

2.2. UI Composition

2.2.1. UI composition approaches
We distinguish two different UI composition ap-
proaches. (1) The first approach bases the UI
composition on abstract description, like in UsiXML
(Lepreux et al. (2010)), the ServFace project (Pa-
ternò et al. (2011)), Alias (Joffroy et al. (2011)) and
Transparent Interface (Ginzburg et al. (2007)). Those

models are defined by XML languages. Final UIs
are obtained thanks to model transformations. (2)
The second composition approach is based on ”UI
Components”, which are reusable high-level widgets,
available in repositories. Compose (Gabillon et al.
(2011)), COTS-UI (Criado et al. (2010)), CRUISe
(Pietschmann et al. (2009)), WinCuts (Tan et al.
(2004)), UI façades (Stuerzlinger et al. (2006)) and
on-the-fly mashup composition (Zhao et al. (2008))
illustrate such composition. Several of these works,
e.g., (Nestler et al. (2009); Gabillon et al. (2011)),
express and manipulate requirements with tasks.

2.2.2. Models used in UI composition
Three kinds of models are used in the two
approaches: Task models (e.g., trees of users’
tasks), UI models (e.g., hierarchies of graphical
elements), and Software models (e.g., assemblies
of components). Table 1 reports the kinds of models
used as entry point (i.e., the models manipulated in
order to drive the composition) in the related work
we analyzed. The last row of the table represents
the characteristics we wanted to include in our
approach: we wanted (1) to use the three kinds of
models in order to make the composition easier,
and (2) to reuse existing applications in order to
avoid re-designing what has been already designed.
Requirement (1) led us to rely on the existing
approaches and/or systems considering several
kinds of models instead of only one model.

ServFace (Paternò et al. (2011); Nestler et al.
(2009); Paternò et al. (2009)) and Service-
Interaction Descriptions (Vermeulen et al. (2007))
start with building a new Task Tree, associate
Service to tasks, then produce a new UI by
assembling abstract UI fragment associate to
services and finally complete the new UI. In those
works, the composition produce a new UI and is
based on an abstraction of the wished composition.

On-the-fly service composition (Zhao et al. (2008)),
COTS-UI (Criado et al. (2010)) and CRUISe
(Pietschmann et al. (2009)) compose web services
or software components and their UI, but without
considering tasks.

Compose (Gabillon et al. (2011)) starts with the
translation in term of tasks of a requirement express
in natural language and then a new UI is computed.
Compose is designed for end users in a context of UI
adaptation while our context is application designs
made by developers.

2.3. Implications for Our Approach

From the analysis of these works, we noted that
we can compose the UI (respectively, the functional
parts) of former applications, but that we must build

Related Work Entry Point Used Models Results
S1 Task UI S1 Task UI Reuse G2

Service Approach: BPEL4WS (Khalaf et al. (2003)) - BPEL
(Alves et al. (2007)) - Web Service Composition OWL-S
(Sohrabi and McIlraith (2010))

x x x

Component Approaches : Fractal (Bruneton et al. (2006)), SCA
(et al. (2005); Ope (2007)) and SLCA (Hourdin et al. (2008)) x x x

ALIAS (Joffroy et al. (2011)) ; Transparent interface
composition (Ginzburg et al. (2007)) x x x serv4 UI

ServFace (Paternò et al. (2011); Nestler et al. (2009); Paternò
et al. (2009)) ; Service-Interaction Descriptions (Vermeulen
et al. (2007))

x x x x x serv4 UI

on-the-fly service composition (Zhao et al. (2008)) x x x x x

Task Composition (Bourguin et al. (2007)) x x x code3

Task Tree Merge (Lewandowski et al. (2007)) x x x x
Compose (Gabillon et al. (2011)) x x x x x
ComposiXML (Lepreux et al. (2010)) x x UI
Migratable UI (Luyten et al. (2002)) x x x CUI
WinCuts (Tan et al. (2004)) ; UI façades (Stuerzlinger et al.
(2006)) x x x

COTS-UI (Criado et al. (2010)) x x x x
CRUISe (Pietschmann et al. (2009)) x x x x x
OntoCompo Expected Features x x x x x x x

1Software Component 2Generation 3code to be completed 4services

Table 1: Classification of Composition Approaches

again the functional parts (respectively, the UI).
Moreover, none of these works allows reusing former
applications and supporting replacement of UI parts.
Because of our two aims, easing the composition
and reusing former part of applications, we opted
for a component-based modeling linked with a UI
model and a Task model. The composition will
be performed by transforming the manipulation on
models to manipulation on components.

3. APPLICATION MODEL FOR COMPOSITION

OntoCompo exploits the three points of view for
application composition identified in the state of
the art, i.e., the three descriptions: UI, Tasks and
Software Component (Assembly). The originality
of this approach is to connect each of those
models with the two others (Brel et al. (2011)) by
linking corresponding entities: (1) each graphical
element is linked to tasks it supports; (2) each
task is linked to graphical elements used to
perform it; (3) each graphical element is linked to
the software component surrounding it; (4) each
software component is linked to graphical element
surrounded by it ; (5) each task is linked to software
component used to performed it; (6) each software
component is linked to tasks it supports. Those links
are expressed by annotations on the three models.

We model UI with a classical hierarchical description
of graphical elements. That description is annoted

with layout links such as on the left, below, etc. We
model Tasks as ConcurTaskTrees (CTT) (Paternò
et al. (1997)). We model Software Assembly as
Component Assembly. Components are connected
through their ports. A connection between two
components is between a requiring port and a
providing port. So ports are characterized by
their nature (”required” or ”provided”), their type
(”trigger” for activating actions, ”input” for entering
or providing values or ”output” for displaying or
storing data), and their role (”UI” when concerning
the graphical interface, ”UI component” when
concerning the manipulation of graphical element,
etc.). The links with software components and
tasks or graphical elements are done on their
ports. Figure 1 illustrates the application model
for composition. For example, the text entry
”AddressAInput” is connected with the task ”Fill
Position A” and with the two ports of the software
component ”AddressAInput”: one, with the port
tagged ”UI”, for getting the typed value and the other,
with the port tagged ”UI Component”, for graphical
element exchange between software components in
order to build the UI.

The approach is applied to the application composi-
tion driven by UI manipulation. Thus, starting from a
selected part of the UI, corresponding software com-
ponents are identified. The connections between
models are exploited in a process of selection, com-
position by substitution and layout reorganization.

1. Selection consists in selecting the parts of UI
required for the composition. Thanks to the UI model,
the selection is completed in order to obtain an
operational and usable selection. Moreover, thanks
to extensions (query based on the models), the
selection is eased by following the connection.
For example, all graphical elements required for
achieving a parent task can be retrieved. Let
consider the selection of the graphical element
”AddressAInput”. The latter is connected with
the task ”Fill Position A” which parent task is
”Fill begin and arrival position” (FBaAP). We
extend the selection of graphical elements to
all graphical elements connected to (at least)
the task ”FBaAP” or one of its subtasks. We
obtain a set of graphical elements composed of
”AddressAInput” and ”AddressBInput”. Then, we
consider all software components connected to
(at least) one of these graphical elements or to
the task ”FBaAP” (or to its substasks). If there
are unsatisfied required ports in the selection,
corresponding missing software components and
graphical elements connected with such missing
components are added to the selection, until there is
no unsatisfied required port left. The final selection
is { {AddressAInput, AddressBInput}UI ; {”Fill
begin and arrival position}task ; {AddressAInput,
AddressBInput}SC }.

2. Composition by substitution allows to replace
a selected component by another ”equivalent”
component. The substitution is based on the
connections between software components. Thanks
to the characterization (nature, type, role) of
component ports involved in connection, the
substitution is realized by the addition of adapters
between already connected ports or between
ports to connect. So the links between the initial
applications are set up to create the new application,
by accordingly modifying the software component
assembly (Brel et al. (2012)).
In the context of application composition driven
by UI manipulation, to perform such substitution,
actions on graphical elements are propagated to
corresponding software components. To choose how
to make a substitution, i.e., which port must replace
which port, the approach allows to apply different
strategies: asking for the user, applying an algorithm,
etc. In our approach, we generate skeleton of
adapters whose code needs to be completed.

3. Layout reorganization is a simple step where
remaining selected UI elements are placed in
the windows. Once the placement done, the
final application is generated: a new component
assembly is produced and also the skeleton of
adapters. A developer has to fill the content of those
adapters in order to finalize the composition.

The model for application composition enables
several possible interactions. Wanting to determine
the better way to apply the approach, we developed
OntoCompo in order to experiment a simple use of
the model in a composition process. OntoCompo
sequentially implements the ”selection-substitution-
layout reorganization” process. OntoCompo also
hides underlying models to the developer performing
a composition. The developer only manipulate
graphical elements. In the next section, we present
an implementation of OntoCompo.

4. IMPLEMENTATION OF ONTOCOMPO

Our application models are developed thanks to
ontologies, allowing us to quickly perform the
necessary requests for composing. OntoCompo
(Brel et al. (2011)) manipulates applications with
Fractal1 components (Bruneton et al. (2006)), which
must be semantically described. To implement
our functions and algorithms, we make SPARQL
requests, processed by the semantic engine
CORESE / KGRAM (Corby et al. (2012)).

The initial applications are developed according to
component architecture, defined by the Julia im-
plementation (in Java) of the Fractal model. The
whole application, whether its features or its graphi-
cal interface, is implemented by components. Some
components encapsulate graphical elements (from
the SWING library of java) and are recognizable by
their particular ports with the ”UI Component” role.

The architecture of OntoCompo consists of three
interrelated parts (see Figure 2): (1) The Application
Loader, for loading software components and
models (semantic descriptions); (2) the OntoCompo
GUI, implementing the three application composition
steps; and (3) the OntoCompo API. This API is
the main part of the architecture; it handles all
the manipulations to be made by our algorithms
on fractal components or semantic descriptions.
Through a collection (a map) allowing to associate
a Swing component with the encapsulating fractal
component, the API can retrieve and manipulate
fractal components from selected graphical elements
given by the OntoCompo GUI.

A video illustrating OntoCompo and the sce-
nario used in the experimentation is available at
http://goo.gl/QEqf4g .

5. USER TESTING OF ONTOCOMPO: METHOD

To validate our approach of the application
composition driven by the manipulation of UI
1This software component model was named ”Fractal” because
its components could be made of several components.

AddressAInput

AddressBInput

Fill
Position A

(Interaction)

Fill
Position B

(Interaction)
|||

Fill begin and
arrival positions

(Interaction)

PositionsContainer

Required Port

Provided Port
Operationnal Link

Label "Position A" Label "Position B"AddressAInput AddressBInput

PositionsContainer

isBelowOf isBelowOfisOnTheRightOf isOnTheRightOf

UI

UI

UI
Component

UI
Component

Input

Input
Input

UI
Model

TASK
Model

SC
Model

UI Hierarchical

UI

Software
Assembly

CTT tasks tree

Figure 1: Excerpt of the application model linking UI, Tasks and Software Components (SC).

Figure 2: Architecture of the OntoCompo prototype.

elements, we performed the following user testing
with actual developers.

5.1. Evaluation Method Type

Quantitative methods are classically preferred over
qualitative methods to evaluate systems. For exam-
ple: (a) evaluating their UsiXML-based composition
tool GrafiXML, (Lepreux and Vanderdonckt (2007))
used the GOMS method to establish the time gain
during the use of GrafiXML; (b) user testing their
platform for migrating interface components to a
target device, (Paternò et al. (2011)) submitted a
quantitative questionnaire (with Likert scales) to the
users of the platform. In our case, using strictly quan-
titative methods to evaluate our approach and its
supporting tool was considered premature. We had
to qualify developers’ actual practices of composition
before to quantify them. Hence we needed a method
that was both qualitative and quantitative. We used

a variant of the ”cooperative evaluation” method of
(Monk (1993)).

5.2. Goal and Hypotheses

Our goal was to evaluate the understanding
and acceptance of the OntoCompo approach
as performed through the OntoCompo tool. We
envisioned two working hypotheses:

• Strong hypothesis: Developers can perform
their composition task by manipulating graph-
ical elements only; any of the three models (UI
model, Task model and Software-Components
model) is necessary. Manipulating the code
of the resulting application is not necessary
either. This hypothesis reflects the ideal we
sought to facilitate the composition work of the
developer.

• Weak hypothesis: To perform their composition
task, in addition to graphical elements, devel-
opers need to manipulate the three kinds of
models, but to different degrees. Manipulating
the code of the resulting application remains
not necessary. This hypothesis means that
development work facilitation is variable.

5.3. Participants

Two kinds of developers participated to the user
testing: four developers who never handled an
application composition tool; five developers who
already used some composition tool (not necessarily
a tool for composing applications). Since no

differences in their behavior were noticed, we
decided to consider them as a single group.

5.4. Material

The material used during the experimentation was:
(a) the OntoCompo Prototype; (b) the composition
task instructions; (c) the ”additional information” to
be provided on demand to developers or during
the debriefing phase; this information consisted of
printed documents representing: the Task Model, the
Software-Component Model, the UI Model, and the
generated code; excerpts of the models are given
in Figure 1; and (d) the composition task scenario,
including the UIs of the two source applications and
the UI of the resulting application (described in detail
in the next subsections).

5.4.1. Composition task scenario and related UIs
Composition task scenario: ”A developer has at
her disposal two applications: one, called ”Movie
Theaters”, for displaying movies played in cinema
near a specified location, and another, called ”Maps”,
for searching directions on a map. She wants to
produce a new application to search movie theaters
closed to a specified address. Once a movie theater
is selected, then the directions from that address to
the selected theater are displayed.”

The ”Movie Theaters” UI includes at the top of the
window a text field to enter the address that will
be the geographical center of the research. The
application uses a Web Service form the Web Site
http://www.allocine.com, a French web site about
movies and theaters. The Web Service enables
queries to find theaters from a location, to list the
movies played in a theater, etc. The user calls that
service by clicking the ”search” button. The table on
the left of the window is fullfilled with the received
answers. By clicking on a line of that table, another
query is made to the Web Service to get the list of
played movies with their showtimes. The returned list
is displayed in the table on the right of the window.

The ”Maps” UI is vertically organized. At the top,
there is the panel for displaying the map. At the
middle, there is the form to fill the start and
the arrival. At the bottom, there are the main
intersections of the found route.

The resulting UI: an example of the UI resulting
from the composition scenario is given in Figure 3.
Only one text field is left, to enter the start of the
route for the ”Maps” application and to enter the
geographical center of the search for the ”Movie
Theaters” application. From the latter, only the list
of the closed theaters is displayed. It is only after
selecting one theater that the route is displayed on
the maps, coming from the ”Maps” application.

Figure 3: UI of the application resulting from the
composition scenario.

5.4.2. Extensions of selection
During the selection step, the developers can use
consistent extensions of selection thanks to queries
in all models, as described in Section 3.

5.4.3. Scenario difficulties
To make the scenario realistic, we included
three main difficulties for the substitutions in the
application composition task of the developer.

Difficulty 1: A misleading similarity of two graphic
elements. Two buttons present in both applications
had the same shape and the same title ”Search”.
This similarity can mislead the developer who may
be tempted to merge them, a merging that is not in
the composition scenario. One button (from ”Movie
Theaters”) must be kept, the second one (from
”Maps”) must be substituted by a trigger associated
with the selection of one theater in the list.

Difficulty 2: A substitution of two heterogeneous
graphic elements. The first element, to be kept, was
a list of the closest cinemas in the application ”Movie
Theaters”. The second element, to be replaced,
was an entry text (allowing to inform the address
of arrival necessary for the calculation of the route
in the application ”Maps”). The list is obviously
an ”Output”, and the entry text an ”Input”. The
substitution was possible because the software
element associated with the list supplies a port of
type ”Input” to obtain the selected cinema.

Difficulty 3: A generated adapter source code (to
be completed) including two methods with the
same signature. This difficulty comes from the code
presented to the developer after a substitution.
It indicates the same method signature twice.
The adapter generated by the substitution has
several ports. Each of them corresponds to an
implementation of a software interface. In the
adapter source code, since two different software
interfaces include the same method signature, there
is twice the same signature of method public
String getInput(). Even if this difficulty comes
from the language Java, which does not allow to
make the difference between both methods of the
same signature resulting from two different software
interfaces, we expected that the developer would
know how to react. Indeed in this example, both
methods getInput() have to produce the same
result: merging the two methods is here possible.

5.5. Procedure

Each developer was placed in front of the
OntoCompo prototype, next to the experimenter
leading the developer’s testing session. As the
developer went along, additional information was
given to her on demand. Explanations on the use of
the prototype were also given by the experimenter
when requested by the developer. Each session
consisted of three phases: (1) a familiarization
phase where the developer freely manipulated the
prototype interface to become familiar with it; (2)
a task-performance phase where the developer
performed the substitution task proposed by the
experimenter; at the end of this phase, the developer
was presented with the code generated on the
outcome of the composition. The developer was
expected to understand and explain that this
code corresponded to an adapter generated during
substitutions; (3) a debriefing phase where the
developer provided further feedback.

5.6. Data Collection and Analysis

5.6.1. Data collection
The manipulation of OntoCompo was video-
recorded. Oral exchanges between the developer
and the experimenter were also recorded. An ob-
server was sitting back the developer to take notes
on the developer’s behavior. The experimenter also
took notes when possible for him. Data collected
consequently were: experimenter’s and observer’s
written notes; videos; developers’ verbalizations.

5.6.2. Data analysis
The analysis consisted in determining if the develop-
ers achieved each composition task (or stage of the
process: selection, substitution, layout reorganiza-
tion) using graphical elements only (Strong Hypoth-
esis), or if they needed to rely on the UI, Task and

Extension Type Use Asked Information
UI 44% (4/9) No

Task 67% (6/9) Yes (for 5 developers)
No (for 1 developer)

Software 11% (1/9) Yes

Table 2: Extension uses during user tests.

Performing at least 1 section with n extensions
n=0 n=1 n=2 n=3

33% (3/9) 78% (7/9) 22% (2/9) 0%

Table 3: Proportion of extension uses.

Software Components models (Weak Hypothesis),
i.e., if they asked for the additional documentation
representing these models.

6. USER TESTING OF ONTOCOMPO: RESULTS
AND DISCUSSION

On one hand, the nine developers well understood
the composition process, and succeeded in manipu-
lating the tool and in performing what they planned;
however, only 55% (5/9) succeeded in making the
composition without error. On the other hand, it
emerges that additional information helped most
developers (67%; 6/9) to achieve the composition.

The results are essentially qualitative. In order to
present the experimentation result, we summarized
developers’ comments and feelings. For example,
67% of developers needed additional information
means that by analyzing the 9 experimentation
sessions, we found that 6 of them required more
information, either thanks to their comments or
thanks to their used of printed additional information.

6.1. Developers’ General Performance

6.1.1. How extensions were used
Table 2 summarizes the uses of extensions. The test
containing several selections, the developers varied
in the use of the extensions. They made sometimes
at least a selection without extension, sometimes
with two extensions, and often with one extension
(including combination of several extensions applied
at the same time). They had several opportunities
to use one or several extensions, so the percentage
accumulation is upper to 100% in Table 3.
We notice that 44% (4/9) of the developers used a
combination of two extensions, in particular task with
software extensions, e.g., extending the selection by
the software component links while preserving only
elements involved in the same task.

6.1.2. How scenario difficulties were addressed
Difficulty 1 (close resemblance of two ”Search”
buttons) confused several developers. A difference
exists clearly between what we had considered
as manipulations before performing the tests and
the manipulations which the developers effectively
made. This difficulty, for 44% (4/9) of the developers,
led them to merge both buttons directly even though
this substitution was identified as not necessary.
Difficulty 2 (substitution of two heterogeneous
elements, a list and an entry text) led most
developers to substitute not the list with the entry
text but rather with an element of the list (among
others, the address of the selected cinema). Yet, this
action was not allowed by the approach because
each modeled graphical element was considered
as indivisible. The expected substitution was always
achieved, but 44% (4/9) of the developers strongly
hesitated and achieved the right substitution after
having eliminated the other possibilities.
Difficulty 3 (adapter source code including
two methods with the same signature) was
circumvented by developers by suppressing the
redundant method, but without fully understanding
why. This highlights a lack of information.

6.2. Developers’ Need for Models

A general analysis underlined that additional
information would ease the use of OntoCompo. The
developers’ preferences during the debriefing are
summarized in Table 4. A majority of them (78%
- 7/9) asked for an interactive representation of
the task model during the phase of selection. This
integration would allow to match the selection of
the tasks with the associated graphical elements
and vice versa. The task tree was indicated as
the most intuitive model to analyze the behavior
of the application especially if it allows to identify
the correspondences between graphical elements
and tasks. We also noted that 67% (6/9) of
developers (cf. Table 2) having used the Task
extension made an ”abstract” deviation towards the
software component model, deducting links between
components exclusively from the information on
the tasks. Moreover, the expressed preferences
showed that for the substitution step, 67% of
the developers wished an access to the software
component models. On the contrary we noticed
that no additional information was necessary for the
use of UI Extensions. However 44% (4/9) of the
developers (not necessarily the same that those
who used this extension) expressed the fact that
the representation of UI model seems necessary
with more complex graphical interfaces. According
to the developers, this model would highlight the
information on the interweaving of UI elements.

6.3. Discussion

The results of this user testing are encouraging.
Participant developers welcomed well our model
of application and the composition process. They
generally succeeded in realizing the expected
application. Difficulties met by the developers are
the most often related to the lack of information
about the underlying models. The identified needs
for additional information show that the strong
hypothesis we formulated rarely correspond to the
developers’ practices. In other words, we have to
say that the composition task can not be only driven
by the manipulation of UI graphical elements. The
weak hypothesis seems to be the most realistic: to
perform their composition task, developers need to
manipulate the three kinds of models together, but
to different degrees. In other words, we have to say
that the composition task must be driven by at least
two of the three models (UI model, Task model,
and Software Components model), depending on the
process step. Results of the user testing revealed the
most interesting models in the different steps, i.e.,
the additional information to be provided at these
steps: (1) the UI model and the Task model are
the most adapted for selecting the relevant part of
applications. This can be explained because the two
models are used to describe the interactions in user-
centered design. (2) The Software Components
model, and to a lesser extent the Task model, is the
most adapted for the substitution step, because of
the underlying impact on the software components.

Such additional information will help developers to
predict and to explain both the result of a selection
extension, and the possible substitutions. Such
information must be be kept until the final application
is generated in order to provide explanations to the
developer when needed. Providing the developers
with the underlying models would not only guide and
reassure them, but also limit their cognitive load.

7. CONCLUSION AND FURTHER WORK

We have presented our approach of application
composition based on three application descriptions
or models, namely the UI, Task and Software
Components descriptions or models. We described
OntoCompo, the prototype applying our approach to
an application composition driven by manipulation
of UI graphical elements only. The user testing
we performed with OntoCompo highlighted that
this restricted manipulation was not enough to
achieve an appropriate composition. Results led us
to conclude that the most realistic of our working
hypotheses was the weak hypothesis, namely: to
perform their composition task, developers need to
manipulate the three kinds of models together, but to

Selection Substitution UI Reorganization
UI Information needed by 44% (4/9) of

the developers (when the applica-
tions would be more complex)

Information not needed Information not needed (needs in
keeping information used during
selection and substitution)

Task Information needed by 78% (7/9) of
the developers

Information needed by 22%
(2/9) of the developers

Information not needed

Software Information needed by 44% (4/9) of
the developers

Information needed by 67%
(6/9) of the developers

Information not needed

Table 4: UI, Task or Software-Components additional information needed by the developers during the different steps of the
composition process.

different degrees; developers must have the control
of the three models; they need to visualize and
manipulate these models when needed. However, to
achieve the composition, developers did not need to
manipulate the code of the resulting application.

From a system development point of view, further
work will be orientated toward making the man-
agement of the three models by the developers as
fluent and appropriate as possible. To elaborate new
specifications for the system (especially for deter-
mining the strict level of information necessary for
composing), we will further exploit the comments
developers made during the initial user testing. Iter-
ative user testing of the next versions of the system
will be performed. Initially interested in designing the
OntoCompo approach and system for developers,
we will consider to design them for end users too,
so contributing to the End-User Development trend.

REFERENCES

Alves, A. et al. (2007), Web Services Business Pro-
cess Execution Language Version 2.0, Technical
report, OASIS Web Services Business Process
Execution Language (WSBPEL) TC.

Bourguin, G., Lewandowski, A. and Tarby, J.-C.
(2007), Defining task oriented components, in
‘Task Models and Diagrams for User Interface
Design’, Springer, pp. 170–183.

Brel, C., Pinna-Déry, A.-M., Renevier, P. and
Riveill, M. (2011), OntoCompo: A Tool To
Enhance Application Composition, in ‘13th IFIP
TC13 Conference in Human-Computer Interaction
INTERACT 2011(Interact 2011)’, , pp. 588–591.

Brel, C., Renevier, P., Pinna-Déry, A.-M. and
Riveill, M. (2012), Annotated Component-Based
Description for Application Composition, in ‘The
Seventh International Conference on Software
Engineering Advances (ICSEA 2012)’.

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V.
and Stefani, J.-B. (2006), ‘The fractal component
model and its support in java: Experiences with

auto-adaptive and reconfigurable systems’, Softw.
Pract. Exper. 36(11-12), 1257–1284.

Corby, O., Gaignard, A., Faron-Zucker, C., Montag-
nat, J. et al. (2012), Kgram versatile inference
and query engine for the web of linked data, in
‘Proceedings of the International Conference on
Web Intelligence’, pp. 1–8.

Criado, J., Padilla, N., Iribarne, L. and Asensio,
J.-A. (2010), User interface composition with
cots-ui and trading approaches: Application for
web-based environmental information systems,
in ‘Knowledge Management, Information Sys-
tems, E-Learning, and Sustainability Research’,
Springer, pp. 259–266.

et al., M. B. (2005), ‘Service component architecture
- building systems using a service oriented
architecture’, A Joint Whitepaper by BEA, IBM,
Interface21, IONA, SAP, Siebel, Sybase .

Gabillon, Y., Petit, M., Calvary, G., Fiorino, H. et al.
(2011), Automated planning for user interface
composition, in ‘Proceeding of the 2nd SEMAIS
workshop of the IUI 2011 conference’.

Ginzburg, J., Rossi, G., Urbieta, M. and Distante,
D. (2007), Transparent interface composition in
web applications, in ‘Proceedings of the 7th
international conference on Web engineering’,
Springer-Verlag, pp. 152–166.

Hourdin, V., Tigli, J.-Y., Lavirotte, S., Rey, G. and
Riveill, M. (2008), Slca, composite services for
ubiquitous computing, in ‘Proceedings of the
International Conference on Mobile Technology,
Applications, and Systems’, Mobility ’08, ACM,
New York, NY, USA, pp. 11:1–11:8.

Joffroy, C., Caramel, B., Dery-Pinna, A.-M. and
Riveill, M. (2011), When the functional composi-
tion drives the user interfaces composition: pro-
cess and formalization, in ‘Proceedings of the 3rd
ACM SIGCHI symposium on Engineering inter-
active computing systems’, EICS ’11, ACM, New
York, NY, USA, pp. 207–216.

Khalaf, R., Mukhi, N. and Weerawarana, S. (2003),
Service-Oriented Composition in BPEL4WS, in
‘Proceedings of the 20th Internation World
Wide Web Conference (Alternate Papers Track)’,
WWW’03, Budapest, Hungary.

Lau, K.-K. and Rana, T. (2010), A taxonomy
of software composition mechanisms, in ‘Proc.
36th EUROMICRO Conference on Software
Engineering and Advanced Applications’, IEEE,
pp. 102–110.

Lepreux, S. and Vanderdonckt, J. (2007), Towards
a support of user interface design by composition
rules, in ‘Computer-Aided Design of User Inter-
faces V’, Springer, pp. 231–244.

Lepreux, S., Vanderdonckt, J. and Kolski, C. (2010),
User Interface Composition with UsiXML, in
‘Proceedings of the 1st Int. Workshop on User
Interface Extensible Markup Language’, Berlin,
Germany, pp. 141–151.

Lewandowski, A., Lepreux, S. and Bourguin, G.
(2007), Tasks models merging for high-level
component composition, in ‘Human-Computer
Interaction. Interaction Design and Usability’,
Springer, pp. 1129–1138.

Lieberman, H., Patern, F., Klann, M. and Wulf,
V. (2006), End-user development: An emerging
paradigm, in H. Lieberman, F. Patern and
V. Wulf, eds, ‘End User Development’, Vol. 9
of Human-Computer Interaction Series, Springer
Netherlands, pp. 1–8.

Luyten, K., Vandervelpen, C. and Coninx, K.
(2002), Migratable user interface descriptions in
component-based development, in P. Forbrig,
Q. Limbourg, B. Urban and J. Vanderdonckt, eds,
‘DSV-IS’, Vol. 2545 of Lecture Notes in Computer
Science, Springer, pp. 44–58.

Mehta, N. R., Medvidovic, N. and Phadke, S. (2000),
Towards a taxonomy of software connectors, in
‘Proceedings of the 22nd international conference
on Software engineering’, ICSE ’00, ACM, New
York, NY, USA, pp. 178–187.

Monk, A. (1993), Improving Your Human-Computer
Interface: A Practical Technique, The BCS
Practitioner Series, Prentice Hall.

Nestler, T., Feldmann, M., Preuner, A. and Schill, A.
(2009), Service composition at the presentation
layer using web service annotations, in ‘Proceed-
ings of the 1st Intl. Workshop on Lightweight
Integration on the Web’, San Sebastian, Spain,
pp. 63–68.

Ope (2007), SCA Service Component Architecture -
Assembly Model Specification. Version 1.00.

Paternò, F., Mancini, C. and Meniconi, S. (1997),
Concurtasktrees: A diagrammatic notation for
specifying task models, in ‘Proceedings of the
IFIP TC13 Interantional Conference on Human-
Computer Interaction’, INTERACT ’97, Chapman
& Hall, Ltd., London, UK, UK, pp. 362–369.

Paternò, F., Santoro, C. and Spano, L. D.
(2009), ‘Maria: A universal, declarative, multiple
abstraction-level language for service-oriented ap-
plications in ubiquitous environments’, ACM Trans.
Comput.-Hum. Interact. 16(4), 19:1–19:30.

Paternò, F., Santoro, C. and Spano, L. D. (2011),
‘Engineering the authoring of usable service front
ends’, J. Syst. Softw. 84(10), 1806–1822.

Pietschmann, S., Voigt, M., Rümpel, A. and Meißner,
K. (2009), Cruise: Composition of rich user
interface services, in ‘Web Engineering’, Springer,
pp. 473–476.

Sohrabi, S. and McIlraith, S. A. (2010), Preference-
based web service composition: A middle ground
between execution and search, in ‘Proceedings of
the 9th International Semantic Web Conference
(ISWC-10)’, Shanghai, China, pp. 713–729.

Stuerzlinger, W., Chapuis, O., Phillips, D. and
Roussel, N. (2006), User Interface Façades:
Towards Fully Adaptable User Interfaces, in ‘UIST
’06: ACM Symposium on User Interface Software
and Technology’, ACM - SIGCHI & SIGGRAPH,
ACM, Montreux, Suisse, pp. 309–318.

Tan, D. S., Meyers, B. and Czerwinski, M. (2004),
Wincuts: manipulating arbitrary window regions
for more effective use of screen space, in
‘CHI’04 extended abstracts on Human factors in
computing systems’, ACM, pp. 1525–1528.

Vermeulen, J., Vandriessche, Y., Clerckx, T., Luyten,
K. and Coninx, K. (2007), Service-interaction
descriptions: Augmenting services with user
interface models, in J. Gulliksen, M. B. Harning,
P. A. Palanque, G. C. van der Veer and J. Wesson,
eds, ‘EHCI/DS-VIS’, Vol. 4940 of Lecture Notes in
Computer Science, Springer, pp. 447–464.

Zhao, Q., Huang, G., Huang, J., Liu, X. and Mei,
H. (2008), A web-based mashup environment
for on-the-fly service composition, in ‘Service-
Oriented System Engineering, 2008. SOSE’08.
IEEE International Symposium on’, IEEE, pp. 32–
37.

	Introduction
	Related Work
	Software Composition
	UI Composition
	UI composition approaches
	Models used in UI composition

	Implications for Our Approach

	Application Model for Composition
	Implementation of OntoCompo
	User Testing of OntoCompo: Method
	Evaluation Method Type
	Goal and Hypotheses
	Participants
	Material
	Composition task scenario and related UIs
	Extensions of selection
	Scenario difficulties

	Procedure
	Data Collection and Analysis
	Data collection
	Data analysis

	User Testing of OntoCompo: Results and Discussion
	Developers' General Performance
	How extensions were used
	How scenario difficulties were addressed

	Developers' Need for Models
	Discussion

	Conclusion and Further Work

