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Abstract

In this paper we provide a second order analysis for strong solutions in the optimal control
of parabolic equations. We consider the case of box constraints on the control and final integral
constraints on the state. In contrast to sufficient conditions assuring quadratic growth in the weak
sense, i.e. when the cost increases at least quadratically for admissible controls uniformly near to
the nominal one (see e.g. [16, 26]), our main result provides a sufficient condition for quadratic
growth of the cost for admissible controls whose associated states are uniformly near to the state
of the nominal one.

As a consequence of our results, for qualified problems with a strictly convex and quadratic
Hamiltonian, we prove that both notions of quadratic growth coincide.
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1 Introduction

Besides its applications in several fields such as biochemistry [19], inverse problems [2] and biology
[29], the optimal control of systems governed by nonlinear parabolic equations is one of the proto-
types, together with the case of optimal control of hyperbolic systems, of optimization problems of
evolutive systems. We refer the reader to the monographs [23, 28] for a rather complete review of
the theory, the associated numerical analysis and some interesting applications (for the latter see in
particular [23, Chapter 1]).

In this work we consider the optimal control problem of a semilinear parabolic equation where
bounds constraints are imposed on the control and finitely many constraints are imposed on the state.
Thus, our constraints are partially polyhedric in the sense of [11]. For the sake of clarity and also
because of its analogy with the corresponding study for ordinary differential equations, we suppose
that we have integral constraints on the final state. In the same spirit than [3], we can consider several
notions of local solutions and of local solutions satisfying a quadratic growth property. Namely, we
will say that ū is a weak local solution of the problem if it minimizes the cost locally on the constraint
set with respect to the L∞-norm. Moreover, if locally in the L∞ norm the difference between the
cost of an admissible control u and the cost of ū is greater than a positive constant (independent
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of u) times the square of the L2 norm of u − ū, we will say that ū is a weak local solution of the
problem satisfying the quadratic growth condition in the weak sense. A characterization of the latter
property, as well as its equivalence for some specific problems with a stronger notion of solution,
are studied in [26] (see also [17, 5, 16, 10] and the references therein for other studies on the topic).
Another type of local solution, whose definition goes back to the beginning of the theory of Calculus
of Variations (see [22] for detailed analysis and [4] for a short survey), is the following: the nominal
control ū is a strong local solution of the problem if it minimizes the cost with respect to controls
whose corresponding states are uniformly close to the nominal state. If the corresponding quadratic
growth property holds true, then we will say that ū is a strong local solution satisfying the quadratic
growth property in the strong sense. We refer the reader to Section 2 for precise definitions of the
notions explained above.

Our aim in this work is to study second order optimality conditions for strong solutions satisfying
the quadratic growth condition. Following the ideas in [3], we first prove in Theorem 3.3 a decompo-
sition result for the variation of the cost in terms of large and small perturbations in the L∞-norm
of the nominal control. This decomposition is the basic tool to prove our main result, which is a
sufficient condition for the quadratic growth property in the strong sense, proved in Theorem 4.4.
The result states that if stronger forms of the classical Pontryagin’s principle (see [18, 12, 14]) and
of the usual coercivity of the second derivative of the Lagrangian, supposed to be a Legendre form,
hold true, then the quadratic growth property in the strong sense is verified. In the case where
no final constraints are considered, the Legendre form assumption can be dropped which yields a
characterization of quadratic growth in strong sense (see Theorem 4.5). The latter result extends [3,
Theorem 4.24], established for semilinear elliptic equations with pure control constraints.

As a consequence of the previous findings, we obtain in Section 5 some unexpected results. Under
some continuity assumptions on the data, we have that if the Hamiltonian associated to the problem
is quadratic and strictly convex with respect to the control and a constraint qualification condition
holds true, then the notions of quadratic growth in the weak and strong sense are equivalent. When
we consider only control constraints, the equivalence between the two notions of solutions holds true
without any qualification condition (see Theorem 5.4). Of course, these arguments provide also the
proof of the analogous statements in the case of optimal control problems of ordinary differential
equations (see [8, 9]) and of semilinear elliptic equations (see [3]).

The article is organized as follows: in Section 2 we recall some basic properties of semilinear
parabolic equations, we state the optimal control problem and also our main assumptions. In Section
3 we study in detail a second order expansion of the Lagrangian of the problem and we prove the
decomposition result. In sections 4 and 5 we prove our main results: the sufficient condition for
quadratic growth in the strong sense, the characterization of this property in the case of pure control
constraints and the equivalence with quadratic growth in the weak sense for strictly convex quadratic
Hamiltonians. Finally, in the Appendix we provide the proof of some technical results stated in
Section 3.

2 Preliminaries

From now on, we fix a non-empty bounded open set Ω ⊆ R
d (d ∈ N) with a smooth boundary. Let

us also fix T > 0 and set Q = Ω×]0, T [ and Σ = ∂Ω×]0, T [. For s ∈ [1,∞] and k ∈ N, we denote by
‖ · ‖s and ‖ · ‖Wk,s the standard norms in Ls(Ω) and W k,s(Ω), respectively. For s1, s2 ∈ [1,∞], we
set Ls1,s2(Q) := Ls1([0, T ];Ls2(Ω)) (see e.g. [21]), which can be identified with the set of measurable
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functions f : Q→ R satisfying

‖f‖s1,s2 :=

(

∫ T

0

(∫

Ω
|f(t, x)|s2dx

)

s1
s2

dt

)
1

s1

<∞.

Endowed with the norm ‖ · ‖s1,s2 we have that Ls1,s2(Q) is a Banach space. For s ∈]1,∞[ consider
the space

Vs(Q) := Ls([0, T ];W 2,s(Ω) ∩W 1,s
0 (Ω)) ∩W 1,s([0, T ];Ls(Ω)), (2.1)

which endowed with the natural norm

‖z‖Vs := ‖z‖s,s + ‖∂tz‖s,s +
d
∑

i=1

‖∂xi
z‖s,s +

d
∑

i,j=1

‖∂xixj
z‖s,s,

is a Banach space. The following properties of the spaces Vs will play an important role in our
results. For the proof we refer the reader to the monograph [6].

Lemma 2.1. Let 1 < s ≤ si <∞, with i = 1, 2. Then, the following assertions hold true:

(i) The space Vs(Q) is continuously embedded in Ls1,s2(Q) if

1

s
− 1

s1
+
d

2

(

1

s
− 1

s2

)

≤ 1. (2.2)

Moreover, if (2.2) is a strict inequality, then the embedding is compact. In particular, if
(

1 +
d

2

)(

1

s
− 1

s1

)

≤ 1, (2.3)

then Vs(Q) is continuously embedded in Ls1,s1(Q) (compactly embedded if the inequality is strict).

(ii) The space Vs(Q) is continuously embedded in C0,1−1/s([0, T ];Ls(Ω)) (the space of (1−1/s)-Hölder
applications with values in Ls(Ω)).

(iii) The space Vs(Q) is compactly embedded in C(Q) (the space of continuous functions on Q) if
(d+ 2)/2s < 1.

Given ξ0 ∈ W
2− 2

s
,s

0 (Ω), with s > (d + 2)/2, a ∈ L∞,∞(Q) and v ∈ Ls,s(Q) recall (see e.g. [20,
Chapter 4, Theorem 9.1]) that the linear parabolic equation

∂tξ −∆ξ + a(t, x)ξ = v(t, x), in Q,

ξ = 0, in Σ,

ξ(0) = ξ0 in Ω,

(2.4)

admits a unique strong solution ξ[ξ0, v] ∈ Vs(Q), i.e. the equation is satisfied almost everywhere and
ξ[ξ0, v](0, ·) (which is well defined by Lemma 2.1(i)) is equal to ξ0. Moreover, there exists cs > 0
such that following estimate holds true (assuming ξ0 = 0, for simplicity),

‖ξ[0, v]‖Vs ≤ cs‖v‖s,s. (2.5)

Using Aubin’s Theorem (see [1, 27]), it can be easily checked (see e.g. [26]) that the linear appli-
cation v ∈ L2,2(Q) → ξ[0, v] ∈ L2,2(Q) ∩ C([0, T ];L2(Ω)) is continuous when L2,2(Q) and L2,2(Q) ∩
C([0, T ];L2(Ω)) are endowed with the weak and the strong topologies, respectively. Finally, the
following estimate (see [26]) will be also useful in Section 3

‖ξ[0, v](·, T )‖1 + ‖ξ[0, v]‖1,1 ≤ c1‖v‖1,1, for some c1 > 0. (2.6)
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Given u ∈ L∞,∞(Q) and ϕ : Q×R×R → R, we consider the following semilinear parabolic equation:

∂ty −∆y + ϕ(t, x, y, u) = 0 in Q,

y(·, ·) = 0 in Σ,

y(0, ·) = y0(·) in Ω.

(2.7)

For a function ψ = ψ(x, t, y, u) differentiable w.r.t. to the third and fourth coordinates we will write
ψ(y,u)(t, x, y, u) for D(y,u)ψ(t, x, y, u) and ψy(t, x, y, u), ψu(t, x, y, u) for the partial derivatives of ψ
w.r.t. y and u respectively. Similar notations will also be used for the second order derivatives. We
assume that

(H1) (i) The initial state y0 belongs to W
2− 2

s
,s

0 (Ω), with s > (d+ 2)/2.

(ii) The function ϕ is measurable and for all R > 0 there exists c = c(R) > 0 such that

−c
(

1 + |y|2
)

≤ ϕ(t, x, y, u)y for all (t, x, y) ∈ Q× R, |u| ≤ R.

(iii) For a.a. (t, x) ∈ Q the function ϕ(t, x, ·, ·) is C2, the application (t, x) → ϕ(t, x, ·, ·) ∈ C2(R2) is
measurable and there exists c = c(R) such that |(y, u)| ≤ R and |(y′, u′)| ≤ R imply that

|ϕ(y,u)(t, x, 0, 0)|+ |ϕ(y,u)2(t, x, 0, 0)| ≤ c,

|ϕ(y,u)(t, x, y, u)− ϕ(y,u)(t, x, y
′, u′)| ≤ c (|y − y′|+ |u− u′|) ,

|ϕ(y,u)2(t, x, y, u)− ϕ(y,u)2(t, x, y
′, u′)| ≤ c (|y − y′|+ |u− u′|) .

(2.8)

Denoting by Cα,β(Q) the space of functions defined on Q that are α-Hölder continuous w.r.t. t and
β-Hölder continuous w.r.t. x, the following result holds true (see e.g. [12, 18, 26]).

Proposition 2.2. Under assumption (H1) for any u ∈ L∞,∞(Q), equation (2.7) admits a unique
solution y[u] ∈ Vs(Q) ∩ Cβ/2,β(Q) for all s ∈]1,∞[.

Remark 2.3. The result stated in the above Theorem holds true under weaker assumptions than
(H1) (see [12, 18, 26]). As a matter of fact, the hypothesis on the second derivatives of ϕ are not
necessary for the well-posedness of (2.7), but they are fundamental for the second order expansions
derived in the next section.

Let us consider ℓ : Q × R × R → R, Φ : Ω × R → R, ΦE : Ω × R → R
nE , ΦI : Ω × R → R

nI

satisfying the following assumptions:

(H2) The function ℓ is measurable and satisfies (H1)(iii) with ℓ in place of ϕ. Moreover, if ψ =
Φ,Φi,Φj (i ∈ {1, . . . , nE} and j ∈ {1, . . . , nI}) we have that

(i) ψ is measurable.

(ii) For all x ∈ Ω, ψ(x, ·) is C2, the application x 7→ ψ(x, ·) ∈ C2(R) is measurable and there exists
a constant c = c(R) > 0 such that for all y, y′ ∈ R with |y| ≤ R, |y′| ≤ R, we have that

|ψy(x, 0)|+ |ψyy(x, 0)| ≤ c, |ψy(x, y)− ψy(x, y
′)| ≤ c|y − y′|,

|ψyy(x, y)− ψyy(x, y
′)| ≤ c|y − y′|.

(2.9)

Let us define the functions J : L∞,∞(Q) → R, GE : L∞,∞(Q) → R
nE , GI : L∞,∞(Q) → R

nI and
G : L∞,∞(Q) → R

nE+nI as

J(u) :=
∫

Q ℓ(t, x, y[u](t, x), u(t, x))dtdx+
∫

ΩΦ(x, y(T, x))dx,

Gi
E(u) :=

∫

ΩΦi
E(x, y[u](T, x))dx for i = 1, . . . , nE ,

Gj
I(u) :=

∫

ΩΦj
I(x, y[u](T, x))dx for j = 1, . . . , nI ,

G(u) := (GE(u), GI(u)).

(2.10)
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Notice that, under assumptions (H1)-(H2), the functions J , GE and GI are well defined. Given
a, b ∈ L∞,∞(Q) such that a ≤ b a.e. in Q, let us define the sets

K1 := {u ∈ L∞,∞(Q) ; a(t, x) ≤ u(t, x) ≤ b(t, x) a.e. in Q} ,
K2 :=

{

u ∈ L∞,∞(Q) ; Gi
E(u) = 0, Gj

I(u) ≤ 0, i = 1, . . . , nE , j = 1, . . . , nI

}

,

K := K1 ∩ K2.

We consider the optimal control problem

inf
u∈L∞,∞(Q)

J(u) s.t. u ∈ K. (CP )

When no final constraints are considered on the state, we will denote the problem by (CP ′), i.e

inf
u∈L∞,∞(Q)

J(u) s.t. u ∈ K1. (CP ′)

We consider the following notions of solution for problem (CP ) (the corresponding notions of solu-
tions for (CP ′) are obtained by replacing K by K1).

Definition 2.4. We say that

(i) ū is a weak local solution of (CP ) if there exists ε > 0 such that

J(ū) ≤ J(u) for all u ∈ K such that ‖u− ū‖∞,∞ ≤ ε. (2.11)

If in addition, there exists α > 0 such that

J(ū) +
α

2
‖u− ū‖2 ≤ J(u) for all u ∈ K such that ‖u− ū‖∞,∞ ≤ ε, (2.12)

we will say that ū is a weak local solution of (CP ) satisfying the quadratic growth condition.

(ii) ū is a Ls-weak local solution (s ∈ [1,∞[) of (CP ) if there exists ε > 0 such that

J(ū) ≤ J(u) for all u ∈ K such that ‖u− ū‖s,s ≤ ε. (2.13)

If in addition, there exists α > 0 such that

J(ū) +
α

2
‖u− ū‖2 ≤ J(u) for all u ∈ K such that ‖u− ū‖s,s ≤ ε, (2.14)

we will say that ū is a Ls-weak local solution of (CP ) satisfying the quadratic growth condition.

(iii) ū is strong local solution of (CP ) if there exists ε > 0 such that

J(ū) ≤ J(u) for all u ∈ K such that ‖y[u]− ȳ‖∞,∞ ≤ ε, (2.15)

where ȳ := y[ū]. If in addition, there exists α > 0 such that

J(ū) +
α

2
‖u− ū‖2 ≤ J(u) for all u ∈ K such that ‖y[u]− ȳ‖∞,∞ ≤ ε, (2.16)

we will say that ū is a strong local solution of (CP ) satisfying the quadratic growth condition.

Remark 2.5. Since for u ∈ K and 1 ≤ s1 ≤ s2 <∞ we have that
∫

Q
|u(t, x)|s2dtdx ≤M s2−s1

∫

Q
|u(t, x)|s1dtdx,

with M := max{‖a‖∞,∞, ‖b‖∞,∞}, it holds that ‖u‖s2,s2 ≤ M
1−

s1
s2 ‖u‖

s1
s2
s1,s1 and thus the relative

topologies of Ls1,s1(Q) ∩ K and Ls2,s2(Q) ∩ K are equivalent. This implies that for s ∈ [1,∞[ the
notions of Ls-weak solution and L1-weak solution (respectively Ls-weak solution and L1-weak solution
satisfying the quadratic growth condition) are equivalent. As a consequence, using that Lemma 2.1(iii)
and Lemma 3.1 in the next Section imply that ‖y[u] − ȳ‖∞,∞ ≤ ‖u − ū‖s,s for s large enough, we
obtain that ‖u− ū‖1,1 → 0, for u ∈ K, implies that ‖y[u]− ȳ‖∞,∞ → 0.
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3 Second order expansions and a decomposition result

The Lagrangian L : L∞,∞(Q)×R
nE ×R

nI → R and the Hamiltonian H : Q×R
3 associated to (CP )

are defined as

L(u, λ) := J(u) + λ⊤G(u) where λ = (λE , λI) ∈ R
nE × R

nI ,

H(t, x, y, p, u) := ℓ(t, x, y, u)− pϕ(t, x, y, u).
(3.1)

Now, let us fix ū ∈ K and set ȳ := y[ū]. Given λ = (λE , λI) ∈ R
nE × R

nI define

Φ[λ](x, y) := Φ(x, y) + λ⊤EΦE(x, y) + λ⊤I ΦI(x, y) for all y ∈ R, x ∈ Ω.

The adjoint state p̄λ associated to ū is defined as the unique weak solution of

−∂tp−∆p−Hy(t, x, ȳ, p, ū) = 0 in Q,

p = 0 in Σ,

p(T, ·) = Φy[λ](·, ȳ(T, ·)).
(3.2)

By (H2)(ii) and the maximum principle one has p̄λ ∈ L∞,∞(Q).
The aim of this section is to provide a decomposition result for a second order expansion of the

Lagrangian L in terms of the Hamiltonian and the adjoint state in the spirit of [3, Theorem 3.5].
The key issue is that we consider perturbations v of ū that are not necessarily small in the ‖ · ‖∞,∞

norm. We will need first some precise informations about the effect of this type of perturbations
on the application u → y[u]. We collect in the following lemma some results of this type. For a
function ψ : Q×R×R → R we will denote ψ(t, x) := ψ(t, x, ȳ(t, x), ū(t, x)) and given u ∈ L∞,∞(Q)
we will write δψ(t, x) := ψ(t, x, ȳ(t, x), u(t, x)) − ψ(t, x). Similarly, for Ψ : Ω × R → R we set
Ψ(x) := Ψ(x, ȳ(T, x)).

Lemma 3.1. For v ∈ L∞,∞(Q) set u := ū+ v and let us define z1[v] ∈ Vs(Q) and z2[v] ∈ Vs(Q) as
the solutions of

∂tz1 −∆z1 + ϕy(t, x)z1 + δϕ(t, x) = 0 in Q,

z1 = 0 in Σ,

z1(0, ·) = 0 in Ω.

(3.3)

and
∂tz2 −∆z2 + ϕy(t, x)z2 +

1
2ϕyy(t, x)z1[v]

2 + δϕy(t, x)z1[v] = 0 in Q,

z2 = 0 in Σ,

z2(0, ·) = 0 in Ω,

(3.4)

respectively. Then, setting δy = y[u] − ȳ, d1[v] = δy − z1[v] and d2[v] = d1[v] − z2[v], the following
estimates hold true

‖z1[v]‖Vs + ‖δy‖Vs = O(‖v‖s,s),
‖d1[v]‖2,2 + ‖d1[v](T, ·)‖2 = O (‖δy‖∞,∞‖v‖2,2) ,
‖d2[v]‖1,1 + ‖d2[v](T, ·)‖1 = O

(

‖δy‖∞,∞‖v‖22,2
)

.

(3.5)

Proof. The proof is postponed to the Appendix.

Let us now fix some notations. Given u ∈ L∞,∞(Q) and λ ∈ R
nE+nI we write δu := u− ū and

H[λ](t, x) := H(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x)), δH[λ](t, x) := H(t, x, ȳ(t, x), p̄λ(t, x), u(t, x))−H[λ](t, x),

Hy[λ](t, x) := Hy(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x)), δHy[λ](t, x) := Hy(t, x, ȳ(t, x), p̄λ(t, x), u(t, x))−Hy[λ](t, x),
(3.6)

with similar notation for the second order derivatives. Using the estimates obtained in Lemma 3.1
and the definitions of the Hamiltonian and the adjoint state pλ, we can prove the following result.
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Proposition 3.2. (i) We have the first order expansion of the cost:

L(u, λ)− L(ū, λ) =
∫

Q
δH[λ](t, x)dtdx+O(‖δy‖∞,∞‖δu‖2,2), (3.7)

where the O-term is uniform for λ in a bounded set of RnE+nI .

(ii) We have the following second order expansion

L(u, λ)− L(ū, λ) =
∫

Q

[

δH[λ](t, x) + 1
2Hyy[λ](t, x)(z1[δu])

2 + δHy[λ](t, x)z1[δu]
]

dtdx

+
∫

ΩΦyy[λ](z1[δu](T, x))
2dx+O

(

‖δy‖∞,∞‖δu‖22,2
)

,
(3.8)

where the O-term is uniform for λ in a bounded set of RnE+nI .

Proof. See the Appendix.

Given v ∈ L2,2(Q) define ξ[v] ∈ V2(Q) as the unique solution of

∂tξ −∆ξ + ϕy(t, x)ξ + ϕu(t, x)v = 0 in Q,

ξ = 0 in Σ,

ξ(0, ·) = 0 in Ω.

(3.9)

Given λ ∈ R
nE+nI , let us define the linear and quadratic forms Q1[ū, λ] : L

2,2(Q) → R, Q2[ū, λ] :
L2,2(Q) → R as

Q1[ū, λ]v :=
∫

QHu[λ](t, x)v(t, x)dtdx,

Q2[ū, λ](v) :=
∫

QH(y,u)2 [λ](t, x)(ξ[v], v)
2dtdx+

∫

ΩΦyy[λ](x)(ξ[v](T, x))
2 dx.

(3.10)

Now, let us consider a sequence uk ∈ L∞,∞(Q) such that ‖uk − u‖2,2 → 0 and let Ak, Bk be a
sequence of measurable subsets of [0, T ] × Ω such that |Ak ∪ Bk| = T × |Ω| and |Bk| ↓ 0 as k ↑ ∞
(where we set | · | for the Lebesgue measure of a Lebesgue measurable set). Recalling (3.3), we set

δku := uk − ū, δAk
u := IAk

(uk − ū), δBk
u := δku− δAk

u,

zk := z1[δku], zAk := z1[δAk
u] and zBk := z1[δBk

u].
(3.11)

Similarly to (3.6), we write δkH[λ](t, x) = H(t, x, ȳ(t, x), p̄λ(t, x), uk(t, x))−H[λ](t, x), with an analo-
gous definition for δkHy[λ](t, x). Using Proposition 3.2, we prove now the main result of this section,
that will be fundamental in Sections 4 and 5.

Theorem 3.3. Suppose that ‖δku‖2,2 ↓ 0 and that ‖δAk
u‖∞,∞ ↓ 0. Then,

L(uk, λ)− L(ū, λ) =
∫

Bk

δkH[λ](t, x)dtdx+Q1[ū, λ]δAk
u+ 1

2Q2[ū, λ](δAk
u) + o(‖δku‖22), (3.12)

where the o-term is uniform for λ in a compact set of RnE+nI .

Proof. Let us first prove that

L(uk, λ)− L(ū, λ) =
∫

Bk

δkH[λ](t, x)dtdx+
∫

Q

[

Hu[λ](t, x)δAk
u+ 1

2H(y,u)2 [λ](t, x)(z
Ak , δAk

u)2
]

dtdx

+
∫

Ω
Φyy[λ](z

Ak(T, x))2dx+ o(‖δku‖22).
(3.13)
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The proof is based on expansion (3.8). For notational simplicity we omit the dependence on λ for H
and its derivatives. First note that, since ‖δAk

u‖∞,∞ ↓ 0, a Taylor expansion implies that

∫

Ak
δkH(t, x)dtdx =

∫

Q

[

Hu(t, x)δAk
u+ 1

2Huu(t, x)(δAk
u)2
]

dtdx+O(‖δAk
u‖∞,∞‖δAk

u‖22,2),
=

∫

Q

[

Hu(t, x)δAk
u+ 1

2Huu(t, x)(δAk
u)2
]

dtdx+ o(‖δku‖22,2).
(3.14)

Thus, if

∫

Q

[

1
2Hyy(t, x)(z

k)2 + δkHyz
k
]

dtdx =
∫

Q

[

1
2Hyy(t, x)(z

Ak)2 +Hyu(t, x)z
AkδAk

u
]

dtdx+ o(‖δku‖22),
∫

Ω
Φyy[λ](z

k(T, x))2dx =
∫

Ω
Φyy[λ](z

Ak(T, x))2dx+ o(‖δku‖22)
(3.15)

holds true, relation (3.13) follows from (3.8) and (3.15). Let us prove (3.15). Note that

∫

Q

[

1
2Hyy(t, x)(z

k)2 + δkHy(t, x)z
k
]

dtdx =

∫

Q

[

1
2Hyy(t, x)(z

Ak)2 + δkHy(t, x)z
Ak

]

dtdx+ rk, (3.16)

where

|rk| = O

(∫

Q

[

|(zAk)2 − (zk)2|+ |δku||zAk − zk|
]

dtdx

)

= O

(∫

Q

[

|zBk |2 + |zBk ||zAk |+ |δku||zBk |
]

dtdx

)

.

By (2.3), there exists q1 ∈]1, 2[ and q2 ∈]2,∞[ such that ‖zBk‖2,2 = O(‖δBk
u‖q1,q1) and ‖zAk‖q2,q2 =

O(‖δAk
u‖2,2) = O(‖δku‖2,2). By Hölder inequality (and setting s∗ := s/(s− 1) for s ∈]1,∞[) we get

‖δBk
u‖q1,q1 =

(∫

Q
|δBk

u|q1dtdx
) 1

q1 ≤
(∫

Q
(IBk

)

(

2

q1

)∗

dtdx

)
1

( 2
q1
)
∗

‖δku‖2,2 = o(‖δku‖2,2). (3.17)

Therefore, using Hölder inequality again, rk = o(‖δku‖2,2) and so

∫

Q

[

1
2Hyy(t, x)(z

k)2 + δkHy(t, x)z
k
]

dtdx =

∫

Q

[

1
2Hyy(t, x)(z

Ak)2 + δkHy(t, x)z
Ak

]

dtdx+ o(‖δku‖2,2).
(3.18)

Now, since ‖δAk
u‖∞,∞ → 0 we have that ‖zAk‖∞,∞ → 0 and so

∫

Q δkHy(t, x)z
Akdtdx =

∫

QHyu(t, x)z
Akδkudtdx+O

(

∫

Q |δku|2|zAk |dtdx
)

,

=
∫

QHyu(t, x)z
Akδkudtdx+ o(‖δku‖22,2).

(3.19)

Noting that q∗2 ∈]1, 2[, we get

∣

∣

∣

∣

∫

Q
Hyu(t, x)z

AkδBk
udtdx

∣

∣

∣

∣

= O
(

‖zAk‖q2,q2‖δBk
u‖q∗

2
,q∗

2

)

= o(‖δku‖22,2),

and so (3.19) yields

∫

Q
δkHy(t, x)z

Akdtdx =

∫

Q
Hyu(t, x)z

AkδAk
udtdx+ o(‖δku‖22,2). (3.20)

Combining (3.18) and (3.20) gives the first identity in (3.15). In order to derive the second one, note
that Fubini’s theorem implies that

∫

ΩΦyy[λ](z
k(T, x))2dx = 2

∫

ΩΦyy[λ]
[

∫ T
0 zk(t, x)∂tz

k(t, x)dt
]

dx,

= 2
∫

QΦyy[λ]z
k(t, x)∂tz

k(t, x)dtdx.
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Analogously,
∫

Ω
Φyy[λ](z

Ak(T, x))2dx = 2

∫

Q
Φyy[λ]z

Ak(t, x)∂tz
Ak(t, x)dtdx,

Therefore, using

zk∂tz
k − zAk∂tz

Ak = (zk − zAk)∂tz
k + ∂t(z

k − zAk)zAk = zBk∂tz
k + ∂tz

BkzAk ,

we obtain
∣

∣

∣

∣

∫

Ω

[

Φyy[λ](z
k(T, x))2 − Φyy[λ](z

Ak(T, x))2
]

dx

∣

∣

∣

∣

= O

(∫

Q

[

|zBk ||∂tzk|+ |∂tzBk ||zAk |
]

dtdx

)

.

By considering q1 ∈]1, 2[ and q2 ∈]2,∞[ as above, Hölder inequality implies that
∣

∣

∫

Ω

[

Φyy[λ](z
k(T, x))2 − Φyy[λ](z

Ak(T, x))2
]

dx
∣

∣ = O
(

‖zBk‖2,2‖∂tzk‖2,2 + ‖∂tzBk‖q∗
2
,q∗

2
‖zAk‖q2,q2

)

,

= o(‖δku‖22,2),

where we have used (2.5) in order to estimate ‖∂tzk‖2,2 = O(‖δku‖2,2) and ‖∂tzBk‖q∗
2
,q∗

2
= O(‖δBk

u‖q∗
2
,q∗

2
) =

o(‖δku‖2,2). Expansion (3.13) follows. Now, defining ζk := zAk − ξk, where ξk := ξ[δAk
u] (recall

(3.9)), we have that
∂tζ

k −∆ζk + ϕy(t, x)ζ
k = O(|δAk

u|2) in Q,

ζk = 0 in Σ,

ζk(0, ·) = 0 in Ω.

(3.21)

By (2.5), we obtain that

‖ζk‖2,2 + ‖ζk(T, ·)‖2 = O





(∫

Q
|δAk

u|4dtdx
)

1
2



 = O (‖δAk
u‖∞,∞‖δAk

u‖2,2) = o(‖δAk
u‖2,2).

Using this estimate, it is straightforward to obtain (3.12) from (3.13).

Remark 3.4. When ‖δu‖2,2 is small, (3.12) provides a second order expansion of L(u, λ)−L(ū, λ)
that is decomposed in two principal terms. The first one corresponds to a classical “weak” second
order expansion (see [26]) on δuIA (IA denotes the indicator function of the set A) with A being a
measurable set such that ‖δuIA‖∞,∞ is small. The second term in the expansion takes into account
large deviations of u(t, x) around ū(t, x), but over a set of small measure.

4 Second order analysis for strong solutions

In this section we study second order optimality conditions for strong local solutions. Let us first
recall that given a Banach space (X, ‖ · ‖X) and K ⊆ X, the tangent cone to K at u is defined as

TK(u) := {v ∈ X | ∃ u(σ) = u+ σv + o(σ) ∈ K, τ > 0, ||o(σ)/σ||X → 0, as σ ↓ 0}. (4.1)

Definition 4.1. (i) We say that λ = (λE , λI) ∈ R
nE+nI is a Lagrange multiplier at ū ∈ K if

Q1[ū, λ]v ≥ 0 for all v ∈ TK1
(ū), λjI ≥ 0, λjIG

j
I(ū) = 0, for all j = 1, . . . , nI . (4.2)

The set of Lagrange multipliers at ū is denoted as ΛL(ū).

(ii) We say that λ = (λE , λI) ∈ R
nE+nI is a Pontryagin multiplier at ū ∈ K if λ ∈ ΛL(ū) and a.e.

in Q
H[λ](t, x) ≤ H(t, x, ȳ, p̄λ, u) ∀ u ∈ [a(t, x), b(t, x)].

The set of Pontryagin multipliers at ū is denoted as ΛP (ū).
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Let us define the active sets

Aa(ū) := {(t, x) ∈ Q ; ū(t, x) = a(t, x)}, Ab(ū) := {(t, x) ∈ Q ; ū(t, x) = b(t, x)},
I(ū) := {j ∈ {1, . . . , nI} ; Gj

I(ū) = 0}.
(4.3)

If Robinson’s constraint qualification condition (see [24])

0 ∈ int {G(ū) +DG(ū) (K1 − ū)−K2} (RCQ)

holds true, then by [26, Lemma 4.2]

TK(ū) :=
{

v ∈ L2,2(Q) ; v ≥ 0 in Aa(ū) and v ≤ 0 in Ab(ū), DGE(ū)v = 0, DGi
I(ū)v ≤ 0 ∀i ∈ I(ū)

}

.
(4.4)

Moreover, as a consequence of [14, Corollary 2.2], at any weak solution ū of (CP ) we have that ΛL(ū)
is a nonempty compact subset of RnE+nI .

The critical cone CK(ū) to K at ū is defined as

CK(ū) := {v ∈ TK(ū) ; DJ(ū)v = 0} . (4.5)

In order to provide a second order necessary condition we will assume the following constraint
qualification

(H3) There exists λ ∈ ΛL(ū) such that

0 ∈ int
(

DG(ū)
[

(K1 − ū) ∩ (Hu[λ])
⊥
]

− TK2
(G(ū)) ∩ λ⊥

)

, (4.6)

where (Hu[λ])
⊥ denotes the functions v ∈ L2,2(Q) such that

∫

QHu[λ](t, x)v(t, x)dtdx = 0 and λ⊥ is

the subspace of RnE × R
nI which is orthogonal to {λ}.

Remark 4.2. (i) Condition (4.6), introduced by Shapiro in [25] for general optimization problems
and in [11] in the context of semilinear elliptic equations with finitely many state constraints, implies
(RCQ) and the fact that ΛL(ū) is a singleton (see [26, Lemma 5.4]). This qualification condition is
implied by the classical surjectivity type assumption for similar problems in the context of semilinear
elliptic equations (see e.g. [13, Condition (3.1)] and [26, Remark 5.3 (ii)]).

(ii) Under (4.6), second order necessary conditions for local weak minima are proven in [26, Theorem
5.7]. Of course, if no final state constraints are considered, then such qualification condition is not
necessary to establish second order necessary conditions.

We say that the quadratic growth condition for the Hamiltonian holds true at (ū, λ) ∈ K×ΛP (ū)
if there exists α > 0 such that a.e. in Q

H[λ](t, x) +
α

2
|u− ū(t, x)|2 ≤ H(t, x, ȳ, p̄λ, u) ∀ u ∈ [a(t, x), b(t, x)]. (4.7)

Let us provide a second order necessary condition for quadratic growth in the Ls-sense. Since any
strong local solution satisfying the quadratic growth condition is a Ls-weak local solution satisfying
the quadratic growth condition, the following result is also verified for strong solutions.

Theorem 4.3. Suppose that (H1)-(H3) hold true. Then, if s ∈ [1,∞[ and ū is a Ls-weak local
solution of (CP ) satisfying the quadratic growth condition (2.14), we have that:

(i) There exists λ ∈ R
nE+nI such that ΛL(ū) = ΛP (ū) = {λ}.

(i) Condition (4.7) holds true.

(ii) There exists α > 0 such that for every v ∈ CK(ū) we have that Q2[ū, λ](v) ≥ α‖v‖22,2
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Proof. If ū is a Ls weak local solution of (CP ) satisfying (2.14) then in particular ū satisfies (2.12)
and so the existence of λ ∈ R

nE+nI such that ΛL(ū) = {λ} and (iii) follow from [26, Theorem 5.7].
The existence of λ′ ∈ R

nE+nI such that condition (4.7) is verified, follows by Pontryagin’s principle
(see [18, 12, 14]) applied to the optimal control problem inf{J(u)− 1

2α‖u− ū‖22,2, u ∈ K}. Noting
that the latter problem has ΛL(ū) as Lagrange multiplier set we get that λ = λ′ from which the
result follows.

Recall that if H is a Hilbert space, a quadratic form Q : H → R is a Legendre form if it satisfies:

(a) Q is weakly lower semicontinuous.
(b) If vk ∈ H converges weakly to v and Q(vk) converges to Q(v), then vk converges strongly to v.

Now, we prove our main result which is a sufficient condition for the strong quadratic growth
property. Note that in contrast to the necessary condition in Theorem 4.3, no qualification condition
is assumed.

Theorem 4.4. Suppose that (H1)-(H2) hold true and that:

(i) ΛP (ū) 6= ∅.
(ii) There exists λ̄ ∈ ΛP (ū) such that the quadratic growth condition for the Hamiltonian holds true
at (ū, λ̄).

(iii) For all λ ∈ ΛP (ū) the quadratic form Q[ū, λ] is a Legendre form and there exists α > 0 such
that

max
λ∈ΛP (ū)

Q[ū, λ](v) ≥ α‖v‖22,2 ∀v ∈ CK(ū).

Then, ū is a strong local solution of (CP ) satisfying the quadratic growth condition.

Proof. If (2.16) does not hold, then there exists a sequence uk 6= ū ∈ K, with associated states
yk := y[uk], such that, setting δku := uk − ū and δky := yk − ȳ, one has

J(uk)− J(ū) ≤ o(‖δku‖22,2) as ‖δky‖∞,∞ → 0. (4.8)

By definition, for every λ ∈ ΛL(ū) we have that J(uk) ≥ L(uk, λ) and J(ū) = L(ū, λ), therefore by
Proposition 3.2(i) we have that

∫

Q
δkH[λ](t, x)dtdx+O(‖δku‖2,2‖δky‖∞,∞) = L(uk, λ)− L(ū, λ) ≤ o(‖δku‖22,2).

Setting λ = λ̄, assumption (ii) implies that ‖δku‖2,2 → 0. Now, let us define

Ak := {(t, x) ∈ Q ; |u(t, x)− ū(t, x)| ≤
√

‖δku‖1,1}, Bk := Q \Ak,

and δAk
u and δBk

u as in (3.11). Since ‖δku‖2,2 → 0, we obtain that ‖δAk
u‖∞,∞ → 0 and using the

Chebyshev inequality we get that |Bk| → 0. Therefore, by (3.12) and (4.8), for every λ ∈ ΛL(ū) we
have that

∫

Bk

δkH[λ](t, x)dtdx+Q1[ū, λ](δAk
u) + 1

2Q2[ū, λ](δAk
u) ≤ o(‖δku‖22,2). (4.9)

Suppose that ‖δAk
u‖2,2 = o(‖δBk

u‖2,2). Then we have that ‖δku‖2,2 = O(‖δBk
u‖2,2). Since δAk

u ∈
TK1

(ū), for every λ ∈ ΛL(ū) we have that Q1[ū, λ]δAk
u ≥ 0. Also, by the continuity of the quadratic

form Q2[ū, λ](·) we get that Q2[ū, λ](δAk
u) = O(‖δAk

u‖22,2), and so, using (4.9), we obtain the
inequality

∫

Bk

δkH[λ](t, x)dtdx ≤ o(‖δku‖22,2) +O(‖δAk
u‖22,2) = o(‖δBk

u‖22,2). (4.10)
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Setting λ = λ̄ in the above inequality, by condition (ii) we get that α‖δBk
u‖22,2 ≤ o(‖δBk

u‖22,2), for
some α > 0, which is impossible. Thus, except for some subsequence, ‖δBk

u‖2,2 = O(‖δAk
u‖2,2).

Now, let us set σk := ‖δAk
u‖2,2, which can be assumed to be nonzero, and define vk := δAk

u/σk.
Since ‖vk‖2,2 = 1, we have that, up to some subsequence, vk converges weakly in L2,2(Q) to some v̄.
Note that since vk ∈ TK1

(ū) and TK1
(ū) is closed and convex in L2,2(Q), we obtain that v̄ ∈ TK1

(ū).
Let us now prove that v̄ ∈ CK(ū). First note that, by the results in [26, Section 3],

J(uk)− J(ū) = DJ(ū)δku+O(‖δku‖22,2) = DJ(ū)δku+ o(‖δku‖2,2), (4.11)

and, recalling (3.9) and using [26, Remark 3.4],

DJ(ū)δku =

∫

Q

[

ℓy(t, x)ζ[δku] + ℓu(t, x)δku
]

dtdx+

∫

Ω
Φy(x)ζ[δku](T, x)dx. (4.12)

On the other hand, estimate (2.6) implies that

‖ζ[δBk
u]‖1,1 + ‖ζ[δBk

u](T, ·)‖1 = O(‖δBk
u‖1,1) = o(‖δku‖2,2).

Therefore, since ‖δku‖2,2 = O(‖δAk
u‖2,2), equations (4.8), (4.11) and (4.12), yield

∫

Q

[

ℓy(t, x)ζ[δAk
u] + ℓu(t, x)δAk

u
]

dtdx+

∫

Ω
Φy(x)ζ[δAk

u](T, x)dx ≤ o(‖δAk
u‖2,2).

Dividing by σk we get that

∫

Q

[

ℓy(t, x)ζ[vk] + ℓu(t, x)vk
]

dtdx+

∫

Ω
Φy(x)ζ[vk](T, x)dx ≤ o(1).

Using [26, Proposition 2.1(iii)] and passing to the limit we obtain that DJ(ū)v̄ ≤ 0. On the other
hand, the same type of computations implies that

∫

Ω
(ΦE)y(x)ζ[v̄](T, x)dx = 0 and

∫

Ω
(ΦI)

j(x)ζ[v̄](T, x)dx ≤ 0, ∀ j ∈ I(ū),

which together with the fact that λ ∈ ΛL(ū) and v̄ ∈ TK1
(ū), implies that DJ(u)v̄ = 0. Therefore,

we have proven that v̄ ∈ CK(ū). Since for all λ ∈ ΛP (ū) one has

∫

Bk

δkH[ū, λ](t, x)dtdx+Q1[ū, λ](δAk
u) ≥ 0,

we get with (4.9) that
Q2[ū, λ](vk) ≤ o(1). (4.13)

By assumption (iii), there exists λv̄ ∈ ΛP (ū) such that Q2[ū, λv̄](v̄) ≥ α‖v̄‖22,2. Since Q2[ū, λv̄] is a
Legendre form, (4.13) yields,

0 ≤ α‖v̄‖22,2 ≤ Q2[ū, λv̄](v̄) ≤ lim inf
k→∞

Q2[ū, λv̄](vk) ≤ lim sup
k→∞

Q2[ū, λv̄](vk) ≤ 0,

and so v̄ = 0 and Q2[ū, λv̄](v̄) = 0 = limk→∞Q2[ū, λv̄](vk), which is imposible because the fact that
Q2[ū, λv̄] is a Legendre form yields that vk → v̄ strongly in L2,2(Q), contradicting ‖vk‖2,2 = 1.
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In the case when no final constraints are considered, i.e. when we consider the problem (CP ′),
we can prove a characterization of quadratic growth in the strong sense without the Legendre form
assumption for the quadratic form. We notice that in this case the critical cone is given by

CK1
(ū) =

{

v ∈ L2,2(Q) ; v ≥ 0 in Aa(ū) and v ≤ 0 in Ab(ū), Hu(t, x)v(t, x) = 0 a.e. in Q
}

.

Since there is no dependence in λ, we denote by p̄ the unique adjoint state associated with ū and
H(t, x) := H(t, x, ȳ(t, x), p̄(t, x), ū(t, x)), with similar notations for the derivatives of H evaluated at
(t, x, ȳ(t, x), p̄(t, x), ū(t, x)). For v ∈ L2,2(Q), we set

Q1[ū]v :=
∫

QHu(t, x)v(t, x)dtdx,

Q2[ū](v) :=
∫

QH(y,u)2(t, x)(ξ[v], v)
2dtdx+

∫

ΩΦyy(x)(ξ[v](T, x))
2 dx,

(4.14)

where ξ[v] is defined by (3.9).

Theorem 4.5. Assume (H1)-(H2). Then, the following assertions are equivalent:

(i) The control ū is a strong local solution of (CP ′) satisfying the quadratic growth condition.

(ii) There exists α > 0 such that the following conditions hold true:

(ii.1) For almost all (t, x) ∈ Q we have that

H(t, x) +
α

2
|u− ū(t, x)|2 ≤ H(t, x, ȳ(t, x), p̄(t, x), u) ∀ u ∈ [a(t, x), b(t, x)]. (4.15)

(ii.2) For all v ∈ CK1
(ū) it holds that Q2[ū]v

2 ≥ α‖v‖22,2.

Proof. The proof is similar to the proof of [3, Theorem 4.24]. The fact that (i)⇒ (ii) follows by the
same argument than the one in the proof of Theorem 4.3. Note that, since we are not considering
final state constraints, the qualification condition (4.6) is not needed (see [26]). As in the proof of
Theorem 4.4, if (2.16) (with K replaced by K1) does not hold, then there exists a sequence uk ∈ K1

satisfying that ‖y[uk]− y‖∞,∞ → 0 and (setting δku := uk − ū)

J(uk)− J(u) ≤ o
(

‖δku‖22,2
)

as k ↑ ∞. (4.16)

By (3.7) with λ = 0 and (4.15) we get (setting δky := y[uk]− y)

α

2
‖δku‖22 ≤ o

(

‖δku‖22,2
)

+O(‖δky‖∞,∞‖δku‖2,2) = o(1),

which implies that uk → ū ∈ L2,2(Q). Now, for a.a. (t, x) ∈ Q, let us set

κt,x :=

{

1 if Hu(t, x) = 0,

1/|Hu(t, x)| otherwise,

and Bk := B1
k ∪B2

k, where

B1
k :=

{

(t, x) ∈ Q ; |δku(t, x)| ≥
√

‖δku‖2,2
}

, B2
k :=

{

(t, x) ∈ Q ; κt,x ≥ 1/‖δku‖1/42,2

}

.

By the Chebyshev inequality |B1
k| → 0 as k ↑ ∞. By the dominated convergence theorem, we also

have that |B2
k| =

∫

Q I{(t,x)∈B2

k
}dtdx → 0, which implies that |Bk| → 0. Defining Ak := Q \ Bk and

decomposing δku = δAk
u+ δBk

u, we obtain that ‖δAk
u‖∞,∞ → 0. Thus, letting λ = 0 in (3.12), we

get

J(uk)− J(ū) =

∫

Bk

δkH(t, x)dtdx+Q1[ū]δAk
u+ 1

2Q2[ū](δAk
u) + o(‖δku‖22,2). (4.17)
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Now, set σAk
:= ‖δAk

u‖2,2 and σBk
:= ‖δBk

u‖2,2, which yields ‖δku‖22,2 = σ2Ak
+σ2Bk

. If σAk
= o(σBk

),
then (4.17) and the continuity of the quadratic form Q2[ū] imply that

∫

Bk

δH(t, x)dtdx+Q1[ū]δAk
u ≤ o(σ2Bk

).

Since Q1[ū]δAk
u ≥ 0, (4.15) would yield that α

2σ
2
Bk

≤ o(σ2Bk
), which is impossible. Therefore, we

must have, except for some subsequence, that σBk
= O(σAk

). Let us define vk := δAk
u/σAk

. By
(4.15) we have

∫

Bk
δH(t, x)dtdx ≥ 0 and Q1[ū]δAk

u ≥ 0. Therefore, (4.16) and (4.17) imply that

Q2[ū](vk) ≤ o(1). (4.18)

Note that if vk ∈ CK1
(ū) then (4.18) would yield a contradiction with (ii.2). The problem is that a

priori vk belongs only to TK1
(ū). The idea is to decompose vk = vk,1 + vk,2 where vk,1 ∈ CK1

(ū) and
prove that ‖vk,2‖2,2 → 0, which together with (4.18) and (ii.2) would yield the desired contradiction.
In order to construct such decomposition, first notice that CK1

(ū) = {v ∈ L2,2(Q) ; v(t, x) ∈
Ct,x for a.a. (t, x) ∈ Q}, where

Ct,x :=
{

v ∈ R ; Hu(t, x)v = 0, v ≥ 0 if (t, x) ∈ Aa(ū) and v ≤ 0 if (t, x) ∈ Ab(ū)
}

.

Thus, it is natural to define vk,1(t, x) := PCt,x(vk(t, x)) (where P· denotes the projection operator),
which is measurable in terms of (t, x) and (t, x) → vk,1(t, x) ∈ CK1

(ū). Using that for every h ∈ R

we have, denoting d(h,Ct,x) := inf{|z − h| ; z ∈ Ct,x}, and (h)+ := max{h, 0}
d(h,Ct,x) ≤ κt,x

(

|Hu(t, x)h|+ IAa(t, x)(−h)+ + IAb
(t, x)(h)+

)

, (4.19)

by definition of vk,1 and the fact that vk ∈ TK1
(ū), we obtain that

|vk,2(t, x)| = d(vk(t, x), Ct,x) ≤ κt,x|Hu(t, x)vk(t, x)| ≤
1

‖δku‖1/42,2

Hu(t, x)vk(t, x), (4.20)

where we have used that Hu(t, x)vk(t, x) ≥ 0 and that vk ≡ 0 on Bk. Now, by the continuity of the
quadratic form Q2[ū], we have that (4.17) implies that

∫

Ak

Hu(t, x)vk(t, x)dtdx ≤ O(σAk
),

which together with (4.20) implies that ‖vk,2‖1,1 ≤ O(σAk
/‖δku‖1/42,2 ). On the other hand, by defini-

tion of v1k(t, x) and Ct,x we have that |vk,2(t, x)| ≤ |vk(t, x)|. And so, since ‖vk‖∞,∞ ≤
√

‖δku‖2,2
σAk

by

definition of the set Ak, we get that

‖vk,2‖2,2 ≤ ‖vk,2‖∞,∞‖vk,2‖1,1 = O

(

√

‖δku‖2,2
σAk

σAk

‖δku‖1/42,2

)

= O(‖δku‖1/42,2 ) → 0 as k ↑ ∞,

which concludes the proof.

In the following corollary we prove an interesting consequence of the previous result.

Corollary 4.6. Suppose that (H1)-(H2) hold true and let s ∈ [1,∞[. Then, ū is a strong local
solution of (CP ′) satisfying the quadratic growth condition iff ū is a Ls-weak local solution of (CP ′)
satisfying the quadratic growth condition.

Proof. If ū is a Ls-weak local solution of (CP ′) satisfying the quadratic growth condition, then
arguing as in the proof of Theorem 4.3 we have that (ii.1) and (ii.2) in Theorem 4.5 are satisfied.
Therefore, ū is a strong local solution of (CP ′) satisfying the quadratic growth condition. The other
implication being clear (see Remark 2.5), the conclusion follows.

14



5 The case of a strictly convex quadratic Hamiltonian and contin-

uous data

We prove in this section that under a continuity assumption on the data and a convexity condition on
the Hamiltonian, the notions of weak and strong minima satisfying the quadratic growth condition
are equivalent. We assume that

(H4) (i) We suppose that a, b ∈ C(Q) and that there exists ℓ > 0 and continuous functions
ℓ1 : Q→ R, ℓ2 : Q× R → R, ϕ1 : Q→ R and ϕ2 : Q× R → R such that

ℓ(t, x, y, u) = ℓ1(t, x)u
2 + ℓ2(t, x, y), ϕ(t, x, y, u) = ϕ1(t, x)u+ ϕ2(t, x, y) and ℓ1(t, x) ≥ ℓ in Q.

(ii) For ψ = Φ, Φi
E , Φ

j
I (i = 1, . . . , nE and j = 1, . . . , nI) we assume that ψy admits a locally Hölder

continuous extension to Ω× R satisfying ψy(x, 0) = 0 for all x ∈ ∂Ω.

Remark 5.1. (i) By (H4)(i) we have that ΛL(u) = ΛP (u) for every u ∈ K.

(ii) By (H4)(ii) and [18, Proposition 2.1], we have the existence of β′ ∈]0, 1[ such that for all
λ ∈ R

nE+nI the adjoint state p̄λ defined in (3.2) belongs to Cβ′,β′/2(Q) ∩ L2([0, T ];H1
0 (Ω)).

Now we prove the main result of this section, which provides the equivalence of the notions of
weak and strong solutions satisfying the quadratic growth condition.

Theorem 5.2. Consider problem (CP ) and suppose that (H1),(H2) and (H4) are satisfied. Then,
for ū ∈ K we have the equivalence of (2.12), (2.14) (for any s ∈ [1,∞[) and (2.16), provided that
one of the following conditions is satisfied
(i) The condition (H3) holds true.

(ii) The Robinson constraint qualification (RCQ) holds true and every v ∈ CK(ū) satisfies that v = 0
a.e. in Aa(ū) ∪Ab(ū).

Proof. By Remark 2.5 it suffices to prove that (2.12) and (2.16) are equivalent if (i) or (ii) are satisfied.
Let us suppose that (i) holds true. We only need to prove, the other implication being trivial, that
if ū satisifies (2.12) then it also satisfies (2.16). Note first that (4.6) implies that ΛL(ū) = ΛP (ū) is a
singleton {λ} (see [26, Lemma 5.4]). Assumption (H4) implies that Q2[ū, λ] is a Legendre form and
so by [26, Theorem 5.7] we obtain that assumptions (i) and (iii) in Theorem 4.4 are satisfied. Thus, in
order to conclude we only need to show that the quadratic growth condition (4.7) for the Hamiltonian
holds at (ū, λ). Since ū is a weak solution of the problem inf{J(u) − α

2 ‖u − ū‖22,2 ; u ∈ K}, by the

local Pontryagin principle for weak solution (see [14]), we have the existence of λ̂ ∈ R
nE+nI and

ε > 0 such that

H[λ̂](t, x)+
α

2
|u−ū(t, x)|2 ≤ H(t, x, ȳ(t, x), p̄λ̂(t, x), u) ∀ u ∈ [a(t, x), b(t, x)], |u−u(t, x)| ≤ ε, (5.1)

from which λ̂ = λ. Now, for all (t, x) ∈ Q let us define

û(t, x) = argmin
u∈[a(t,x),b(t,x)]

H(t, x, ȳ(t, x), p̄λ(t, x), u). (5.2)

By the strict convexity of the Hamiltonian w.r.t. u and (5.1) we get that û is well defined and û = ū
a.e. in Q. Moreover, using the continuity of the data, assumed in (H4) and the continuity of ȳ and
p̄λ, we easily check with (5.2) that û is continuous. Therefore, for all (t, x) ∈ Q, v ∈ [a(t, x), b(t, x)],
and |v − û(t, x)| ≤ ε we have

H(t, x, ȳ(t, x), p̄λ(t, x), û(t, x)) +
α

2
|v − û(t, x)|2 ≤ H(t, x, ȳ(t, x), p̄λ(t, x), v). (5.3)
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Therefore, letting

β := inf
{

H(t, x, ȳ(t, x), p̄(t, x), u)−H(t, x, ȳ(t, x), p̄(t, x), û(t, x)); (t, x) ∈ Q, u ∈ [a(t, x), b(t, x)], |u− û(t, x)| ≥ ε
}

,

the continuity of û implies that β > 0. Defining α′ = min{β/4M2, α2 } we obtain that (5.3) holds
with α replaced by α′ and for all v ∈ [a(t, x), b(t, x)] and so (4.15) is satisfied, which implies the
result if (i) holds true. If (ii) holds true, the proof follows the same lines, the only change being the
use of [26, Theorem 5.2] instead of [26, Theorem 5.7].

Remark 5.3. Condition (ii) in the above results means that the critical cone is equal to the strict
critical cone (see [26]). It is easy to check that this condition is equivalent to an a.e. strict complemen-
tarity assumption over the finite dimensional problem appearing in Pontryagin minimum principle.

For problem (CP ′) the qualification condition is not needed. The proof of the following result is
identical to the previous one.

Theorem 5.4. Consider problem (CP ′) and suppose that (H1),(H2) and (H4) are satisfied (where
we consider only ψ = Φ in (H4)(ii)). Then, for ū ∈ K1 we have the equivalence of (2.12), (2.14)
(for any s ∈ [1,∞[) and (2.16) (with K replaced by K1).

We end this article with the following example.

Example 5.5. Consider the optimal control problem

inf
∫

Q

[

N
2 u(t, x)

2 + ℓ(t, x, y(t, x))
]

dtdx,

s.t.

∂ty −∆y + ϕ(y) = u+ f in Q,

y = 0 in Σ, y(0, ·) = y0(·),
a ≤ u ≤ b in Q,

where ℓ is continuous on Q × R and satisfies (H2), ϕ is C1 and it is increasing, f ∈ L∞,∞(Q),

y0 ∈W
2− 2

s
,s

0 (Ω) and a, b are continuous on Q. Then, for this problem the notions of weak, Ls-weak
(for any s ∈ [1,∞[) and strong solutions satisfying the quadratic growth condition are equivalent.

On the other hand, if we consider the problem with non-convex Hamiltonian

inf
∫

Q

[

u(t, x)2 − u(t, x)4 − y(t, x)4
]

dtdx,

s.t.

∂ty −∆y = u in Q,

y = 0 in Σ, y(0, ·) = 0,

0 ≤ u ≤ 2 in Q,

using [26, Theorem 5.8] we obtain that ū ≡ 0 is a weak local solution satisfying the quadratic growth
condition. However, due to the −u4 term, we have that ū is not a Ls-weak solution for any s ∈ [1,∞[.

Appendix: proofs of some technical results

We provide in this section the proofs of Lemma 3.1 and Proposition 3.2 stated in Section 2.

Proof of Lemma 3.1. We have that δy satisfies

∂tδy −∆δy +
[

∫ 1
0 ϕy(t, x, ȳ + τδy, ū+ τv)dτ

]

δy = −
[

∫ 1
0 ϕu(t, x, ȳ + τδy, ū+ τv)dτ

]

v in Q,

δy = 0 in Σ,

δy(0, ·) = 0 in Ω.
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Using the above equation and equation (3.3) for z1, the estimates for ‖δy‖Vs and ‖z1[v]‖Vs follow by
(H1)(iii) and (2.5). Noting that, omitting the dependence on (t, x),

ϕ(t, x, y[ū+ v], ū+ v)− ϕ(ȳ, ū+ v)− ϕ(t, x)δy =
∫ 1
0 [ϕ(t, x, ȳ + τδy, ū+ v)− ϕ(t, x)] dτδy

= O
(

|δy|2 + |v||δy|
)

,

we easily check that d1 satisfies

∂td1 −∆d1 + ϕy(t, x)d1 = O
(

|δy|2 + |v||δy|
)

in Q,

d1 = 0 in Σ,

d1(0, ·) = 0 in Ω.

In particular, (2.5) implies

‖d1[v]‖2,2 + ‖d1[v](T, ·)‖2 = O





[∫

Q

[

|δy|2 + |v||δy|
]2

dtdx

]

1
2



 = O (‖δy‖∞,∞‖v‖2,2) ,

which gives the second estimate in (3.5). On the other hand, omitting the dependence on (t, x) and
setting y = y[ū+ v], u = ū+ v, we have that

ϕ(y, u)− ϕ(ȳ, u)− ϕy(t, x)z1 − ϕy(t, x)z2 − 1
2ϕyy(t, x)z

2
1 − δϕy(t, x)z1

= ϕy(t, x)d2 + ϕ(y, u)− ϕ(ȳ, u)− ϕy(t, x)δy − 1
2ϕyy(t, x)z

2
1 − δϕy(t, x)z1

= ϕy(t, x)d2 + ϕy(ȳ, u)δy +
1
2ϕyy(ȳ, u)δy

2 +
∫ 1
0 (1− τ)

[

ϕyy(ȳ + τδy, u)− ϕyy(ȳ, u)
]

dτ(δy)2

−ϕy(t, x)δy − 1
2ϕyy(t, x)z

2
1 − δϕy(t, x)z1

= ϕy(t, x)d2 + δϕy(t, x)d1 +
1
2δϕyy(t, x)δy

2 + 1
2ϕyy(t, x)(δy

2 − z21)

+
∫ 1
0 (1− τ)

[

ϕyy(ȳ + τδy, u)− ϕyy(ȳ, u)
]

dτ(δy)2

= ϕy(t, x)d2 +O
(

|d1||v|+ |δy2||v|+ |d1|(|δy|+ |z1|) + |δy|3
)

.

This implies that d2 solves

∂td2 −∆d2 + ϕy(t, x)d2 = O
(

|d1||v|+ |δy2||v|+ |d1|(|δy|+ |z1|) + |δy|3
)

in Q,

d2 = 0 in Σ,

d2(0, ·) = 0 in Ω.

Using (2.6) we get that

‖d2[v]‖1,1 + ‖d2[v](T, ·)‖1 = O

(∫

Q

[

|d1||v|+ |δy2||v|+ |d1|(|δy|+ |z1|) + |δy|3
]

dtdx

)

,

and the third estimate in (3.5) follows from the previous ones.

Proof of Proposition 3.2. Let us prove (i). Omitting the dependence on (t, x), using the notations
introduced in the statement of Lemma 3.1, with v = δu, and writing δyT (x) := δy(T, x), we have
that
∫

Q

[

ℓ(y, u)− ℓ
]

dtdx+
∫

Ω

[

Φ[λ](y(T, x))− Φ[λ]
]

dx =
∫

Q

[

ℓ(y, u)− ℓ(y, u) + δℓ
]

dtdx+
∫

Ω
Φy[λ]δyTdx

+O
(∫

Ω
|δyT |2dx

)

,

=
∫

Q

[

ℓ(y, u)− ℓ(y, u) + δℓ+ ∂tp̄λδy + p̄λ∂tδy
]

dtdx

+O
(∫

Ω
|δyT |2dx

)

,

17



where we have integrated by parts in the time variable using that pλ(T, ·) = Φ[λ](·) and δy(0, ·) = 0.
Now, since
∫

Q

[ℓ(y, u)− ℓ(y, u)− p̄λ(ϕ(y, u)− ϕ(y, u))] dtdx =

∫

Q

[

ℓy − p̄λϕy

]

δy dtdx+O

(∫

Q

[

|δy|2 + |δy||δu|
]

dtdx

)

,

(where we use that p̄λ ∈ L∞,∞(Q), uniformly for λ in a bounded set, by the maximum principle),
equation (3.2) and the equation satisfied by δy imply that

L(u, λ)− L(ū, λ) =
∫

Q
δH(t, x)dtdx+O

(∫

Q

[

|δy|2 + |δy||δu|
]

dtdx+

∫

Ω
|δyT |2dx

)

,

and the result follows from Lemma 3.1. In order to prove (ii), we follow a similar strategy. Expanding
up to the second order, we have

∫

Q

[

ℓ(y, u)− ℓ
]

dtdx =
∫

Q

[

ℓ(y, u)− ℓ(ȳ, u) + δℓ
]

dtdx,

=
∫

Q

[

ℓy(ȳ, u)δy +
1
2ℓyy(ȳ, u)(δy)

2 + δℓ
]

dtdx

+
∫

Q

∫ 1

0
(1− τ) [ℓyy(ȳ + τδy, u)− ℓyy(ȳ, u)] (δy)

2dτdtdx,

=
∫

Q

[

δℓyδy + ℓyδy +
1
2ℓyyz

2
1 + δℓ

]

dtdx

+O
(

∫

Q

[

|d1|(|δy|+ |z1|) + |δu||δy|2 + |δy|3
]

dtdx
)

,

=
∫

Q

[

δℓyz1 + ℓy(z1 + z2) +
1
2ℓyyz

2
1 + δℓ

]

dtdx

+O
(

∫

Q

[

|d1||δu|+ |d2|+ |d1|(|δy|+ |z1|) + |δu||δy|2 + |δy|3
]

dtdx
)

.

Analogously, omitting the x argument and setting (z1)T = z1(T, ·) with a similar convention for
(d1)T and (d2)T ,

∫

Ω(Φ[λ](yT )− Φ[λ])dx =
∫

Ω

[

Φy[λ]δyT + 1
2 Φyy[λ]δy

2
T

]

dx+O
(∫

Ω |δyT |3dx
)

=
∫

Ω

[

Φy[λ](z1 + z2)T + 1
2 Φyy[λ](z1)

2
T

]

dx

+O
(∫

Ω

[

|(d2)T |+ |(d1)T ||(z1)T |+ |(d1)T ||δyT |+ |δyT |3
]

dx
)

.

Therefore, by Lemma 3.1 and the Cauchy-Schwarz inequality, we get

L(u, λ)− L(ū, λ) =
∫

Q

[

δℓyz1 + ℓy(z1 + z2) +
1
2ℓyyz

2
1 + δℓ

]

dtdx

+
∫

Ω

[

Φy[λ](z1 + z2)T + 1
2 Φyy[λ](z1)

2
T

]

dx+O(‖δy‖∞,∞‖δu‖22,2).
(5.4)

Finally, using (3.3), (3.4), (3.3) and integrating by parts we obtain that
∫

Ω
Φy[λ](z1 + z2)Tdx = −

∫

Q

[

δϕ p+ δϕyz1 p+
1
2ϕyyz

2
1 p+ ℓy(z1 + z2)

]

dtdx,

which combined with (5.4) yields (3.8).

Acknowledgment: The authors express their gratitude to the authors of [8, 9] for valuable
discussions.
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Travaux et Recherches Mathématiques, No. 17. Dunod, Paris, 1968.
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