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SECOND ORDER ANALYSIS FOR STRONG SOLUTIONS IN THE
OPTIMAL CONTROL OF PARABOLIC EQUATIONS∗

TÉRENCE BAYEN† AND FRANCISCO J. SILVA‡

Abstract. In this paper we provide a second order analysis for strong solutions in the optimal
control of parabolic equations. We consider first the case of box constraints on the control in a general
setting and then, in the case of a quadratic Hamiltonian, we also impose final integral constraints on
the state. For the first problem, in a rather general framework, we prove a characterization of the
quadratic growth property in the strong sense, i.e., for admissible controls whose associated states are
uniformly near to the state of the nominal control. Assuming a quadratic Hamiltonian in the state
constrained case, we provide a sufficient second order optimality condition for the aforementioned
quadratic growth property, which does not impose the uniqueness of the Lagrange multiplier set. As
a consequence of our results, in the quadratic Hamiltonian case, under some continuity assumptions
on the data we prove that the notions of quadratic growth in the strong sense coincide with the
more standard notion of quadratic growth in the weak sense, i.e., with respect to controls which are
uniformly near to the nominal one.
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1. Introduction. Besides its applications in several fields such as biochemistry
[18], inverse problems [2], and biology [28], the optimal control of systems governed
by nonlinear parabolic equations is one of the prototypes, together with the case of
optimal control of hyperbolic systems, of optimization problems of evolutive systems.
We refer the reader to the monographs [22, 27] for a rather complete review of the
theory, the associated numerical analysis, and some interesting applications (for the
latter see in particular [22, Chapter 1]).

In this work we consider the optimal control problem of a semilinear parabolic
equation where bounds constraints are imposed on the control and also, when a more
particular structure is assumed for the cost and the dynamics, we consider finitely
many constraints on the state. Thus, in the latter case, our constraints are partially
polyhedric in the sense of [9]. For the sake of clarity and also because of its analogy
with the corresponding study for ordinary differential equations, we suppose that we
have integral constraints on the final state. In the same spirit as [3], we can consider
several notions of local solutions and of local solutions satisfying a quadratic growth
property. Namely, we will say that ū is a weak local solution of the problem if it mini-
mizes the cost locally on the constraint set with respect to the L∞-norm. Moreover, if
locally in the L∞-norm the difference between the cost of an admissible control u and
the cost of ū is greater than a positive constant (independent of u) times the square
of the L2-norm of u − ū, we will say that ū is a weak local solution of the problem
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820 TÉRENCE BAYEN AND FRANCISCO J. SILVA

satisfying the quadratic growth condition in the weak sense. A characterization of the
latter property, as well as its equivalence for some specific problems with a stronger
notion of solution, are studied in [25] (see also [16, 5, 15, 7] and the references therein
for other studies on the topic). Another type of local solution, whose definition goes
back to the beginning of the theory of calculus of variations (see [21] for detailed
analysis and [4] for a short survey), is the following: the nominal control ū is a strong
local solution of the problem if it minimizes the cost with respect to controls whose
corresponding states are uniformly close to the nominal state. If the corresponding
quadratic growth property holds true, then we will say that ū is a strong local solution
satisfying the quadratic growth property in the strong sense. We refer the reader to
section 3 for precise definitions of the notions introduced above.

Our aim in this work is to study second order optimality conditions for strong
solutions satisfying the quadratic growth condition. Following the ideas in [3], the key
tool is a decomposition result for the variation of the cost in terms of large and small
perturbations in the L∞-norm of the nominal control, which is proved in Theorem
4.3. We use this decomposition result to prove our main results, which are a charac-
terization of the quadratic growth property in the strong sense for general problems
with bound constraints on the control, proved in Theorem 3.5, and, under a more
particular structure, a sufficient second order optimality condition for the quadratic
growth property when final state constraints are also considered (see Theorem 3.10).
Using the latter second order sufficient optimality condition and the results in [25] we
are able to obtain in Theorems 3.12 and 3.13 some characterizations of the quadratic
growth property in the state constrained case. Loosely speaking, for the pure control
constraint and the state constrained cases, our results state that if a stronger form of
the classical Pontryagin’s principle (see [17, 12, 14]) and the usual coercivity of the
second derivative of the Lagrangian hold true, then the quadratic growth property
in the strong sense is satisfied. Conversely, both aforementioned conditions are also
necessary, which yields the characterization of this property.

As a consequence of the previous findings, we obtain some unexpected results.
Under some continuity assumptions on the data, if the Hamiltonian associated to
the problem is quadratic and strictly convex with respect to the control and, in the
state constrained case, a constraint qualification condition holds true, then the no-
tions of quadratic growth in the weak and the strong sense are equivalent. Of course,
these arguments provide also the proof of the analogous statements, seemingly unno-
ticed before this work, in the case of optimal control problems of ordinary differential
equations (see [10, 11]) and of semilinear elliptic equations (see [3]).

The article is organized as follows. In section 2 we fix some notation and we
recall some basic results on linear parabolic equations. In section 3 we state the opti-
mal control problem (CP0), where only bound constraints are imposed, and problem
(CP1), where final state constraints are considered under the assumption that the cost
is quadratic and the dynamics is affine, as functions of the control variable. Since the
article is somewhat technical, we have preferred to state and comment on our main
results in this section, postponing their proof until the final section. Namely, we state
the characterizations of the quadratic growth property for strong solutions separately
for both problems (CP0) and (CP1), and also the equivalence with the corresponding
property for weak solutions under some structural assumptions. At the end of sec-
tion 3, some open problems regarding the state constrained case are also discussed.
Section 4 is technical and devoted to the proof of the decomposition result, which is
central in the proof of our results. Finally, using the results in section 4, we prove in
section 5 the results stated in section 3.
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2. Preliminaries. From now on we fix a nonempty bounded open set Ω ⊆ Rd
(d ∈ N) with a smooth boundary. Let us also fix T > 0 and set Q =]0, T [×Ω and
Σ =]0, T [×∂Ω. Given s ∈ [1,∞] and k ∈ N, we denote by ‖ · ‖s and ‖ · ‖Wk,s the
standard norms in Ls(Ω) and W k,s(Ω), respectively. For s1, s2 ∈ [1,∞), we set
Ls1,s2(Q) := Ls1([0, T ];Ls2(Ω)) (see, e.g., [20]), which can be identified with the set
of measurable functions f : Q→ R satisfying

‖f‖s1,s2 :=

(∫ T

0

(∫
Ω

|f(t, x)|s2dx

) s1
s2

dt

) 1
s1

<∞.

Endowed with the norm ‖ · ‖s1,s2 we have that Ls1,s2(Q) is a Banach space. We also
denote by ‖ · ‖∞ the standard norm in L∞(Q). For s ∈]1,∞[ consider the space

(2.1) Vs(Q) := Ls([0, T ];W 2,s(Ω) ∩W 1,s
0 (Ω)) ∩W 1,s([0, T ];Ls(Ω)),

which endowed with the natural norm

‖z‖Vs := ‖z‖s,s + ‖∂tz‖s,s +

d∑
i=1

‖∂xi
z‖s,s +

d∑
i,j=1

‖∂xixj
z‖s,s

is a Banach space. The following properties of the spaces Vs will play an important
role in our analysis. For the proof we refer the reader to the monograph [6].

Lemma 2.1. Let 1 < s ≤ si < ∞ with i = 1, 2. Then, the following assertions
hold true:

(i) The space Vs(Q) is continuously embedded in Ls1,s2(Q) if

(2.2)
1

s
− 1

s1
+
d

2

(
1

s
− 1

s2

)
≤ 1.

Moreover, if (2.2) is a strict inequality, then the embedding is compact. In particular,
if

(2.3)

(
1 +

d

2

)(
1

s
− 1

s1

)
≤ 1,

then Vs(Q) is continuously embedded in Ls1,s1(Q) (compactly embedded if the inequal-
ity is strict).

(ii) The space Vs(Q) is continuously embedded in C0,1−1/s([0, T ];Ls(Ω)) (the space
of (1− 1/s)-Hölder mappings with values in Ls(Ω)).

(iii) The space Vs(Q) is compactly embedded in C(Q) (the space of continuous
functions on Q) if s > (d+ 2)/2.

Given ξ0 ∈ W
2− 2

s ,s
0 (Ω), with s > (d + 2)/2, a ∈ L∞(Q), and v ∈ Ls,s(Q), recall

(see, e.g., [19, Chapter 4, Theorem 9.1]) that the linear parabolic equation

(2.4)

∂tξ −∆ξ + a(t, x)ξ = v(t, x) in Q,

ξ = 0 in Σ,

ξ(0, ·) = ξ0(·) in Ω

admits a unique strong solution ξ[ξ0, v] ∈ Vs(Q), i.e., the equation is satisfied almost
everywhere and ξ[ξ0, v](0, ·) (which is well defined by Lemma 2.1(ii)) is equal to ξ0.
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Moreover, there exists cs > 0 such that following estimate holds true (assuming ξ0 = 0,
for simplicity):

(2.5) ‖ξ[0, v]‖Vs ≤ cs‖v‖s,s.

Using Aubin’s theorem (see [1, 26]), it can be easily checked (see, e.g., [25]) that the
linear mapping v ∈ L2,2(Q)→ ξ[0, v] ∈ L2,2(Q)∩C([0, T ];L2(Ω)) is continuous when
L2,2(Q) and L2,2(Q) ∩ C([0, T ];L2(Ω)) are endowed with the weak and the strong
topologies, respectively. Finally, the following estimate (see [25]) will be useful in
section 4:

(2.6) ‖ξ[0, v](·, T )‖1 + ‖ξ[0, v]‖1,1 ≤ c1‖v‖1,1 for some c1 > 0.

3. Optimal control problems and main results. Throughout the article,
we consider a controlled semilinear parabolic equation. More precisely, given a control
u ∈ L∞(Q) and ϕ : Q× R× R→ R, we consider the equation

(3.1)

∂ty −∆y + ϕ(t, x, y, u) = 0 in Q,

y = 0 in Σ,

y(0, ·) = y0(·) in Ω.

Let us now fix some notation and standard assumptions which will guarantee the
well-posedness of (3.1). For a function ψ = ψ(t, x, y, u) differentiable with respect
to (w.r.t.) the third and fourth coordinates we will write ψ(y,u)(t, x, y, u) for D(y,u)ψ
(t, x, y, u) and ψy(t, x, y, u), ψu(t, x, y, u) for the partial derivatives of ψ w.r.t. y and
u, respectively. Regarding second order derivatives, we will write

(3.2)

ψyy(t, x, y, u) := D2
yyψ(t, x, y, u), ψuu(t, x, y, u) := D2

uuψ(t, x, y, u),

ψyu(t, x, y, u) := D2
yuψ(t, x, y, u),

ψ(y,u)2(t, x, y, u)(z, v)2

:= ψyy(t, x, y, u)z2 + 2ψyu(t, x, y, u)zv + ψuu(t, x, y, u)v2 ∀(z, v) ∈ R2.

Our first assumption is as follows.

(H1) (i) The initial state y0 belongs to W
2− 2

s ,s
0 (Ω) with s > (d+ 2)/2.

(ii) The function ϕ is measurable and for all R > 0 there exists c = c(R) > 0 such
that

−c
(
1 + |y|2

)
≤ ϕ(t, x, y, u)y ∀(t, x, y) ∈ Q× R, |u| ≤ R.

(iii) For almost all (a.a.) (t, x) ∈ Q the function ϕ(t, x, ·, ·) is C2, the mapping
(t, x) → ϕ(t, x, ·, ·) ∈ C2(R2) is measurable, and there exists c = c(R) such that
|y| ≤ R, |u| ≤ R and |y′| ≤ R, |u′| ≤ R imply that

(3.3)

|D(y,u)ϕ(t, x, 0, 0)|+ |D(y,u)2ϕ(t, x, 0, 0)| ≤ c,

|D(y,u)ϕ(t, x, y, u)−D(y,u)ϕ(t, x, y′, u′)| ≤ c (|y − y′|+ |u− u′|) ,

|D(y,u)2ϕ(t, x, y, u)−D(y,u)2ϕ(t, x, y′, u′)| ≤ c (|y − y′|+ |u− u′|) ,

where in the above inequalities we use a matrix norm norm for the terms involving
D(y,u)2ϕ. Denoting by Cα,β(Q) the space of functions defined on Q that are α-Hölder
continuous w.r.t. the time variable t and β-Hölder continuous w.r.t. the space variable
x, the following result holds true (see, e.g., [12, 17, 25]).
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Proposition 3.1. Under assumption (H1) for any u ∈ L∞(Q), (3.1) admits a
unique solution y[u] ∈ Vs(Q) ∩ Cβ/2,β(Q) for all s ∈]1,∞[.

Remark 3.2. The result stated in the above proposition holds true under weaker
assumptions than (H1) (see [12, 17, 25]). As a matter of fact, the hypothesis on the
second derivatives of ϕ are not necessary for the well-posedness of (3.1), but they are
fundamental in order to provide second order expansions of the mapping u 7→ y[u].
In addition, existence of a weak solution y ∈ L2([0, T ];H1

0 (Ω)) ∩ C(Q) can be proved
under the weaker assumptions that y0 ∈ C(Ω), y0(x) = 0 for all x ∈ ∂Ω and that Ω
has a Lipschitz boundary (see, e.g., [12, 17]).

We introduce now some functions that will model the cost functional and also
some constraints on the final state y[u](T, ·). Let ` : Q×R×R→ R, Φ : Ω×R→ R,
ΦE : Ω× R→ RnE , and ΦI : Ω× R→ RnI be such that the following holds.

(H2) The function ` is measurable and satisfies (H1)(iii) with ` in place of ϕ.
Moreover, for ψ = Φ,ΦiE ,Φ

j
I (i = 1, . . . , nE and j = 1, . . . , nI) we have that

(i) ψ is measurable,
(ii) for all x ∈ Ω, ψ(x, ·) is C2, the mapping x 7→ ψ(x, ·) ∈ C2(R) is measurable,

and there exists a constant c = c(R) > 0 such that for all y, y′ ∈ R with |y| ≤ R,
|y′| ≤ R, we have that

(3.4)
|ψy(x, 0)|+ |ψyy(x, 0)| ≤ c, |ψy(x, y)− ψy(x, y′)| ≤ c|y − y′|,

|ψyy(x, y)− ψyy(x, y′)| ≤ c|y − y′|.

Let us define the cost function J : L∞(Q)→ R as

(3.5) J(u) :=

∫
Q

`(t, x, y[u](t, x), u(t, x))dtdx+

∫
Ω

Φ(x, y[u](T, x))dx,

where we recall that y[u] is defined in Proposition 3.1. Notice that under assumptions
(H1)–(H2), the function J is well defined. The following assumption, requiring a
quadratic (respectively, affine) dependence of the cost ` (respectively, the dynamics
ϕ) with respect to u, will be required in some of our results

(H3) There exist ` > 0, functions `1, ϕ1 ∈ L∞(Q) and `2, ϕ2 : Q × R → R such
that for a.a. (t, x) ∈ Q we have `1(t, x) ≥ ` and

`(t, x, y, u) = `1(t, x)u2 + `2(t, x, y), ϕ(t, x, y, u) = ϕ1(t, x)u+ ϕ2(t, x, y).

Now, given a, b ∈ L∞(Q) such that ess inf{b(t, x) − a(t, x) ; (t, x) ∈ Q} > 0, let
us define the set

K0 := {u ∈ L∞(Q) ; a(t, x) ≤ u(t, x) ≤ b(t, x) almost everywhere (a.e.) in Q} .

In this work we will consider two optimal control problems. In the first one only
bound constraints are imposed on the control u, i.e., the problem is

(CP0) inf
u∈L∞(Q)

J(u) s.t. u ∈ K0.

In the second problem we consider finitely many state constraints on the state y[u](T, ·).
In order to introduce the problem, define GE : L∞(Q) → RnI , GI : L∞(Q) → RnI ,
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and G : L∞(Q)→ RnE+nI as

(3.6)

GiE(u) :=
∫

Ω
ΦiE(x, y[u](T, x))dx for i = 1, . . . , nE ,

GjI(u) :=
∫

Ω
ΦjI(x, y[u](T, x))dx for j = 1, . . . , nI ,

G(u) := (GE(u), GI(u)).

By assumption (H2) the map G is well defined. Let us set R− := {y ∈ R ; y ≤ 0}
and consider the sets

K1 = {0}nE × RnI
− , K2 := {u ∈ L∞(Q) ; G(u) ∈ K1} , K := K0 ∩ K2.

Our second optimal control problem is

(CP1) inf
u∈L∞(Q)

J(u) s.t. u ∈ K.

In the study of (CP1) we will assume that (H3) is satisfied (however, we refer the
reader to subsection 3.3 for some extensions and related open questions).

Now, let us fix the notions of solutions considered in this work.

Definition 3.3. We say that:
(i) ū is a weak local solution of (CP0) (resp., (CP1)) if there exists ε > 0 such

that

(3.7) J(ū) ≤ J(u) ∀u ∈ K0 (resp., K) such that ‖u− ū‖∞ ≤ ε.

If, in addition, there exists α > 0 such that

(3.8) J(ū) +
α

2
‖u− ū‖22,2 ≤ J(u) ∀u ∈ K0 (resp., K) such that ‖u− ū‖∞ ≤ ε,

we will say that ū is a weak local solution satisfying the quadratic growth condition.
(ii) ū is a Ls-weak local solution (s ∈ [1,∞[) of (CP0) (resp., (CP1)) if there

exists ε > 0 such that

(3.9) J(ū) ≤ J(u) ∀u ∈ K0 (resp., K) such that ‖u− ū‖s,s ≤ ε.

If, in addition, there exists α > 0 such that

(3.10) J(ū) +
α

2
‖u− ū‖22,2 ≤ J(u) ∀u ∈ K0 (resp., K) such that ‖u− ū‖s,s ≤ ε,

we will say that ū is a Ls-weak local solution satisfying the quadratic growth
condition.

(iii) ū is strong local solution of (CP0) (resp., (CP1)) if there exists ε > 0 such
that

(3.11) J(ū) ≤ J(u) ∀u ∈ K0 (resp., K) such that ‖y[u]− ȳ‖∞ ≤ ε,

where ȳ := y[ū]. If, in addition, there exists α > 0 such that

(3.12) J(ū) +
α

2
‖u− ū‖22,2 ≤ J(u) ∀u ∈ K0 (resp., K) such that ‖y[u]− ȳ‖∞ ≤ ε,

we will say that ū is a strong local solution satisfying the quadratic growth condition.
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The following remark will be very useful.

Remark 3.4. Since for u ∈ K0 and 1 ≤ s1 ≤ s2 <∞ we have that∫
Q

|u(t, x)|s2dtdx ≤Ms2−s1
∫
Q

|u(t, x)|s1dtdx

with M := max{‖a‖∞, ‖b‖∞}, it holds that ‖u‖s2,s2 ≤ M1− s1
s2 ‖u‖

s1
s2
s1,s1 and thus the

relative topologies of Ls1,s1(Q) ∩ K0 and Ls2,s2(Q) ∩ K0 are equivalent. This implies
that for both problems (CP0) and (CP1), for s ∈ [1,∞[ the notions of Ls-weak solution
and L1-weak solution (resp., Ls-weak solution and L1-weak solution satisfying the
quadratic growth condition) are equivalent. As a consequence, using that Lemma
2.1(iii) and Lemma 4.1 in the next section imply that ‖y[u]− ȳ‖∞ ≤ c‖u− ū‖s,s for a
constant c > 0 and s large enough, we obtain that ‖u− ū‖1,1 → 0, for u ∈ K0, implies
that ‖y[u]− ȳ‖∞ → 0.

3.1. Main results for problem (CP0). In this section we present a charac-
terization of property (3.12), i.e., for strong local solutions of problem (CP0), which
are assumed to exist. The proof of the results in the present section will be provided
in section 5.1.

Let us set some notation in order to concisely write optimality conditions for
problem (CP0). The Hamiltonian H : Q× R3 7→ R is defined as

(3.13) H(t, x, y, p, u) := `(t, x, y, u)− pϕ(t, x, y, u).

Given ū ∈ K0 and setting ȳ := y[ū], the adjoint state p̄ associated to ū is defined as
the unique weak solution of

(3.14)

−∂tp−∆p−Hy(t, x, ȳ, p, ū) = 0 in Q,

p = 0 in Σ,

p(T, ·) = Φy(·, ȳ(T, ·)) in Ω.

By (H2)(ii) and the maximum principle one has p̄ ∈ L∞(Q). Let us define the linear
form Q1[ū] : L2,2(Q)→ R and the quadratic form Q2[ū] : L2,2(Q)→ R as (recall the
notation defined in (3.2))
(3.15)

Q1[ū]v :=
∫
Q
Hu(t, x, ȳ(t, x), p̄(t, x), ū(t, x))v(t, x)dtdx,

Q2[ū](v) :=
∫
Q
H(y,u)2(t, x, ȳ(t, x), p̄(t, x), ū(t, x))(ξ[v](t, x), v(t, x))2dtdx

+
∫

Ω
Φyy(x, ȳ(T, x))ξ[v](T, x)2dx,

where ξ[v] ∈ V2(Q) is the unique solution of

(3.16)

∂tξ −∆ξ + ϕy(t, x, ȳ(t, x), ū(t, x))ξ = −ϕu(t, x, ȳ(t, x), ū(t, x))v in Q,

ξ = 0 in Σ,

ξ(0, ·) = 0 in Ω.

Under (H1)–(H2) we have that Q1[ū] and Q2[ū] are well defined. Now, let us recall
that given a Banach space (X, ‖ · ‖X) and K ⊆ X, the tangent cone to K at u is
defined as

(3.17)
TK(u) := {v ∈ X | ∃ u(τ) = u+ τv + o(τ) ∈ K, τ > 0,

‖o(τ)/τ‖X → 0, as τ ↓ 0} .
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Defining

Aa(ū) := {(t, x) ∈ Q ; ū(t, x) = a(t, x)}, Ab(ū) := {(t, x) ∈ Q ; ū(t, x) = b(t, x)},

it is easy to check (see, e.g., [25]) that

TK0(ū) :=
{
v ∈ L2,2(Q) ; v ≥ 0 in Aa(ū) and v ≤ 0 in Ab(ū)

}
.

Finally, the critical cone to K0 at ū is defined as CK0
(ū) := TK0

(ū)∩KerQ1[ū], where
KerQ1[ū] := {v ∈ L2,2(Q) ; Q1[ū]v = 0}. It is easily seen (see, e.g., [25]) that

CK0(ū) =
{
v ∈ L2,2(Q) ; v ≥ 0 in Aa(ū) and v ≤ 0 in Ab(ū),

Hu(t, x, ȳ(t, x), p̄(t, x), ū(t, x))v(t, x) = 0 a.e. in Q} .

Now, we have all the elements to state our main result for problem (CP0) which
provides a characterization of the quadratic growth property for strong local solutions
(see (3.12) in Definition 3.3(iii)).

Theorem 3.5. Assume (H1)–(H2). Then, the following assertions are equivalent:
(i) The control ū is a strong local solution of (CP0) satisfying the quadratic growth

condition (3.12).
(ii) There exists α > 0 such that the following conditions hold true:
(ii.1) For almost all (t, x) ∈ Q we have that

(3.18) H(t, x, ȳ(t, x), p̄(t, x), ū(t, x)) +
α

2
|u− ū(t, x)|2 ≤ H(t, x, ȳ(t, x), p̄(t, x), u)

for all u ∈ [a(t, x), b(t, x)].
(ii.2) For all v ∈ CK0

(ū) it holds that Q2[ū](v) ≥ α‖v‖22,2.

The following corollary states an interesting consequence of the previous result.

Corollary 3.6. Suppose that (H1)–(H2) hold true and let s ∈ [1,∞[. Then, ū
is a strong local solution of (CP0) satisfying the quadratic growth condition iff ū is a
Ls-weak local solution of (CP0) satisfying the quadratic growth condition.

Thus, the notions of weak local solutions in Ls (s ∈ [1,∞[) and strong solutions
are equivalent. The next result shows that if the structural assumption (H3) holds
true and the data of (CP0) are continuous, we have the equivalence of the three notions
of local solution in Definition 3.3 satisfying the quadratic growth condition. Note that
under (H3) there exists at least a global solution û, i.e., J(û) ≤ J(u) for all u ∈ K0

(see, e.g., [27, section 5.3]).

Theorem 3.7. Assume (H1)–(H3) and that a, b, `1, and ϕ1 (resp., `2 and ϕ2)
admit extensions to Q (resp., Q × R) which are continuous. Moreover, suppose that
Φy admits a locally Hölder continuous extension to Ω × R satisfying Φy(x, 0) = 0
for all x ∈ ∂Ω. Then, for ū ∈ K0 we have the equivalence of (3.8), (3.10) (for any
s ∈ [1,∞[), and (3.12).

We end this section with the following example.

Example 3.8. Consider the optimal control problem

inf
∫
Q

[
N
2 u(t, x)2 + `(t, x, y(t, x))

]
dtdx,

s.t.

∂ty −∆y + ϕ(y) = u+ f in Q,

y = 0 in Σ, y(0, ·) = y0(·),

a ≤ u ≤ b in Q,
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where N > 0, ` is continuous on Q×R and satisfies (H2), ϕ is C2 and it is increasing,

f ∈ L∞(Q), y0 ∈ W
2− 2

s ,s
0 (Ω), and a, b are continuous on Q. Then, for this problem

the notions of weak, Ls-weak (for any s ∈ [1,∞[), and strong solutions satisfying the
quadratic growth condition are equivalent.

On the other hand, if we consider the problem with nonconvex Hamiltonian

inf
∫
Q

[
u(t, x)2 − u(t, x)4 − y(t, x)4

]
dtdx,

s.t.

∂ty −∆y = u in Q,

y = 0 in Σ, y(0, ·) = 0,

0 ≤ u ≤ 2 in Q,

using [25, Theorem 5.8] we obtain that ū ≡ 0 is a weak local solution satisfying the
quadratic growth condition. However, due to the −u4 term, we have that ū is not an
Ls-weak solution for any s ∈ [1,∞[.

3.2. Main results for problem (CP1). In contrast to the generic results pre-
sented for problem (CP0), we will assume now that the cost function and the dynamics
have the more particular form in (H3). In this case, the existence of at least one global
solution û, i.e., J(û) ≤ J(u) for all u ∈ K, follows from standard arguments (see, e.g.,
[27, section 5.3]). The results stated in this section will be proved in section 5.2.

Let us introduce the Lagrangian L : L∞(Q)× RnE × RnI → R defined as

(3.19) L(u, λ) := J(u) + λ>G(u), where λ = (λE , λI) ∈ RnE × RnI .

Now, let us fix ū ∈ K and set ȳ := y[ū]. Given λ = (λE , λI) ∈ RnE × RnI define

Φ[λ](x, y) := Φ(x, y) + λ>EΦE(x, y) + λ>I ΦI(x, y) ∀ y ∈ R, x ∈ Ω.

The adjoint state p̄λ associated to ū is defined as the unique weak solution of

(3.20)

−∂tp−∆p−Hy(t, x, ȳ(t, x), p(t, x), ū(t, x)) = 0 in Q,

p = 0 in Σ,

p(T, ·) = Φy[λ](·, ȳ(T, ·)),

where we recall that H is defined in (3.13). By (H2)(ii) and our assumptions on
ΦE and ΦI , the maximum principle implies that p̄λ ∈ L∞(Q). Similarly to the
case without final state constraints, given λ ∈ RnE+nI , let us define the linear and
quadratic forms Q1[ū, λ] : L2,2(Q)→ R, Q2[ū, λ] : L2,2(Q)→ R as (recall the notation
defined in (3.2))
(3.21)

Q1[ū, λ]v :=
∫
Q
Hu(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x))v(t, x)dtdx,

Q2[ū, λ](v) :=
∫
Q
H(y,u)2(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x))(ξ[v](t, x), v(t, x))2dtdx

+
∫

Ω
Φyy[λ](x, ȳ(T, x))ξ[v](T, x)2dx,

where ξ is defined by (3.16). Under our assumptions (H1)–(H2) we have that Q1[ū, λ]
and Q2[ū, λ] are well defined.

Definition 3.9. We say that λ = (λE , λI) ∈ RnE+nI is a Lagrange multiplier at
ū ∈ K if

(3.22) Q1[ū, λ]v ≥ 0 ∀v ∈ TK0
(ū), λjI ≥ 0, λjIG

j
I(ū) = 0, ∀j = 1, . . . , nI .

The set of Lagrange multipliers at ū is denoted as ΛL(ū).
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Note that λ ∈ ΛL(ū) iff λjI ≥ 0, λjIG
j
I(ū) = 0 for all j = 1, . . . , nI and a.e. in Q

we have

Hu(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x))(u− ū(t, x)) ≥ 0 ∀u ∈ [a(t, x), b(t, x)].

Therefore, the particular quadratic structure of the Hamiltonian assumed in (H3)
implies that there exists α > 0 such that λ ∈ ΛL(ū) iff λjI ≥ 0, λjIG

j
I(ū) = 0 for all

j = 1, . . . , nI and a.e. in Q we have

(3.23) H(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x)) +
α

2
|u− ū(t, x)|2 ≤ H(t, x, ȳ(t, x), p̄λ(t, x), u)

for all u ∈ [a(t, x), b(t, x)].
Now, let us define the critical cone to K at ū as

(3.24) CK(ū) := {v ∈ TK(ū) ; DJ(ū)v = 0} ,

where we recall that the tangent cone TK(ū) is defined in (3.17).
Let us state the main result in this section, regarding a sufficient second order

optimality condition for quadratic growth in the strong sense for local solutions of
(CP1).

Theorem 3.10. Suppose that (H1)–(H3) hold true and that
(i) ΛL(ū) 6= ∅,
(ii) there exists α > 0 such that

max
λ∈ΛL(ū)

Q[ū, λ](v) ≥ α‖v‖22,2 ∀v ∈ CK(ū).

Then, ū is a strong local solution of (CP1) satisfying the quadratic growth condition
(3.12).

In order to prove a characterization of the quadratic growth property, i.e., that
conditions (i)–(iii) in the previous theorem are also necessary, we will need to impose
some qualification conditions (see [25] for a detailed discussion on this topic).

Denoting by B(0, δ) the open ball in RnE+nI , centered at 0 and of radius δ, let
us recall that if the Robinson’s constraint qualification condition (see [23])

(RCQ) ∃ δ > 0 such that B(0, δ) ⊆ G(ū) +DG(ū) (K0 − ū)−K2

holds true, then by [25, Lemma 4.2]

(3.25)
TK(ū) :=

{
v ∈ L2,2(Q) ; v ≥ 0 in Aa(ū) and v ≤ 0 in Ab(ū),

DGE(ū)v = 0, DGiI(ū)v ≤ 0 ∀i ∈ I(ū)
}
,

where I(ū) := {j ∈ {1, . . . , nI} ; GjI(ū) = 0}. Moreover, as a consequence of [14,
Corollary 2.2], at any weak local solution ū of (CP1) we have that ΛL(ū) is a nonempty
compact subset of RnE+nI .

We will state a characterization of the quadratic growth property by assuming
that at the nominal control ū ∈ K the standard qualification condition (RCQ) is
satisfied and that the critical cone is equal to the strict critical cone to K, defined as

CsK(ū) := {v ∈ CK(ū) ; v = 0 a.e. in Aa(ū) ∪Ab(ū)},
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or that the following strengthened qualification condition holds true: there exists
λ ∈ ΛL(ū) and δ > 0 such that

(3.26) B(0, δ) ⊆
(
DG(ū)

[
(K0 − ū) ∩ (Hu[λ])⊥

]
− (K1 −G(ū)) ∩ λ⊥

)
,

where (Hu[λ])⊥ denotes the subspace of functions v ∈ L2,2(Q) such that∫
Q

Hu(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x))v(t, x)dtdx = 0,

and λ⊥ is the subspace of RnE × RnI which is orthogonal to {λ}.
Remark 3.11. Condition (3.26), introduced by Shapiro in [24] for general opti-

mization problems and in [9] in the context of semilinear elliptic equations with finitely
many state constraints, implies (RCQ) and the fact that ΛL(ū) is a singleton (see [25,
Lemma 5.4]). This qualification condition is implied by the classical surjectivity type
assumption for similar problems in the context of semilinear elliptic equations (see,
e.g., [13, Condition (3.1)]). We refer the reader to [25, Remark 5.3] for a detailed
discussion on this matter.

For the sake of clarity, we state both characterizations as different theorems,
depending on the assumed qualification condition. Using the results in [25], the proofs
of the following two results are straightforward and will be given in section 5.2.

Theorem 3.12. Suppose that (H1)–(H3) hold true, that Robinson’s constraint
qualification (RCQ) is satisfied at ū ∈ K, and that CK(ū) = CsK(ū). Then, the
following assertions are equivalent:

(i) The control ū is a strong local solution of (CP1) satisfying the quadratic growth
condition (3.12).

(ii) ΛL(ū) 6= ∅ and ∃ α > 0 such that for all v ∈ CK(ū) it holds that

max
λ∈ΛL(ū)

Q2[ū, λ](v) ≥ α‖v‖22,2.

Condition CK(ū) = CsK(ū) is satisfied if there exists λ ∈ ΛL(ū) such that
Hu(t, x, y(t, x), pλ(t, x), u(t, x) a.e. in Aa(ū) ∪ Ab(ū). In the absence of state con-
straints, this type of assumption has been proved to be useful in order to obtain
asymptotic expansions for approximations of local solutions of the optimal control
problem at hand (see [8] for an application in the analysis of interior point methods).
In the following result, we provide the desired characterization without the assump-
tion that CK(ū) = CsK(ū), but requiring assumption (3.26), which is stronger than
(RCQ).

Theorem 3.13. Let ū ∈ K. Suppose that (H1)–(H3) hold true and that (3.26) is
satisfied at some λ ∈ ΛL(ū) (and so ΛL(ū) = {λ}). Then, the following assertions
are equivalent:

(i) The control ū is a strong local solution of (CP1) satisfying the quadratic growth
condition (3.12).

(ii) ∃ α > 0 such that for all v ∈ CK(ū) it holds that Q2[ū, λ](v) ≥ α‖v‖22,2.

As in the case of pure control constraint (see Theorem 3.7), under some continuity
assumptions on the data, we have the following equivalence of notions of local solutions
satisfying the quadratic growth condition.

Theorem 3.14. Assume (H1)–(H3) and that a, b, `1, and ϕ1, (resp., `2, and
ϕ2) admit extensions to Q (resp., Q × R) which are continuous. Moreover, for ψ =
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Φ,ΦE ,ΦI suppose that ψy admits a locally Hölder continuous extension to Ω × R
satisfying ψy(x, 0) = 0 for all x ∈ ∂Ω. Then, for ū ∈ K we have the equivalence of
(3.8), (3.10) (for any s ∈ [1,∞[) and (3.12), provided that one of the two following
conditions is satisfied:

(a) The Robinson constraint qualification (RCQ) holds true and CK(ū) = CsK(ū).
(b) Condition (3.26) is satisfied at some λ ∈ ΛL(ū) (and so ΛL(ū) = {λ}).

3.3. Some remarks and possible extensions in the state constrained
case. The proofs of the results in the previous subsection, provided in section 5,
show that our statements hold true if the term `1(t, x)u2 in the cost is replaced by
any strongly convex function of u, where the strong convexity constant is uniform
w.r.t. (t, x) ∈ Q. Moreover, if (H3) holds true the reader can also verify that our
results are still valid if the assumptions in (H1)–(H2) concerning the uniform Lipschitz
property for the second derivatives w.r.t. to the state variable y are replaced by the
weaker assumption of a uniform modulus of continuity. On the other hand, it can be
interesting to relax the assumptions on the regularity of the initial data and of the
boundary ∂Ω. The main difficulty here is that in this case we can only expect the
existence of weak solutions for (3.1) (see Remark 3.2). This fact adds some difficulties
in the expansion of the cost w.r.t. perturbations of a nominal control ū proved in
Theorem 4.3 in the next section.

Extensions to general cost functions and dynamics, without assuming (H3), as the
ones considered for problem (CP0), are not straightforward and remain as interesting
challenges, as we now explain.

Let us first discuss second order sufficient conditions. In analogy with [10], let us
first introduce a stronger notion than the one of a Lagrange multiplier. We say that
λ = (λE , λI) ∈ RnE+nI is a Pontryagin multiplier at ū ∈ K if λ ∈ ΛL(ū) and a.e. in Q

H(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x)) ≤ H(t, x, ȳ(t, x), p̄λ(t, x), u) ∀u ∈ [a(t, x), b(t, x)].

The set of Pontryagin multipliers at ū is denoted as ΛP (ū). The proof of Theorem
3.10 actually shows that the correct condition on the quadratic form is that there
exists α > 0 such that maxλ∈ΛP (ū)Q2[ū, λ](v) ≥ α‖v‖22,2. Now, our assumption
(H3) implies that the Hamiltonian H is convex w.r.t. u and so in our particular
case ΛL(ū) = ΛP (ū), which allowed us to prove our results. However, in the general
case ΛP (ū) is strictly contained in ΛL(ū). Another issue appearing in second order
sufficient conditions is the fact that our assumption (H3) implies that for every λ ∈
RnE+nI the quadratic form Q2[ū, λ] is a Legendre form, i.e., it satisfies that Q2[ū, λ]
is weakly lower semicontinuous and if vk ∈ H converges weakly to v and Q2[ū, λ](vk)
converges to Q2[ū, λ](v), we have that vk converges strongly to v. In the general case,
this assumption cannot be directly verified and has to be imposed. As a conclusion,
regarding second order sufficient optimality conditions, the proof of Theorem 3.10
shows that in the general case we have the following result.

Theorem 3.15. Suppose that (H1)–(H2) hold true and that
(i) ΛP (ū) 6= ∅,
(ii) there exists λ̄ ∈ ΛP (ū) such that (3.23) is satisfied at ū,
(iii) for all λ ∈ ΛP (ū) the quadratic form Q[ū, λ] is a Legendre form and there

exists α > 0 such that

max
λ∈ΛP (ū)

Q[ū, λ](v) ≥ α‖v‖22,2 ∀v ∈ CK(ū).

Then, ū is a strong local solution of (CP1) satisfying the quadratic growth condition.
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Now regarding second order necessary conditions, a direct application of the Pon-
tryagin principle (see, e.g., [17, 12, 14]) and the results on second order necessary
conditions in [25] show that if ū ∈ K is a strong local solution of (CP1) and (RCQ)
holds true, then there exist α > 0 and λ ∈ ΛP (ū) such that (3.23) holds true and for
all v ∈ CsK(ū) we have that maxλ∈ΛL(ū)Q2[ū, λ](v) ≥ α‖v‖22,2. In accordance to (iii)
in the previous theorem, the desirable second order necessary condition should imply
a maximization of Q2[ū, λ](v) on ΛP (ū) rather than on ΛL(ū).

As a summary, for second order sufficient conditions the main issue is to get rid
of the Legendre form assumption, while for second order necessary conditions the
main problem is to obtain a maximization condition of Q2[ū, λ](v) on ΛP (ū). Both
problems remain as interesting future research projects, since they would allow us to
establish a characterization of quadratic growth for strong local solutions for general
control problems of the form (CP1), similar to the one established in Theorem 3.5 for
problem (CP0).

4. Second order expansions and a decomposition result. The aim of this
section is to provide a precise second order expansion for the cost J (see, e.g., (3.5))
and the Lagrangian L (see (3.19)) in terms of the control, assuming (H1)–(H2). Since
J(u) = L(u, 0) we will consider only expansions for L(·, λ) which are proven to be
uniform for λ in a compact set. The main result of this section is Theorem 4.3, which
is the key tool to prove second order sufficient conditions for quadratic growth in the
strong sense. Since this section is of a technical nature, at first reading the reader can
skip the first results and pass directly to Theorem 4.3.

Throughout the section we fix ū ∈ L∞(Q) and denote ȳ := y[ū]. The key point is
that we consider perturbations v of ū that are not necessarily small in the ‖·‖∞ norm.
We will first need some precise information about the effect of this type of perturbation
on the mapping u 7→ y[u]. We collect in the following lemma some results of this type.
For a function ψ : Q×R×R→ R we will denote ψ(t, x) := ψ(t, x, ȳ(t, x), ū(t, x)) and
given u ∈ L∞(Q) we will write δψ(t, x) := ψ(t, x, ȳ(t, x), u(t, x)) − ψ(t, x). Similarly,
for Ψ : Ω× R→ R we set Ψ(x) := Ψ(x, ȳ(T, x)).

Lemma 4.1. For v ∈ L∞(Q) set u := ū + v and let us define z1[v] ∈ Vs(Q) and
z2[v] ∈ Vs(Q) as the solutions of

(4.1)

∂tz1 −∆z1 + ϕy(t, x)z1 + δϕ(t, x) = 0 in Q,

z1 = 0 in Σ,

z1(0, ·) = 0 in Ω,

and

(4.2)

∂tz2 −∆z2 + ϕy(t, x)z2 + 1
2ϕyy(t, x)z1[v]2 + δϕy(t, x)z1[v] = 0 in Q,

z2 = 0 in Σ,

z2(0, ·) = 0 in Ω,

respectively. Then, setting δy := y[u]− ȳ, d1[v] := δy−z1[v], and d2[v] := d1[v]−z2[v],
the following estimates hold true:

(4.3)

‖z1[v]‖Vs + ‖δy‖Vs = O(‖v‖s,s),

‖d1[v]‖2,2 + ‖d1[v](T, ·)‖2 = O (‖δy‖∞‖v‖2,2) ,

‖d2[v]‖1,1 + ‖d2[v](T, ·)‖1 = O
(
‖δy‖∞‖v‖22,2

)
.
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Proof. We have that δy satisfies

∂tδy −∆δy = −
[∫ 1

0
ϕy(t, x, ȳ + τδy, ū+ τv)dτ

]
δy

−
[∫ 1

0
ϕu(t, x, ȳ + τδy, ū+ τv)dτ

]
v in Q,

δy = 0 in Σ,

δy(0, ·) = 0 in Ω.

Using the above equation and equation (4.1) for z1, the estimates for ‖δy‖Vs and
‖z1[v]‖Vs follow by (H1)(iii) and (2.5). Noting that omitting the dependence on
(t, x),

ϕ(t, x, y[ū+ v], ū+ v)− ϕ(ȳ, ū+ v)− ϕy(t, x)δy

=
∫ 1

0

[
ϕy(t, x, ȳ + τδy, ū+ v)− ϕy(t, x)

]
dτδy = O

(
|δy|2 + |v||δy|

)
,

we easily check that d1 satisfies

∂td1 −∆d1 + ϕy(t, x)d1 = O
(
|δy|2 + |v||δy|

)
in Q,

d1 = 0 in Σ,

d1(0, ·) = 0 in Ω.

In particular, (2.5) implies

‖d1[v]‖2,2 + ‖d1[v](T, ·)‖2 = O

[∫
Q

[
|δy|2 + |v||δy|

]2
dtdx

] 1
2

 = O (‖δy‖∞‖v‖2,2) ,

which gives the second estimate in (4.3). On the other hand, omitting the dependence
on (t, x) and setting y = y[ū+ v], u = ū+ v, we have that

ϕ(y, u)− ϕ(ȳ, u)− ϕy(t, x)z1 − ϕy(t, x)z2 − 1
2ϕyy(t, x)z2

1 − δϕy(t, x)z1

= ϕy(t, x)d2 + ϕ(y, u)− ϕ(ȳ, u)− ϕy(t, x)δy − 1
2ϕyy(t, x)z2

1 − δϕy(t, x)z1

= ϕy(t, x)d2 + ϕy(ȳ, u)δy + 1
2ϕyy(ȳ, u)(δy)2

+
∫ 1

0
(1− τ)

[
ϕyy(ȳ + τδy, u)− ϕyy(ȳ, u)

]
dτ(δy)2 − ϕy(t, x)δy

− 1
2ϕyy(t, x)z2

1 − δϕy(t, x)z1

= ϕy(t, x)d2 + δϕy(t, x)d1 + 1
2δϕyy(t, x)(δy)2 + 1

2ϕyy(t, x)((δy)2 − z2
1)

+
∫ 1

0
(1− τ)

[
ϕyy(ȳ + τδy, u)− ϕyy(ȳ, u)

]
dτ(δy)2

= ϕy(t, x)d2 +O
(
|d1||v|+ |δy|2||v|+ |d1|(|δy|+ |z1|) + |δy|3

)
.

This implies that d2 solves

∂td2 −∆d2 + ϕy(t, x)d2 = O
(
|d1||v|+ |δy|2|v|+ |d1|(|δy|+ |z1|) + |δy|3

)
in Q,

d2 = 0 in Σ,

d2(0, ·) = 0 in Ω.
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Using (2.6) we get that

‖d2[v]‖1,1 + ‖d2[v](T, ·)‖1

= O
(∫

Q

[
|d1||v|+ |δy|2|v|+ |d1|(|δy|+ |z1|) + |δy|3

]
dtdx

)
,

and the third estimate in (4.3) follows from the previous ones.

Let us now fix some notation and recall the definition of the Hamiltonian H in
(3.13). Given u ∈ L∞(Q) and λ ∈ RnE+nI we write δu := u− ū and

(4.4)

H[λ](t, x) := H(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x)),

δH[λ](t, x) := H(t, x, ȳ(t, x), p̄λ(t, x), u(t, x))−H[λ](t, x),

Hy[λ](t, x) := Hy(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x)),

δHy[λ](t, x) := Hy(t, x, ȳ(t, x), p̄λ(t, x), u(t, x))−Hy[λ](t, x)

with similar notation for the second order derivatives. Using the estimates obtained
in Lemma 4.1 and the definitions of the Hamiltonian and the adjoint state pλ (see
(3.20)), we have the following result.

Proposition 4.2. Given u ∈ L∞(Q) set y := y[u], δu := u− ū, and δy := y− ȳ.
The following assertions hold true:

(i) We have the first order expansion

(4.5) L(u, λ)− L(ū, λ) =

∫
Q

δH[λ](t, x)dtdx+O(‖δy‖∞‖δu‖2,2),

where the O-term is uniform for λ in a bounded set C ⊆ RnE+nI .
(ii) We have the second order expansion

(4.6)

L(u, λ)− L(ū, λ)

=
∫
Q

[
δH[λ](t, x) + 1

2Hyy[λ](t, x)(z1[δu])2 + δHy[λ](t, x)z1[δu]
]

dtdx

+
∫

Ω
Φyy[λ](z1[δu](T, x))2dx+O

(
‖δy‖∞‖δu‖22,2

)
,

where the O-term is uniform for λ in a bounded set C ⊆ RnE+nI .

Proof. Let us prove (i). By (3.19), omitting the dependence on (t, x),

(4.7)
L(u, λ)− L(ū, λ) =

∫
Q

[`(y, u)− `(ȳ, ū)] dtdx

+
∫

Ω
[Φ[λ](x, y(T, x))− Φ[λ](x, ȳ(T, x))] dx.

Now, writing δyT (x) := δy(T, x), assumption (H2)(ii) implies that

(4.8)

∫
Q

[
`(y, u)− `

]
dtdx+

∫
Ω

[
Φ[λ](y(T, x))− Φ[λ]

]
dx

=
∫
Q

[
`(y, u)− `(y, u) + δ`

]
dtdx+

∫
Ω

Φy[λ]δyTdx+O
(∫

Ω
|δyT |2dx

)
,

=
∫
Q

[
`(y, u)− `(y, u) + δ`+ ∂tp̄λδy + p̄λ∂tδy

]
dtdx+O

(∫
Ω
|δyT |2dx

)
,

where, in the second equality, we have used that Φ[λ](·) = pλ(T, ·) and δy(0, ·) = 0.
Using the equation satisfied by p̄λ in (3.20) and the equation satisfied by δy and
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integrating by parts, we obtain

(4.9)

∫
Q

[∂tp̄λδy + p̄λ∂tδy] dtdx

=
∫
Q

[
−(`y − p̄λϕy)δy − p̄λ(ϕ(y, u)− ϕ)

]
dtdx,

=
∫
Q

[
−`yδy − p̄λ(ϕ(y, u)− ϕ(ȳ, u)− ϕyδy + δϕ)

]
dtdx.

On the other hand, note that (H2)(ii) implies

`(y, u)− `(y, u)− ¯̀
yδy =

∫ 1

0
(`y(ȳ + τδy, u)− ¯̀

y)δydt = O
(
|δy|2 + |δy||δu|

)
,

ϕ(y, u)− ϕ(y, u)− ϕ̄yδy =
∫ 1

0
(ϕy(ȳ + τδy, u)− ϕ̄y)δydt = O

(
|δy|2 + |δy||δu|

)
,

and so, using that the maximum principle and (H2)(ii) imply that ‖p̄λ‖∞ is uniformly
bounded for λ ∈ C, we get with (4.7), (4.8), and (4.9)

L(u, λ)− L(ū, λ) =

∫
Q

δH(t, x)dtdx+O

(∫
Q

[
|δy|2 + |δy||δu|

]
dtdx+

∫
Ω

|δyT |2dx

)
,

and assertion (i) is obtained from Lemma 4.1. In order to prove (ii), we follow a
similar strategy. Expanding up to the second order, and recalling that we denote
d1 = δy − z1 and d2 = δy − z1 − z2, we have∫

Q

[
`(y, u)− `

]
dtdx

=
∫
Q

[
`(y, u)− `(ȳ, u) + δ`

]
dtdx,

=
∫
Q

[
`y(ȳ, u)δy + 1

2`yy(ȳ, u)(δy)2 + δ`
]

dtdx

+
∫
Q

∫ 1

0
(1− τ) [`yy(ȳ + τδy, u)− `yy(ȳ, u)] (δy)2dτdtdx,

=
∫
Q

[
δ`yδy + `yδy + 1

2`yyz
2
1 + δ`

]
dtdx

+O
(∫

Q

[
|d1|(|δy|+ |z1|) + |δu||δy|2 + |δy|3

]
dtdx

)
,

=
∫
Q

[
δ`yz1 + `y(z1 + z2) + 1

2`yyz
2
1 + δ`

]
dtdx

+O
(∫

Q

[
|d1||δu|+ |d2|+ |d1|(|δy|+ |z1|) + |δu||δy|2 + |δy|3

]
dtdx

)
,

where, in the third equality, we have used that

`yy(ȳ, u)(δy)2

= `yy(δy)2 +O(|δu||δy|2) = `yy(z1)2 +O
(
|δu||δy|2 + |d1|(|z1|+ |δy|)

)
and

∫
Q

∫ 1

0
(1− τ) [`yy(ȳ + τδy, u)− `yy(ȳ, u)] (δy)2dτdtdx = O

(∫
Q
|δy|3dtdx

)
by (H2)(ii). Analogously, setting (z1)T = z1(T, ·) with a similar convention for (d1)T
and (d2)T , we have∫

Ω
(Φ[λ](yT )− Φ[λ])dx

=
∫

Ω

[
Φy[λ]δyT + 1

2 Φyy[λ]δy2
T

]
dx+O

(∫
Ω
|δyT |3dx

)
=
∫

Ω

[
Φy[λ](z1 + z2)T + 1

2 Φyy[λ](z1)2
T

]
dx

+O
(∫

Ω

[
|(d2)T |+ |(d1)T ||(z1)T |+ |(d1)T ||δyT |+ |δyT |3

]
dx
)
.
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Therefore, by Lemma 4.1 and the Cauchy–Schwarz inequality, we get

(4.10)

L(u, λ)− L(ū, λ) =
∫
Q

[
δ`yz1 + `y(z1 + z2) + 1

2`yyz
2
1 + δ`

]
dtdx

+
∫

Ω

[
Φy[λ](z1 + z2)T + 1

2 Φyy[λ](z1)2
T

]
dx

+O(‖δy‖∞‖δu‖22,2).

Finally, using (3.20), (4.1), (4.2) and integrating by parts we obtain that∫
Ω

Φy[λ](z1 + z2)Tdx

=
∫

Ω
p̄λ(T, x)(z1 + z2)Tdx

= −
∫
Q

[
δϕ pλ + δϕyz1 pλ + 1

2ϕyyz
2
1 pλ + `y(z1 + z2)

]
dtdx,

which combined with (4.10) yields (4.6).

Now, let us consider a sequence uk ∈ L∞(Q) such that ‖uk−u‖2,2 → 0 and let Ak,
Bk be a sequence of measurable subsets of [0, T ] × Ω such that |Ak ∪ Bk| = T × |Ω|
and |Bk| ↓ 0 as k ↑ ∞ (where we set | · | for the Lebesgue measure of a Lebesgue
measurable set). Recalling (4.1), we set

(4.11)
δku := uk − ū, δAk

u := IAk
(uk − ū), δBk

u := δku− δAk
u,

zk := z1[δku], zAk := z1[δAk
u], and zBk := z1[δBk

u],

where IA denotes the indicator function of a measurable set A, i.e., IA(t, x) = 1 if
(t, x) ∈ A and it is equal to zero otherwise. Similarly to (4.4), we write δkH[λ](t, x) =
H(t, x, ȳ(t, x), p̄λ(t, x), uk(t, x))−H[λ](t, x), with an analogous definition for δkHy[λ]
(t, x). Using Proposition 4.2, we prove now the main result of this section, which will
be fundamental in section 5.

Recall that Q1[ū, λ] and Q2[ū, λ] are defined in (3.21).

Theorem 4.3. Suppose that ‖δku‖2,2 ↓ 0 and that ‖δAk
u‖∞ ↓ 0. Then,

(4.12)
L(uk, λ)− L(ū, λ)

=
∫
Bk
δkH[λ](t, x)dtdx+Q1[ū, λ]δAk

u+ 1
2Q2[ū, λ](δAk

u) + o(‖δku‖22,2),

where the o-term is uniform for λ in a compact set of RnE+nI .

Proof. Step 1. Using the expansion (4.6), we first prove that

(4.13)

L(uk, λ)− L(ū, λ)

=
∫
Bk
δkH[λ](t, x)dtdx

+
∫
Q

[
Hu[λ](t, x)δAk

u+ 1
2H(y,u)2 [λ](t, x)(zAk , δAk

u)2
]

dtdx

+
∫

Ω
Φyy[λ](zAk(T, x))2dx+ o(‖δku‖22,2).

For notational simplicity we omit the dependence on λ for H and its derivatives. First
note that since ‖δAk

u‖∞ ↓ 0, a Taylor expansion of the term δkH(t, x) implies that∫
Ak
δkH(t, x)dtdx

=
∫
Q

[
Hu(t, x)δAk

u+ 1
2Huu(t, x)(δAk

u)2
]

dtdx+O(‖δAk
u‖∞‖δAk

u‖22,2),

=
∫
Q

[
Hu(t, x)δAk

u+ 1
2Huu(t, x)(δAk

u)2
]

dtdx+ o(‖δku‖22,2).
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Thus, if

(4.14)

∫
Q

[
1
2Hyy(t, x)(zk)2 + δkHyz

k
]

dtdx

=
∫
Q

[
1
2Hyy(t, x)(zAk)2 +Hyu(t, x)zAkδAk

u
]

dtdx+ o(‖δku‖22,2),

and
∫

Ω
Φyy[λ](zk(T, x))2dx =

∫
Ω

Φyy[λ](zAk(T, x))2dx+ o(‖δku‖22,2)

hold true, relation (4.13) follows from (4.6) and (4.14) using that
∫
Q
δkH can be

decomposed as
∫
Ak
δkH +

∫
Bk
δkH. Let us prove (4.14). Using that zk = zAk + zBk

(because δAk
u and δBk

u have disjoint supports and (4.1) has a unique solution), we
have that

(4.15)

∫
Q

[
1
2Hyy(t, x)(zk)2 + δkHy(t, x)zk

]
dtdx

=
∫
Q

[
1
2Hyy(t, x)(zAk)2 + δkHy(t, x)zAk

]
dtdx+ rk,

where

|rk| = O
(∫

Q

[
|(zAk)2 − (zk)2|+ |δku||zAk − zk|

]
dtdx

)
= O

(∫
Q

[
|zBk |2 + |zBk ||zAk |+ |δku||zBk |

]
dtdx

)
.

The second equality in the above relation follows from the fact that |(zAk)2− (zk)2| =
|zBk ||zAk + zk| = |zBk ||2zAk + zBk |. Now, by (2.3), there exists q1 ∈]1, 2[ such that
‖zBk‖2,2 = O(‖δBk

u‖q1,q1). By the Hölder inequality (and setting s∗ := s/(s− 1) for
s ∈]1,∞[) we get

(4.16)

‖δBk
u‖q1,q1 =

(∫
Q
|δBk

u|q1dtdx
) 1

q1

≤
(∫

Q
(IBk

)

(
2
q1

)∗
dtdx

) 1

( 2
q1

)
∗

‖δku‖2,2 = o(‖δku‖2,2)

and so ‖zBk‖2,2 = o(‖δku‖2,2). Therefore, using the Cauchy–Schwarz inequality and
that ‖zAk‖2,2 = O(‖δAk

u‖2,2) = O(‖δku‖2,2), we get rk = o(‖δku‖22,2) and so

(4.17)

∫
Q

[
1
2Hyy(t, x)(zk)2 + δkHy(t, x)zk

]
dtdx

=
∫
Q

[
1
2Hyy(t, x)(zAk)2 + δkHy(t, x)zAk

]
dtdx+ o(‖δku‖22,2).

Now, since ‖δAk
u‖∞ → 0 we have that ‖zAk‖∞ → 0 and so expanding the term

δkHy(t, x) we get

(4.18)

∫
Q
δkHy(t, x)zAk dtdx =

∫
Q
Hyu(t, x)zAkδku dtdx

+O
(∫

Q
|δku|2|zAk | dtdx

)
=

∫
Q
Hyu(t, x)zAkδku dtdx+ o(‖δku‖22,2).

On the other hand, using (2.3) again, there exists q2 ∈]2,∞[ such that ‖zAk‖q2,q2 =
O(‖δAk

u‖2,2) = O(‖δku‖2,2). Noting that q∗2 ∈]1, 2[, arguing as in (4.16) we get
‖δBk

u‖q∗2 ,q∗2 = o(‖δku‖2,2) and so∣∣∣∣∫
Q

Hyu(t, x)zAkδBk
udtdx

∣∣∣∣ = O
(
‖zAk‖q2,q2‖δBk

u‖q∗2 ,q∗2
)

= o(‖δku‖22,2).
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Equation (4.18) then yields

(4.19)

∫
Q

δkHy(t, x)zAkdtdx =

∫
Q

Hyu(t, x)zAkδAk
udtdx+ o(‖δku‖22,2).

Combining (4.17) and (4.19) gives the first identity in (4.14). In order to obtain the
second one, note that Fubini’s theorem implies that

(4.20)

∫
Ω

Φyy[λ](zk(T, x))2dx = 2
∫

Ω
Φyy[λ]

[∫ T
0
zk(t, x)∂tz

k(t, x)dt
]

dx,

= 2
∫
Q

Φyy[λ]zk(t, x)∂tz
k(t, x)dtdx.

Analogously,

(4.21)

∫
Ω

Φyy[λ](zAk(T, x))2dx = 2

∫
Q

Φyy[λ]zAk(t, x)∂tz
Ak(t, x)dtdx.

Therefore, using

zk∂tz
k − zAk∂tz

Ak = (zk − zAk)∂tz
k + ∂t(z

k − zAk)zAk = zBk∂tz
k + ∂tz

BkzAk ,

we obtain with (4.20) and (4.21) that∣∣∫
Ω

[
Φyy[λ](zk(T, x))2 − Φyy[λ](zAk(T, x))2

]
dx
∣∣

= O
(∫

Q

[
|zBk ||∂tzk|+ |∂tzBk ||zAk |

]
dtdx

)
.

By considering q1 ∈]1, 2[ and q2 ∈]2,∞[ as above, the Hölder inequality implies that∣∣∫
Ω

[
Φyy[λ](zk(T, x))2 − Φyy[λ](zAk(T, x))2

]
dx
∣∣

= O
(
‖zBk‖2,2‖∂tzk‖2,2 + ‖∂tzBk‖q∗2 ,q∗2 ‖z

Ak‖q2,q2
)

= O
(
‖δBk

u‖q1,q1‖δku‖2,2 + ‖δBk
u‖q∗2 ,q∗2 ‖z

Ak‖q2,q2
)

= o(‖δku‖22,2),

where we used (2.5) in order to estimate ‖∂tzk‖2,2 = O(‖δku‖2,2) and ‖∂tzBk‖q∗2 ,q∗2 =
O(‖δBk

u‖q∗2 ,q∗2 ) = o(‖δku‖2,2), arguing as in (4.16). Expansion (4.13) follows.

Step 2. Defining ζk := zAk − ξk, where ξk := ξ[δAk
u] (recall (3.16)), we have that

(4.22)

∂tζ
k −∆ζk + ϕy(t, x)ζk = O(|δAk

u|2) in Q,

ζk = 0 in Σ,

ζk(0, ·) = 0 in Ω.

By (2.5) and the fact that ‖δAk
u‖∞ → 0, we obtain that

‖ζk‖2,2 + ‖ζk(T, ·)‖2

= O

((∫
Q
|δAk

u|4dtdx
) 1

2

)
= O (‖δAk

u‖∞‖δAk
u‖2,2) = o(‖δAk

u‖2,2).

Using this estimate, it is straightforward to obtain (4.12) from (4.13).
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Remark 4.4. When ‖δu‖2,2 is small, (4.12) provides a second order expansion
of L(u, λ) − L(ū, λ) that is decomposed into two principal terms. The first term∫
Bk
δkH[λ](t, x) dtdx takes into account large deviations of u(t, x) around ū(t, x), but

over the set of small measure Bk. The second term

Q1[ū, λ]δAk
u+ 1

2Q2[ū, λ](δAk
u)

corresponds to a classical “weak” second order expansion (see [25]) on δAk
u, which

satisfies ‖δAk
u‖∞ is small.

5. Proofs of the main results. In this section we provide the proofs of the
main results in section 3. We use the abbreviations for the notation introduced in the
previous section.

5.1. Proofs of the main results for problem (CP0).

Proof of Theorem 3.5. The argument follows the lines of the one in [3, Theorem
4.24]. In order to prove that (i) ⇒ (ii) note that Remark 3.4 implies that ū is a
Ls-local solution of (CP0) satisfying the quadratic growth condition (3.10) for every
s ∈ [1,∞[. In particular, there exists α > 0 such that ū is a Ls-local solution of the
problem

(CP0
′) inf

{
J(u)− α

2

∫
Q

|u(t, x)− ū(t, x)|2dtdx ; u ∈ K0

}
.

Applying Pontryagin’s principle to problem (CP0
′) (see, e.g., [17, 14]) we directly

obtain (3.18). On the other hand, since every strong solution satisfying the quadratic
growth condition is a weak local solution satisfying the quadratic growth condition,
we can apply second order necessary conditions for problem (CP0

′) (see, e.g., [15] and
[25]) to obtain that Q2[ū](v) ≥ α‖v‖22,2 for all v ∈ CK0

(ū).
Now, suppose that (ii) holds true and that (3.12) is not satisfied. Then, there

exists a sequence uk ∈ K0 satisfying that uk 6= ū, ‖y[uk] − y‖∞ → 0 and (setting
δku := uk − ū)

(5.1) J(uk)− J(u) ≤ o
(
‖δku‖22,2

)
as k ↑ ∞.

By (4.5) with λ = 0 and (3.18) we get (setting δky := y[uk]− y)

α

2
‖δku‖22 ≤ o

(
‖δku‖22,2

)
+O(‖δky‖∞‖δku‖2,2) = o(1),

which implies that uk → ū ∈ L2,2(Q). Now, for a.a. (t, x) ∈ Q, let us set

κt,x :=

{
1 if Hu(t, x) = 0,
1/|Hu(t, x)| otherwise,

where Hu(t, x) := Hu(t, x, ȳ(t, x), p̄(t, x), ū(t, x)), and consider the set Bk := B1
k ∪B2

k,
where

B1
k :=

{
(t, x) ∈ Q ; |δku(t, x)| ≥

√
‖δku‖2,2

}
,

B2
k :=

{
(t, x) ∈ Q ; κt,x ≥ 1/‖δku‖1/42,2

}
.

By the Chebyshev inequality |B1
k| → 0 as k ↑ ∞. By the dominated convergence

theorem, we also have that |B2
k| =

∫
Q
I{(t,x)∈B2

k}dtdx→ 0, which implies that |Bk| →
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0. Defining Ak := Q \ Bk and decomposing δku = δAk
u + δBk

u, we obtain that
‖δAk

u‖∞ → 0. Thus, letting λ = 0 in (4.12), we get

(5.2) J(uk)− J(ū) =

∫
Bk

δkH(t, x)dtdx+Q1[ū]δAk
u+ 1

2Q2[ū](δAk
u) + o(‖δku‖22,2),

where δkH(t, x) := H(t, x, ȳ(t, x), p̄(t, x), uk(t, x))−H(t, x, ȳ(t, x), p̄(t, x), ū(t, x)). Now,
set σAk

:= ‖δAk
u‖2,2 and σBk

:= ‖δBk
u‖2,2, which yields ‖δku‖22,2 = σ2

Ak
+ σ2

Bk
. If

σAk
= o(σBk

), then (5.2) and the continuity of the quadratic form Q2[ū] imply that∫
Bk

δkH(t, x)dtdx+Q1[ū]δAk
u ≤ o(σ2

Bk
).

Since Q1[ū]δAk
u ≥ 0, (3.18) would imply that α

2 σ
2
Bk
≤ o(σ2

Bk
), which is impossible.

Therefore, for some subsequence, we must have that σBk
= O(σAk

). Let us define
vk := δAk

u/σAk
. By (3.18) we have

∫
Bk
δkH(t, x)dtdx ≥ 0 and Q1[ū]δAk

u ≥ 0.

Therefore, (5.1) and (5.2) imply that

(5.3) Q2[ū](vk) ≤ o(1).

Note that if vk ∈ CK0
(ū), then (5.3) would yield a contradiction with (ii.2) because

‖vk‖2,2 = 1. The problem is that a priori vk belongs only to TK0(ū). The idea is
to decompose vk = vk,1 + vk,2 where vk,1 ∈ CK0(ū) and prove that ‖vk,2‖2,2 → 0,
which together with (5.3) and (ii.2) would yield the desired contradiction. In order to
construct such a decomposition, first notice that CK0

(ū) = {v ∈ L2,2(Q) ; v(t, x) ∈
Ct,x for a.a. (t, x) ∈ Q}, where

Ct,x :=
{
v ∈ R ; Hu(t, x)v = 0, v ≥ 0 if (t, x) ∈ Aa(ū)

and v ≤ 0 if (t, x) ∈ Ab(ū)} .

Thus, it is natural to define vk,1(t, x) := PCt,x(vk(t, x)) (where P· denotes the projec-
tion operator), which is measurable in terms of (t, x) and (t, x)→ vk,1(t, x) ∈ CK0

(ū).
Using that for every h ∈ R we have, denoting d(h,Ct,x) := inf{|z−h| ; z ∈ Ct,x} and
(h)+ := max{h, 0},

(5.4) d(h,Ct,x) ≤ κt,x
(
|Hu(t, x)h|+ IAa

(t, x)(−h)+ + IAb
(t, x)(h)+

)
,

by definition of vk,1 and the fact that vk ∈ TK0(ū), we obtain that

(5.5)
|vk,2(t, x)| = d(vk(t, x), Ct,x)

≤ κt,x|Hu(t, x)vk(t, x)| ≤ 1

‖δku‖1/42,2

Hu(t, x)vk(t, x),

where we have used that Hu(t, x)vk(t, x) ≥ 0 and that vk = δAk
uk/σAk

≡ 0 on Bk.
Now, by the continuity of the quadratic form Q2[ū], we have that (5.1) and (5.2)
imply that ∫

Ak

Hu(t, x)vk(t, x)dtdx ≤ O(σAk
),

which together with (5.5) gives ‖vk,2‖1,1 ≤ O(σAk
/‖δku‖1/42,2 ). On the other hand, by

the definition of vk,1(t, x) and Ct,x we have that |vk,2(t, x)| ≤ |vk(t, x)|. And so, since
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‖vk‖∞ ≤
√
‖δku‖2,2
σAk

by the definition of the set Ak, we get that

‖vk,2‖22,2 ≤ ‖vk,2‖∞‖vk,2‖1,1 = O

(√
‖δku‖2,2
σAk

σAk

‖δku‖1/42,2

)
= O(‖δku‖1/42,2 )→ 0,

as k ↑ ∞, which concludes the proof.

Proof of Corollary 3.6. If ū is a Ls-weak local solution of (CP0) satisfying the
quadratic growth condition, then arguing as in the proof of Theorem 3.5 we have that
(ii.1) and (ii.2) in Theorem 3.5 are satisfied. Therefore, the converse implication in
Theorem 3.5 implies that ū is a strong local solution of (CP0) satisfying the quadratic
growth condition. The other implication being clear (see Remark 3.4), the conclusion
follows.

Proof of Theorem 3.7. By Remark 3.4 it suffices to prove that (3.8) and (3.12)
are equivalent. We only need to prove, the other implication being trivial, that if
ū satisfies (3.8), then it also satisfies (3.12). Note that if ū satisfies (3.8), then, by
the second order necessary optimality conditions for weak minima (see, e.g., [15] and
[25]), we have that (ii.2) in Theorem 3.5 is satisfied. Thus, in order to conclude we
only need to show that the quadratic growth condition (3.18) for the Hamiltonian
holds at ū. Since ū is a weak solution of problem (CP0

′), by the local Pontryagin
principle for weak solutions (see [14]), we have the existence of ε > 0 such that

(5.6)
H(t, x) + α

2 |u− ū(t, x)|2 ≤ H(t, x, ȳ(t, x), p̄(t, x), u)

∀ u ∈ [a(t, x), b(t, x)], |u− u(t, x)| ≤ ε,

where H(t, x) := H(t, x, ȳ(t, x), p̄(t, x), ū(t, x)). Now, for all (t, x) ∈ Q let us define

(5.7) û(t, x) = argmin
u∈[a(t,x),b(t,x)]

H(t, x, ȳ(t, x), p̄(t, x), u).

By the strict convexity of the Hamiltonian w.r.t. u (by (H3)) and (5.6) we get that û
is well defined and û = ū a.e. in Q. Now, by the continuity assumption on the data,
the assumption on Φy, and [17, Proposition 2.1], we have the existence of β′ ∈]0, 1[

such that p̄ ∈ Cβ′,β′/2(Q) ∩ L2([0, T ];H1
0 (Ω)). Thus, using the continuity of the data

again, the continuity of ȳ and the continuity of p̄, we easily check with (5.7) that û is
continuous in Q. Therefore, for all (t, x) ∈ Q, u ∈ [a(t, x), b(t, x)], and |u− û(t, x)| ≤ ε
we have

(5.8) H(t, x, ȳ(t, x), p̄(t, x), û(t, x)) +
α

2
|u− û(t, x)|2 ≤ H(t, x, ȳ(t, x), p̄(t, x), u).

Therefore, letting

β := inf {H(t, x, ȳ(t, x), p̄(t, x), u)−H(t, x, ȳ(t, x), p̄(t, x), û(t, x)) ;

(t, x) ∈ Q, u ∈ [a(t, x), b(t, x)], |u− û(t, x)| ≥ ε
}
,

the continuity of û implies that β > 0. Defining α′ = min{β/4M2, α2 } we obtain
that (5.8) holds with α replaced by α′ and for all v ∈ [a(t, x), b(t, x)] and so (3.18) is
satisfied, which implies the result.
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5.2. Proofs of the main results for problem (CP1).

Proof of Theorem 3.10. If (3.12) does not hold, then there exists a sequence uk 6=
ū ∈ K, with associated states yk := y[uk], such that, setting δku := uk − ū and
δky := yk − ȳ, one has

(5.9) J(uk)− J(ū) ≤ o(‖δku‖22,2) as ‖δky‖∞ → 0.

By definition, for every λ ∈ ΛL(ū) we have that J(uk) ≥ L(uk, λ) and J(ū) = L(ū, λ);
therefore by Proposition 4.2(i) we have that∫

Q

δkH[λ](t, x)dtdx+O(‖δku‖2,2‖δky‖∞) = L(uk, λ)− L(ū, λ) ≤ o(‖δku‖22,2),

where

δkH[λ](t, x) := H(t, x, ȳ(t, x), p̄λ(t, x), uk(t, x))−H(t, x, ȳ(t, x), p̄λ(t, x), ū(t, x)).

Setting λ = λ̄, assumption (i) and (3.23) imply that ‖δku‖2,2 → 0. Now, let us define

Ak :=

{
(t, x) ∈ Q ; |u(t, x)− ū(t, x)| ≤

√
‖δku‖1,1

}
, Bk := Q \Ak,

and δAk
u and δBk

u as in (4.11). Since ‖δku‖2,2 → 0, we obtain that ‖δAk
u‖∞ → 0

and using the Chebyshev inequality we get that |Bk| → 0. Therefore, by (4.12) and
(5.9), for every λ ∈ ΛL(ū) we have that

(5.10)

∫
Bk

δkH[λ](t, x)dtdx+Q1[ū, λ](δAk
u) + 1

2Q2[ū, λ](δAk
u) ≤ o(‖δku‖22,2).

Suppose that ‖δAk
u‖2,2 = o(‖δBk

u‖2,2). Then, ‖δku‖2,2 = O(‖δBk
u‖2,2). Since

δAk
u ∈ TK0

(ū), for every λ ∈ ΛL(ū) we have that Q1[ū, λ]δAk
u ≥ 0. Also, by the con-

tinuity of the quadratic form Q2[ū, λ](·) we get that Q2[ū, λ](δAk
u) = O(‖δAk

u‖22,2),
and so, using (5.10), we obtain the inequality

(5.11)

∫
Bk

δkH[λ](t, x)dtdx ≤ o(‖δku‖22,2) +O(‖δAk
u‖22,2) = o(‖δBk

u‖22,2).

Using (3.23) we get that α‖δBk
u‖22,2 ≤ o(‖δBk

u‖22,2) for some α > 0, which is impossi-
ble. Thus, extracting a subsequence, we can assume that ‖δBk

u‖2,2 = O(‖δAk
u‖2,2).

Now, let us set σk := ‖δAk
u‖2,2, which can be assumed to be nonzero, and define

vk := δAk
u/σk. Since ‖vk‖2,2 = 1, we have that up to some subsequence, vk con-

verges weakly in L2,2(Q) to some v̄. Note that since vk ∈ TK0(ū) and TK0(ū) is closed
and convex in L2,2(Q), we obtain that v̄ ∈ TK0(ū). Let us now prove that v̄ ∈ CK(ū).
First note that by the results in [25, section 3],

(5.12) J(uk)− J(ū) = DJ(ū)δku+O(‖δku‖22,2) = DJ(ū)δku+ o(‖δku‖2,2),

and, recalling (3.16) and using [25, Remark 3.4],

(5.13) DJ(ū)δku =

∫
Q

[
`y(t, x)ζ[δku] + `u(t, x)δku

]
dtdx+

∫
Ω

Φy(x)ζ[δku](T, x)dx,
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where `y(t, x) := `y(t, x, ȳ(t, x), ū(t, x)) and Φy(x) = Φy(x, ȳ(T, x)). On the other
hand, estimate (2.6) implies that

‖ζ[δBk
u]‖1,1 + ‖ζ[δBk

u](T, ·)‖1 = O(‖δBk
u‖1,1) = o(‖δku‖2,2).

Therefore, since ‖δku‖2,2 = O(‖δAk
u‖2,2), (5.9), (5.12), and (5.13) yield∫

Q

[
`y(t, x)ζ[δAk

u] + `u(t, x)δAk
u
]

dtdx+

∫
Ω

Φy(x)ζ[δAk
u](T, x)dx ≤ o(‖δAk

u‖2,2).

Dividing by σk we get that∫
Q

[
`y(t, x)ζ[vk] + `u(t, x)vk

]
dtdx+

∫
Ω

Φy(x)ζ[vk](T, x)dx ≤ o(1).

Using [25, Proposition 2.1(iii)] and passing to the limit we obtain that DJ(ū)v̄ ≤ 0.
On the other hand, the same type of computations implies that∫

Ω

(ΦE)y(x)ζ[v̄](T, x)dx = 0 and

∫
Ω

(ΦI)
j(x)ζ[v̄](T, x)dx ≤ 0 ∀ j ∈ I(ū),

where (ΦE)y(x) = (ΦE)y(x, ȳ(T, x)) with a similar notation for (ΦI)y(x). The above
relations, together with the fact that λ ∈ ΛL(ū) and v̄ ∈ TK0

(ū), imply that DJ(u)v̄ =
0. Therefore, we have proved that v̄ ∈ CK(ū). By convexity of the Hamiltonian w.r.t.
u, for all λ ∈ ΛL(ū) one has δkH[λ](t, x) ≥ 0 and Q1[ū, λ](δAk

u) ≥ 0 and so∫
Bk

δkH[λ](t, x)dtdx+Q1[ū, λ](δAk
u) ≥ 0.

Thus, we get with (5.10) that

(5.14) Q2[ū, λ](vk) ≤ o(1).

By assumption (iii), there exists λv̄ ∈ ΛL(ū) such that Q2[ū, λv̄](v̄) ≥ α‖v̄‖22,2. The
structural assumption in (H3) implies that Q2[ū, λv̄] is weakly lower semicontinuous
(see, e.g., [25]) and so (5.14) yields,

0 ≤ α‖v̄‖22,2 ≤ Q2[ū, λv̄](v̄) ≤ lim inf
k→∞

Q2[ū, λv̄](vk) ≤ lim sup
k→∞

Q2[ū, λv̄](vk) ≤ 0,

and so v̄ = 0 and Q2[ū, λv̄](v̄) = 0 = limk→∞Q2[ū, λv̄](vk). Using that u → ζ[u] is
continuous from L2,2(Q), endowed with the weak topology, to L2,2(Q), endowed with
the strong topology (see, e.g., [25, Proposition 2.1(iii)]), (H3) implies that vk → v̄ = 0
strongly in L2,2(Q), contradicting ‖vk‖2,2 = 1.

Proof of Theorem 3.12. We only need to prove that (i) implies (ii). If ū is a strong
local solution of (CP1) satisfying (3.12), then in particular it is a weak solution satis-
fying (3.8). Assertion (ii) follows directly from [25, Theorem 5.2] and the assumption
CK(ū) = CsK(ū).

Proof of Theorem 3.13. The proof of this result is exactly the same as the previous
one, the only difference being that instead of using [25, Theorem 5.2] we use [25,
Theorem 5.7].
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Proof of Theorem 3.14. The proof of the equivalence between weak and strong
minima satisfying the quadratic growth condition for problem (CP1) is the same as
the proof of the corresponding result for (CP0) in Theorem 3.7, the only difference
being that in order to write the second order necessary optimality condition for a
weak minimum, Theorem 5.2 in [25] is used if condition (a) holds and Theorem 5.7
in [25] is used if condition (b) holds. Then, as in Theorem 3.7 the local Pontrya-
gin principle together with the continuity assumption on data are used to obtain a
global quadratic growth property for the Hamiltonian. Finally, the previous charac-
terizations in Theorems 3.12 and 3.13 can be directly applied for cases (a) and (b),
respectively.
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Trav. Rech. Math. 17, Dunod, Paris, 1968.
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