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Abstract

In this paper we study, from a control theoretic view point, a 1D model of fluid-particle

interaction. More precisely, we consider a point mass moving in a pipe filled with a fluid.

The fluid is modelled by the viscous Burgers equation whereas the point mass obeys Newton’s

second law. The control variable is a force acting on the mass point. The main result of the

paper asserts that for any initial data there exist a time T > 0 and a control such that, at

the end of the control process, the particle reaches a point arbitrarily close to a given target,

whereas the velocities of the fluid and of the point mass are driven exactly to zero. Therefore,

within this simplified model, we can control simultaneously the fluid and the particle, by using

inputs acting on the moving point only. Moreover, the main result holds without any smallness

assumptions on the initial data. Alternatively, we can see our results as yielding controllability

of the viscous Burgers equation by a moving internal boundary.

Mathematics Subject Classification (2000): 35L10, 65M60, 93B05, 93B40, 93D15.
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1 Introduction

The study of the equations modeling the motion of rigid bodies in a viscous incompressible fluid
became an active research area in the last two decades. Early references (see, for instance, [8, 10,
22, 23]) where devoted to existence theory of the corresponding initial value problem.

As far as we know, the problem of control and stabilization of such complex systems coupling
the interactions between a fluid and a structure by inputs acting only on the immersed body is at
an embrionary stage. Some stabilization results, requiring smoothness and smallness of the initial
data, have been given in Takahashi et al. [25]. Controllability of this models is a clearly challenging
mathematical question since positive results would imply that, in some sense, the water in a pool
can be controlled by forces acting only on the immersed body. From the applications viewpoint
the obtained control strategy could provide a methodology for stealthy motion of bodies immersed
in a fluid or techniques for the control of waves makers.

In this paper we consider a 1-d model for fluid-solid interaction which has been introduced
by Vasquez and Zuazua in [28, 29]. In these articles the authors studied the global existence
of solutions and their large time behavior. Later on, the boundary controllability problem for
this system was addressed by Doubova and Fernandez-Cara [11]. The authors showed the null-
controllability of the coupled system by using controls acting on both extremities of the domain
of the fluid. The methodology used in [11], combining global Carleman estimates and fixed point
techniques, has been extended to the two-dimensional case in Imanuvilov and Takahashi [16] and,
independently, in Boulakia and Osses [3]. The main question left open in the one dimensional case
studied in [11] consisted in establishing the null controllability when the control acts at one end
only. A positive answer to this question has been given in Liu, Takahashi and Tucsnak [19] by
combining spectral methods and a new fixed point procedure.

In this paper we consider the simplified model already studied in [11] and [19] but the control
problem we study is a different one. More precisely, the main novelty is that the control is active
only on the moving particle. We have thus to tackle, besides the typical features of nonlinear cou-
pled problems, the difficulties specific to pointwise control problems for PDE’s, the most important
one coming from the presence of nodal points. One of the ways to overcome the effects of nodal
points consists in using moving actuators as, for instance, in Khapalov [17] or Castro and Zuazua
[6] (see also Demetriou and Hussein [9], Rosier and Zhang [20], Chavez-Silva, Rosier and Zuazua [7]
for problems involving distributed moving actuators). The system we consider shares with those
in [6, 17] the fact that the control is supported in a moving point but differs of these systems by
the presence of a free boundary and by the fact that our aim consists not only in controlling the
solution of the PDE but also the position of the actuator.

More precisely, we consider the following system, which can be seen as a model for the motion
of a particle, under the action of an exterior force, in a one-dimensional fluid:





v̇(t, y)− vyy(t, y) + v(t, y)vy(t, y) = 0 t ∈ (0, T ), y ∈ (−1, 1), y ̸= h(t),
v(t,−1) = v(t, 1) = 0 t ∈ (0, T ),

ḣ(t) = v(t, h(t)) t ∈ (0, T ),

ḧ(t) = [vy](t, h(t)) + u(t) t ∈ (0, T ),
v(0, y) = v0(y) y ∈ (−1, 1),

h(0) = h0, ḣ(0) = g0.

(1.1)

In (1.1), v = v(t, y) denotes the eulerian velocity field of the fluid filling the interval (−1, 1)
whereas h = h(t) indicates the position of the point mass and the derivative with respect to time
is denoted by a dot. We assume that the velocity v of the fluid is governed by the viscous Burgers
equation on both sides of the moving mass. The fourth equation in (1.1) is the second Newton’s
law applied to the mass. The forces acting on the point mass are due to the fluid (the jump of the
derivative of v when crossing the mass which is denoted by [vy](t, h(t))) and to the exterior input
u(t). For the sake of simplicity, we have assumed that the mass of the body, the viscosity and the
density of the fluid are equal to one.
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Note that (1.1) is a free boundary value problem since h(t), delimiting the intervals in which the
Burgers equation holds, is one of the unknowns of the problem. The presence of a free boundary
requires an appropriate definition of the notion of finite energy solution, which reads as follows:

Definition 1.1. Given T > 0, v0 ∈ L2[−1, 1], h0 ∈ (−1, 1), g0 ∈ R and u ∈ L2[0, T ], we say that



v
g
h


 ∈

{
C([0, T ];L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
× L2[0, T ]×H1(0, T ),

is a finite energy solution of (1.1) on [0, T ] if h(0) = h0, ḣ(t) = g(t) = v(t, h(t)) and h(t) ∈ (−1, 1),
for almost every t ∈ [0, T ] and

∫ 1

−1

v(t, y)ψ(t, y) dy −
∫ 1

−1

v0(y)ψ(0, y) dy + g(t)l(t)− g0l(0)−
∫ t

0

g(σ)l̇(σ) dσ

−
∫ t

0

∫ 1

−1

v(σ, y)ψ̇(σ, y) dy dσ +

∫ t

0

∫ 1

−1

vy(σ, y)ψy(σ, y) dy dσ

− 1

2

∫ t

0

∫ 1

−1

v2(σ, y)ψy(σ, y) dy dσ =

∫ t

0

u(σ)l(σ) dσ, (1.2)

for every t ∈ [0, T ] and for every

[
ψ
l

]
∈
{
H1((0, T );L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
×H1(0, T ), (1.3)

l(t) = ψ(t, h(t)) (t ∈ [0, T ]). (1.4)

Note that the test functions used above depend on the solution and more precisely on its
component h. In Definition 1.1 and in the rest of the paper, for each m > 1, Hm and Hm

0

denote the classical Sobolev spaces and H−m denotes the topological dual of Hm
0 .

The main result of this paper asserts that the mass point can be driven arbitrarily close to a
given destination, whereas the velocities of the fluid and of the particle simultaneously vanish.
More precisely, we have the following result.

Theorem 1.2. Let v0 ∈ L2[−1, 1], g0 ∈ R and h0 ∈ (−1, 1). Then for every hF ∈ (−1, 1) and
η > 0 there exist T > 0 and u ∈ L∞[0, T ] such that the solution (in the sense of Definition 1.1) of
(1.1) satisfies

v(T, ·) = 0, |h(T )− hF | 6 η, ḣ(T ) = 0. (1.5)

Independently from the fluid-particle system, the above theorem can be interpreted as a null
controllability result for the Burgers equation with a scanning actuator. This result could be stated
as follows: for every v0 ∈ L2[−1, 1] there exists a control time T > 0 and a control h ∈ H1(0, T )
such that the solution v of the three first equations in (1.1) with v(0, y) = v0(y) satisfies v(T, ·) = 0.

The strategy used to prove Theorem 1.2 consists of a preliminary choice and three main steps.
The preliminary choice is to select an irrational algebraic number h1 such that |hF −h1| < η. The
first main step is to give u in a feedback form for which an appropriate Lyapounov functions is non
increasing along the trajectories of the obtained closed loop system. This feedback, which will be
described in details in Section 4, is given by a force which is what would be produced by a spring
and a damper connecting the point mass to h1.

The second main step is to show that the proposed feedback law steers the system, when t goes

to infinity, arbitrarily close to the state



0
0
h1


. This is done by using an appropriate Lyapunov

function, compactness of trajectories and Barbalat-type results.
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The last main step, technically the most involved one, consists in proving local exact control-

lability to the equilibrium state



0
0
h1


. To show this controllability result we perform a change of

variables to a fixed spatial domain and we linearize the system around the target.

At this stage it clearly appears the necessity of choosing an exact target h1 in the dense set S
of algebraic irrational numbers (see Remark 7.2). Indeed, in every nonempty open interval, there
exist targets which are not reachable in finite time for this linearized system. However, if the target
h1 is chosen in S, we are able to prove that we can drive exactly the position of the body to h1.
Consequently, the controllability cost depends in a highly instable manner on the choice of the
targets, becoming infinite if the target is rational. With the choice made for h1 the controllability
problem is tackled by transforming it into an equivalent moment problem and by constructing an
explicit solution to the latter through biorthogonal techniques. To pass from the linear problem
to the nonlinear one we use a fixed point method and a technique introduced in [19] to control
parabolic systems with appropriate non-homogeneous terms. We think that the instability related
to the choice of h1 is due to our linearization technique used in the proof and it is not intrinsic to
the original problem.

The methods used for proving the controllability result are clearly of one dimensional nature.
A similar result for the corresponding three dimensional model (a Navier-Stokes fluid with a rigid
body immersed in it) seems very unlikely. Indeed, this would imply that we can steer solutions of
the Navier-Stokes system exactly to zero by using a finite dimensional input space.

Note that the controllability time T in Theorem 1.2 could be very large, depending on the initial
data to be controlled. Obtaining a control time which is uniform for all initial data in the energy
space seems unlikely. This is suggested by the fact that null-controllability in uniform time is not
valid for the viscous Burger’s equation with a boundary control (see, for instance, [13, Theorem
6.4, p. 61] or [12]).

Several technical results are gathered in the appendices. Appendix A is devoted to the study
of the spectral properties of the generator of a linearized system and Appendix B contains a
construction of a biorthogonal family which may be of larger interest in the study of systems
coupling PDE’s and ODE’s.

2 Change of variables and transformed equations

In this section we introduce a change of variables which allows us to write system (1.1) in an
equivalent form, but with the involved PDE written in a fixed spatial domain. The standard
way to accomplish this goal consists in introducing, for each p ∈ (−1, 1) a strictly increasing
homeomorphism Ψ(·, p) of [−1, 1] such that Ψ(p, p) = h0. In the case of system (1.1), this idea has
already been used in [11] and [19], where Ψ(·, p) has been simply chosen to be affine on [−1, p] and
on [p, 1]. However, since our notion of solution is weaker than the one in [11] and [19], it seems
that we need smoother transformations Ψ and with Ψy(y, p) = 1 for y in a neighborhood of p.
Therefore, we adapt below the more involved construction used in Takahashi [24] in the analysis
of the system modeling the motion of rigid bodies in a Navier-Stokes flow.

Given ε > 0 and p, h0 ∈ [−1 + 2ε, 1− 2ε], we define the map

Λ(y, p) = (p− h0)ϑ(y) y ∈ [−1, 1],

where ϑ ∈ D(−1, 1) verifies ϑ(y) = 1, for y ∈ [−1 + ε, 1− ε] and ϑ(y) = 0, for y /∈
[
−1 + ε

2 , 1− ε
2

]
.

Consider the initial value problem





Ψ̃s(s; y, p) = Λ(Ψ̃(s; y, p), p), s ∈ [0, 1]

Ψ̃(0; y, p) = y.

(2.1)
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Since the map y 7→ (p − h0)ϑ(y) is C∞, the initial value problem (2.1) admits, for every

y ∈ [−1, 1] a unique solution Ψ̃(s; y, p) with s ∈ [0, ϱ], for some ϱ > 0. Since ϑ vanishes outside

the interval [−1 + ε
2 , 1− ε

2 ], we obtain that Ψ̃(s; y, p) ∈ [−1, 1] for every s ∈ [0, ϱ], y ∈ [−1, 1] and

p ∈ [−1 + 2ε, 1 − 2ε]. This implies, in particular, that the Ψ̃ can be extended to a solution of

(2.1) defined for every s > 0. We define Ψ(y, p) = Ψ̃(1, y, p). The main properties of map Ψ are
summarized in the result below.

Lemma 2.1. We have Ψ ∈ C∞([−1, 1]× (−1 + ε, 1− ε)) and, for every p ∈ [−1 + 2ε, 1− 2ε], the
map y 7→ Ψ(y, p) is a diffeomorphism from [−1, 1] onto itself, from [−1, p] onto [−1, h0] and from
[p, 1] onto [h0, 1]. Moreover, we have that

Ψ(y, p) = y − p+ h0 (y ∈ [−1 + ε, 1− ε]) (2.2)

Ψ(y, p) = y
(
y /∈

[
−1 +

ε

2
, 1− ε

2

])
. (2.3)

For every p ∈ [−1 + ε, 1 − ε], the inverse map x 7→ Φ(x, p) of y 7→ Ψ(y, p) is in C∞([−1, 1] ×
(−1 + ε, 1− ε)). Finally, we have

Φx(x, p) > e−|p−h0|K1(ε) (x ∈ [−1, 1], p ∈ [−1 + ε, 1− ε]), (2.4)

Φx(x, h0) = 1, Φxx(x, h0) = 0 (x ∈ [−1, 1]), (2.5)

where K1(ε) = ∥ϑx∥C[−1,1].

Proof. The fact that Ψ ∈ C∞([−1, 1] × (−1 + ε, 1 − ε)) is a consequence of classical results for
ODE’s (see, for instance, Hartman [15, p. 100]).

To prove (2.2), let y ∈ [p− ε, p+ ε]. Since p, h0 ∈ [−1+ 2ε, 1− 2ε], we have that y− s(p− h0) ∈
[−1 + ε, 1− ε] for every s ∈ [0, 1]. Consequently, the function s 7→ y − s(p− h0) is the solution of
initial value problem (2.1) for any y ∈ [p − ε, p + ε], i.e. we have (2.2). Similar estimates lead to
(2.3).

We note that the function x 7→ Φ(x, p) with Φ(x, p) = Φ̃(0, x, p), where Φ̃ is the solution of the
final value (backwards) problem





Φ̃s(s, x, p) = (p− h0)ϑ(Φ̃(s, x, p))

Φ̃(1, x, p) = x,

(2.6)

is, by Cauchy-Lipschitz Theorem, the inverse of the map y 7→ Ψ(y, p). To prove (2.4), we note that,

according to the well-known results (see, for instance, [15, p. 95]), the function s 7→ Φ̃x(s, x, p)
verifies 




Φ̃sx(s, x, p) = (p− h0)ϑx(Φ̃(s, x, p))Φ̃x(s, x, p)

Φ̃x(1, x, p) = 1.

(2.7)

Looking to the above equation as an initial value problem of unknown s 7→ Φ̃x(s, x, p), we deduce
(2.4). Finally, (2.5) are direct consequences of (2.2).

Given ε > 0 and a function h ∈ H1(0, T ), such that h(t) ∈ [−1 + 2ε, 1− 2ε] for all t ∈ [0, T ], we
introduce the change of variables w(t, x) = v (t, y), where

{
y = Φ(x, h(t)),
x = Ψ(y, h(t)).

(2.8)
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Remark 2.2. The properties of the functions Ψ and Φ from Lemma 2.1 and the fact that
h ∈ H1(0, T ) implies that the application

T : H1((0, T );L2[−1, 1]) ∩ L2([0, T ];H1
0(−1, 1)) → H1((0, T );L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1)),

T (ψ)(t, x) = ψ(t,Φ(x, h(t))),

is a well defined one to one map whose inverse is given by

T −1(φ)(t, y) = φ(t,Ψ(y, h(t))).

The following proposition uses the change of variable (2.8) to rewrite system (1.1) in a fixed
spatial domain.

Proposition 2.3. Let T > 0, v0 ∈ L2[−1, 1], h0 ∈ (−1, 1), g0 ∈ R, u ∈ L2[0, T ] and a triplet of
functions



v
g
h


 ∈

{
C([0, T ];L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
× L2[0, T ]×H1(0, T ). (2.9)

Then



v
g
h


 is a finite energy solution of (1.1) on [0, T ] if and only if, the triplet



w
g
h


, where

w(t, x) = v (t,Φ(x, h(t))) for every t ∈ [0, T ], h(0) = h0, ḣ(t) = g(t) = w(t, h0) and h(t) ∈ [−1, 1],
for almost every t ∈ [0, T ] verifies the relation

∫ 1

−1

w(t, x)φ(t, x)Φx(x, h(t)) dx−
∫ 1

−1

v0(x)φ(0, x) dx+ g(t)l(t)− g0l(0)

−
∫ t

0

∫ 1

−1

w(σ, x)φ̇(σ, x)Φx(x, h(σ)) dx dσ +

∫ t

0

g(σ)

∫ 1

−1

w(σ, x)φx(σ, x)Φp(x, h(σ)) dx dσ

−
∫ t

0

g(σ)l̇(σ) dσ +

∫ t

0

∫ 1

−1

1

Φx(x, h(σ))
wx(σ, x)φx(σ, x) dx dσ

− 1

2

∫ t

0

∫ 1

−1

w2(σ, x)φx(σ, x) dx dσ =

∫ t

0

u(σ)l(σ) dσ, (2.10)

for every t ∈ [0, T ] and for every

[
φ
l

]
∈
{
H1((0, T );L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
×H1(0, T ), (2.11)

l(t) = φ(t, h0) (t ∈ [0, T ]). (2.12)

Proof. Let



v
g
h


 be a triplet of functions satisfying (2.9) and assume that

[
φ
l

]
satisfies (2.11) and

(2.12). From Remark 2.2 it follows that

[
ψ
l

]
given by ψ(t, y) = φ(t,Ψ(y, h(t))) verifies (1.3) and

(1.4).

Using the change of variables y = Φ(x, h(t)) and noting that φ(t, x) = ψ (t,Φ(x, h(t))) in the
first two integrals appearing in (1.2) we obtain

∫ 1

−1

v(t, y)ψ(t, y) dy =

∫ 1

−1

w(t, x)φ(t, x)Φx(x, h(t)) dx (t ∈ [0, T ]), (2.13)
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∫ 1

−1

v0(y)ψ(0, y) dy =

∫ 1

−1

v0(x)φ(0, x) dx (t ∈ [0, T ]). (2.14)

On the other hand, since ψ(t, y) = φ (t,Ψ(y, h(t)) it follows that

ψ̇(t, y) = φ̇(t,Ψ(y, h(t)) + φx (t,Ψ(y, h(t))Ψp(y, h(t))ḣ(t) (t ∈ [0, T ], y ∈ [−1, 1]).

Consequently, setting again y = Φ(x, h(t)) and φ(t, x) = ψ (t,Φ(x, h(t)), we get

∫ 1

−1

v(σ, y)ψ̇(σ, y) dy =

∫ 1

−1

w(σ, x)φ̇(σ, x)Φx(x, h(σ)) dx

− ḣ(σ)

∫ 1

−1

w(σ, x)φx(σ, x)Φp(x, h(σ)) dx (σ ∈ [0, T ]). (2.15)

Similar calculations show that
∫ 1

−1

vy(σ, y)ψy(σ, y) dy =

∫ 1

−1

1

Φx(x, h(σ))
wx(σ, x)φx(σ, x) dx (σ ∈ [0, T ]), (2.16)

∫ 1

−1

v2(σ, y)ψy(σ, y) dy =

∫ 1

−1

w2(σ, x)φx(σ, x) dx. (2.17)

Putting together (2.13)-(2.17) we obtain that if



v
g
h


 is a finite energy solution of (1.1) then



w
g
h




verifies (2.10) for every

[
φ
l

]
satisfying (2.11)-(2.12) and ḣ(t) = g(t) = w(t, h0) for almost every

t ∈ [0, T ].

From Remark 2.2 and by using similar arguments we deduce that the converse assertion holds
too.

The above proposition implies, using the fact that Φx(x, h0) = 1 for every x ∈ [−1, 1], the
following result.

Corollary 2.4. Let T > 0, v0 ∈ L2[−1, 1], g0 ∈ R, h0 ∈ (−1, 1), u ∈ L2[0, T ] and a triplet of
functions



v
g
h


 ∈

{
C([0, T ];L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
× L2[0, T ]×H1(0, T ). (2.18)

Then



v
g
h


 is a finite energy solution of (1.1) on [0, T ] if and only if, the triplet



z
g
h


, where the

function z is given by z(t, x) = Φx(x, h(t))v (t,Φ(x, h(t))) for every t ∈ [0, T ], and the function h
satisfies h(0) = h0, ḣ(t) = g(t) = z(t, h0) and h(t) ∈ [−1, 1], for almost every t ∈ [0, T ], verifies
the relation
∫ 1

−1

z(t, x)φ(t, x) dx−
∫ 1

−1

z0(x)φ(0, x) dx+ g(t)l(t)− g0l(0)

−
∫ t

0

∫ 1

−1

z(σ, x)φ̇(σ, x) dx dσ +

∫ t

0

g(σ)

∫ 1

−1

z(σ, x)φx(σ, x)
Φp(x, h(σ))

Φx(x, h(σ))
dx dσ

−
∫ t

0

g(σ)l̇(σ) dσ+

∫ t

0

∫ 1

−1

zx(σ, x)

(Φx(x, h(σ)))2
φx(σ, x) dx dσ−

∫ t

0

∫ 1

−1

z(σ, x)Φxx(x, h(σ))

(Φx(x, h(σ)))3
φx(σ, x) dx dσ

− 1

2

∫ t

0

∫ 1

−1

z2(σ, x)

(Φx(x, h(σ)))2
φx(σ, x) dx dσ =

∫ t

0

u(σ)l(σ) dσ, (2.19)

for every t ∈ [0, T ] and for every

[
φ
l

]
satisfying (2.11)-(2.12).
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3 Study of a linear operator

An important role in the remaining part of this paper is played by a self-adjoint operator which
we introduce below. Consider the Hilbert space

H = L2[−1, 1]× R,

endowed with the inner product
⟨[
φ1

p1

]
,

[
φ2

p2

]⟩
=

∫ 1

−1

φ1(x)φ2(x) dx+ p1p2. (3.1)

The norm in H will be denoted by ∥ ∥. We define the unbounded operator A0 : D(A0) → H,

D(A0) =

{[
φ
p

]
∈ H1

0(−1, 1)× R

∣∣∣∣ φ|(−1,h0)
∈ H2(−1, h0), φ|(h0,1)

∈ H2(h0, 1), φ(h0) = p

}
, (3.2)

A0

[
φ
p

]
=

[
−{φxx}h0

−[φx]h0

] ([
φ
p

]
∈ D(A0)

)
. (3.3)

In the last formula {φxx}h0 stands for the function in L2[−1, 1] defined, for almost every x ∈ [−1, 1],
by

{φxx}h0(x) =

{
ψ1(x) x ∈ [−1, h0]

ψ2(x) x ∈ [h0, 1]

where ψ1 (respectively ψ2) is the second derivative of φ in D′(−1, h0) (respectively in D′(h0, 1)).
This function is connected to the derivative in the sense of D′(−1, 1), denoted as usually by φxx,
and to the jump of φx at h0, denoted [φx]h0 , via the jump formula

φxx = {φxx}h0 + [φx]h0δh0 (φ ∈ D(A0)). (3.4)

Proposition 3.1. The operator A0 is self-adjoint and strictly positive in H. The operator −A0

is the generator of a contraction semigroup T in H. Moreover, the corresponding space H 1
2
(i.e.,

D(A
1
2
0 ) endowed with the graph norm of A

1
2
0 ) is

H 1
2
=

{[
φ
p

]
∈ H1

0(−1, 1)× R
∣∣φ(h0) = p

}
, (3.5)

endowed with the product
⟨[
φ1

p1

]
,

[
φ2

p2

]⟩

1
2

=

∫ 1

−1

φ1,x(x)φ2,x(x) dx. (3.6)

The dual space H− 1
2
of H 1

2
with respect to the pivot space H, is given by H− 1

2
= W , where W

is the quotient space of H−1(−1, 1) × R with respect to its closed subspace spanned by

{[
δh0

−1

]}
.

Denoting by

[̂
ψ
α

]
the equivalence class of

[
ψ
α

]
∈ H−1(−1, 1) × R, this quotient space is endowed

with the norm ∥∥∥∥∥

[̂
ψ
α

]∥∥∥∥∥
− 1

2

= ∥ψ + αδh0∥H−1(−1,1), (3.7)

and the corresponding duality product writes, for all

[̂
ψ
α

]
∈ H− 1

2
,

[
φ
l

]
∈ H 1

2
,

⟨[̂
ψ
α

]
,

[
φ
l

]⟩

− 1
2 ,

1
2

= ⟨ψ, φ⟩H−1(−1,1),H1
0(−1,1) + αl. (3.8)
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Proof. We first check that A0 is symmetric. Indeed, for any Φi =

[
φi

pi

]
∈ D(A0), i = 1, 2, we have

that

⟨A0Φ1,Φ2⟩ = −
∫ h0

−1

φ1,xx(x)φ2(x) dx−
∫ 1

h0

φ1,xx(x)φ2(x) dx− [φ1,x]h0p2

=

∫ 1

−1

φ1,x(x)φ2,x(x) dx = ⟨Φ1, A0Φ2⟩. (3.9)

Taking Φ1 = Φ2 = Φ =

[
φ
p

]
in (3.9) we see that,

⟨A0Φ,Φ⟩ =
∫ 1

−1

φ2
x(x) dx

([
φ
p

]
∈ D(A0)

)
, (3.10)

so that A0 is a monotone operator.

We next check that A0 is onto. For F =

[
f
g

]
∈ H, the equation A0Φ = F , of unknown

Φ =

[
φ
p

]
∈ D(A0), writes





−{φxx}h0(x) = f(x) x ∈ (−1, h0) ∪ (h0, 1)
φ(h0) = p
−[φx]h0 = g.

(3.11)

Let −Ã0 be the Dirichlet Laplacian on (−1, 1), i.e. the operator

Ã0φ = −φxx (φ ∈ H1
0(−1, 1)),

which is a continuous isomorphism from H1
0(−1, 1) onto H−1(−1, 1). Using (3.4), we see that

(3.11) writes

Ã0φ = f + gδh0 .

Consequently, for every

[
f
g

]
∈ H, there exists a unique solution

[
φ
p

]
∈ H1 of (3.11) given by

φ = Ã0

−1
f + gG, p =

(
Ã0

−1
f
)
(h0) + g

1− h20
1 + h20

, (3.12)

where

G(x) =

{
(1−h0)(1+x)

2 for x ∈ [−1, h0],
(1+h0)(1−x)

2 for x ∈ [h0, 1].

We have shown that indeed A0 is onto. Since we have already shown that A0 is symmetric, classical
results (see, for instance, [27, Proposition 3.2.4 and Theorem 3.8.4]) implies that A0 is self-adjoint
and −A0 is the generator of a contraction semigroup T in H.

On the other hand, (3.10), Poincaré’s inequality and a simple trace theorem imply that that the
square root of the right-hand side of (3.10) defines on D(A0) a norm which is equivalent with the
standard norm on H1

0(−1, 1)× R. Consequently A0 is indeed strictly positive and H 1
2
is given by

(3.5) with the inner product defined by (3.6).

To prove the facts asserted on H− 1
2
, we first note that H 1

2
is a closed subspace of

W = H1
0(−1, 1)× R,

9



whose dual space (with respect to the pivot space H) is obviously H−1(−1, 1)×R. It is not difficult
to check that the annihilator of W (using again the pivot space H) is

(
H 1

2

)⊥
= Span

{[
δh0

−1

]}
⊂ H−1(−1, 1)× R.

Consequently, according to to a classical result (see, for instance, [21, Theorem 4.9]), the dual
space of H 1

2
with respect to the pivot space H is given by the quotient space

H− 1
2
=
(
H−1(−1, 1)× R

)/(
H 1

2

)⊥
.

To prove (3.7), note that

∥∥∥∥∥

[̂
ψ
α

]∥∥∥∥∥
− 1

2

= inf
β∈R

∥∥∥∥
[
ψ
α

]
− β

[
δh0

−1

]∥∥∥∥
H−1(−1,1)×R

=

= inf
β∈R

{
∥ψ − βδh0∥H−1(−1,1) + |α+ β|

}
6 ∥ψ + αδh0∥H−1(−1,1) .

On the other hand, by taking into account that ∥δh0∥H−1(−1,1) 6 1, we have that

inf
β∈R

{
∥ψ − βδh0∥H−1(−1,1) + |α+ β|

}

> inf
β∈R

{
∥ψ + αδh0∥H−1(−1,1) − ∥(α+ β)δh0∥H−1(−1,1) + |α+ β|

}

> inf
β∈R

∥ψ + αδh0∥H−1(−1,1) = ∥ψ + αδh0∥H−1(−1,1).

Hence, (3.7) holds.

Remark 3.2. For the sake of simplicity we denote, for the remaining part of this work, the duality

between H− 1
2
and H 1

2
by

⟨[
ψ
α

]
,

[
φ
l

]⟩

− 1
2 ,

1
2

instead of

⟨[̂
ψ
α

]
,

[
φ
l

]⟩

− 1
2 ,

1
2

from (3.8).

The main result of this section is the following

Proposition 3.3. With the notation in Proposition 3.1, let T > 0. Then, for any

[
z0
g0

]
∈ H and

[
f1
f2

]
∈ L2([0, T ], H− 1

2
), there exists a unique function

[
z
g

]
∈ C([0, T ];H) ∩ L2([0, T ];H 1

2
) ∩H1((0, T ), H− 1

2
), (3.13)

such that z(0) = z0, g(0) = g0 and

d

dt

∫ 1

−1

z(t, x)φ(t, x) dx− ⟨φ̇(t, ·), z(t, ·)⟩H−1(−1,1),H1
0(−1,1) +

d

dt
(g(t)l(t))− g(t)l̇(t)

+

∫ 1

−1

zx(t, x)φx(t, x) dx = f2(t)l(t) + ⟨f1(t), φ(t, · )⟩H−1(−1,1),H1
0(−1,1), (3.14)
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for every

[
φ
l

]
∈ L2([0, T ];H 1

2
) ∩ H1((0, T );H− 1

2
) and for almost every t ∈ [0, T ]. Moreover, for

any t ∈ [0, T ], we have that

∥z(t, ·)∥2L2[−1,1] + |g(t)|2 +
∫ t

0

∥zx(σ, · )∥2L2[−1,1] dσ

6 ∥z0∥2L2[−1,1] + |g0|2 +
∥∥∥∥
[
f1
f2

]∥∥∥∥
2

L2([0,T ];H
− 1

2
)

. (3.15)

Proof. The existence and uniqueness of

[
z
g

]
satisfying (3.13) and (3.14) and the energy estimate

(3.15) are consequences of classical results for parabolic problems (see, for instance, Zeidler [31,
Propositions 23.3 and 23.23]), applied to the specific operator A0 considered in Proposition 3.1.

4 Local wellposedness of a closed loop problem

In this section we consider equations (1.1) with

u(t) = −kvḣ(t) + kp(h1 − h(t)) (t ∈ [0, T ]), (4.1)

where kv > 0 and kp > 0 are fixed constants and h1 ∈ (−1, 1). With this feedback law, the total
energy of the system is non increasing. This will be proved rigourously in the next section but we
briefly justify this choice by formal calculations below. Indeed, assume that v and h are smooth
functions satisfying (1.1). Multiplying the terms in the first equation by v and integrating on
(−1, h(t)) and on (h(t), 1), it is easily checked that

1

2

d

dt

∫ 1

−1

v2dy = −
∫ 1

−1

v2ydy − [vy](t, h(t))v(t, h(t)).

On the other hand, multiplying the fourth equation in (1.1) with ḣ it follows that

1

2

d

dt
(ḣ(t))2 = [vy](t, h(t))ḣ(t) + u(t)ḣ(t).

Summing up the last two formulas it follows that, for u given by (4.1), we have

1

2

d

dt

∫ 1

−1

v2 dy +
1

2

d

dt
(ḣ(t))2 +

kp
2

d

dt
|h(t)− h1|2 = −

∫ 1

−1

v2y dy − kvḣ
2(t), (4.2)

so that the energy of the system is indeed non increasing.

The main result of this section states as follows.

Theorem 4.1. For κ > 0 and ε > 0 we denote by Bκ,ε the set of



v0
g0
h0


 ∈ H × [−1, 1] satisfying

∥v0∥2L2[−1,1] + |g0|2 < κ2, (4.3)

|h0| 6 1− 4ε. (4.4)

Then there exists T > 0, depending only on κ and ε, such that for every



v0
g0
h0


 ∈ Bκ,ε system (1.1),

with u given by (4.1), admits a unique solution



v
g
h


, in the sense of Definition 1.1, on the time

11



interval [0, T ]. Moreover, the map 

v0
g0
h0


 7→



v
g
h


 , (4.5)

is continuous from Bκ,ε to
{
C([0, T ];L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
× L2[0, T ]×H1(0, T ).

An important ingredient for the proof of Theorem 4.1 are the properties of the operators Gk,
with k ∈ {1, 2, 3, 4}, which are defined (as suggested by (2.19)) by

⟨
G1

[
f1
f2

]
(t),

[
φ
l

]⟩

− 1
2 ,

1
2

=

∫ 1

−1

zx(t, x)

(
1− 1

(Φx(x, h(t)))2

)
φx(x) dx, (4.6)

⟨
G2

[
f1
f2

]
(t),

[
φ
l

]⟩

− 1
2 ,

1
2

=

∫ 1

−1

z(t, x)

(
Φxx(x, h(t))

(Φx(x, h(t)))3
− Φp(x, h(t))

Φx(x, h(t))
g(t)

)
φx(x) dx, (4.7)

⟨
G3

[
f1
f2

]
(t),

[
φ
l

]⟩

− 1
2 ,

1
2

=
1

2

∫ 1

−1

z2(t, x)
1

Φ2
x(x, h(t))

φx(x) dx, (4.8)

⟨
G4

[
f1
f2

]
(t),

[
φ
l

]⟩

− 1
2 ,

1
2

= (−kvg(t) + kp(h1 − h(t)))l, (4.9)

for every

[
φ
l

]
∈ H 1

2
, where z, g satisfy (3.14) and h(t) = h0 +

∫ t

0
g(s) ds. Note that the operators

Gk depend on v0, g0 and h0 but, in order to simplify the notation, we omit for the moment this
dependence.

Also, we remark that

[
z
g

]
∈ C([0, T ];H)∩L2([0, T ];H 1

2
) verifies (2.19) if it is a solution of (3.14)

with a second member given by

[
f1
f2

]
= (G1 + G2 + G3 + G4)

[
f1
f2

]
,

or, equivalently

[
f1
f2

]
is a fixed point of G1 + G2 + G3 + G4.

We give below some of the properties of the operators (Gk)16k64.

Lemma 4.2. For any T > 0 the operators (Gk)16k64 given by (4.6)-(4.9) are well defined maps

from L2([0, T ];H− 1
2
) to itself. Moreover, assume that for some κ, ε > 0 we have

∥∥∥∥
[
f1
f2

]∥∥∥∥
L2([0,T ];H

− 1
2
)

6 κ,

∥∥∥∥
[
z0
g0

]∥∥∥∥ 6 κ, 1− |h0| > 4ε. (4.10)

Then there exists a constant K(ε) > 0 such that for every T 6 min
{√

2ε
κ , 1

}
we have

1− |h(t)| > 2ε (t ∈ [0, T ]), (4.11)

∥∥∥∥Gk

[
f1
f2

]∥∥∥∥
L2([0,T ];H

− 1
2
)

6 K(ε)
4
√
Tκ2 (k ∈ {1, 2, 3}), (4.12)

∥∥∥∥G4

[
f1
f2

]∥∥∥∥
L2([0,T ];H

− 1
2
)

6 K(ε)
√
T (|h1 − h0|+ κ) . (4.13)
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Proof. Within this proof and in the remaining part of this section we denote by K(ε) a generic
positive constant depending only on ε.

In order to prove (4.11) we note that, using (3.15) and taking T 6

√
2ε
κ , we have

|h(t)| 6 |h0|+
∫ T

0

|g(σ)| dσ 6 1− 4ε+ T
√
2κ 6 1− 2ε (t ∈ [0, T ]).

From (2.4), (2.5) and the fact that Φ ∈ C∞([−1, 1]× [−1 + 2ε, 1− 2ε]), we have

1

Φx(x, h(t))
6 e|h(t)−h0|K1(ε) 6 K(ε) (t ∈ [0, T ]), (4.14)

∣∣∣∣
Φp(x, h(t))

Φx(x, h(t))

∣∣∣∣ 6 K(ε), (4.15)

∣∣∣∣1−
1

(Φx(x, h(t)))2

∣∣∣∣ =
∣∣∣∣
(Φx(x, h(t)))

2 − (Φx(x, h0))
2

(Φx(x, h(t)))2

∣∣∣∣ 6 K(ε)|h(t)− h0|, (4.16)

∣∣∣∣
Φxx(x, h(t))

(Φx(x, h(t)))3

∣∣∣∣ =
∣∣∣∣
Φxx(x, h(t))− Φxx(x, h0)

(Φx(x, h(t)))3

∣∣∣∣ 6 K(ε)|h(t)− h0|. (4.17)

To prove (4.12) for k = 1, we use (4.14), (4.16) and (3.15) and we obtain the following estimates

∫ T

0

∥∥∥∥G1

[
f1
f2

]
(t)

∥∥∥∥
2

− 1
2

dt 6

∫ T

0

∫ 1

−1

∣∣∣∣zx(t, x)
(
1− 1

(Φx(x, h(t)))2

)∣∣∣∣
2

dx dt

=

∫ T

0

∫ 1

−1

|zx(t, x)|2
∣∣∣∣
(Φx(x, h(t)))

2 − (Φx(x, h0))
2

(Φx(x, h(t)))2

∣∣∣∣
2

dx dt

6 K(ε)

∫ T

0

(h(t)− h0)
2

∫ 1

−1

|zx(t, x)|2 dx dt

6 K(ε)

∫ T

0

t

∫ t

0

|g(s)|2 ds
∫ 1

−1

|zx(t, x)|2 dx dt 6 K(ε)T 2κ4.

In order to prove (4.12) for k = 2 we use (4.14), (4.15), (4.17) and again (3.15). We deduce that,

for T 6 min
{√

2ε
κ , 1

}
, the following estimates hold

∫ T

0

∥∥∥∥G2

[
f1
f2

]
(t)

∥∥∥∥
2

− 1
2

dt 6

∫ T

0

∫ 1

−1

∣∣∣∣z(t, x)
(

Φxx(x, h(t))

(Φx(x, h(t)))3
− Φp(x, h(t))

Φx(x, h(t))
g(t)

)∣∣∣∣
2

dx dt

6 K(ε)

∫ T

0

∫ 1

−1

|z(t, x)|2
(
|g(t)|2 + |h(t)− h0|2

)
dx dt 6 K(ε)Tκ4.

To prove (4.12) for k = 3 we note that by using (4.14) we have

∫ T

0

∥∥∥∥G3

[
f1
f2

]
(t)

∥∥∥∥
2

− 1
2

dt 6 K(ε)

∫ T

0

∫ 1

−1

z4(t, x) dx dt.

The above inequality, the continuous embedding H 1
4 (−1, 1) ⊂ L4(−1, 1) (see, for instance,[1, The-

orem 7.58] and an interpolation inequality (resulting from the relation H 1
4 =

[
L2,H1

]
1
4

, see [18,

Chapter 1, Section 9]) it follows that

∫ T

0

∥∥∥∥G3

[
f1
f2

]
(t)

∥∥∥∥
2

− 1
2

dt 6 K(ε)

∫ T

0

∥z(t, ·)∥3L2[−1,1]∥z(t, ·)∥H1
0(−1,1) dt.
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Using (3.15) and the Cauchy Schwarz inequality, it follows that indeed we have (4.12) for k = 3.

Finally, let us prove (4.13). From (3.15), we deduce that, for T 6 min
{√

2ε
κ , 1

}
, we have

∫ T

0

∥∥∥∥G4

[
f1
f2

]
(t)

∥∥∥∥
2

− 1
2

dt 6 K(ε)

∫ T

0

| − kvg(t) + kp(h1 − h(t))|2 dt

6 K(ε)

∫ T

0

(
|g(t)|2 + |h1 − h0|2 +

(∫ t

0

g(s) ds

)2
)

dt 6 K(ε)T
(
κ2 + |h1 − h0|2

)
.

This concludes the proof of the lemma.

Lemma 4.3. With the notation and assumptions in Lemma 4.2, we suppose that

[
f̃1
f̃2

]
belongs to

L2([0, T ];H− 1
2
) and verifies ∥∥∥∥∥

[
f̃1
f̃2

]∥∥∥∥∥
L2([0,T ];H

− 1
2
)

6 κ. (4.18)

Then there exists a constant K(ε) > 0 such that for every T 6 min{
√
2ε
κ , 1} we have that

∥∥∥∥∥Gk

[
f1
f2

]
− Gk

[
f̃1
f̃2

]∥∥∥∥∥
L2([0,T ];H

− 1
2
)

6 K(ε)
4
√
Tκ(κ+ 1)

∥∥∥∥∥

[
f1
f2

]
−
[
f̃1
f̃2

]∥∥∥∥∥
L2([0,T ];H

− 1
2
)

(k ∈ {1, 2, 3}),

(4.19)∥∥∥∥∥G4

[
f1
f2

]
− G4

[
f̃1
f̃2

]∥∥∥∥∥
L2([0,T ];H

− 1
2
)

6 K(ε)
√
T

∥∥∥∥∥

[
f1
f2

]
−
[
f̃1
f̃2

]∥∥∥∥∥
L2([0,T ];H

− 1
2
)

. (4.20)

The proof of the above Lemma is based on estimates which are very close to those used in
proving Lemma 4.2, so that we omit the details.

We are now in a position to prove the main result in this section.

Proof of Theorem 4.1. For T > 0, κ, ε > 0 we set

XT,κ =





[
f1
f2

]
∈ L2([0, T ];H− 1

2
)
∣∣∣
∥∥∥∥
[
f1
f2

]∥∥∥∥
L2([0,T ];H

− 1
2
)

6 κ



 .

Let N : L2([0, T ];H− 1
2
)× Bκ,ε → L2([0, T ];H− 1

2
) be defined by

N



[
f1
f2

]
,



v0
g0
h0




 = G1

[
f1
f2

]
+ G2

[
f1
f2

]
+ G3

[
f1
f2

]
+ G4

[
f1
f2

]
,

where (Gk)16k64 have been defined in (4.6)-(4.9).

From Lemma 4.2 it follows that, for any T 6 min
{
1,

√
2ε
κ

}
, we have that

∥∥∥∥∥∥
N



[
f1
f2

]
,



v0
g0
h0





∥∥∥∥∥∥
L2([0,T ];H

− 1
2
)

6 K(ε)
4
√
T (κ2 + 1)



[
f1
f2

]
∈ XT,κ,



v0
g0
h0


 ∈ Bκ,ε


 .
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The last estimate implies that, for every



v0
g0
h0


 ∈ Bκ,ε, the function

[
f1
f2

]
7→ N



[
f1
f2

]
,



v0
g0
h0




 (4.21)

invariates XT,κ, provided that

T 6 min

{
1,

√
2ε

κ
,

[
K(ε)(κ2 + 1)

κ

]−4
}
. (4.22)

By applying Lemma 4.3 it follows that, for every T 6 min
{
1,

√
2ε
κ

}
and



v0
g0
h0


 ∈ Bκ,ε, we have

∥∥∥∥∥∥
N



[
f1
f2

]
,



v0
g0
h0




−N



[
f̃1
f̃2

]
,



v0
g0
h0





∥∥∥∥∥∥
L2([0,T ];H

− 1
2
)

6 K(ε)
4
√
T
(
1 + κ2

)
∥∥∥∥∥

[
f1
f2

]
−
[
f̃1
f̃2

]∥∥∥∥∥
L2([0,T ];H

− 1
2
)

([
f1
f2

]
,

[
f̃1
f̃2

]
∈ XT,κ

)
.

The last estimate implies that the application defined in (4.21) is, for every



v0
g0
h0


 ∈ Bκ,ε, a strict

contraction of XT,κ, provided that

T 6 min

{
1,

√
2ε

κ
,
1

16

[
K(ε)(1 + κ2)

]−4

}
. (4.23)

Consequently, for every T satisfying (4.22) and (4.23) we have that N has a unique fixed point[
f̂1
f̂2

]
. Moreover, since the contraction constant of N depends only on ε and κ, it follows (see, for

instance, Brooks and Schmitt [4, Theorem 3.8]) that the map



v0
g0
h0


 7→

[
f̂1
f̂2

]
(4.24)

is continuous from Bκ,ε to L2([0, T ];H− 1
2
). Denoting by

[
z
g

]
∈ C([0, T ];H) ∩ L2([0, T ];H 1

2
) ∩

H1((0, T ), H− 1
2
) the corresponding solution of (3.14) and taking h(t) = h0 +

∫ t

0
g(s) ds, it follows

that 

z
g
h


 ∈

{
C([0, T ];H) ∩ L2([0, T ];H 1

2
) ∩H1((0, T ), H− 1

2
)
}
×H1(0, T )

is the unique solution of (2.19). Moreover, the continuity of the function defined in (4.24) and
(3.15) imply that the map 


v0
g0
h0


 7→



z
g
h


 ,
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is continuous from Bκ,ε to
{
C([0, T ];L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
× L2[0, T ]×H1(0, T ). Ac-

cording to Corollary 2.4, we obtain that



v
g
h


, with v(t, y) = Ψy(y, h(t))z(t,Ψ(y, h(t))) satisfies

(1.2), so it is the unique finite energy solution of (1.1) on [0, T ].

Moreover, the continuity of the function defined in (4.24) implies that the map from (4.5) is
continuous from Bκ,ε to

{
C([0, T ];L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
× L2[0, T ] × H1(0, T ). This

ends the proof of Theorem 4.1.

5 Global solutions of a closed loop problem

In this section we continue to study equations (1.1) with the feedback law (4.1). More precisely,
we show that, under appropriate assumptions on h0, h1 and on the constant kp, the local solutions
constructed in the previous section can be extended to global ones. The main result of this section
reads as follows.

Theorem 5.1. Let v0 ∈ L2[−1, 1], g0 ∈ R and h0 ∈ (−1, 1). Moreover, assume that the constants
h1 and kp in (4.1) verify

0 < |h1 − h0| <
1

2
√
2
min (1− h1, 1 + h1), (5.1)

kp >
∥v0∥2L2[−1,1] + |g0|2

|h0 − h1|2
. (5.2)

Then equations (1.1) with u given by (4.1) admit, for every T > 0, a unique finite energy solution

v
g
h


 on [0, T ], such that

min (1− h(t), 1 + h(t)) >
1

2
min (1− h1, 1 + h1) (t ∈ [0, T ]). (5.3)

Moreover, the map defined in (4.5) (which makes now sense sense for every T > 0) is continuous
from L2[−1, 1]×R× (−1, 1) to

{
C([0, T ];L2[−1, 1]) ∩ L2([0, T ];H1

0(−1, 1))
}
×L2[0, T ]×H1(0, T ).

To prove the above theorem we need an auxiliary result, which asserts that the energy identity
(4.2), derived by formal calculations in Section 4, can be justified in a rigorous manner.

Proposition 5.2. Let



v
g
h


 be the solution of (1.1) constructed in Theorem 4.1. Then, for almost

every t ∈ [0, T ], we have

1

2

∫ 1

−1

v2(t, y)dy +
1

2
g2(t) +

kp
2
(h(t)− h1)

2

=
1

2

∫ 1

−1

v20(y)dy +
1

2
g20 +

kp
2
(h0 − h1)

2 −
∫ t

0

∫ 1

−1

v2y(σ, y)dy − kv

∫ t

0

g2(σ) dσ. (5.4)

Proof. Since

[
v
g

]
∈ C([0, T ];H) ∩ L2([0, T ];H 1

2
) ∩H1((0, T ), H− 1

2
), from (1.2) and a density argu-

16



ment we deduce that

⟨[
v
g

]
(t),

[
ψ
l

]
(t)

⟩
−
⟨[
v0
g0

]
,

[
ψ
l

]
(0)

⟩

−
∫ t

0

⟨[
v
g

]
(σ),

d

dσ

[
ψ
l

]
(σ)

⟩

1
2 ,− 1

2

dσ +

∫ t

0

∫ 1

−1

vy(σ, y)ψy(σ, y) dy dσ

− 1

2

∫ t

0

∫ 1

−1

v2(σ, y)ψy(σ, y) dy dσ =

∫ t

0

(−kvḣ(σ) + kp(h1 − h(σ)))l(σ) dσ, (5.5)

for every

[
ψ
l

]
∈ C([0, T ];H) ∩ L2([0, T ];H 1

2
) ∩H1((0, T ), H− 1

2
).

Now, we take

[
ψ
l

]
=

[
v
g

]
in (5.5), we obtain that

1

2

∥∥∥∥
[
v(t)
g(t)

]∥∥∥∥
2

− 1

2

∥∥∥∥
[
v0
g0

]∥∥∥∥
2

+

∫ t

0

∫ 1

−1

v2ydydσ − 1

2

∫ t

0

∫ 1

−1

v2(σ, y)vy(σ, y) dy dσ

=

∫ t

0

(−kvḣ(σ) + kp(h1 − h(σ)))ḣ(σ) dσ . (5.6)

Using the obvious facts that ∫ t

0

∫ 1

−1

v2vy dy dσ = 0,

and
∫ t

0

(−kvḣ(σ) + kp(h1 − h(σ)))ḣ(σ) dσ =

∫ t

0

kvg
2(σ)dσ − kp

2

(
(h1 − h(t))2 − (h1 − h0)

2
)
,

together with (5.6), it follows that (5.4) holds.

We can now pass to prove the main result of this section.

Proof of Theorem 5.1. The solution constructed in Theorem 4.1 can be extended to a maximal
one defined on the interval [0, Tmax), with Tmax ∈ (0,∞]. Energy estimate (5.4) and (5.2) imply
that

∫ 1

−1

v2(t, y)dy + g2(t) 6 2kp|h0 − h1|2 (t ∈ [0, Tmax)) (5.7)

kp
2
|h(t)− h1|2 6 kp|h0 − h1|2 (t ∈ [0, Tmax)),

so that
|h(t)− h1| 6

√
2|h0 − h1| (t ∈ [0, Tmax)).

The last formula and (5.1) imply that

|h(t)− h1| 6
1

2
min (1− h1, 1 + h1) (t ∈ [0, Tmax)),

which clearly yields that

min (1− h(t), 1 + h(t)) >
1

2
min (1− h1, 1 + h1) (t ∈ [0, Tmax)). (5.8)

Let κ = 2kp|h0 − h1|2 and ε = 1
8 min (1− h1, 1 + h1). From (5.7) and (5.8) it follows that we can

apply Theorem 4.1 to obtain the existence of ϱ > 0 depending only on v0, g0, h0, h1 such that for
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every t ∈ [0, Tmax) the solution of (1.1) can be extended to a finite energy solution defined on
[0, t+ ϱ]. Consequently we have Tmax = ∞ and estimate (5.3) holds true.

Finally, the continuity property stated at the end of the theorem follows by repetitively applying
the continuity of the map defined in (4.5) on the intervals [(n− 1)ϱ, nϱ], with n ∈ N.

6 Large time behaviour of the closed loop system

Once we have proved the existence of the global solution of (1.1), we pass to study its asymptotic
behavior for t→ ∞. The main result of this section reads as follows:

Theorem 6.1. Under the assumptions of Theorem 5.1, the finite energy solution of (1.1) satisfies

lim
t→∞

∥v(t, ·)∥L2[−1,1] = 0, lim
t→∞

g(t) = 0, lim
t→∞

h(t) = h1.

In our proof of the above theorem we need the functionsW1, W2 : L2[−1, 1]×R×[−1, 1] → [0,∞)
defined by

W1



φ
g
h


 =

1

2

(∫ 1

−1

φ2 dy + |g|2
)

(φ ∈ L2[−1, 1], g ∈ R, h ∈ [−1, 1]), (6.1)

W2



φ
g
h


 =

kp
2
|h− h1|2 (φ ∈ L2[−1, 1], g ∈ R, h ∈ [−1, 1]). (6.2)

Moreover, we introduce the map D : H1
0(−1, 1)× R× [−1, 1] → [0,∞) defined by

D



φ
g
h


 =

∫ 1

−1

φ2
y(y) dy + kvg

2 (φ ∈ H1
0(−1, 1), g ∈ R, h ∈ [−1, 1]). (6.3)

On the other hand, given v0 ∈ L2[−1, 1], g0 ∈ R and h0 ∈ (−1, 1), we set

S(t)



v0
g0
h0


 =



v(t, ·)
g(t)
h(t)


 (t > 0), (6.4)

where



v
h

ḣ


 is the corresponding solution of (1.1) constructed in Theorem 5.1. The last part of the

statement of Theorem 5.1 can be rephrased to say that

S(t) ∈ C
(
L2[−1, 1]× R× (−1, 1);L2[−1, 1]× R× (−1, 1)

)
(t > 0), (6.5)

and that, for every T > 0, the map



v0
g0
h0


 7→ D


S(·)



v0
g0
h0




 (6.6)

is continuous from L2[−1, 1]× R× (−1, 1) to L1[0, T ].
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With the above notation, estimate (5.4) writes, for every t > 0,

W1



v0
g0
h0


+W2



v0
g0
h0


−W1


S(t)



v0
g0
h0




−W2


S(t)



v0
g0
h0






=

∫ t

0

D


S(σ)



v0
g0
h0




 dσ. (6.7)

Proposition 6.2. Under the assumptions of Theorem 5.1, for every v0 ∈ L2[−1, 1], g0 ∈ R and
h0 ∈ (−1, 1) we have that

lim
t→∞

W1


S(t)



v0
g0
h0




 = 0.

Proof. Within this proof we denote, for the sake of simplicity

Wk


S(t)



v0
g0
h0




 =Wk(t) (k ∈ {1, 2}, t > 0).

Let us assume, by contradiction, that W1 does not converge to zero for t → ∞. This means that
there exists ε > 0 and a sequence (tn)n>0 of positive numbers such that tn → ∞ and

W1(tn) > ε (n ∈ N).

Denote
δn = max

{
δ > 0 | W1(tn − δ) >

ε

2

}
(n ∈ N).

Since, according to (6.7) and to Poincaré’s inequality, we have that W1 ∈ L1[0,∞), it follows that

∑

n∈N

δn <∞,

so that
lim

n→∞
δn = 0.

On the other hand, (6.7) implies that W1 +W2 is nonincreasing so that

ε

2
+

1

2
|h(tn − δn)− h1|2 =W1(tn − δn) +W2(tn − δn)

>W1(tn) +W2(tn) > ε+
1

2
|h(tn)− h1|2 (n ∈ N),

so that
|h(tn − δn)− h1|2 − |h(tn)− h1|2 > ε (n ∈ N).

By applying the mean value theorem and the fact that

|h(t)− h1| 6 2 (t > 0),

it follows that for every n ∈ N there exist αn ∈ (0, 1) such that

|ḣ(tn − αnδn)| >
ε

4δn
→ ∞.

The above estimate clearly contradicts the fact that W1 ∈ L1[0,∞).
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Now, we are able to prove the main result of this section.

Proof of Theorem 6.1. We know from Proposition 6.2 that

lim
t→∞

∥v(t, ·)∥L2[−1,1] = 0, lim
t→∞

ḣ(t) = 0. (6.8)

Moreover, since h(t) ∈ [−1 + ε, 1 − ε] for every t > 0 we have that the set (h(t))t>0 is relatively
compact in R. Let (tn)n>0 be a sequence of positive numbers such that

tn → ∞, lim
n→∞

h(tn) = h∗ ∈ [−1 + ε, 1− ε]. (6.9)

We also know from (6.7) that the map t 7→ D


S(t)



v0
g0
h0




 is in L1[0,∞) so that, given T > 0,

we have

lim
n→∞

∫ T+tn

tn

D


S(t)



v0
g0
h0




 dt = 0.

A change of variables and the semigroup property of the family (S(t))t>0 imply that

lim
n→∞

∫ T

0

D


S(s)S(tn)



v0
g0
h0




 ds = 0.

On the other hand, we know from Theorem 5.1 that S(s) is continuous on L2[−1, 1]×R× (−1, 1),
so that we can use (6.8) and (6.9) to obtain

lim
n→∞

S(tn)



v0
g0
h0


 =



0
0
h∗


 .

The last two formulae and the continuity of map defined in (6.6) imply that

D


S(s)



0
0
h∗




 = 0 (s ∈ [0, T ]).

If, for each t > 0, we set



ṽ(t, ·)
g̃(t)

h̃(t)


 = S(t)



0
0
h∗


, it follows that ṽy(s, ·) = 0 in L2[−1, 1] for almost

every s ∈ [0, T ]. Moreover, since ṽ vanishes for y = ±1, it follows that ṽ(s, ·) = 0 in H1
0(−1, 1)

for almost every s ∈ [0, T ]. This implies, in particular, that g(s) = 0 for almost every s ∈ [0, T ].
Finally, using (5.4) (with ṽ instead of v and h∗ instead of h0) we obtain that h∗ = h1, which ends
the proof.

7 Null controllability of a linearized problem

As mentioned in the Introduction, the last step in the proof of our main result consists in proving

that, given T > 0, any initial state close enough to a target of the form



0
0
h1


 can be steered

exactly to this target in time T . To accomplish this goal, it seems convenient to linearize the
system around the final state instead of the initial one (as it was the case in proving local in time
existence of solutions in Section 4). Consequently, we consider a linear operator A1, which differs
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from the operator A0 introduced in Section 3 just by the fact that h0 is replaced by h1. More
precisely, denoting H = L2[−1, 1] × R and given h1 ∈ (−1, 1), the operator A1 : D(A1) → H is
defined by

D(A1) =

{[
φ
p

]
∈ H1

0(−1, 1)× R

∣∣∣∣ φ|(−1,h1)
∈ H2(−1, h1), φ|(h1,1)

∈ H2(h1, 1), φ(h1) = p

}
, (7.1)

A1

[
φ
p

]
=

[
−{φxx}h1

−[φx]h1

] ([
φ
p

]
∈ D(A1)

)
, (7.2)

where the notation (namely for {φxx}h1 and [φxx]h1) is the same as in Section 3.

Moreover, in the remaining part of this article, we use the change of variable Φ defined in Lemma
2.1, with h0 replaced by h1. The spaces H 1

2
and H− 1

2
are modified accordingly.

Let B ∈ L(C, H) and C ∈ L(H,C) be the operators defined by

Bw =

[
0
w

]
(w ∈ C), (7.3)

and

C

[
φ
p

]
= p

([
φ
p

]
∈ H

)
. (7.4)

By denoting

Y (t) =

[
z(t)
g(t)

]
,

we introduce the controlled linear system





Ẏ (t) +A1Y (t) = Bw(t)

ḣ(t) = CY (t)
Y (0) = Y0
h(0) = h0,

(7.5)

where Y0 =

[
z0
g0

]
∈ H and h0 ∈ (−1, 1). The state trajectory of this system is

[
Y
h

]
and w is the

control function. Using Proposition 3.1 with A0 replaced by A1 and the variation of constants
formula, we see that for every Y0 ∈ H, h0 ∈ (−1, 1) and w ∈ L2(0,∞) the system (7.5) has a
unique solution given by

Y (t) =

[
z(t)
g(t)

]
= TtY0 +

∫ t

0

Tt−sBw(s) ds, h(t) = h0 +

∫ t

0

CY (s) ds, (7.6)

where T is the contraction semigroup generated by −A1.

The aim of this section is to study the following linear controllability problem: given T > 0 and[
Y0
h0

]
∈ H × R, find a control function w ∈ C[0, T ] such that

Y (T ) = 0, h(T ) = h1. (7.7)

The main result of this section says that this problem admits at least one solution, provided that
h1 lies in a certain class of irrationals or, more precisely, in the set

S = {a ∈ (−1, 1) | a is an irrational algebraic number} . (7.8)

The main result in this section states as follows:
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Theorem 7.1. Let T > 0 and h1 ∈ S. Then for each Y0 ∈ H and h0 ∈ R there exists a control

w ∈ C[0, T ] such that the solution

[
Y
h

]
of (7.5) verifies (7.7) and

∥w∥C[0,T ] 6 κ0e
κ1
T (∥Y0∥H + |h1 − h0|) , (7.9)

where κ0 and κ1 are two positive constants independent of T and of the data Y0 and h0. The
constant κ1 depends on the distance min{h1 + 1, 1 − h1} between h1 and the extremities of the
interval (−1, 1), whereas κ0 depends on the diophantine approximation properties of h1.

Remark 7.2. It is well known that a necessary condition for the controllability of system (7.5) is

B∗Φn ̸= 0, (7.10)

for any eigenfunction Φn of the operator A1. From the proof of Theorem 10.1 we can deduce that,
if h1 ∈ Q, there exists an eigenfunction Φn of A1 which does not satisfy (7.10). This shows that,
for any h1 ∈ Q, system (7.5) is not controllable. If h1 /∈ Q condition (7.10) is verified. However,
in order to obtain the exact controllability and to give the estimate of the control cost (7.9) we need
to impose additional conditions on h1. Indeed, if h1 ∈ S, we can bound from bellow the distance
from h1 to all rational numbers and we can obtain our desired cost estimate.

The first step in proving Theorem 7.1 consists in reducing it to an appropriate moment problem.
To state this problem, denote by (Φn)n>1 an orthonormal basis in H formed of eigenvectors of A1

and let (λn)n>1 be the corresponding sequence of eigenvalues. Also, let λ0 = 0. The semigroup T

generated by −A1 writes

TtY0 =
∑

n>1

⟨Y0,Φn⟩e−λntΦn (Y0 ∈ H).

Consequently, (7.6) becomes

Y (t) =
∑

n>1

[
⟨Y0,Φn⟩e−λnt +

∫ t

0

e−λn(t−σ)w(σ)B∗Φn dσ

]
Φn,

h(t) = h0 +

∫ t

0

CY (s) ds.

(7.11)

From the above formulas, using standard calculations, we can easily prove the following result:

Proposition 7.3. Let T > 0, h1 ∈ (−1, 1), Y0 ∈ H and h0 ∈ R. Then w ∈ L2[0, T ] is a control

which leads the solution

[
Y
h

]
of (7.5) to verify (7.7) if and only if





B∗
0Φn

∫ T

0

esλnw(s) ds = −⟨Y0,Φn⟩ (n > 1)

(∑

n∈N∗

1

λn
CΦnB

∗Φn

)∫ T

0

w(s) ds = h1 − h0 −
∑

n∈N∗

1

λn
CΦn⟨Y0,Φn⟩.

(7.12)

In the sequel K will denote a positive constant which may change from one line to another but
it will always be independent of other parameters of the problem. We are now in a position to
prove the main result of this section.

Proof of Theorem 7.1. In this proof we make extensive use of the results from Appendixes A and
B. Let (Fn)n>0 be the biorthogonal family to

(
eλnt

)
n>0

in L2
[
−T

2 ,
T
2

]
constructed in Corollary

11.3 from Appendix B. We set

w(t) = a0F0(t+ T/2)−
∑

n>1

⟨Y0,Φn⟩
B∗Φn

e−λnT/2Fn(t+ T/2) (t ∈ [0, T ]) , (7.13)
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where

a0 =
h1 − h0 −

∑
n>1

CΦn

λn
⟨Y0,Φn⟩∑

n>1
CΦnB∗Φn

λn

. (7.14)

The fact that (7.13) defines a function from C[0, T ] follows from the absolute convergence of the
series from the right hand side member. To show this, firstly note that from Corollary 11.3 we
have

|a0| ∥F0∥C[−T
2 ,T2 ]

+
∑

n>1

∣∣∣∣
⟨Y0,Φn⟩
B∗Φn

∣∣∣∣ e−λnT/2∥Fn∥C[−T
2 ,T2 ]

6 ce
κ
T


|a0|+

∑

n>1

∣∣∣∣
⟨Y0,Φn⟩
λnB∗Φn

∣∣∣∣ e−λnT/2+ω
√
λn


 , (7.15)

where c, κ and ω are the constants from (11.20). This means, in particular, that all these constants
depend only on the distance min{1 + h1, 1 − h1} (see Remark 11.4). We remark that, according
to (10.4) from Appendix A, we have

B∗Φn = CΦn =
1√
D(λn)

(n > 1), (7.16)

where D(λn) is defined in (10.5) from Appendix A. From (7.15), (7.16) and the Cauchy-Schwarz
inequality we deduce that

|a0| ∥F0∥C[−T
2 ,T2 ]

+
∑

n>1

∣∣∣∣
⟨Y0,Φn⟩
B∗Φn

∣∣∣∣ e−λnT/2∥Fn∥C[−T
2 ,T2 ]

6 c̃e
2κ
T


|a0|2 +

∑

n>1

D(λn) |⟨Y0,Φn⟩|2 e−λnT+2ω
√
λn




6 c̃e
2κ
T


|a0|

2 +
∑

n>1

λn6
9ω2

T2

D(λn) |⟨Y0,Φn⟩|2 e
6ω2

T +
∑

n>1

λn>
9ω2

T2

D(λn) |⟨Y0,Φn⟩|2 e−
λnT

3


 . (7.17)

Note that c̃ = c
(
1 +

∑
n>1

1
λ2
n

)
and consequently it depends only on min{1 + h1, 1 − h1}. From

(7.14), (7.16), the Cauchy-Schwarz inequality and the obvious fact, following from(10.5), that
D(λn) >

1
2 , we obtain that there exists a positive constantK, depending only on min{1+h1, 1−h1},

such that

|a0|2 6 K


|h1 − h0|2 +

∑

n>1

|⟨Y0,Φn⟩|2

 . (7.18)

To evaluate of the last two terms in (7.17), we remark that, for any T > 0, we have

D (λn) 6





M̃
T 4 if λn 6

9ω2

T 2

M̃
T 2 e

λnT
3 if λn >

9ω2

T 2 ,

(7.19)

where M̃ depends on the distance min{1 + h1, 1 − h1} and on the diophantine approximation
properties of h1. Indeed, using the fact that h1 ∈ S, we can apply Lemma 10.6 from Appendix A
with ς = 1 and we deduce that

D (λn) 6Mn4,
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where M is the constant from (10.18) which depends on the distance min{1 + h1, 1− h1} and on
the diophantine approximation properties of h1. By taking into account the properties of λn from
Theorem 10.5, we immediately obtain that (7.19) holds. From (7.17), (7.18) and (7.19) we deduce
immediately that

|a0| ∥F0∥C[−T
2 ,T2 ]

+
∑

n>1

∣∣∣∣
⟨Y0,Φn⟩
B∗Φn

∣∣∣∣ e−λnT/2∥Fn∥C[−T
2 ,T2 ]

6 κ0 max

{
1

T 4
,

1

T 2

}
e

2κ+6ω2

T


|h1 − h0|2 +

∑

n>1

|⟨Y0,Φn⟩|2

 ,

which implies that the right hand side of (7.13) is absolutely convergent and gives a function

w ∈ C[0, T ] verifying (7.9). The constant κ0 is equal to max
{
c̃K, c̃M̃

}
and thus depends on the

distance min{1 + h1, 1− h1} and on the diophantine approximation properties of h1. By choosing
κ1 any real number greater than 2κ+6ω2, we deduce that (7.9) holds. According to the properties
of the biorthogonal sequence (Fn)n>0, we have that w is a solution of the moment problem (7.12),
so that, by Proposition 7.3, w steers the solution of (7.5) to a state satisfying (7.7).

Remark 7.4. As shown in Theorem 10.5 from Appendix A, the sequence of eigenvalues (λm)m>1

of the operator A1 is the union of two increasing subsequences of positive numbers, (λ1n)n>1 and
(λ2k)k>1. The presence of two families of exponents can be encountered in the controllability theory
for underactuated parabolic systems (see, for instance, Ammar Khodja et al. [2]). However, the
situation in this paper differs from the one described in [2], since our two families are not exponen-
tially close. Indeed, as shown by property (10.17) in Theorem 10.5, there is a positive gap between
the families (λ1n)n>1 and (λ2k)k>1 which, consequently, verify hypothesis (Λ3) from Appendix B.
Therefore, unlike in [2], we have null controllability in arbitrarily small time.

8 Adding a source term

In this section we consider a control system derived from (7.5) by adding appropriate source terms.
This system is defined by: 




Ẏ (t) +A1Y (t) = Bw(t) + f(t)

ḣ(t) = CY (t)
Y (0) = Y0
h(0) = h0,

(8.1)

where we have used the same notation as in Section 7 for A1, B and C. Before stating the
controllability result for (8.1), we need more notation. As in Section 7, let h1 ∈ S and let γ :
(0,∞) → (0,∞) be the cost function appearing in Theorem 7.1, i.e.

γ(t) = κ0e
κ1
t (t > 0),

where κ0 and κ1 are the constants in (7.9). Moreover, given τ > 0, we consider the functions

ρF (t) = e
− α

(τ−t)2 , ρ0(t) = κ0e
κ1

(q−1)(τ−t)
− α

q4(τ−t)2 (t ∈ [0, τ)), (8.2)

where q > 1 and

α >
κ1q

4τ

2(q − 1)
.

Note that, thanks to the choice of α, these functions can be extended by continuity for t = τ ,
with ρF (τ) = ρ0(τ) = 0.

24



To these functions we associate the following Hilbert spaces

F =

{
f ∈ L2([0, τ ];H− 1

2
)
∣∣∣ f

ρF
∈ L2([0, τ ];H− 1

2
)

}
, (8.3)

W =

{
w ∈ L2[0, τ ]

∣∣∣ w
ρ0

∈ L2[0, τ ]

}
, (8.4)

Z =

{
z ∈ L2([0, τ ];H)

∣∣∣ z
ρ0

∈ L2([0, τ ];H)

}
. (8.5)

The inner product in F is defined by

⟨
f, f̃

⟩
F
=

∫ τ

0

ρ−2
F (t)

⟨
f(t), f̃(t)

⟩
− 1

2

dt (f, f̃ ∈ F),

and similar definitions are considered in W and Z. The induced norms are denoted by ∥·∥F , ∥·∥W
and ∥ · ∥Z , respectively. We recall that the inner product ⟨ , ⟩− 1

2
is defined by

⟨
ξ, ξ̃
⟩
− 1

2

=
⟨
A−1

1 ξ, A−1
1 ξ̃
⟩

1
2

(ξ, ξ̃ ∈ H− 1
2
).

The main result of this section can be seen as a version of Proposition 2.3 in [19] and states as
follows. Therefore, we state it below and we omit its proof.

Theorem 8.1. With the above notation and assumption, let τ > 0 and f ∈ F . Then, for any[
Y0
h0

]
∈ H×R and h1 ∈ S, there exists w ∈ W∩C[0, τ ] such that the solution

[
Y
h

]
of (8.1) satisfies

Y ∈ Z and h(τ) = h1. Moreover, there exists a positive constant K, not depending on f , Y0 and
h0 (but it may depend on h1 and on τ) such that

∥∥∥∥
Y

ρ0

∥∥∥∥
C([0,τ ],H)

+

∥∥∥∥
h− h1
ρ0

∥∥∥∥
C[0,τ ]

+

∥∥∥∥
w

ρ0

∥∥∥∥
C[0,τ ]

6 K (∥f∥F + ∥Y0∥+ |h0 − h1|) . (8.6)

Remark 8.2. According to Theorem 8.1, given τ > 0 and h1 ∈ S, there exists a map

Eτ : H × R×F → W
such that, for any (Y0, h0, f) ∈ H × R × F , the control w = Eτ (Y0, h0, f) ∈ W is such that the
solution Y of (8.1) verifies Y ∈ Z and h(τ) = h1. Moreover, the following estimate holds

∥Eτ (Y0, h0, f)∥W 6 K (∥f∥F + ∥Y0∥+ |h0 − h1|) , (8.7)

where K > 0 is a constant independent of f , Y0 and h0 (it may depend of h1 and τ).

Moreover, from the proof of Theorem 8.1, we easily deduce that

∥Eτ (Y0, h0, f)− Eτ (Y0, h0, f̃)∥W 6 K∥f − f̃∥F , (8.8)

where, once more, K > 0 is a constant independent of Y0, h0, f and f̃ .

Corollary 8.3. With the assumptions and notation from Theorem 8.1, denote

ρ(t) = e
− β

(τ−t)2 (t ∈ [0, τ)), (8.9)

where the positive constant β is chosen such that β < α
q4 .

Then, for every f ∈ F , (Y0, h0, h1) ∈ H × R × S, the trajectory Y obtained by solving (8.1)
with the control w ∈ W given by Theorem 8.1 satisfies Y ∈ L2([0, τ ];H 1

2
). Moreover, there exists

a positive constant K, not depending on f , Y0, h0 such that
∥∥∥∥
Y

ρ

∥∥∥∥
L2([0,τ ];H 1

2
)

6 K (∥f∥F + ∥Y0∥+ |h0 − h1|) . (8.10)

Moreover, assuming that β > α
2 and q4 < 2, it follows that ρ2

ρF
∈ C[0, τ ].
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Proof. Let w ∈ W be the control constructed in the proof of Theorem 8.1 and Y be the corre-
sponding trajectory. Then Z = Y

ρ satisfies

Ż = A1Z +B
w

ρ
+
f

ρ
+

ρ̇

ρ2
Y. (8.11)

Since ρF

ρ ∈ L∞[0, τ ], ρ0

ρ ∈ L∞[0, τ ], ρ̇ρ0

ρ2 ∈ L∞[0, τ ] then

B
w

ρ
+
f

ρ
+

ρ̇

ρ2
Y ∈ L2([0, τ ];H− 1

2
)

and the result follows from classical results (see Lions and Magenes [18, Section 3.4] or Wloka
[30]).

9 Proof of the main result

To prove Theorem 1.2 we first show that the nonlinear system (1.1) is locally exactly controllable

to the equilibrium states



0
0
h1


, with h1 ∈ S, where S has been defined in (7.8).

Theorem 9.1. Let τ > 0 and h1 ∈ S. Then there exists δ > 0 such that for every

[
v0
g0

]
∈ H and

h0 ∈ (−1, 1) satisfying
∥v0∥2L2[−1,1] + |g0|2 6 δ2, |h0 − h1| < δ, (9.1)

there exists a control w ∈ C[0, τ ] such that the solution of the nonlinear system (1.1) verifies

v(τ) = 0, g(τ) = 0, h(τ) = h1. (9.2)

Proof. Let τ > 0 and let ρF , ρ0 and ρ be the weight functions introduced by (8.2) and (8.9),
respectively, supposed to satisfy the assumptions in Corollary 8.3. Also, let F , W and Z be the
functional spaces defined by (8.3)-(8.5). Let δ > 0 to be chosen later on. We set

Xτ,δ =

{[
f1
f2

]
∈ F

∣∣∣∣
∥∥∥∥
[
f1
f2

]∥∥∥∥
F
6 δ

}
.

Given h1 ∈ S, let ε > 0 be such that |h1| 6 1 − 4ε. For



v0
g0
h0


 ∈ Bδ,ε, we define the operator

Ñ : Xτ,δ → L2([0, τ ];H− 1
2
) by

Ñ
[
f1
f2

]
= G1

[
f1
f2

]
+ G2

[
f1
f2

]
+ G3

[
f1
f2

]
. (9.3)

In the definition of Ñ we have used the notation from Theorem 4.1, in particular for Bδ,ε and for
the operators (Gk)16k63 (introduced in (4.6)-(4.8)). These operators are slightly modified, in the

sense that, in their definition,



z
g
h


 represents now the controlled solution of (8.1) with initial data



z0
g0
h0


 ∈ H × (−1, 1), where z0 = v0(Φ( · , h0))Φx( · , h0), and nonhomogeneous term

[
f1
f2

]
∈ Xτ,δ.

We recall that, in this section, we use the change of variable Φ defined in Lemma 2.1, with h0
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replaced by h1. If w = Eτ

([
z0
g0

]
, h0,

[
f1
f2

])
∈ W ∩ C[0, τ ] is the corresponding control given by

Theorem 8.1 (see, also, Remark 8.2), it follows that

[
z
g

]
satisfies

d

dt

∫ 1

−1

z(t, x)φ(t, x) dx− ⟨φ̇(t, ·), z(t, ·)⟩H−1(−1,1),H1
0(−1,1) +

d

dt
(g(t)l(t))− g(t)l̇(t)

+

∫ 1

−1

zx(t, x)φx(t, x) dx = w(t)l(t) +

⟨[
f1(t)
f2(t)

]
,

[
φ(t)
l(t)

]⟩

1
2 ,− 1

2

, (9.4)

for every

[
φ
l

]
∈ L2([0, T ];H 1

2
) ∩H1((0, T );H− 1

2
) and for almost every t ∈ [0, τ ].

The remaining part of this proof follows a classical idea used to study the controllability prop-
erties of nonlinear systems: we will show that there exists δ > 0 such that the operator Ñ is a
contraction on Xτ,δ. This ensures that Ñ has a unique fixed point which, according to (9.4) and
Corollary 2.4, gives a solution of (1.1) verifying (9.4).

Hence, to conclude the proof of the theorem, it remains to verify that there exists δ > 0 such
that we have

Ñ (Xτ,δ) ⊆ Xτ,δ (9.5)

and Ñ is a contraction in Xτ,δ.

Proceeding as in the proof of Lemma 4.2 and using the facts that
ρ2
0

ρF
and ρ2

ρF
are in C[0, τ ] (this

follows from the definition of these functions and from Corollary 8.3), we obtain that there exists
a constant K(ε) such that

∫ τ

0

1

ρ2F (t)

∥∥∥∥G1

[
f1
f2

]
(t)

∥∥∥∥
2

− 1
2

dt 6 K(ε)

∫ τ

0

ρ20(t)ρ
2(t)

ρ2F (t)

(
h(t)− h1
ρ0(t)

)2 ∫ 1

−1

∣∣∣∣
zx(t, x)

ρ(t)

∣∣∣∣
2

dx dt

6 K(ε)

∥∥∥∥
h− h1
ρ0

∥∥∥∥
2

C[0,τ ]

∫ τ

0

∫ 1

−1

∣∣∣∣
zx(t, x)

ρ(t)

∣∣∣∣
2

dx dt.

From the last inequality, (8.6) and (8.10) we obtain that there exists a constant K(ε, τ) depend-
ing only on ε and τ such that we have

∫ τ

0

1

ρ2F (t)

∥∥∥∥G1

[
f1
f2

]
(t)

∥∥∥∥
2

− 1
2

dt 6 K(ε, τ)

(∥∥∥∥
[
f1
f2

]∥∥∥∥
2

F
+ ∥Y0∥2 + |h0 − h1|2

)2

.

Similar estimates hold for the operators G2 and G3. Taking into account (8.7) and (9.1), we
deduce that there exists δ > 0, depending only on h1 and on τ , such that we have

∥∥∥∥Gk

[
f1
f2

]∥∥∥∥
F
6 K(ε, τ)δ2 6

δ

3
.

([
f1
f2

]
∈ Xτ,δ, k ∈ {1, 2, 3}

)
. (9.6)

Inclusion (9.5) follows immediately from (9.6) and definition (9.3) of Ñ .

On the other hand, using again the facts that
ρ2
0

ρF
and ρ2

ρF
are in C[0, τ ], we deduce that there

exists a constant K(ε) such that we have

∫ τ

0

1

ρ2F (t)

∥∥∥∥∥G1

[
f1
f2

]
(t)− G1

[
f̃1
f̃2

]
(t)

∥∥∥∥∥

2

− 1
2

dt

6 K(ε)

∫ τ

0

∫ 1

−1



∣∣∣∣
zx(x, t)

ρ(t)

∣∣∣∣
2
∣∣∣∣∣
h(t)− h̃(t)

ρ0(t)

∣∣∣∣∣

2

+

(
zx(x, t)− z̃x(x, t)

ρ(t)

)2
(
h̃(t)− h1
ρ0(t)

)2

 dx dt.
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Taking into account the last inequality, (8.6) and (8.10) we obtain that there exists a constant
K(ε, τ) depending only on ε and τ such that the following inequality is verified

∫ τ

0

1

ρ2F (t)

∥∥∥∥∥G1

[
f1
f2

]
(t)− G1

[
f̃1
f̃2

]
(t)

∥∥∥∥∥

2

− 1
2

dt

6 K(ε, τ)


∥Y0∥2 + |h0 − h1|2 +

∥∥∥∥
[
f1
f2

]∥∥∥∥
2

F
+

∥∥∥∥∥

[
f̃1
f̃2

]∥∥∥∥∥

2

F





∥∥∥∥∥

[
f1
f2

]
−
[
f̃1
f̃2

]∥∥∥∥∥

2

F
+ ∥w − w̃∥2W


 .

By combining the last estimate and (8.8), it follows that there exists a constant K(ε, τ) depending
only on ε and τ such that we have

∥∥∥∥G1

[
f1
f2

]
− G1

[
f̃1
f̃2

]∥∥∥∥
F
6 K(ε, τ)δ

∥∥∥∥∥

[
f1
f2

]
−
[
f̃1
f̃2

]∥∥∥∥∥
F

([
f1
f2

]
,

[
f̃1
f̃2

]
∈ Xτ,δ

)
. (9.7)

Similar estimates hold for the operators G2 and G3. Consequently, there exists δ > 0, depending
only on h1 and on τ , such that the operator Ñ is a contraction and the proof of the theorem
ends.

Now we have all the ingredients needed to prove our main result.

Proof of Theorem 1.2. Since S is dense in [−1, 1], there exists h1 ∈ S such that

|hF − h1| < η. (9.8)

For τ > 0, let δ > 0 be the constant given by Theorem 9.1. Without loss of generality, we can
assume that h1 > h0. Let N ∈ N be the smallest integer such that

h1 − h0
N

< min

{
δ

2
,

1

4
√
2
min{1− h1, 1 + h1}

}
.

For j ∈ {0, 1, . . . , N} we set

h0,j = h0 + j
h1 − h0
N

,

so that h0,0 = h0 and h0,N = h1. From Theorem 6.1 it follows that there exist k1, T1 > 0 such

that the solution



v(1)

g(1)

h(1)


 of (1.1) with

u(t) := u(1)(t) = k1(h0,1 − h(1)(t)) (t ∈ [0, T1])

satisfies

∥v(1)(T1, ·)∥2L2[−1,1] + |g(1)(T1)|2 6
δ2

4
,

|h(1)(T1)− h0,1| 6 min

{
δ

2
,

1

4
√
2
min{1− h1, 1 + h1}

}
.

Recursively we can construct the sequences (kj)16j6N and (Tj)16j6N such that the solution



v(j)

g(j)

h(j)




of the first four equations in (1.1) with

v(j)(Tj−1) = v(j−1)(Tj−1), g(j)(Tj−1) = g(j−1)(Tj−1), h(j)(Tj−1) = h(j−1)(Tj−1) (1 6 j 6 N),

u(t) := u(j)(t) = kj(h0,j − h(j)(t)) (t ∈ [Tj−1, Tj ]),
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satisfies, for every 1 6 j 6 N ,

∥v(j)(Tj , ·)∥2L2[−1,1] + |g(j)(Tj)|2 6
δ2

4
, |h(j)(Tj)− h0,j | 6 min

{
δ

2
,

1

4
√
2
min{1− h1, 1 + h1}

}
.

Setting, for every j ∈ {1, . . . , N},

ũ(t) = u(j)(t) (t ∈ [Tj−1, Tj ]), (9.9)

it follows that the corresponding solution



v
g
h


 of (1.1) satisfies

∥v(TN , ·)∥2L2[−1,1] + |g(TN )|2 6
δ2

4
, |h(TN )− h1| 6

δ

2
.

Using the last two estimates we can apply Theorem 9.1 to deduce that, for any τ > 0, there exists

a control w ∈ C[0, τ ] such that the solution of (1.1) with the initial data



v(TN )
g(TN )
h(TN )


 verifies

v(τ) = 0, g(τ) = 0, h(τ) = h1. (9.10)

Let T = τ + TN and define u ∈ L2(0, T ) by

u(t) =





ũ(t) t ∈ [0, TN ]

w(t− TN ) t ∈ [TN , T ],

where ũ is given by (9.9). Using (9.8) and (9.10) it follows that (1.5) holds, which ends the
proof.

10 Appendix A: Spectral properties of the operator A1

This appendix is devoted to the study of the spectral properties of the operator A1 introduced in
Section 7.

Theorem 10.1. Let h1 ∈ (−1, 1) \Q and let A1 be the operator defined by (7.1)-(7.2). Then the
eigenvalues of A1 are simple and can be arranged as an increasing sequence (λn)n>1 of positive
numbers which coincides with the set containing the square of each root of the equation

1

tan((1− h1)x)
+

1

tan((1 + h1)x)
= x. (10.1)

Moreover, there exists a corresponding sequence of eigenvectors (ϕn)n>1 which forms an orthonor-
mal basis of H = L2[−1, 1]× R.

Proof. Denoting by Φ =

[
φ
p

]
a generic element of D(A1), we deduce from the definition and the

positiveness of A1 that Φ is an eigenvector of this operator if and only if there exists λ > 0 verifying





−{φxx}h1
= λφ(x) x ∈ (−1, 1)

φ(−1) = φ(1) = 0

p = φ(h1) = − 1

λ
[φx]h1 .

(10.2)
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From the first two equations we deduce that there exists two constants C1 and C2 such that

φ(x) =





C1 sin
(√

λ(1 + x)
)

x ∈ (−1, h1)

C2 sin
(√

λ(1− x)
)

x ∈ (h1, 1).

The continuity of φ in x = h1 and the third condition in (10.2) imply that that λ verifies

sin((1 + h1)
√
λ+ (1− h1)

√
λ) =

√
λ sin((1− h1)

√
λ) sin((1 + h1)

√
λ). (10.3)

Note that, if h1 ∈ Q, then there exist functions φ such that φ(h1) = 0. Hence, h1 would be a
nodal point for an eigenfunction of A1. Since this property is incompatible with the controllability
property of our system, we have chosen to study only the case h1 ∈ (−1, 1) \Q.

By taking into account again the third condition in (10.2) we obtain from (10.3) that
√
λ is

a positive root of (10.1). Hence, the eigenvalues of the operator A1 are all simple and their set
coincides with that of the square of each root of equation (10.1).

The corresponding eigenvectors (Φn)n>1 are given by

Φn =
1√
D(λn)

[
φn

1

]
(n > 1), (10.4)

where

D(λn) =
1 + h1

2 sin2
(√
λn(1 + h1)

) + 1− h1

2 sin2
(√
λn(1− h1)

) + 1

2
, (10.5)

and

φn(x) =





sin(
√
λn(1+x))

sin(
√
λn(1+h1))

x ∈ (−1, h1)

sin(
√
λn(1−x))

sin(
√
λn(1−h1))

x ∈ (h1, 1).

From the classical theory of self-adjoint operators we deduce easily that (Φn)n>1 forms an orthog-
onal basis in H.

In the remaining part of this section we study the properties of the roots of equation (10.1).

Denote α = max
{

π
1−h1

, π
1+h1

}
, β = min

{
π

1−h1
, π

1+h1

}
and N =

[
α
β

]
. For each k > 1 let

nk =
[
kα
β

]
+ 1 ∈ N, which verifies

(nk − 1)β < kα < nkβ. (10.6)

We have the following first result.

Lemma 10.2. Let h1 ∈ (−1, 1)\Q. Equation (10.1) has two families of positive roots (yn)n>1 and
(xk)k>1 which satisfy yn ∈ ((n− 1)β, nβ) for each n > 1, ynk

∈ (((nk−1)β, kα) and xk ∈ (kα, nkβ)
for each k > 1. Moreover, we have

lim
n→∞

|yn − (n− 1)β| = 0, (10.7)

lim
k→∞

|xk − kα| = 0. (10.8)

Proof. A simple argument shows that if x tends to infinity in (10.1) then at least one of the
quantities 1

tan((1+h1)x)
and 1

tan((1−h1)x)
tends to infinity. Hence, it follows that the roots of (10.1)

satisfy (10.7) and (10.8).

The following result is well known (see, for instance, [14, Exemple 7.6, p. 197]).
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Lemma 10.3. Let p > 0. Equation

tan(x) =
1

px
(10.9)

has a sequence of positive roots (rk)k>1 with the property that

rk = kπ +
1

pkπ
+ o

(
1

k

)
(k → ∞). (10.10)

In the following lemma we study the distance between two consecutive roots of (10.1).

Lemma 10.4. Let (yn)n>1 and (xk)k>1 be the two families of roots given by Lemma 10.2. There
exists r > 0, depending only on min{1− h1, 1 + h1}, such that the following properties hold

yn+1 − yn > rβ (n > 1, n ̸= nk, k > 1), (10.11)

xk − ynk
>
r

k
(k > 1), (10.12)

ynk+1 − xk >
r

k
(k > 1), (10.13)

yn − (n− 1)β >
r

n
(n > 1, n ̸= nk, k > 1). (10.14)

Proof. From (10.7) we deduce immediately that (10.11) holds. For each k > 1, let us denote by
y±k the unique solution of the equation

1

tan((1± h1)x)
= x

belonging to the interval ((k − 1)β, kβ) and (kα, (k + 1)α), respectively. For simplicity, we denote
Ik = ((nk − 1)β, kα) and Ik+1 = (kα, nkβ). We analyze the following cases

1. If |Ik| < |Ik+1|/2, by using (10.7)-(10.8) we deduce that ynk+1−xk > β
4 , which gives (10.12).

From (10.8), Lemma 10.3 and the fact that

1

tan((1− h1)x)
+

1

tan((1 + h1)x)
>

1

tan((1− h1)x)
x ∈

(
kα, (nk − 1)β +

β

2

)
,

we obtain that there exists r > 0 such that

xk − ynk
> xk − kα > y−k − kα >

r

k
.

Hence, (10.13) is verified.

2. If |Ik| > |Ik+1|/2, by using (10.7)-(10.8) we have that xk − ynk
> β

4 , which gives (10.12).
Moreover, since there exists ϵ > 0 such that

1

tan((1− h1)x)
+

1

tan((1 + h1)x)
>

1

2 tan((1 + h1)x)
(x ∈ (nkβ, nkβ + ϵ))

we have that there exists r > 0 such that

ynk+1 − xk > ynk+1 − nk)β > y+nk+1 − nkβ >
r

k
,

and (10.13) holds too.
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In order to prove (10.14) notice that there exists ϵ > 0 such that

1

2 tan((1 + h1)x)
6

1

tan((1 + h1)x)
+

1

tan((1− h1)x)
= x (x ∈ ((n− 1)β, (n− 1)β + ϵ)).

Hence, by using Lemma 10.3, we have that

yn − (n− 1)β > y+n − (n− 1)β > r,

and the proof of the lemma ends.

The following theorem gives important information concerning the spectrum of the operator A1

from Theorem 10.1.

Theorem 10.5. Let h1 ∈ (−1, 1) \ Q. The sequence of eigenvalues (λm)m>1 of the operator A1

is the union of two increasing subsequences of positive numbers, (λ1n)n>1 and (λ2k)k>1, with the
property that there exist c1, r > 0 depending only on min{1− h1, 1 + h1}, for which we have

|λ1n − (n− 1)2β2| 6 c1n (n > 1), (10.15)

|λ2k − k2α2| 6 c1k (k > 1), (10.16)

inf
m>1

|λm+1 − λm| > r. (10.17)

Proof. We obtain (10.15)-(10.17) directly from Theorem 10.1 , Lemma 10.2, and Lemma 10.4.

We end this section with an estimate of the quantities D(λn) defined by (10.5). In order to do
this, we need to consider that h1 belongs to the set of irrational algebraic numbers S introduced
in (7.8).

Lemma 10.6. Let h1 ∈ S. Then, for each ς > 0, there exists a positive constant M = M(h1, ς)
such that the following estimate holds

|D(λn)| 6Mn2+2ς (n > 1). (10.18)

Proof. Let ς > 0 be given. Firstly, since the set of algebraic numbers forms a field, we have that
h1 ∈ S if and only if α

β ∈ S. From Roth’s Theorem (see [5, Theorem I, p. 104]) we deduce that

there is only a finite number of pairs of integers (p, q) ∈ Z× N∗ such that

∣∣∣∣
α

β
− p

q

∣∣∣∣ < q−2−ς .

Consequently, there exists a constant M > 0, depending on α
β (and thus on h1), such that

∣∣∣∣
α

β
− p

q

∣∣∣∣ >
M

q2+ς
(q ∈ N∗, p ∈ Z). (10.19)

Inequality (10.19) allows us to estimate from below the distance between the elements of the
sequences (αk)k>1 and (βn)n>1. We recall that, given any k > 1, there exists a unique nk > 1
such that β(nk − 1) < αk < βnk. If we denote

lk = min {kα− (nk − 1)β, nkβ − kα} ,

we deduce from (10.19) that we have

lk = kβmin

{
α

β
− nk − 1

k
,
nk
k

− α

β

}
>

M

k1+ς
(k > 1). (10.20)
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To show (10.18), we estimate D(λjm) for each m > 1 and j ∈ {1, 2}. Since D(λjm) blows up

when the distance between
√
λjm and an entire multiple of π

1±a tends to zero, let us analyze the
quantities

d1n =





√
λ1n − (n− 1)β n ̸= nk

min
{√

λ1nk
− (nk − 1)β, kα−

√
λ1nk

}
n = nk

(n > 0),

d2k = min

{√
λ2k − kα, nkβ −

√
λ2k

}
(k > 1).

We recall that, for each n > 1, we have β(n − 1) <
√
λ1n < βn and, for each k > 1, we have

αk <
√
λ2k < βnk and β(nk − 1) <

√
λ1nk

< αk. Thus, for each m > 1 and j ∈ {1, 2}, djm gives

the distance between
√
λjm and the sequence (αk)k>1 ∪ (βn)n>1.

Since Lemma 10.2 tells us that there exists m0 > 0 with the property that

0 < dim <
π

2
(m > m0, i ∈ {1, 2}), (10.21)

we deduce immediately that
∣∣D(λjm)

∣∣ 6 π2

(dj
m)2

(m > 1, j ∈ {1, 2}). (10.22)

We evaluate the quantities djm by analyzing the following cases:

1. For n ̸= nk, by using (10.14), we deduce that

d1n =
√
λ1n − (n− 1)β >

r

n
(n > 1, n ̸= nk, k > 1). (10.23)

2. To evaluate d1nk
we note that max

{
kα−

√
λ1nk

,
√
λ1nk

− (nk − 1)β
}

>
lk
2 and, by taking

into account that
√
λ1nk

is a root of (10.1), we deduce that there exists a constant d̃ > 0
independent of k such that

d1nk
>

d̃

k + 1
lk

(k > 1). (10.24)

Indeed, from (10.7), (10.1), the definitions of d1nk
and lk, it follows that there exist positive

constants d̃1 and d̃2 such that

α

2
k >

√
λ1nk

2
=

1

tan
(
(1− h1)

√
λ1nk

) + 1

tan
(
(1 + h1)

√
λ1nk

) >
d̃1
d1nk

− d̃2
lk
,

from which we deduce immediately (10.24).

3. The same argument as above, allows us to deduce that there exists a constant d̃ > 0, inde-
pendent of k, such that

d2k >
d̃

k + 1
lk

(k > 1). (10.25)

Now, by taking into account (10.22)-(10.25), it follows that there exists a positive constant M ,
depending on h1, such that

∣∣D(λ1n)
∣∣ 6 M

n2 (n > 1, n ̸= nk, k > 1),

max
{∣∣D(λ1nk

)
∣∣ ,
∣∣D(λ2k)

∣∣} 6M
(
max{k, 1

lk
}
)2

(k > 1).

(10.26)

From (10.20) and (10.26) we deduce that (10.18) holds and the proof of the Lemma ends.

Remark 10.7. Note that the constants c1 and r from Theorem 10.5 depend only on the distance
min{1 − h1, 1 + h1} between the point h1 and the extremities on the interval [−1, 1], whereas the
constant M from Lemma 10.6 depends also on the diophantine approximation properties of h1.
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11 Appendix B: Construction of a biorthoghonal family to a set of ex-

ponentials

Given α > β > 0, let us consider two families of positive real numbers, (λ1n)n>1 and (λ2n)n>1, for
which there exist some positive constants c1 and r such that the following hypotheses hold

• (Λ1) |λ1n − β2n2| 6 c1n, |λ2n − α2n2| 6 c1n (n > 1);

• (Λ2)
√
λ1n+1 −

√
λ1n > r,

√
λ2n+1 −

√
λ2n > r (n > 1);

• (Λ3)
r

k
6 inf

n>1

∣∣∣∣
√
λ2k −

√
λ1n

∣∣∣∣ (k > 1).

The aim of this Appendix is to show that, for any T > 0, there exists a biorthogonal sequence
to the family (eλ

1
nt)n>1 ∪ (eλ

2
nt)n>1 in L2

[
−T

2 ,
T
2

]
. Under hypothesis (Λ1)-(Λ2), it is known that

there exists biorthogonal sequences to each of the families (eλ
1
nt)n>1 and (eλ

2
nt)n>1, separately (see,

for instance, Tenenbaum and Tucsnak [26]). However, it is not completely obvious to show that
the same is true for the union of these families. In order to do that, the separability condition (Λ3)
plays a fundamental role.

In this Appendix c denotes a positive constant which may change from one line to another and
depends only of c1 and r. Firstly, we present a very technical but important lemma which will be
used later on.

Lemma 11.1. Let T > 0 and (λ1n)n>1, (λ
2
n)n>1 be two families of eigenvalues which verify (Λ1)−

(Λ3). Then there exist entire functions (G1
n)n>1, (G

2
n)n>1 and G1

0 with the following properties

1. (G1
n)n>1, (G

2
n)n>1 and G1

0 are entire functions of exponential type less than T
2 .

2. G1
n(iλ

1
m) = δmn, G

1
n(0) = 0 and G1

n(iλ
2
m) = 0, ∀m,n > 1;

3. G2
n(iλ

1
m) = 0, G2

n(0) = 0 and G2
n(iλ

2
m) = δmn, ∀m,n > 1;

4. G1
0(iλ

1
n) = G1

0(iλ
2
n) = 0 and G1

0(0) = 1, ∀n > 1;

5. (G1
n)n>1, (G

2
n)n>1 and G1

0 belong to L2(R) ∩ L1(R) and there exist three positive constants
c, ω and κ independent of n and T such that we have

∥Gj
n∥L1(R) 6

c

λjn
eω
√

λj
n+

κ
T (n > 1, j ∈ {1, 2}), (11.1)

∥G1
0∥L1(R) 6 ce

κ
T . (11.2)

The constants c, ω and κ are uniform for the class of sequences (λ1n)n>1 and (λ2n)n>1 verifying
(Λ1)− (Λ3).

Proof. For each k > 1 and z ∈ C we define

ϕ1k(z − λ1k) =
∏

n̸=k

λ1n − z

λ1n − λ1k
, ϕ2k(z − λ2k) =

∏

n ̸=k

λ2n − z

λ2n − λ2k
, ϕ10(z) =

∏

n>1

λ1n − z

λ1n
, ϕ20(z) =

∏

n>1

λ2n − z

λ2n
.

For each z ∈ C we consider

G1
k(z) =

izϕ1k(−iz − λ1k)ϕ
2
k(−iz − λ2k)(−iz − λ2k)Hζ(2z)

(λ1k)
2(λ2k − λ1k)Hζ(2iλ1k)ϕ

2
k(λ

1
k − λ2k)

(k > 1),
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G2
k(z) =

izϕ1k(−iz − λ1k)ϕ
2
k(−iz − λ2k)(−iz − λ1k)Hζ(2z)

(λ2k)
2(λ1k − λ2k)Hζ(2iλ2k)ϕ

1
k(λ

2
k − λ1k)

(k > 1),

G1
0(z) =


∑

n>1

(−i
λ1n

+
−i
λ2n

)
z + 1


ϕ10(−iz)ϕ20(−iz)Hζ(2z),

where Hζ(z) =
1

∥σν∥L1

∫ 1

−1
σν(t)e

−iζtz dt and

σν(t) =

{
e
− ν

1−t2 , |t| < 1,
0, |t| > 1.

(11.3)

Let T > 0 and δ > 0. We chose the parameters ζ and ν from the definition of Hζ as follows

T

4
< ζ <

T

2
, ν =

(π + δ)2

ζ
.

Then we can use estimates (4.4), (4.14) and (4.15) from [26] and we obtain that there exist B > 0
and c > 0 such that

|ϕjk(−ix− λjk)| 6 c(λjk + |x|)Beπ
√

|x|
2 (x ∈ R, k > 1, j ∈ {1, 2}), (11.4)

|Hζ(2iλ
j
k)| >

1

11
√
ν + 1

eζ|λ
j
k|/

√
ν+1 (k > 1, j ∈ {1, 2}) (11.5)

|Hζ(2x)| 6 c
√
ν + 1e3ν/4−(π+δ/2)

√
2|x| (x ∈ R), (11.6)

|Hζ(z)| 6 eζ|y| (z = x+ iy, x, y ∈ R), (11.7)

|ϕjk(z)| 6 c(1 + |z|)Beπ
√

|z| (z ∈ C, k > 1, j ∈ {1, 2}). (11.8)

Since ζ < T
2 by using (11.7) and (11.8) we have

|Gj
k(z)| 6 ceT |z|/2 (z ∈ C, k > 1, j ∈ {1, 2}).

Thus (G1
k)k>1 and (G2

k)k>1 are of exponential type less than T
2 .

The function G1
0(z) have the same property. Indeed, this follows immediately by taking into

account (11.7) and the estimates

|ϕj0(−iz)| 6
∏

k>1

∣∣∣∣∣1 +
|z|
λjk

∣∣∣∣∣ 6 exp

(
π
√

|z|
r

)
(z ∈ C, j ∈ {1, 2}). (11.9)

A straightforward computation reveals the fact that properties 2− 4 are fulfilled. Let us prove
(11.1) for j = 2, the case j = 1 being similar. Firstly, we note that

|G2
k(x)| 6

x
√
x2 + (λ1k)

2 |ϕ1k(−ix− λ1k)| |ϕ2k(−ix− λ2k)| |Hζ(2x)|
(λ2k)

2(λ2k − λ1k) |Hζ(2iλ2k)| |ϕ1k(λ2k − λ1k)|
(x ∈ R, k > 1). (11.10)

In the following we will obtain lower estimates for the product ϕ1k(λ
2
k − λ1k), for any k > 1.

For each k > 1, let nk, ñk be two natural numbers which verify
√
λ1nk

6
√
λ2k 6

√
λ1nk+1,

2λ1ñk
− λ2k − λ1k 6 0 and 2λ1ñk+1 − λ2k − λ1k > 0.

Note that, from (Λ1)− (Λ3) it follows that there exist two constants c, c̃ > 1 such that

ck 6 ñk 6 nk 6 c̃k (k > 1). (11.11)
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Taking into account that

|ϕ1k(λ2k − λ1k)| =
∞∏

n=1
n ̸=k

∣∣∣∣
λ1n − λ2k
λ1n − λ1k

∣∣∣∣ =
k−1∏

n=1

(
1 +

λ2k − λ1k
λ1k − λ1n

) ñk∏

n=k+1

(
1 +

λ2k + λ1k − 2λ1n
λ1n − λ1k

)

nk∏

n=ñk+1

(
1− 2λ1n − λ1k − λ2k

λ1n − λ1k

)

︸ ︷︷ ︸
Q1

k

∞∏

n=nk+1

(
1− λ2k − λ1k

λ1n − λ1k

)

︸ ︷︷ ︸
Q2

k

,

we have that
|ϕ1k(λ2k − λ1k)| > Q1

kQ
2
k. (11.12)

By using (Λ1)− (Λ3) we have that there exists c > 0 such that

Q1
k =

nk∏

n=ñk+1

(
λ2k − λ1n
λ1n − λ1k

)
>
λ2k − λ1nk

λ1nk
− λ1k

nk−1∏

n=ñk+1

(
λ1nk

− λ1n
λ1n

)
>
λ2k − λ1nk

λ1nk
− λ1k

nk−1∏

n=ñk+1

(
r(nk − n)

cn

)

>
λ2k − λ1nk

λ1nk
− λ1k

(r
c

)nk−ñk−1 (nk − ñk − 1)!

nnk−ñk−1
k

,

Hence we have that

Q1
k >

λ2k − λ1nk

λ1nk
− λ1k

(r
c

)nk−ñk−1 (nk − ñk − 1)!

nnk−ñk−1
k

> exp(−ck). (11.13)

where for the last inequality we have used (11.11) and Stirling’s formula, limn→∞
n!en

nn
√
2πn

= 1.

By using again (Λ1)− (Λ3) we deduce that there exists c > 0 such that

Q2
k =

∞∏

n=nk+1

(
λ1n − λ2k
λ1n − λ1k

)
>
λ1nk+1 − λ2k
λ1nk+1 − λ1k

∞∏

n=nk+2

(
λ1n − λ1nk+1

λ1n

)

>

ck∏

n=nk+2

(
λ1n − λ1nk+1

λ1n

)
exp

(∫ ∞

ck

ln

(
1− c2k2

t2

)
dt

)

>
λ1nk+1 − λ2k
λ1nk+1 − λ1k

ck∏

n=nk+2

(
r(n− nk − 1

cn

)
exp(−ck)

> exp(−ck)
(r
c

)ck−nk−1 (ck − nk − 1)!

(ck)ck−nk−1
> exp(−ck).

Hence we have that

Q2
k > exp(−ck)

(r
c

)ck−nk−1 (ck − nk − 1)!

(ck)ck−nk−1
> exp(−ck). (11.14)

By using (11.12)-(11.14) we have that there exists ω > 0 such that we have

|ϕ1k(λ2k − λ1k)| > exp(−ω
√
λ2k) (k > 1). (11.15)

In a similar way we can obtain that there exists ω > 0 such that we have

|ϕ2k(λ1k − λ2k)| > exp(−ω
√
λ1k) (k > 1). (11.16)
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Since |λ1k − λ2k| > c, by using estimates (11.4)-(11.6) and (11.15)-(11.16) in (11.10), we deduce
that for any k > 1 and j ∈ {1, 2} we have

|Gj
k(x)| 6 c(ν + 1)

(
|x|+ λjk

)2B+4

exp

(
3ν/4− δ

√
|x|/2− ζλjk/

√
ν + 1 + ω

√
λjk

)
. (11.17)

Thus, from (11.17) we have that Gj
k ∈ L2(R) ∩ L1(R), for each k > 1 and j ∈ {1, 2}.

Let γ > 0 be a constant sufficiently large, to be chosen latter on. We analyze the following cases

Case 1. λjk 6
(
γ
T

)3
. We have that

∫

R

|Gj
k(x)| dx 6 c(ν + 1)e

3ν
4 +ω

√
λj
k

∫

R

(
|x|+ λjk

)2B+4

exp
(
−δ
√
|x|/2

)
dx 6

6 c(ν + 1)e
3ν
4 +ω

√
λj
k

1

T 2B+4

∫

R

(
T 3|x|+ 1

)2B+4
exp

(
−δ
√

|x|/2
)
dx 6

ce
κ
T +ω

√
λj
k

λjk
.

Case 2. λjk >
(
γ
T

)3
. We have that

∫

R

|Gj
k(x)| dx 6 c(ν + 1)e

3ν
4 +ω

√
λj
k

∫

R

(
|x|+ λjk

)2B+4

exp
(
−δ
√
|x|/2− cT

3
2λjk

)
dx 6

6 c(ν+1)e
3ν
4 +ω

√
λj
k(λjk)

2B+4

∫

R

(
|x|
λjk

+ 1

)2B+4

exp

(
−δ
√
|x|/2− cγ

3
2

√
λjk

)
dx 6

c

λjk
e

κ
T +ω

√
λj
k ,

where the last inequality takes place for γ chosen sufficiently large such that the inequality

x2B+4 6 ecγ
3/2√x holds for any x > 0.

Hence, we have proved that (11.1) holds. In order to prove (11.2) we use (11.9) and (11.6) and we
have that

|G1
0(x)| 6 c

√
ν + 1x exp

((
2π

r
−
√
2π − δ√

2

)√
|x|+ 3ν

4

)
(x ∈ R, (11.18)

and for δ sufficiently large we deduce that G1
0 ∈ L2(R) ∩ L1(R). Finally, it follows that

∫

R

∣∣G1
0(x)

∣∣ dx 6 ce
κ
T ,

and the proof of lemma ends.

Based on the previous lemma, the following theorem gives a biorthogonal sequence to the union
of families of exponential functions (eλ

1
nt)n>1 ∪ (eλ

2
nt)n>1.

Theorem 11.2. Let T > 0, (λ1n)n>1 and (λ2n)n>1 be two sequences of positive numbers which verify
properties (Λ1) − (Λ3) and λ0 = 0. Then there exist (F 1

n)n>1 ∪ (F 2
n)n>1 ∪ {F 1

0 } ⊂ C∞ [−T
2 ,

T
2

]

which form a biorthogonal sequence to the family (eλ
1
nt)n>1 ∪ (eλ

2
nt)n>1 ∪ {eλ0t, } in L2

[
−T

2 ,
T
2

]

such that

∥F j
n∥C[−T

2 ,T2 ]
6

c

λjn
ew

√
λj
n+

κ
T (n > 1, j ∈ {1, 2}),

∥F 1
0 ∥C[−T

2 ,T2 ]
6 ce

κ
T ,

where the constants c, ω and κ are independent of n and T and uniform for the class of sequences
(λ1n)n>1 and (λ2n)n>1 verifying (Λ1)− (Λ3).
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Proof. By using Lemma 11.1 we can apply Paley-Wiener’s Theorem to deduce that there exists
(F j

n)n>0 from L2[−T
2 ,

T
2 ] such that

Gj
n(z) =

∫ T
2

−T
2

F j
n(t)e

−izt dx (n > 0, j ∈ {1, 2}). (11.19)

From properties 2−5 in Lemma 11.1 we deduce that (F 1
n)n>1∪(F 2

n)n>1∪{F 1
0 } is a biorthogonal

sequence to the family (eλ
1
nt)n>1 ∪ (eλ

2
nt)n>1 ∪ {eλ0t}. Moreover, from estimates (11.1)-(11.2) it

follows that there exist three positive constants c, ω and κ independent of n and T such that

∥F j
n∥L∞[−T

2 ,T2 ]
6 ∥Gj

n∥L1(R) 6
c

λjn
ew

√
λj
n+

κ
T (n > 1, j ∈ {1, 2}),

∥F 1
0 ∥L∞[−T

2 ,T2 ]
6 ∥G1

0∥L1(R) 6 ke
κ
T .

Finally, the behavior of the entire functions Gj
n on the real axis, (11.17) and (11.18) imply that

F j
n ∈ C∞ [−T

2 ,
T
2

]
for each n > 1 and j ∈ {1, 2}.

Theorem 11.2 allows us to deduce the existence of a biorthogonal sequence to the family of
exponential functions

(
eλnt

)
n>0

, where the exponents (λn)n>1 are the eigenvalues of our operator

A1 from Appendix A.

Corollary 11.3. Let (λn)n>1 be the sequence of eigenvalues of the operator A1 given by Theorem
10.1 and put λ0 = 0. Then there exists a biorthogonal sequence (Fn)n>0 ⊂ C

[
−T

2 ,
T
2

]
to the family

of exponential functions (eλnt)n>0 in L2
[
−T

2 ,
T
2

]
such that there exist three positive constants c,

ω and κ independent of T with

∥Fn∥C[−T
2 ,T2 ]

6
c

λn
eω

√
λn+

κ
T (n > 1),

∥F0∥C[−T
2 ,T2 ]

6 ce
κ
T .

(11.20)

Proof. Note that, according to Theorem 10.5, the sequence of eigenvalues (λn)n>1 is the union

of two subsequences (λ1n)n>1 and (λ2n)n>1, verifying (Λ1) − (Λ3) with α = max
{

π
1−h1

, π
1+h1

}
,

β = min
{

π
1−h1

, π
1+h1

}
and the constants c1 and r given by (10.15)-(10.17). Therefore, there

exist the families
(
F 1
n

)
n>1

,
(
F 2
n

)
n>1

and {F 1
0 } satisfying the conclusions of Theorem 11.2. The

family (Fn)n>0 is obtained, after some rearrangement and renotation, from the union
(
F 1
n

)
n>1

∪(
F 2
n

)
n>1

∪ {F 1
0 }.

Remark 11.4. The construction and evaluation of the biorthogonal sequence (Fn)n>0, depend
only on the properties (Λ1) − (Λ3) of the exponents introduced at the beginning of this Appendix.
Since the sequence (λn)n of eigenvalues of A1 verifies the properties (Λ1)− (Λ3), with constants c1
and r given by (10.15)-(10.17) from Theorem 10.5, it follows that the constants c, ω and κ from
(11.20) depend only on c1 and r. Consequently, from Remark 10.7 we deduce that the constants c,
ω and κ from (11.20) depend only on min{1− h1, 1 + h1}.
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1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.

39



[19] Y. Liu, T. Takahashi, and M. Tucsnak, Single input controllability of a simplified fluid-
structure interaction model, ESAIM: Control, Optimisation and Calculus of Variations, 19
(2013), pp. 20–42.

[20] L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-
Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), pp. 141–
178.

[21] W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics,
McGraw-Hill, Inc., New York, second ed., 1991.

[22] J. San Martin, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two
dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rat. Mech.
Anal., 161 (2002), pp. 113–147.

[23] D. Serre, Chute libre d’un solide dans un fluide visqueux incompressible, Japan J. Appl.
Math., 4 (1987), pp. 99–110.

[24] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-
fluid system in a bounded domain, Adv. Differential Equations, 8 (2003), pp. 1499–1532.

[25] T. Takahashi, M. Tucsnak, and G. Weiss, Stabilization of a fluid-rigid body system,
https://hal.archives-ouvertes.fr/hal-01076688, (preprint, 2014).

[26] G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrödinger and
heat equations, J. Differential Equations, 243 (2007), pp. 70–100.

[27] M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser
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