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ABSTRACT

When integrating mixed critical systems on a multi/many-
core, one challenge is to ensure predictability for high crit-
icality tasks and an increased utilization for low criticality
tasks. In this paper, we address this problem when several
high criticality tasks with different deadlines, periods and
offsets are concurrently executed on the system. We pro-
pose a distributed run-time WCET controller that works as
follows: (1) locally, each critical task regularly checks if the
interferences due to the low criticality tasks can be toler-
ated, otherwise it decides their suspension; (2) globally, a
master suspends and restarts the low criticality tasks based
on the received requests from the critical tasks. Our ap-
proach has been implemented as a software controller on a
real multi-core COTS system with significant gains 1.

1. INTRODUCTION
Mixed-critical systems [27] consist in integrating applica-

tions with different properties and requirements into a com-
mon platform. The platform should provide the required
level of dependability, in particular of safety, for each appli-
cation. The safety level is given by the criticality level of an
application, which depends on the consequences on the sys-
tem if the application doesn’t meet its timing constraints.
For instance, the criticality level of an avionic application is
given by the Design Assurance Level (DAL) model [26].

A high criticality application, e.g. an application of A, B
or C level of DAL, requires predictability to be provided by
the platform, i.e. the ability to compute a safe estimation
of the Worst-Case Execution Time (WCET) [28]. The cur-
rent platforms consist of multi/many-core COTS systems,
which are hard, if not impossible, to be predictable [29].
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The reason is the complexity of the system architecture, the
enhanced mechanisms used to improve the system perfor-
mance and the lack of the systems’ documentation. WCET
estimations exist which upper bound the effects of the possi-
ble interferences on the system shared resources by assuming
full congestion. In this way they are able to provide safe esti-
mations which are required to guarantee real-time response.
However, with these techniques a dramatic difference occurs
in WCETs of an application estimated 1) when it is executed
alone on one core (isolated execution, no interferences) and
2) when other applications are concurrently executed on the
remaining cores (maximum load, interferences). This differ-
ence may lead to the system unschedulability in case:

WCETiso < DC < WCETmax

where WCETiso is the WCET of a high criticality application
τC in isolated execution, DC is its deadline and WCETmax is
its WCET in maximum load.

1.1 Run-time control for a unique critical task
We have addressed this problem by proposing a safe ap-

proach which increases the utilization of the system resources
in [17]. The model of our system consisted of n+1 indepen-
dent synchronous tasks T = {τC, τ1, . . . , τn} where τC is a
periodic task of high criticality level (DAL A, B or C) with
period TC and deadline DC ; τi are tasks of low criticality
level (DALD or E); one task corresponds to one application.
Our system initially executes all tasks regardless their

criticality level. The critical task is modeled by a set of
Extended Control Flow Graphs (ECFGs), i.e. control flow
graphs with observation points where the run-time control
is executed. The run-time control regularly checks if the in-
terferences of the low criticality tasks can be tolerated by
verifying our safety condition (Eq. 1). When the condition
does not hold, the low criticality tasks are immediately sus-
pended to eliminate congestion over the shared resources and
to guarantee the critical task’s timing constraints. When the
task terminates, the low criticality tasks are resumed.

RWCETiso(x) + Wmax + tSW ≤ DC − ET(x) (1)

where RWCETiso(x) is the remaining WCET of τC in isolated
execution from the observation point x until the end, Wmax

is the maximum WCET until the next point, tSW is the
overhead of suspending the low criticality tasks and ET(x)
is the monitored execution time of τC until point x.
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Figure 1: Overview of the proposed approach

1.2 Run-time control for several critical tasks
The contribution of this work is twofold. Firstly, we have

extended our approach to several high criticality tasks con-
currently executed on different cores with different dead-
lines, periods and offsets. Secondly, we have implemented
our approach as a software controller in a real multi-core
COTS system, i.e. the Texas Instrument TMS320C6678 (or
TMS in short) [16]. Our objective is the improvement of
the system resource utilization by increasing the concurrent
execution of the low criticality tasks.

The system model now consists of p+n independent tasks
T = {τC1 , . . . , τCp , τ1, . . . , τn} where τCj

are periodic tasks
of high criticality level with period TCj , deadline DCj , off-
set OCj ; τi are tasks of low criticality level. A static par-
titioned scheduling has been applied in which each critical
task (which can consists of smaller critical tasks with prece-
dence constraints) is executed on one core and the remain-
ing cores execute the low criticality tasks. In this extension,
WCETiso is the WCET of τC where all the high criticality
applications may execute in parallel.

Our methodology applies a design-time part and a run-
time part, as shown in Fig. 1. The design-time analysis in-
serts the proposed run-time controller to the critical tasks.
As we focus on implementing our approach on TMS as a
software controller, our methodology instruments the crit-
ical tasks by refining the observation points of the initial
ECFGs in [17] with the proposed software control mecha-
nism. The set of critical tasks is now modeled by a set of In-
strumented Control Flow Graphs (ICFGs), i.e. control flow
graphs enhanced with the software control mechanism. The
result is the instrumented source codes of the critical tasks.
For the low criticality tasks, no instrumentation is required.
Then, at design-time a Timing and Structure Information
(TSI) analysis takes place which pre-computes the structure
and the timing information required by the run-time control
mechanism using the ICFGs per critical task.

At run-time, each critical task executes its own run-time
control mechanism, which monitors the ongoing execution
time, dynamically computes the remaining WCET of the
task in isolated execution and checks its safety condition
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Figure 2: Run-time behavior

to locally decide if the low criticality tasks should be sus-
pended to guarantee that its deadline is met. However, the
critical tasks are not responsible for the execution of the low
criticality tasks suspension. They send a request to a new
entity, the master, which has a global view. The master is
in charge of collecting the requests of the critical tasks, sus-
pending and restarting the low criticality tasks. The master
suspends the low criticality tasks when at least one criti-
cal task sends the request for isolated execution, when the
safety condition is not satisfied. During execution, the mas-
ter updates the number of active requests and it restarts the
low criticality tasks when all requesters have been executed.

Fig. 2 describes the run-time behavior of our control mech-
anism through an example with two critical tasks running
in parallel. In the first scenario, the safety condition of the
critical task τC2 is violated and thus it sends a request for
isolated execution to the master. The master upon receiv-
ing this request sets the number of active requests to 1 and
suspends the low criticality tasks. Then, the requester (task
τC2) informs the master that its execution is finished. As the
critical task τC1 has not yet requested isolated execution, no
risk exists for the deadline of τC1 . The master resumes the
low criticality tasks (active requests=0). In a later scenario,
the critical task τC1 has also requested isolated execution
after the request of τC2 . The master restarts the low crit-
icality tasks when both tasks have finished. The master is
not assigned on the same core with a critical task, as this
option will increase the WCET of the critical task due to
the received requests. Hence, the master is assigned at a
core that executes low criticality tasks.

The remaining of the paper is organized as follows: Sec-
tion 2 presents the design-time analysis and Section 3 de-
scribes the software run-time control mechanism and the
master entity. Section 4 presents the software implemen-
tation on TMS and several experimental results to evaluate
our approach. Section 5 presents the related work on mixed-
critical systems. Section 6 concludes this study.

2. DESIGN-TIME ANALYSIS
This section describes the design-time analysis which con-

sists of the instrumentation of the critical tasks described at
Section 2.1 and the timing and structure analysis to extract
the pre-computed information described at Section 2.2.1.
The proposed methodology considers two scenarios for the
tasks that are executed on the platform.

Definition 1 (Execution scenarios). The execution



scenarios are
1. Isolated execution (iso), where p critical tasks are ex-

ecuted on the platform,
2. Maximum load (max), where p critical and n low crit-

icality tasks are concurrently executed on the platform.

2.1 Critical tasks instrumentation
For the instrumentation of the critical tasks, we use as

basis the graph grammar presented in [17] and we extended
it to describe the proposed software instrumentation of the
critical tasks.

Definition 2 (Critical task τC). A critical task τC
is a set of functions S = {F0, F1, ..., Fn}, with F0 the main
function. Each function is represented by an Extended CFG
(ECFG).

Definition 3 (ECFG). An extended control flow
graph (ECFG) is a control flow graph extended by adding
observation points. An observation point is a position where
the run-time control is executed. The ECFG of function F
is a directed graph G = (V,E), consisting of:
1. A finite set of nodes V composed of 5 disjoint sub-sets

V = N ∪ C ∪ F ∪ {IN} ∪ {OUT} where,
• N ∈ N represents a binary instruction or a block of

binary instructions,
• C ∈ C represents the block of binary instructions of a

condition statement,
• Fi ∈ F represents the binary instructions of calling a

function Fi and links the node with the ECFG of the
function Fi,

• IN is the input node,
• OUT is the output node.
• every node v ∈ V \ {OUT , IN } has one unique input

observation point before the execution of the first binary
instruction (the observation point is represented by a
lowercase symbol);

• start is the observation point before starting the execu-
tion.

2. a finite set of edges E ⊆ V × V representing the control
flow between nodes.

The Instrumented Control Flow Graph (ICFG) is derived
by replacing the theoretical observation points in the Ex-
tended control Flow Graph (ECFGs) [17] by the software
run-time control mechanism.

Definition 4 (Software run-time control). The
software run-time control mechanism (Fig. 3) for the critical
tasks consists of:
1. a condition CRT which semantics is:

• CRT = true ⇐⇒ maximum load scenario,
• CRT = true ⇐⇒ isolated execution,
• CRT = true at observation point start.

2. if CRT is true at vi ∈ V \ {OUT , IN }, a function call
occurs to the decision, FD, which consists of the:
• node NC to monitor the current execution time of the

critical task and compute the remaining WCET in iso-
lated execution, RWCETiso(x),

• safety condition CD to decide if the low criticality tasks
should be suspended. If no suspension occurs, the run-
time control returns to the critical task execution,

• node NS to send a request for isolated execution and
to turn off the run-time control mechanism by setting
CRT = false, if decided.
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Figure 3: Software control mechanism a) decision
and b) end detection
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Figure 4: a) ECFGs and b) ICFG for S = {F0, F1}

3. if CRT is true at vi = OUT 0 (end of each τC), the end
detection NE is executed to notify the end of the task.

The Fig. 4(a) presents the ECFGs of a critical task com-
posed of two functions S = {F0, F1} and Fig. 4(b) illustrates
the ICFGs of the theoretical ECFGs of Fig. 4(a) instru-
mented by our software run-time control mechanism.

2.2 Timing and Structure Analysis

2.2.1 Structure information

During the execution of any critical task, an observation
point may be visited several times due to the loops and the
function calls. Hence, we need the structure information
of ICFG in order to distinguish between different visits of
the same point during run-time execution, i.e. the nested
level, the head point and the type of an observation point as
defined in [17]. In summary:
• The nested level is: a) 0 for the start point, b) 1 for the

sequential points between the IN and the OUT of an
ICFG and c) increased by 1 when we are entering a loop.

• The head points show when a function has been called
and where a loop exists in each ICFG. The head points



Table 1: Structure & timing information of Fig. 4(b)
.

Observation point x level (x) type (x) head (x) d(x) w(x)
Initialization

start 0 - - - -
F0

n0,a 1 - start dstart−n0,a
-

f0,1 1 F ENTRY start dstart−f0,1
-

n0,b 1 F EXIT start dstart−n0,b
-

F1 Fig. 4(a)
n1,a 1 - f0,1 df0,1−n1,a

-

c 1 - f0,1 df0,1−c wc

n1,b 2 - c dc−n1,b
-

are: a) the start point, for the points of level 1 of the main
function F0, b) the function caller, for the points of level
1 of the remaining functions and c) the condition of the
loop, for the points that are inside a loop.

• The type determines: a) the function entry, i.e. the func-
tion caller, and b) the function exit, i.e. the observation
point just after the return from a function.
To support the run-time control mechanism, we store the

structure information in memory. Table 1 provides the struc-
ture information for the observation points of Fig. 4(b). The
information about the head points is propagated to the tim-
ing analysis to compute the partial remaining WCETs.

2.2.2 Timing information

As the computation of the remaining WCET at each ob-
servation point at run-time would generate prohibitive over-
head to the critical task, we pre-compute at design-time par-
tial WCETs by processing the ICFGs. This timing informa-
tion is used at run-time to reduce the computation overhead.
Compared to the theoretical results of [17], the computation
of the timing information is extended and adapted to take
into account the cost of the instrumentation of the criti-
cal tasks and the fact that more than one core runs critical
tasks. Our WCET analysis is based on computing the re-
maining WCET from one observation point x until the end
of a critical task τC , RWCETy(x), where y ∈ {iso,max}.

Isolated execution.
When a critical task has requested for isolated execution,

p critical tasks are executed on the platform. The run-time
control mechanism of the requester is not executed, as it
has already requested isolated execution. Hence, the FD

is not called, whereas the FE is called at the end of the
critical task (Def. 3). For computing RWCETiso(x), we only
consider the feasible paths for the run-time control, that is
when CRT = false and CRT = true. Using the remaining
WCET analysis of an observation point x, we can compute
remaining WCETs between an observation point x and its
head point head(x) for each critical task.

Definition 5. dhead(x)−x is the maximum time from
head(x) to x.

dhead(x)−x = RWCETiso(head(x))− RWCETiso(x)

Definition 6. whead(x) is the time between any two con-
secutive iterations j and j+1 of the head(x), when head(x)
is the condition of a loop.

wc = RWCETiso(c, j)− RWCETiso(c, j + 1), ∀j ≤ n

To support the run-time RWCETiso(x) computation, we
store in memory dhead(x)−x and the wx for each point x, as
depicted in Table 1.

Maximum load.
To guarantee that the critical tasks deadlines are always

met, we must ensure that for each critical task, enough time
is available to decide the suspension of the low criticality
tasks at the next observation point. Hence, we apply our re-
maining WCET analysis to compute the Wmax between any
two consecutive observation points x, x′ in each critical task
in the maximum load scenario. Hence, the FD is called at
each observation point, whereas the FE is not called (Def. 3).

Wmax = maxx,x′(RWCETmax(x)− RWCETmax(x
′))

3. RUN-TIME

3.1 Global overview
At run-time, each critical task monitors its own execution

and decides based on its local timing computation whether
it requires the suspension of the low criticality tasks. In this
case, it sends a request to the master. The local decisions
per critical task are centralized and processed by the master
which sends suspend or restart events to the low criticality
tasks based on the received requests from the critical tasks.

When a critical task starts a new instance, it always as-
sumes that the system is in maximum load, independently
from the actual system status. This scheme is required for
two reasons: firstly, when the critical tasks start their exe-
cution, they are not aware of the system status, which de-
pends on the active requests made by the other critical tasks.
This assumption guarantees that the overhead of our con-
trol mechanism is bounded, since a given critical task will
generate at most two requests per instance. In a given time
interval, the maximum number of requests depends on the
periods and offsets of all critical tasks. Secondly, the remain-
ing WCET of a critical task is computed when the run-time
control is enabled, i.e. in the maximum load. Hence, when a
critical task instance starts while the low critical tasks have
been suspended, it still needs to execute its run-time moni-
toring control: in case the low criticality tasks are restarted
during its execution, it must be able to compute its safety
condition to guarantee a timely execution.

The master is responsible for serving requests and controls
the suspension and the restart of the low criticality tasks.
As our control mechanism is based on requests between 1)
the cores that run the control mechanism through critical
task instrumentation and the master, and 2) the master and
the cores that run low criticality tasks, these requests are
implemented by using the interrupts of the system and by
developing the corresponding interrupt handling routines.
The implementation of the the interrupts highly depends
on the target platform. In this section we algorithmically
describe the run-time control, whereas Section 4.1 presents
the implementation of interrupts on our final platform.

3.2 Critical tasks

3.2.1 Monitoring ongoing execution

The monitoring of the ongoing execution highly depends
on the target platform. During the implementation on the
final system a set of low level functions are developed that



access the timing control registers of the target platform
which provide access to the clock of the core, as described
in detail in Section 4.1.1.

3.2.2 Computation of RWCETiso(x)

The algorithm for the computation in adynamic way of
the RWCETiso(x) of a critical task has been presented and
its correctness has been proved in [17]. The code is depicted
in Alg. 1. Briefly, when the ICFG is traversed in a forward
direction, the remaining WCET is given by the remaining
WCET of the head point c minus the time from the head
point to the observation point x, d[x] = dc−x. When the
ICFG is traversed in a backward direction, the remaining
WCET of this level is reduced by w[x] = wc. An example of
computing the RWCETiso(x) for Fig. 4(b) is given in Table 2.

ALGORITHM 1: Computation of RWCETiso(x)

Pre-computed data: level, w, d, type
Input: x

Data: o level = 0, ll = level[x], last point[0]=start,
R[0]=WCETiso, offset = 0

Output: RWCETiso(x) = R[ll]
if (type[x] ==F EXIT or F ENEX) then /* condition 1 */

o level-=1
offset -= level[x]

ll = offset + level[x]
if o level < ll then /* condition 2 */

R[ll] = R[ll − 1] − d[x]
else

if (last point[ll] == x) then /* condition 3 */
R[ll] = R[ll] − w[x]

else
R[ll] = R[ll − 1] − d[x]

last point[ll]= x

o level=ll

if (level[x] ==F ENTRY or F ENEX) then /* condition 4 */
offset += level[x]

3.2.3 Safety condition

Per core that runs a critical task, at each observation point
the control checks whether the low criticality tasks should
be suspended through the safety condition given by Eq. 1.
That is, for all tasks τCi , at point x is:

RWCETiso(τCi , x) + Wmax + tSW ≤ DCi
− ET(τCi , x) (2)

The suspension of the low criticality tasks occurs by the
master when the safety condition of a critical task is violated.
The overhead due to suspending and restarting the tasks,
tSW, includes the time to send the request to the master and
the time to suspend the tasks. Hence, the theorem 1 proved
in [17] also holds for the proposed distributed approach with
several critical tasks.

Table 2: RWCETiso for the ICFG of Fig. 4(b).
Obs. condition

Offset RWCETiso(x)
Last Obs.

Point 1 2 3 4 point[ll] level
start x x x x 0 R[0] = RWCETiso LP[0]=0 0
n0,a 0 1 x 0 0 R[1] = R[0] − 0 LP[1]=n0,a 1
f0,1 0 0 0 1 0 R[1] = R[0] − dstart−f0,1

LP[1]=f0,1 1

n1,a 0 1 x 0 1 R[2] = R[1] − df0,1−n1,a
LP[2]=n1,a 2

c 0 0 0 0 1 R[2] = R[1] − df0,1−c LP[2]=c 2

n1,b 0 1 x 0 1 R[3] = R[2] − dc−n1,b
LP[3]=n1,b 3

c 0 0 1 0 1 R[2] = R[2] − wc LP[2]=c 2
n1,b 0 1 x 0 1 R[3] = R[2] − dc−n1,b

LP[3]=n1,b 3

c 0 0 1 0 1 R[2] = R[2] − wc LP[2]=c 2
n0,b 1 0 0 0 0 R[1] = R[0] − dstart−n0,b

LP[1]=n0,b 1

ALGORITHM 2: IHRs of the master
IHRS{
num requests=num requests+1;
if (num requests==1) then send suspend to low criticality tasks
}
IHRE {
num requests=num requests-1;
if (num requests==0) then send restart to low criticality tasks
}

Theorem 1. If ∀i,WCETiso(τCi) ≤ DCi , then for any ex-
ecution with the proposed run-time control, all τCi respect
their deadline.

3.2.4 Low criticality tasks suspension

The node NS of FD sends a request to the master to
suspend the low criticality tasks and stops its own control
mechanism by setting the CRT = false. Then, the mas-
ter suspends the tasks by sending a set of interrupts to the
corresponding cores. The implementation of the request is
described in detail in Section 4.1.2.

3.2.5 End detection

The function NE consists of sending a request to the mas-
ter which notifies that the execution of the requester for iso-
lated execution has finished. Then, the master decides over
the restarting or not of the low criticality tasks. Similar to
the low criticality task suspension, the implementation of
the request depends on the target platform.

3.3 Master
The master accepts a set of requests from the NS and the

NE of a critical task and sends a set of interrupts to the
cores that run the low criticality tasks. We developed the
corresponding Interrupt Handling Routines (IHR) for the
master and for the cores that run the low criticality tasks,
which serve these requests and the interrupts.

The master consists of two interrupt handling routines to
serve the requests from the critical tasks, as shown in Alg. 2:
1. IHRS is the interrupt handling routine called when the

master receives a request from a critical task for the low
criticality tasks’ suspension. The master suspends the
low criticality tasks when at least the safety condition of
one critical core does not hold. Then:
• it increases the number of active requests,
• if it is the first received request, it sends the first in-

terrupt to the cores that run low criticality tasks to
suspend them.

2. IHRE is the interrupt handling routine called when the
master receives a request that notifies about the termi-
nation of the requester for isolated execution. Then:
• it decreases the number of active requests,
• if it is the last requester for isolated execution, it sends

the second interrupt to the cores that run low criticality
tasks to restart them.

Each core that runs low criticality tasks has an interrupt
handling routine IHRLC to serve the master interrupt:
• if it is the first interrupt received, an active polling mech-

anism takes place inside the interrupt handling routine,
• when the core receives a second interrupt, the polling is

terminated and the IHRLC finishes. Then, the low criti-
cality task continues its execution.

4. EVALUATION RESULTS
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We have implemented the proposed methodology in a real
multi-core system, i.e. the TMS, to evaluate the behavior of
our methodology. The implementation of two main mecha-
nisms highly depends on the target platform: a) the time
monitoring of the ongoing execution and b) the suspen-
sion/resuming of the low criticality tasks. These two mech-
anisms are described in Section 4.1. Section 4.2 presents the
results under several experimental setups.

4.1 System Implementation
We are targeting a real multi-core COTS platform, i.e. the

TMS320C6678 chip of Texas Instrument [16]. The platform
is composed of 8 TMS320C66x DSP processors clocked at
1 GHz, which can issue up to 8 instructions in one clock
cycle. Each core contains 32 KB level 1 program memory
(L1P), 32 KB data memory (L1D), and 512 KB level 2 mem-
ory (L2) that may contain instructions and data, which can
be configured as cache, SRAM or a hybrid. The level 3 mem-
ory (L3) of 4 MB on-chip SRAM and the external DDR3 of
512 MB memory is shared among the cores. The cores and
the hardware modules are connected via the TeraNet on-
chip network. The overview of the system is depicted in
Fig. 5. We appropriately configure the TMS and implement
the low-level functions to support the timing monitoring and
the suspension/restart of the low criticality tasks. The over-
head of our controller is: 70 cycles for the time monitoring,
200 cycles for sending an event and 501 cycles for computing
the RWCETiso(x) and the safety condition.

4.1.1 Time monitoring

We reuse the bare-metal library of [13] that provides a set
of timing functions to read the current clock by accessing the
control registers TCSL and TCSH of the local core clock,
which runs at the core’s frequency. As the system should
start the execution when all tasks have been loaded to the
cores, this library also provides a synchronization scheme to
ensure that cores start at the same time. When an observa-
tion point is reached, the run-time control uses the functions
to read the real execution time of the system.

4.1.2 Suspension/Restart of low criticality tasks

The suspension and the resume of the low criticality tasks

is implemented using the event and interrupt mechanisms
of the TMS. The bare-metal library is extended with a set
of functions that (1) configure the events and the interrupts
of the TMS, (2) allow the use of the events by providing
software setting, clearing and monitoring mechanisms for
the events, (3) suspend or resume the low criticality tasks.

The TMS provides chip level events and core level events.
A chip level event is created by the source core by setting
the corresponding bit of the event to its Event Flag Register.
Then, the Chip-level Interrupt Controller (CIC) is config-
ured to generate host interrupts that act as core event inputs
to the DSP interrupt controller of the destination core. The
DSP interrupt controller allows up to 124 core events to be
routed to the DSP interrupt/exception inputs. Each DSP
can receive 12 maskable/configurable interrupts, 1 maskable
exception, and 1 unmaskable interrupt/exception. When
the DSP interrupt controller receives the core event, sets
the corresponding bit to the Interrupt Flag Register of the
destination core, an interrupt is generated to the core, the
execution of the task is suspended and the Interrupt Han-
dling Routine (IHR) is executed to deal with the interrupt.

In our implementation we have placed the master in the
core 2, as depicted in Fig. 6, where core 0 and core 1 (gray
cores) run critical tasks and the remaining cores run low
criticality tasks (white cores).
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Figure 6: Suspend/restart of low criticality tasks

We have configured the TMS to map different chip level
events for the synchronization between cores. Each chip level
event is sent from a core to a host interrupt and then to a
core level event for the corresponding DSP. The core that
runs the master is configured to send a chip level event to
each core that runs low criticality tasks to suspended their
execution. Each core that runs a critical task sends a chip
level event to the core that runs the master for the request to
isolated execution and to notify that it has finished its execu-
tion. Then, we have implemented a core event configuration
per DSP which maps each core event to one configurable
interrupt. The master requests are handled by IHRS and
IHRE and the cores with low criticality tasks by IHRLC .
In our example in Fig. 6, in case the safety condition of

one of the cores does not hold (e.g. core 1), the low criticality
tasks must be suspended. Core 1 sends an interrupt (black
arrow 1) to core 2 through node NS to notify that suspen-
sion should immediately take place, it turns off its control
mechanism and continues the execution of the critical task.
When this interrupt is received at core 2, the execution of
the low criticality task on core 2 is stopped and the IHRS

is executed. The IHRS clears the received interrupt to be
able to get the next one and increases the number of inter-
rupts received. If it is the first interrupt received, it sends
the interrupts to the remaining cores that run low critical-
ity tasks (black arrow 2) by setting the corresponding bits
to Event Flag Register of core 2. Then, it enters an active
waiting mode until a new interrupt is received. The core
level events are routed to the host interrupt controllers and



finally to the DSP interrupt controllers through the CIC.
The corresponding bit to each Interrupt Flag Register is
set, the execution of the low criticality task is stopped and
the IHRLC is executed to deal with the interrupt. It clears
the interrupt to be able to get the next interrupt from the
interrupt controller and puts itself in an active waiting mode
until a new interrupt is received. In our example of Fig. 6,
when the requester for isolated execution finishes (core 1),
it sends an interrupt to notify core 2 (e.g. gray arrow 3).
When the master in core 2 receives the interrupt, it reduces
the number of active requests for isolated execution. If no
other critical task has requested isolated execution, it sends
the interrupts (e.g. gray arrow 4) to the cores that run low
criticality tasks to notify that they can continue their ex-
ecution and exits the active waiting mode. When the low
criticality cores receive such an event, their IHRLC exits
the waiting mode and returns to the execution.

4.2 Experiments
In our experiments we have considered two loop and data

dominated critical tasks with similar execution times and
deadlines, i.e gemm from Polybench suite [25] which consists
of three nested loops with main memory accesses and a set of
arithmetic operations. The tasks are sharing the same main
memory parts and run on core 0 and core 1. The remaining
cores run a set of low criticality loop and data dominated
tasks which are accessing different main memory parts. We
explore the behavior of our methodology by tuning:
1. the application size of the critical task, which is given by

the loop bounds and affects the arrays’ size, the number
of memory accesses and the execution time,

2. the number of cores that run low criticality tasks, i.e.
from 1 core up to 6 cores,

3. the deadline of the critical tasks DC , i.e. from tight dead-
lines close to the WCETiso up to more relaxed deadlines,

4. the granularity of the software run-time control mecha-
nism, i.e. the position of the observation points:
• coarse-grained : At the head points of level 1 (HP1),
• fine-grained : At the head points of levels 1 and 2 (HP2),
• very fine-grained : At the head points of all levels (HP3).

4.2.1 Design-time analysis

Although we have configured our system to be supported
by static WCET analysis, no static WCET analysis tool,
such asAit orOtawa [28], is available for the TMS320C6678
platform. As it is not the scope of this paper to extend
the supported platforms for static analysis tools, we use a
measure-based approach by using the local timer of the cores
that run the critical tasks to compute the timing informa-
tion of the critical tasks, i.e. the d(x), the w(x) and the Wmax

for each critical task. The d(x) and the w(x) are measured
when the critical tasks are the only tasks executed on the
system and for each observation point of a critical task. To
reduce the overhead introduced by our run-time measure-
ments, we perform the timing measurements by considering
one point per execution. For the computation of the d(x),
we use the maximum time observed between the head point
and the point x. For the computation of the w(x), we use
the maximum time observed between any two consecutive
iterations of the loop. The Wmax is measured when the crit-
ical tasks run in maximum load for each different number
of low criticality tasks and for each position of observation
points. The computation of the Wmax is performed by read-

ing the local clock, subtracting any two subsequent observed
times and using the maximum time difference.

The maximum time overhead of our run-time control for
reading the local timer is 70ns, for the RWCETiso(x) compu-
tation and the safety condition is 501ns and for the request
and suspension/resume of the low criticality tasks is 200ns.

4.2.2 Behavior of high criticality tasks

Fig. 7 compares the WCETmax in maximum load with 6
low criticality tasks (6LC) in comparison with the WCETiso

depending on the application size given by the loop bounds.
We observe that the difference between the WCETiso and
WCETmax increases when the number of congestions to the
shared resources increases.
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Figure 7: WCETs for several loop bounds

Fig. 8 depicts the WCETmax for several numbers of low
criticality tasks (2 in which case WCETmax = WCETiso up
to 8 parallel tasks) for an application size equal to 32. We
observe that the WCET highly depends on the number of
tasks that run in parallel. The WCET difference between
isolated execution and maximum load with 6 low criticality
tasks has a factor of 6.28.
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Figure 8: WCET for several parallel tasks

Fig. 9 illustrates the execution time of the critical tasks
τC1 and τC2 for several deadlines and granularities for an
application size equal to 32. We observe that the suspension
of the low criticality tasks occurs:
• For the HP1 configuration: 1) relatively quickly, when

the deadlines are tight (e.g. < 14.00ms). The observation
points are far away one from the other, the w1 is quite
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Figure 10: Execution time of τ1 for several deadlines

large and thus the safety condition is early violated, and
2) never, when the deadline is relaxed. For instance, for
deadlines > 14.00ms, the execution time of τC1 and τC2 is
stable, as it has been completely executed maximum load
scenario.

• For the HP2 and HP3 configuration: 1) quickly but later
that HP1, when the deadlines are tight, as the lower gran-
ularities allow the exploration of the task suspension in
smaller steps, 2) never, when the deadline is quite large.
For these smaller granularities, the deadline in which the
system is always executed in maximum load has a larger
value that HP1 configuration, i.e. 30.00ms for HP2 and
45.00ms for HP3, and 3) in between otherwise.

4.2.3 Gain on resources utilization

We explore the gains of our method by tuning (1) the
deadline of the critical task and the (2) granularity of the
observation points of our software controller.

Fig. 10 illustrates the execution time of the low criticality
task τ1 for several deadlines and granularities for an appli-
cation size equal to 32. We observe that the more time the
critical task spends in the maximum load, the longer are the
execution times of the low criticality tasks. To explore the
gain of our methodology, we consider the following notion:

Definition 7 (Relative gain). Let t denote the exe-
cution time of the low criticality task with our methodology
and tiso the execution time in isolation mode. The relative

gain obtained by the methodology is:

(t− tiso)/tiso
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Figure 11: Gain for several deadlines with applica-
tion size a) 32 and b) 128

Fig. 11(a) presents the behavior of the relative gain of our
approach with the HP1, HP2 and HP3 configuration with
respect to the different deadlines for an application size equal
to 32. From the experiments, we observe that our approach
achieves significant relative gains:
• For the more relaxed deadlines (still below the RWCETmax

i.e. 18.50ms), e.g. in 15.5ms, we have the highest gain
of 2.9885 or 298.85 % for HP1. The HP1 configuration
provides the largest gain. It calls the run-time controller
in larger steps, and the slack time, i.e. the time between
the critical task’s end and the deadline, is quite short.

• For larger deadlines, we still have a gain which is decreas-
ing when the deadline is further relaxed.

• For tight deadlines, e.g. <13.00ms we achieve a relative
gain of 11.27% for the fine grained and a relative gain of
4.93% for very fine grained granularities.
By increasing the application size to 128, we observe that

the gains of the lower granularities are increased. Fig. 11(b)
presents the behavior of the relative gain of our approach
with the HP1, HP2 and HP3 configuration with respect to
the different deadlines. We observe that:
• For tight deadlines (e.g. <660ms), the HP1 configuration

has a small gain from 2.5%-23.89%, as the w1 is signifi-
cantly increased and the critical task requests for isolated



execution at the first observation point. However, the
smaller granularities achieve significant gains because the
observation points are placed closer. The HP2 configura-
tion achieves a relative gain of 479% in 628.6ms, whereas
for even tighter deadlines (e.g. 628.2ms), the HP3 config-
uration achieves a gain of 556%.

• For more relaxed deadlines (e.g. >660ms and <2000ms),
the gain of the HP1 configuration is increased up to 317%,
as the time slack is increased and no need exists to explore
the suspension of the low criticality tasks in smaller steps.
The gains of the HP2 and HP3 remain stable and equal to
78.5% and 37.5%, respectively, as the gain due to the time
slack increase balances the loss of the controller overhead.

• For larger deadlines (e.g. >2000ms), we still have a gain
which is decreasing while the deadline is further relaxed.

5. RELATED WORK
This section briefly presents the different approaches on

the mixed-critical systems, whereas a detailed survey on the
mixed-criticality research up to now is available in [10].

5.1 Task scheduling
The majority of mixed-criticality scheduling work has been

mainly addressed for uni-processor platforms (e.g. [27, 5, 4,
8]), which is not directly applicable in multicore platforms.
In the latter, shared resources exist and time composition-
ality cannot be ensured [11], as the WCET analysis cannot
be applied independently per task.

In multicore platforms, several approaches exist that as-
sume that the task set is schedulable at least at the high
criticality level. For instance, in [7], both hard real-time and
soft real-time tasks are scheduled using an Earliest Dead-
line First for Hard real-time, Soft real-time and Best ef-
fort tasks (EDF-HSB) approach with the assumption that
the hard real-time tasks are statically schedulable. When
time slack occurs at run-time, it is reallocated to non hard
real-time tasks. Another example is the two level mixed-
criticality scheduling for multicore platforms proposed in [1]
and extended in [21], where the tasks are scheduled based
on the WCET of their criticality level and the time slack
is reallocated to lower criticality levels. The tasks of differ-
ent criticality levels are scheduled with different appropriate
scheduling approaches. The tasks with the lowest criticality
level are allowed to be executed when no higher criticality
task is running, i.e. in the critical tasks are executed in iso-
lation. In addition, several mixed-critical scheduling policies
have been implemented in the LITMUSRT framework [15].

Less pessimistic approaches, such as [19, 3, 24], use several
WCETs per task during task scheduling. Initially, all tasks
are assigned their low criticality WCET, which is a less pes-
simistic bound on WCET given by designers. This WCET
derives from a set of test cases [9] and is the maximum execu-
tion time observed during execution of the system. The pro-
posed algorithms in [19, 3] describe a generalization of the
preemptive uniprocessor algorithm EDF with Virtual Dead-
lines (EDF-VD) to multiprocessor platforms. At run-time,
they observe if the tasks have signaled termination at their
low criticality WCET. The check for the switching to higher
criticality WCET occurs once in a pre-defined position based
on the low criticality WCET. If no signal termination exists
by that time, the criticality level of the tasks is increased and
the tasks with lower criticality levels are dropped. This oc-
curs because a scenario of higher criticality is now considered

and the completion of jobs of lower criticality becomes irrel-
evant for the new scenario [2]. Further extensions of similar
methods are presented in [14] which avoid the abandoning
of the low criticality tasks during high criticality mode and
return to the low criticality mode after the high critical-
ity mode has been terminated. In [24] a Mixed-criticality
Scheduling on Multiprocessor (MSM) algorithm is proposed
which uses a global fixed priority based approach. When
the switching of criticality level occurs, the low criticality
tasks are dropped. The approach presented in [6] considers
mixed-critical systems and time-triggered paradigm where
WCET estimates are allowed to overrun. A run-time moni-
tor is in charge of detecting these overruns and switching on
a schedule selected from a set of pre-computed schedules.

Our approach is orthogonal to the aforementioned ap-
proaches: we consider two different types of WCETs, which
are not based on their reliability like existing methods but
on how the critical task is executed on the platform, i.e. in
maximum load or in isolated execution. Our WCET estima-
tions in both scenarios are safe. Our method is applicable
in cases where the system is considered as unschedulable,
e.g. when the values of low and high criticality WCET are
estimated above the deadline of the critical task. We also
perform a switch which suspends the low criticality tasks in
risk of a local overrun of the critical task. However, the time
instants where the switching can occur and the guarantee of
meeting the deadline of the critical task are formally defined
and proved. Then, the switching is decided at run-time by
exploring the ongoing execution of the critical task. A brief
description of the general idea is detailed in [18] and the
formal description and the proof in [17]. In this paper, we
extended our approach by increasing the number of critical
tasks which have now different deadlines, periods and offsets
and the number of cores where the critical tasks run, by re-
fining the observation points to insert instrumentation and
by implementing our controller in a real multicore platform.

5.2 Run-time control implementation
Several approaches propose resources reallocation based

on information derived from monitoring their utilization,
e.g. the memory accesses. For instance, in [23] interference-
sensitive WCETs are computed based on a preliminary anal-
ysis of the resource usage of tasks. The shared resources are
off-line partitioned among tasks. A run-time monitoring de-
vice observes the resource usage of each task and suspends
the task that overtakes the allocated capacity. In [22] the
approach is extended by allowing safe dynamic changes in
the resource partitioning, when resources are underutilized.
In [30] an approach has been developed to reserve memory
accesses for critical tasks. A run-time controller has been im-
plemented which regulates the accesses to the shared mem-
ory and ensures temporal isolation among tasks. An off-line
profiling technique has been proposed in [20] which finds the
most frequently accessed memory pages in a task. Then, this
information is used to modify the variables’ position in the
shared caches in order to reduce the interferences. Another
hardware approach is described in [12] where the monitor-
ing is only performed when enough slack time exists which
guarantees that the monitoring does not impact the meeting
of the real-time constraints of the tasks. If the slack is in-
sufficient, a dropping operation is executed to minimize the
monitoring overhead.

In contrast, our approach is not based on monitoring the



accesses to the shared resources, but on monitoring the on-
going execution time of the critical tasks. In case the time
to reach an observation point is too high, this implicitly
means that the low criticality tasks have generated many
contentions to the shared resources. If tolerating more in-
terferences could cause a dangerous slow down of the critical
task, the switching to isolated execution is mandatory.

6. CONCLUSION & FUTURE WORK
In this work, we present a methodology which improves

the resources utilization by increasing the task parallelism,
while guaranteeing the real-time response of the critical tasks.
These tasks are described by a set of ICFGs and the struc-
ture and time analysis is applied to compute the required
data for the run-time part. At run-time, a low-overhead
controller per critical task computes the remaining WCET
and decides the switching to isolated execution, which is
executed by the master entity. We have implemented our
approach on a multi-core COTS and we observed gains up
to 556% for our case study.

As future directions, we will apply our approach to other
types of critical tasks to obtain a global view of the gains
of our method. The next major challenge to solve is the
development of a methodology to decide the position of the
observation points over the ICFGs. We would like to ex-
plore the effect of the different scheduling techniques on our
approach. We would like also to explore the case where in
isolated execution we allow some low criticality tasks to run
on other cores even if some active requests exist. In addi-
tion, we consider the extension to several criticality levels by
adapting the computation of the partial RWCETs and the
definition of the isolated execution by exploring several cases
regarding the parallel execution of tasks during isolated ex-
ecution. We believe that the combination of our approach
with time and partitioning methods will further increase the
task parallelization during isolated execution.
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