
HAL Id: hal-01096093
https://hal.science/hal-01096093

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conversion of G-code programs for milling into
STEP-NC

Shixin Xú, Nabil Anwer, Sylvain Lavernhe

To cite this version:
Shixin Xú, Nabil Anwer, Sylvain Lavernhe. Conversion of G-code programs for milling into STEP-NC.
Joint Conference on Mechanical, Design Engineering & Advanced Manufacturing, Jun 2014, Toulouse,
France. �hal-01096093�

https://hal.science/hal-01096093
https://hal.archives-ouvertes.fr

Original Article Proceedings of Joint Conference on Mechanical, Design Engineering

& Advanced Manufacturing, Toulouse, France, June 18th–20th, 2014

Conversion of G-code programs for milling into STEP-NC

Shixin XÚ 1,2, Nabil ANWER 1, Sylvain LAVERNHE 1

(1) Laboratoire Universitaire de Recherche en
Production Automatisée, ENS de Cachan,

94235 Cachan, France
{anwer; lavernhe; sxu}@ens-cachan.fr

(2) School of Mechanical Engineering and
Automation, Beihang University,

Beijing 100191,China
xushixin@buaa.edu.cn

Abstract: STEP-NC (ISO 14649) is becoming a promising
standard to replace or supplement the conventional G-code
programs based on ISO 6983 due to its feature based machine
independent characteristics and its centric role to enable
efficient CAD/CAM/CNC interoperability. The re-use of G-
code programs is important for both manufacturing and
capitalization of machining knowledge, nevertheless the
conversion is a tedious task when carried out manually and
machining knowledge is almost hidden in the low level G-code.
Mapping G-code into STEP-NC should benefit from more
expressiveness of the manufacturing feature-based
characteristics of this new standard.

The work presented here proposes an overall method for G-
code to STEP-NC conversion. First, G-code is converted into
canonical machining functions, this can make the method more
applicable and make subsequent processes easier to implement;
then these functions are parsed to generate the neutral format
of STEP-NC Part21 toolpath file, this turns G-code into object
instances, and can facilitate company’s usage of legacy
programs; and finally, also optionally, machining features are
extracted to generate Part21 CC2 (conformance class) file. The
proposed extraction method employs geometric information of
cutting area inferred from toolpaths and machining strategies,
in addition to cutting tools’ data and workpiece’s dimension
data. This comprehensive use of available data makes the
extraction more accurate and reliable. The conversion method
is holistic, and can be extended to process a wide range of G-
code programs (e.g. turning or mill-turn codes) with as few
user interventions as possible.

Key words: G-code; STEP-NC; manufacturing features;
canonical machining functions; process plan.

1- Introduction

Most CNC machines are programmed in the ISO 6983 G-code
language, which limits program portability because the
language focuses on coding the tool center path with respect to
machine axes, rather than the machining process with regard to
the part. Moreover CNC vendors usually extend the language
beyond the limited scope of ISO 6983 creating their own
macro-languages implying that they can only be executed on

specific machine-tools. STEP-NC (STEP Data Model for
Computerized Numerical Controllers) is a model of data
transfer between CAD/CAM systems and CNC machines. It
aims at standardizing the data formats used at the machine
level, one key link in the entire process chain in a
manufacturing enterprise. STEP-NC specifies machining
processes rather than machine tool motion, using the object-
oriented paradigm and the concept of “workingsteps”, which
correspond to high-level manufacturing features and
associated process parameters. Thus STEP-NC creates an
exchangeable, workpiece-oriented data model for CNC
machine tools, supports the direct use of computer-generated
product data from ISO 10303, and ensures compatibility of
CNC input data. CNCs are responsible for translating
workingsteps to axis motion and tool operation [I1].

In the course of STEP-NC adoption, there are many needs to
convert legacy G-codes into STEP-NC programs. With the
impending prevalence of this new standard, manual
conversion of G-codes will be a huge, tedious task. Therefore,
automatic and effective conversion will be highly adopted by
manufacturing enterprises. On the other hand, legacy
programs are important resources for enterprises. They
contain optimal cutting conditions and machining strategies
for making products, and embody implicitly the machining
know-how from various experts. So converting legacy G-
codes to get corresponding STEP-NC files, instead of
designing from scratch, would save much costs and resources
for enterprises. Also this practice would facilitate the
accumulation of machining know-how due to information
storage in object-oriented structures.

The essential of the conversion is reconstruction of a
manufacturing feature oriented NC program from a G-code
program. NC programming by feature approach can
streamline the manufacturing cycle and make CAM/CNC
integration easier since manufacturing feature data and the
associated process data originate from CAM. Also the
feature approach makes NC-to-CAM feedback link realizable.
The core of STEP-NC data model is manufacturing features
and machining operations, which are encapsulated in a
workingstep. Figure 1 shows STEP-NC data model structure
[I1]. A workingstep represents the machining process for a
specified area of the workpiece. It specifies the association

JCM 2014 Conversion of G-code programs into STEP-NC

between “machining_feature” and “machining_operation” to
be performed on the feature. The “machining_workingstep” is
characterized by the use of a single tool and a set of
technological parameters. A machining operation contains
technological data for a workingstep. A workplan is a
collection of workingsteps with an execution sequence. The
“project” serves as a starting point for the program execution.
The division of information means that changing the sequence
of workingsteps or optimizing tool paths can be done with
minimal impact on the rest of the data.

Figure 1: STEP-NC data model.

Only few researches addressed G-code to STEP-NC
conversion. Shin et al. developed a system, called G2STEP, to
convert G-codes into STEP-NC for turning applications [SS1].
The system is based on two main functions: the pre-processor
function and the turning feature recognition function. In the
pre-processor, each block of a G-code program is interpreted
and stored in a pre-defined data structure. These blocks are
divided using some hints and these blocks are grouped into
workingsteps. At the turning feature recognition level, the
feature profile remaining after a workingstep is generated, and
the manufacturing feature, defined in STEP-NC, is recognized
by a profile and pre-determined machining operation. However,
this work did not handle milling applications and not fit well
for roughing operations in G-code programs.

Zhang et al. proposed a method to re-use the process
knowledge embedded in G-code part programs with different
manufacturing resources [ZN1]. The authors emphasized the
“process comprehension”, which is “essentially restructuring
the combined manufacturing information in an NC program
into a high-level process plan and the associated resource
information.” They proposed an abstract meta-model for
different CNC controllers. The method briefly involves how to
get a STEP-NC file from a G-code. They recognized features
from a G-code mainly by tool types, toolpath boundary and the
rawpiece geometry. STEP-NC entities are then created.
However details of feature types and feature parameters, are
not mentioned in the paper. Their method tries to decode a G-
code to get a STEP-NC file directly. Thus increasing the
implementation difficulty and limiting the applicable scopes.

This paper aims to present a systematic method for
automatically converting G-code part programs into STEP-NC
formats. The method is applicable to both milling and turning
G-codes. In Section 2, we first make clear what should be

given as inputs to the conversion process, followed by the
overall strategy of the conversion. In Section 3, detailed
descriptions of the conversion of G-codes into canonical
machining functions are described. In Sections 4 and 5,
detailed descriptions for obtaining STEP-NC Part21 files,
implemented in explicit tool path level, and in manufacturing
feature level are presented. The system development and a
testing example are given in Section 6, followed by
concluding remarks in Section 7.

2- Method overview

Since there is no information about tools, rawpiece and its
setup in a G-code, we should supplement them for ensuring
successful conversion. And the G-code should be an error-
free part program, hopefully, with high-quality, to make the
conversion significant.

For example, one simple G-code with different shape of
rawpieces will produce different final workpieces (Figure 2).
With the following G-code, if a small rawpiece is used, it
will make a profile feature; if a large rawpiece, it will make a
slot feature. Similarly, the rawpiece’s setup location, or its
offsets with regard to the programming frame also affects the
workpiece’s geometry. Therefore the rawpiece’s geometry,
location, etc. are necessary supplements for the conversion.
In fact, these supplements for the conversion roughly
correspond to the phase of machining definition for carrying
out a CNC machining.

G90 G54 G0 X0 Y0 Z100
Y-50
G1 Z-50 F200 S300 M3
X100
Y50
X-100
Y-50
X0
Z100
G0 Y0 M5
M30

Figure 2: From rawpiece to final workpiece.

In this work, we consider G-code program, information of
cutting tools used in the G-code, rawpiece’s shape and
location. Besides, we should know whether the given G-code
is a milling program, or a turning one, as well as the number
of axis involved in the program as far as current realization.

Two types of conversion outcomes are proposed: STEP-NC
Part21 file in explicit toolpaths (conformance class 1, or CC1)
and STEP-NC Part21 file in manufacturing features (CC2).
The first type mainly use toolpath features, and can deal with
3 to 5-axis part programs. The second type performs
manufacturing feature extraction from the given G-code part
program, and it can deal with G-code programs for 2½D
machining at present realization. The information flow is

JCM 2014 Conversion of G-code programs into STEP-NC

illustrated in Figure 3.

Figure 3: The information flow.

In order to illustrate the method, we use a very simple example
as shown in Figure 4a. The case study is a finish milling in one
layer to remove a 5mm-depth material on the planar top face of
the stock. In this case the only machining feature is the planar
face. The toolpath for one layer cutting is shown in Figure 4b,
followed by the G-code in Table 1.

a) The rawpiece

b) The toolpath

Figure 4: Illustration example.

Table 1: G-code for milling the planar face

G54 G90 G21 G40 G49 M5 M9
T1 M6 (Use an endmill, Ø18mm)
G43 H1 (Cutter length compensation by 50mm)

M8 S720 M3
G0 X91.90 Y-13.50 Z100.00
Z15.00
G1 Z0.00 F240.00
Y133.50
X74.80
Y-13.50

X57.70

Y133.50
X40.60
Y-13.50

X23.50
Y133.50
X6.40
Y-13.50
G0 Z15.00
G49 M9 M5
M30

The functions of any CNC machine can be viewed as a set of
canonical machining functions defined by NIST based on ISO
6983 [K1]. If a machine has new functions beyond this
standard, one can add new canonical functions. The G-code
program is firstly mapped into canonical functions that the
machine should execute. Secondly, by analyzing hints (such as

tool changes, speed changes) in the canonical functions,
workingsteps can be generated. In these workingsteps all
operations are treated as freeform operations and features as
toolpath features, except those that can be easily attached to
operations, like canned cycles. Then toolpath data is
converted into the data structure “toolpath” of freeform
operations. Thus we can generate STEP-NC Part21 file in
explicit toolpaths.

The “toolpath_feature” is introduced in STEP-NC to enable
the definition of tool movements not covered by regular
machining features (such as pockets, holes, slots, steps). It is
a placeholder for explicit toolpaths assigned to the operations
associated with it. 3 to 5-axis milling of freeform surfaces
typically requires explicit specification of toolpaths. This
kind of Part21 file (CC1) still has advantage over G-code. By
connecting this information with the high-level operation and
feature data, the toolpaths can always be interpreted within
their semantic context. They are also provided in a structure
which allows to identify the individual toolpath rather than to
search through thousands of lines of unstructured code for
axis movements.

Finally, we can extract manufacturing features from the
toolpath data of the Part21 file by analyzing the machining
regions, machining strategies, etc. In this process we need to
merge some workingsteps and reorganize them. When
achieved, the STEP-NC Part21 file in features and operations
can be generated. The final step can be optional according to
the needs of each company.

The overall procedures can be summarized as follows. A G-
code program is firstly translated into canonical functions,
which are then interpreted into a STEP-NC Part21 file (CC1).
The CC1 file is further converted into the higher level STEP-
NC Part21 file (CC2) after manufacturing feature extraction
[I2] [I3] [I4]. If we want to share a G-code program in a
higher level, or want to establish a bidirectional information
flow between CNC and CAM, we can choose CC2
conversion. Figure 5 shows the overall strategy.

Figure 5: The overall strategy.

G-code

Rawpiece info

STEP-NC CC1

STEP-NC CC2

Cutting tool info
Convert to
toolpaths

Convert to

features

JCM 2014 Conversion of G-code programs into STEP-NC

3- G-code to canonical functions

3.1 – Canonical functions

Canonical machining functions were defined by NIST with two

objectives. First, all the functionality of common 3 to 5-axis

machining centers had to be covered by them; for any function

a machining center can perform, there has to be a way to tell it

to do that function. Second, it should be possible to interpret an

ISO 6983/RS274 compatible NC program into canonical

function calls.

Canonical functions are atomic commands. Each function

produces a single tool motion or a single logical action. NC

commands include two types: those for which a single NC

command corresponds exactly to a canonical function call, and
those for which a single one will be decomposed into several

canonical function calls. For instance, G1 (move in a straight

line), M8 (turn flood coolant on) are of the first type; G83

(peck drilling) is of the second type.

Some main canonical functions are listed below:

1) Representation: SET_ORIGIN_OFFSETS(); USE_LENGTH_UNITS()

2) Free Space Motion: STRAIGHT_TRAVERSE()

3) Machining Attributes: SELECT_PLANE(); SET_FEED_RATE()

4) Machining Functions: STRAIGHT_FEED(); ARC_FEED()

5) Spindle Functions: SET_SPINDLE_SPEED();

START_SPINDLE_CLOCKWISE();

START_SPINDLE_COUNTERCLOCKWISE();

6) Tool Functions: CHANGE_TOOL(); SELECT_TOOL();

USE_TOOL_LENGTH_OFFSET()

7) Miscellaneous Functions: FLOOD_OFF(); FLOOD_ON()

8) Program Functions: PROGRAM_STOP()

In G-code, canned cycles (G81-G89) are for hole machining
operations. A canned cycle is decomposed into its basic moves

expressed by the above canonical functions. For example, (G81

X…Y…Z…R…L…) is intended for drilling. Its motions are:

preliminary motion(s); move Z-axis at current feedrate to the Z

position; Retract Z-axis at traverse rate to clear Z. This work

does not handle G-codes programs that have macro-commands.

Non-linear G-code program structure, like parallel, selective,

non-sequential, are not handled, either.

3.2 – The role of the conversion

In a G-code program, the working coordinate system may
change frequently, and the coordinate data may be absolute or
relative, and the radius/length compensation may be used. All
these are up to the user’s choice according to programming
convenience. In addition, as in all dialects of G-codes, a line of
code may specify several different things to do, such as
moving from one place to another along a line/arc, changing
the feed rate, starting the spindle turning, etc. The Interpreter
reads lines of a G-code one at a time, emulates the execution,
and keeps track of the current state of the controller. We use
the Interpreter: to check the correctness of the inputting G-code;
to unify the coordinates and parameters for a line/arc move
with respect to a chosen coordinate system; to determine the
correct execution order of the G-code. The Interpreter outputs
the following canonical functions as shown in Table 2, for the
example G-code. This conversion facilitates greatly the
subsequent processes.

Table 2: Canonical functions for milling the planar face

1USE_LENGTH_UNITS(UNITS_MM)
2 SET_ORIGIN_OFFSETS(0, 0, 0)
3 SET_FEED_REFERENCE(CANON_XYZ)
4 STOP_SPINDLE_TURNING()
5 FLOOD_OFF()
6 SPINDLE_RETRACT()
7 USE_TOOL_LENGTH_OFFSET(0)
8 CHANGE_TOOL(ENDMILL_18MM)
9 USE_TOOL_LENGTH_OFFSET(50)
10 FLOOD_ON()
11 SET_SPINDLE_SPEED(720)
12 START_SPINDLE_CLOCKWISE()
13 STRAIGHT_TRAVERSE(91.9,-13.5,100)
14 STRAIGHT_TRAVERSE(91.9,-13.5,15)
15 SET_FEED_RATE(240)
16 STRAIGHT_FEED(91.9, -13.5, 0)

17 STRAIGHT_FEED(91.9, 133.5, 0)
18 STRAIGHT_FEED(74.8, 133.5, 0)
19 STRAIGHT_FEED(74.8, -13.5, 0)
20 STRAIGHT_FEED(57.7, -13.5, 0)
21 STRAIGHT_FEED(57.7, 133.5, 0)
22 STRAIGHT_FEED(40.6, 133.5, 0)
23 STRAIGHT_FEED(40.6, -13.5, 0)
24 STRAIGHT_FEED(23.5, -13.5, 0)
25 STRAIGHT_FEED(23.5,133.5,0)
26 STRAIGHT_FEED(6.4, 133.5, 0)
27 STRAIGHT_FEED(6.4, -13.5, 0)
28 STRAIGHT_TRAVERSE(6.4,-13.5,15)
29 STOP_SPINDLE_TURNING()
30 FLOOD_OFF()
31 SPINDLE_RETRACT()
32 PROGRAM_END()

4- Canonical functions to STEP-NC Part21

A STEP Part 21 file contains two sections: the header section
and the data section. Since the conversion is only relevant to
the data section, the following will only consider the data
section of a Part21 file. The data section has the following
main types of entities: cutting tools; definitions and their
setups of rawpieces (usually only one); one project,
workplans and workingsteps; manufacturing features;
machining operations; technology, functions and machining
strategies; and placements, planes, dimensions, etc. The
entities for tools and rawpieces can be written in the Part21
file directly as per the inputting information since they have
less connection involved with other entities.

We devised a canonical function interpreter for the
generation of other entities. In the beginning a “struct” buffer
is defined to keep track of the controller status, such as the
units, the security plane, the coolant switch, feed rate, spindle
speed, the current tool and its position. The interpreter
maintains this buffer when it runs. The interpreter emulates
the execution of the canonical functions one by one: if it
meets a “STRAIGHT_TRAVERSE”, a “rapid movement”
entity is created; if it meets one or several consecutive
“STRAIGHT_FEED”s or “ARC_FEED”s, a “machining
workingstep” which includes a freeform operation is created.
The parameters of these functions are used as cutter location
data stored in the toolpath list of the freeform operation. Of
course sometimes computation is needed for obtaining the
toolpaths. Other data, such as technology and machining
functions can be inferred from the buffer. The entities of
“toolpath features” here are used for information only. For
cycle operations, hole features, not toolpath features are used.
Thus when the emulation comes to an end, we can get a
STEP-NC Part21 CC1 file in explicit toolpaths (cf. Appendix
A.1, here only the data section is shown).

5- STEP-NC Part21 file to manufacturing

features

This phase deals with mainly the extraction of
manufacturing/machining features from toolpaths based on
the previous Part21 CC1 file. Yan [YY1] adopts a Z-map
based method; Other type of method is: first build a CAD
model from a simulated or cut model usually in a STL file,
then using conventional methods do the recognition [AY1,
SP1]. Here we carry out the work based on toolpaths and
tool’s geometry. In this phase, one freeform operation

JCM 2014 Conversion of G-code programs into STEP-NC

corresponds to one machining workingstep. Many freeform
operations might correspond to one manufacturing feature
because often there are several layers of a rough machining and
finish machining, which are needed to make a final feature. So
one major procedure is to merge those freeform operations that
machine the same feature, as well as the relevant workingsteps
and rapid movements.

The feature types we are coping with are the machining
features defined in ISO 14649 Part 10[I2]. The procedure for
processing phase 1 is detailed as follows.
Step 1: From a freeform operation, get the tool and the toolpath
list. If no freeform operations left, end phase 1.
Step 2: Analyse the feature type by tool type first. If the tool
type is for drilling, the feature is a round hole, and note down
the diameter and the axis. They can be used to identify the
same hole in other operations; if the tool is a facemill, the
feature is a planar_face; if the tool is a T-slot_mill or
dovetail_mill or woodruff_keyseat_mill, the feature is
obviously a slot. Go to Step 1.
Step 3: If the tool is an endmill (including tapered_endmill,
ball_endmill, bullnose_endmill), then analyse the x, y, z-values
of the CL (cutter location) data in the toolpath list.
If z-value varies and x, y-values keep constant, it is milling a
hole feature. Note down the diameter and axis. Go to Step 1.
Step 4: If x, y, z-values are all varying, it is a freeform milling
operation to make a region (surface). Go to Step 6.
Step 5: If z-value keeps constant and x, y-values vary, it is a
2½D milling operation.
Step 6: Compare the toolpath list with the one of the next
freeform operation, for each CL-data, if the corresponding x, y-
values are the same and the z-value is decreased, the two
operations are cutting different layers of the same feature, then
they can be merged. For a region feature, go to Step 1.

After the above processing, extracted features are easily found;
processing phase 2 deals with the remaining toolpaths to find
planar_faces, general_outside_profiles, closed_pockets and
open_pockets. A step feature is a special type of open_pocket
that has only one wall face (the open boundary is a line
segment). A slot feature is also a special type of pocket, whose
profile shape has a constant width. The main grounds to find
features in phase 2 are the cutting area (the tool’s covering
region for cutting movements, Figure 3b) and the milling
strategy, which are computed based on toolpath CL data.

Common 2½D milling strategies are shown in Figure 6.
Unidirectional milling is going from one side to the other, then
lifting the tool and going back to the starting point.
Bidirectional milling is in a zigzag fashion, i.e. going from one
side to the other and back. Center milling is along the center of
the feature. It is often used for milling along the center of a slot.
Contour milling, which is a typical strategy for pocket milling,
is in several paths following the contour of the feature. Contour
spiral milling is similar to contour parallel milling, with the
exception, that in this case the milling path is a truly spiral path
rather than concentric paths which are connected by an
orthogonal movement. In general practices, the relationship
between features and milling strategies is as follows.

“closed_pocket”, ”round_hole” ——contour parallel milling, contour

spiral milling.

“open_pocket” —— bidirectional/unidirectional milling.

“planar_face” —— bidirectional/unidirectional milling, contour

parallel milling (outside-in).

“step” —— bidirectional/unidirectional milling.

“slot” —— center milling.

“general_outside_profile” —— contour parallel milling.

Figure 6: Common milling strategies.

In phase 2 the method is illustrated as in Figure 7. In 2½D
manufacturing, the computation of the cutting area and
milling strategy from toolpath CL data is not difficult since
they are 2D geometries. The milling strategy can also be
used for checking the correctness of the extracted features.
After characterizing the feature types, the profiles of features
are obtained from the boundaries of the cutting areas, which
are determined by toolpaths and cutters’ geometry.

Figure 7: Milled feature extraction.

Sometimes the feature profiles thus obtained need to be fixed
a bit if there is finish cutting or supplementary cutting to
make the feature. For open features, such as planar_faces,
steps, open_pockets, their profiles need not to be exact, as

JCM 2014 Conversion of G-code programs into STEP-NC

long as the open parts of their profiles are outside the
workpiece’s boundary. This requirement can simplify the
computation. Some cutting parameters, as required by the
machining technology in STEP-NC, such as radial/axial depths,
can also be inferred from the milling strategy.

The converted STEP-NC Part21 CC2 file in manufacturing
features is shown in appendix A.2 (only the data section
shown). In this file the only feature is “PLANAR_FACE”.

6- Implementation and examples

The entities of STEP-NC Parts 10, 11, 111 [I2] [I3] [I4] are
mapped to C++ classes. The syntax of G-code and Part21 files
is checked during the generation. The conversion of G-codes
into canonical functions, and canonical functions into STEP-
NC Part21 (CC1) can cope with 3 to 5-axis milling programs.
The method for generating STEP-NC Part21 (CC2) is applied
for 2½D G-code programs. In a future work, entities of STEP-
NC Parts 12,121 (turning) will be mapped to C++ classes, so
that turning programs can be also processed.

A test example is given in Figure 8. It has 3 machining features:
a planar face, a round hole and a closed pocket. A section of
the resulting Part 21 CC2 file is shown as follows, and part of
the initial G-code program is shown in appendix A.3.
…………
#10= MACHINING_WORKINGSTEP('WS FINISH PLANAR FACE1',#60,#20,#31,$);

#11= MACHINING_WORKINGSTEP('WS DRILL HOLE1',#60,#21,#32,$);
#12= MACHINING_WORKINGSTEP('WS REAM HOLE1',#60,#21,#33,$);
#13= MACHINING_WORKINGSTEP('WS ROUGH POCKET1',#60,#22,#34,$);
#14= MACHINING_WORKINGSTEP('WS FINISH POCKET1',#60,#22,#35,$);

#20= PLANAR_FACE('PLANAR FACE',#2,(#31),#64,#65,#23,#24,$,());
#21= ROUND_HOLE('HOLE1 D=22MM',#2,(#32,#33),#67,#70,#111,$,#25);
#22= CLOSED_POCKET('POCKET1',#2,(#34,#35),#69,#71,(),$,#26,$,#112,#27);

#23= LINEAR_PATH($,#110,#83);
#24= LINEAR_PROFILE($,#101);
#25= THROUGH_BOTTOM_CONDITION();
#26= PLANAR_POCKET_BOTTOM_CONDITION();
#27= RECTANGULAR_CLOSED_PROFILE($,#113,#114);

#31= PLANE_FINISH_MILLING($,$,'FINISH PLANAR FACE1',15.00,$,#40,#50,#51,$,
 #52,#52,#53,2.50,$);

#32= DRILLING($,$,'DRILL HOLE1',15.00,$,#44,#54,#51,$,$,$,$,$,#55);
#33= REAMING($,$,'REAM HOLE1',15.00,$,#47,#54,#51,$,$,$,$,$,#56,.T.,$,$);
#34= BOTTOM_AND_SIDE_ROUGH_MILLING($,$,'ROUGH POCKET1',15.00,$,#40,

#57,#51,$,$,$,#58,6.50,5.00,1.00,0.50);
#35= BOTTOM_AND_SIDE_FINISH_MILLING($,$,'FINISH POCKET1',15.00,$,#40,#57,
 #51,$,$,$,#59,2.00,10.00,$,$);
…………

Figure 8: A test example.

7- Conclusions

While STEP-NC is gaining popularity in the manufacturing
industry, the issue of legacy G-code program conversion is
arising. This paper proposes an overall approach for the
conversion of a G-code program into STEP-NC. The
conditions for a valid conversion are detailed. This approach
includes three main phases: first, G-code program is
converted into canonical functions; then, canonical functions
are analyzed to create a Part21 file in explicit toolpaths
(CC1); and finally, by applying machining feature
recognition techniques, the Part21 file is rewritten into a
higher level Part21 file in manufacturing features (CC2).
Although, 2½D machining features can be recognized, and
the machining feature recognition approach developed here
have no feature interaction issues, the problem of merging
freeform operations that make the same feature has to be
solved. Future work will include: (a) detecting turning or
milling machining type should be automatic, as well as the
number of axis involved in the program, (b) the extension of
the approach to handle turning/mill-turn G-code programs, (c)
to increase the capacity of manufacturing feature recognition,
especially for the case of region features.

Acknowledgements

This work is a part of the ANGEL FUI project recently
funded by the French Inter-ministerial Fund and endorsed by
top French competiveness clusters (SYSTEMATIC PARIS
REGION "Systems & ICT", VIAMECA "Advanced
Manufacturing" and ASTECH "Aeronautics & Space").

8- References

[AY1] Anwer N., Yang Y., Zhao H., Coma O. and Paul J.
Reverse engineering for NC machining simulation. In
IDMME’2010-Virtual Concept 2010, Bordeaux, France,
2010.

[I1] ISO 14649 Part 1: Overview and fundamental principles,
2002.

[I2] ISO 14649 Part 10: Process general data, 2002.

[I3] ISO 14649 Part 11: Process data for milling, 2002.

[I4] ISO 14649 Part 111: Tools for milling, 2002.

[K1] Kramer T. R. The NIST RS274/NGC Interpreter—

Version 3. In ISD of NIST, Gaithersburg, 2000.

[SP1] V.B. Sunil and S.S. Pande. Automatic recognition of
features from freeform surface CAD models. In Computer-
Aided Design 40:502–517, 2008.

[SS1] Shin S. J., Suh S. H. and Stroud I. Reincarnation of G-

code based part programs into STEP-NC for turning

applications. In Computer-Aided Design 39 (1): 1–16, 2007.

[YY1] X. Yan, K. Yamazaki and J. Liu. Recognition of
machining features and feature topologies from NC programs.

In Computer-Aided Design, 32: 605-616, 2000.

[ZN1] X. Zhang, A. Nassehi, M. Safaieh and S.T. Newman.

Process comprehension for shopfloor manufacturing

knowledge reuse. In Int. J. of Prod. Research, 51:1-15, 2013

JCM 2014 Conversion of G-code programs into STEP-NC

Appendix

A.1 – Part21 file (CC1)

DATA;

#0= PROJECT('EXECUTE EXAMPLE1',#1,(#2),$,$,$);
#1= WORKPLAN('MAIN WORKPLAN',(#10, ,#13),$,#3,$);
#2= WORKPIECE('CUBOID WORKPIECE',$,0.01,$,$,$,(#91,#92,#93,#94));
#3= SETUP('SETUP1',#62,#60,(#4));
#4= WORKPIECE_SETUP(#2,#63,$,$,());
#10= MACHINING_WORKINGSTEP('WS FINISH PLANAR FACE1',#60,#20,#30,$);
#13= RAPID_MOVEMENT('rapid after milling plane', #60,#401,$);

#20= TOOLPATH_FEATURE('FACE1:LAYER1',#2,(#30),#63,#64);
#30= FREEFORM_OPERATION(#101,$,'FINISH FACE1 L1',15.00,$,#40,#50,#51,$,$,$,$);

#40= MILLING_CUTTING_TOOL('ENDMILL_18MM',#41,(#43),80.00,$,$);
#41= TAPERED_ENDMILL(#42,4,.RIGHT.,.F.,$,$);
#42= MILLING_TOOL_DIMENSION(18.00, $,$, 29.0, 0.0, $,$);
#43= CUTTING_COMPONENT(80.00,$,$,$,$);

#50= MILLING_TECHNOLOGY(0.04,.TCP.,$,-12.00,$,.F.,.F.,.F.,$);
#51= MILLING_MACHINE_FUNCTIONS(.T.,$,$,.F.,$,(),.T.,$,$,());

#60= PLANE('SECURITY PLANE',#61);
#61= AXIS2_PLACEMENT_3D('PLANE1',#90,#81,#82);
#62= AXIS2_PLACEMENT_3D('SETUP1',#80,#81,#82);
#63= AXIS2_PLACEMENT_3D('CUBOID WORKPIECE',#80,#81,#82);

#64= PLANE('PLANAR FACE1:DEPTH PLANE',#65);
#65= AXIS2_PLACEMENT_3D('PLANAR FACE1',#95,#81,#82);
#80= CARTESIAN_POINT('ORIGIN',(0.00,0.00,0.00));
#81= DIRECTION('K-VECTOR',(0.00,0.00,1.00));
#82= DIRECTION('I-VECTOR',(1.00,0.00,0.00));
#90= CARTESIAN_POINT('SECURITY PLANE:LOCATION',(0.00,0.00,100.00));
#91= CARTESIAN_POINT('CLAMPING_P1',(0.00,20.00,25.00));

#92= CARTESIAN_POINT('CLAMPING_P2',(100.00,20.00,25.00));
#93= CARTESIAN_POINT('CLAMPING_P3',(0.00,100.00,25.00));
#94= CARTESIAN_POINT('CLAMPING_P4',(100.00,100.00,25.00));
#95= CARTESIAN_POINT('PLANAR FACE1:DEPTH ',(0.00,0.00,0.00));

#101= TOOLPATH_LIST((#102));
#102=

CUTTER_LOCATION_TRAJECTORY(.T.,.TRAJECTORY_PATH.,$,#50,$,$,#103,$,$);
#103= POLYLINE('1st cut of planar FACE1',(#110,#111,#112,#113,#114,#115,#116,
 #117,#118,#119,#120,#121,#122));
#110= CARTESIAN_POINT('',(91.90, -13.50, 15.00));
#111= CARTESIAN_POINT('',(91.90, -13.50, 0.00));
#112= CARTESIAN_POINT('',(91.90, 133.50, 0.00));
#113= CARTESIAN_POINT('',(74.80, 133.50, 0.00));

#114= CARTESIAN_POINT('',(74.80, -13.50, 0.00));
#115= CARTESIAN_POINT('',(57.70, -13.50, 0.00));
#116= CARTESIAN_POINT('',(57.70, 133.50, 0.00));
#117= CARTESIAN_POINT('',(40.60, 133.50, 0.00));
#118= CARTESIAN_POINT('',(40.60, -13.50, 0.00));
#119= CARTESIAN_POINT('',(23.50, -13.50, 0.00));
#120= CARTESIAN_POINT('',(23.50, 133.50, 0.00));

#121= CARTESIAN_POINT('',(6.40, 133.50, 0.00));
#122= CARTESIAN_POINT('',(6.40, -13.50, 0.00));

#401=TOOLPATH_LIST((#402));
#402= CUTTER_LOCATION_TRAJECTORY(.T.,.TRAJECTORY_PATH.,$,$,$,$,#403,$,$);
#403= POLYLINE('rapid after milling plane',(#410,#411));
#410= CARTESIAN_POINT('',(6.40, -13.50, 0.00));

#411= CARTESIAN_POINT('',(6.40, -13.50, 15.00));
ENDSEC ;

A.2 –Part21 file (CC2)

DATA;
#0= PROJECT('EXECUTE EXAMPLE1',#1,(#2),$,$,$);
#1= WORKPLAN('MAIN WORKPLAN',(#10),$,#3,$);
#2= WORKPIECE('CUBOID WORKPIECE',$,0.01,$,$,$,(#91,#92,#93,#94));
#3= SETUP('SETUP1',#62,#60,(#4));
#4= WORKPIECE_SETUP(#2,#63,$,$,());

#10= MACHINING_WORKINGSTEP('WS FINISH PLANAR FACE',#60,#20,#30,$);

#20= PLANAR_FACE('PLANAR FACE1',#2,(#30),#64,#65,#21,#22,$,());
#21= LINEAR_PATH($,#23,#83);
#22= LINEAR_PROFILE($,#25);
#23= TOLERANCED_LENGTH_MEASURE(120.00,#24);
#24= PLUS_MINUS_VALUE(0.30,0.30,3);
#25= NUMERIC_PARAMETER('PROFILE LENGTH',100.00,'MM');

#30= PLANE_FINISH_MILLING($, $, 'FINISH PLANAR FACE1', 15.00, $, #40, #50, #51, $,
#52, #52, #53, 2.50, $);

#40= MILLING_CUTTING_TOOL('ENDMILL_18MM',#41,(#43),80.00,$,$);
#41= TAPERED_ENDMILL(#42,4,.RIGHT.,.F.,$,$);
#42= MILLING_TOOL_DIMENSION(18.00, $,$, 29.0, 0.0, $,$);
#43= CUTTING_COMPONENT(80.00,$,$,$,$);

#50= MILLING_TECHNOLOGY(0.04,.TCP.,$,-12.00,$,.F.,.F.,.F.,$);

#51= MILLING_MACHINE_FUNCTIONS(.T.,$,$,.F.,$,(),.T.,$,$,());
#52= PLUNGE_TOOLAXIS($);
#53= BIDIRECTIONAL_MILLING(0.05,.T.,#83,.LEFT.,$);

#60= PLANE('SECURITY PLANE',#61);
#61= AXIS2_PLACEMENT_3D('PLANE1',#90,#81,#82);
#62= AXIS2_PLACEMENT_3D('SETUP1',#80,#81,#82);
#63= AXIS2_PLACEMENT_3D('CUBOID WORKPIECE',#80,#81,#82);
#64= AXIS2_PLACEMENT_3D('PLANAR FACE1',#95,#81,#82);

#65= PLANE('PLANAR FACE1-DEPTH PLANE',#66);
#66= AXIS2_PLACEMENT_3D('PLANAR FACE1',#96,#81,#82);
#80= CARTESIAN_POINT('ORIGIN',(0.00,0.00,0.00));
#81= DIRECTION('K-VECTOR',(0.00,0.00,1.00));
#82= DIRECTION('I-VECTOR',(1.00,0.00,0.00));
#83= DIRECTION('J-VECTOR',(0.00,1.00,0.00));
#90= CARTESIAN_POINT('SECURITY PLANE:LOCATION',(0.00,0.00,100.00));

#91= CARTESIAN_POINT('CLAMPING_P1',(0.00,20.00,25.00));
#92= CARTESIAN_POINT('CLAMPING_P2',(100.00,20.00,25.00));
#93= CARTESIAN_POINT('CLAMPING_P3',(0.00,100.00,25.00));
#94= CARTESIAN_POINT('CLAMPING_P4',(100.00,100.00,25.00));
#95= CARTESIAN_POINT('PLANAR FACE1:LOCATION ',(0.00,0.00,5.00));
#96= CARTESIAN_POINT('PLANAR FACE1:DEPTH ',(0.00,0.00,-5.00));
ENDSEC;

A.3 –Part of the initial G-code for the test

G54 G90 G21 G40 G49 M5 M9

T1 M6 (Use an endmill, diameter 18mm)
G43 H1 (Length compensation by 50mm)
M8 S720 M3
G0 X91.9 Y-13.5 Z100.

(To finish top face of rawpiece in 2 layers)
Z15.
G1 Z2.5 F240. (1st layer, depth 2.5mm)
Y133.5
X74.8

Y-13.5
X57.7
Y133.5
X40.6
Y-13.5
X23.5
Y133.5

X6.4
Y-13.5
G0 Z15.
X91.9
G1 Z0. (2nd layer, depth 2.5mm)
Y133.5
X74.8

Y-13.5
X57.7
Y133.5
X40.6
Y-13.5
X23.5
Y133.5

X6.4
Y-13.5

(To drill and ream a thru hole)
G0 Z15.

G49 M9 M5
T2 M6 (Use a spiral drill, diameter 20mm)
G43 H2 (Length compensation by 70mm)
M8 M3 F900. S720
G0 Z30.
G90 G99 G81 X20. Y60. Z-18. R10.
G99 G81 X20. Y60. Z-36. R10. F1800.

G99 G81 X20. Y60. Z-60. R10. F1350.
G1 Z10. F1800.
G80 G49 M5 M9 (end of drilling cycle)
T3 M6 (Use a reamer, diameter 22mm)
G43 H3 (Length compensation by 50mm)
M8 M3 S1080
G90 G99 G85 X20. Y60. Z-60. R10.

G80 G49 M5 M9 (End of reaming cycle)

(To cut a pocket, rough & finish)
T1 M6 (Use an endmill, diameter 18mm)
G43 H1 (Length compensation by 50mm)
M8 S1200 M3 F2400.
G0 Z30.

X64.754 Y50.069
Z15.

(To rough pocket in 5 layers, 5.9/layer)
(First 2 blocks: to run helical approach)
G2 X77.2 Y55. Z-5.9 I5.246 J4.932
G2 X70. Y55. I-3.60 J0.
G1 Y90.
X75.
Y50.

X65.
Y90.
X70.
Y95.
X80.
Y45.
X60.

Y95.
X70.
Y100.
X85.
Y40.
X55.
Y100.

X70.
Z0.
G0 X69.532 Y47.815 (End of 1st layer)
………… (Code of next 4 layers omitted)

(To finish pocket in 6 layers. 5mm/layer)
(Bottom allowance 0.5, side allowance 1)

G0 Z30.
X74.890 Y60.285
Z15.
(First 2 blocks: to run helical approach)
G2 X77.2 Y55. Z-2. I-4.891 J-5.285
G2 X70. Y55. I-3.60 J0.
G1 Y93.

X78.
Y47.
X62.
Y93.
X70.
Y101.
X85.

G2 X86. Y100. I0. J-1.
G1 Y40.
G2 X85. Y39. I-1. J0.
G1 X55.
G2 X54. Y40. I0. J1.
G1 Y100.

G2 X55. Y101. I1. J0.
G1 X70.
Z0. (End of 1st layer)
............(Code of rest of layers omitted)
G2 X55. Y101. I1. J0. (now Z-30.00)
G1 X70.
Z15. (End of finishing)
M30

